WO2012127762A1 - Electrically conductive composition, dispersion system, process for producing electrically conductive composition, and solid electrolyte battery - Google Patents

Electrically conductive composition, dispersion system, process for producing electrically conductive composition, and solid electrolyte battery Download PDF

Info

Publication number
WO2012127762A1
WO2012127762A1 PCT/JP2011/080433 JP2011080433W WO2012127762A1 WO 2012127762 A1 WO2012127762 A1 WO 2012127762A1 JP 2011080433 W JP2011080433 W JP 2011080433W WO 2012127762 A1 WO2012127762 A1 WO 2012127762A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composition
solid electrolyte
negative electrode
positive electrode
electrically conductive
Prior art date
Application number
PCT/JP2011/080433
Other languages
French (fr)
Japanese (ja)
Inventor
中村 仁
亮 齋藤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2013505781A priority Critical patent/JP5681788B2/en
Priority to CN201180069517.0A priority patent/CN103443864B/en
Publication of WO2012127762A1 publication Critical patent/WO2012127762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive composition, a dispersion system, a method for producing a conductive composition, and a solid electrolyte battery.
  • Patent Document 1 describes that a solid electrolyte layer is formed using Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and tetraethoxysilane.
  • An object of the present invention is to provide a new conductive material that can be used as a solid electrolyte.
  • the conductive composition according to the first aspect of the present invention contains Li, I and Si and at least one of Co and Cu.
  • the conductive composition is applicable to a dispersion system having a dispersion medium that is a liquid and the conductive composition dispersed in the dispersion medium.
  • the said electrically conductive composition is the following process (a) and (b): (A) condensing silica alkoxide; (B) It can be produced by a production method comprising mixing the silica alkoxide before step (a) or the condensate obtained in step (a), Li and I, and at least one of Co and Cu. is there.
  • the conductive composition is applicable to a solid electrolyte battery including a positive electrode, a negative electrode, and the conductive composition disposed between the positive electrode and the negative electrode.
  • the conductive composition may be contained in at least one of the positive electrode and the negative electrode in a solid electrolyte battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. Also good.
  • the conductive composition of the present invention can be used as a solid electrolyte.
  • Conductive composition The conductive composition of this embodiment contains Li, I, and Si and at least one of Co and Cu.
  • the conductive composition may include a dehydration condensate of silica alkoxide containing at least a part of Si.
  • at least a part of Si may constitute a dehydration condensate of silica alkoxide.
  • the conductive composition may contain a substance represented by the formula Li x M z I (1-z) SiO y .
  • M includes at least one of Co and Cu, z satisfies 0 ⁇ z ⁇ 1, x and y need only be larger than 0, and the valence in the substance represented by the above formula is zero. Any value is acceptable.
  • the conductive composition may include one or both of Li x Co z I (1-z) SiO y and Li x Cu z I (1-z) SiO y .
  • the conductive composition has ionic conductivity, particularly lithium ion conductivity.
  • the conductivity (ionic conductivity) of the conductive composition is preferably at a level of 1.0 ⁇ 10 ⁇ 3 S / cm or more.
  • the conductive composition can be used as a solid electrolyte of a lithium ion battery, particularly a lithium ion secondary battery. That is, the conductive composition may be a solid.
  • the dispersion system of this embodiment contains the dispersion medium which is a liquid, and the said electroconductive composition disperse
  • the dispersion system may be paraphrased as an emulsion, a sol, or a colloid.
  • the dispersion medium may be water or a solution using water as a solvent.
  • the dispersion medium may contain an organic solvent such as alcohol.
  • the dispersion can be produced by homogenizing the composite as described later in the method for producing a conductive composition described later.
  • a dispersion system may be obtained by suspending a solid conductive composition such as a powder in a dispersion medium such as water, and homogenizing the suspension as necessary.
  • Solid electrolyte battery The solid electrolyte battery of this embodiment is equipped with the said electroconductive composition arrange
  • the solid electrolyte battery 1 functions as a lithium ion secondary battery, and includes a positive electrode 2, a negative electrode 3, a solid electrolyte layer 4, a positive electrode side current collector 5, and a negative electrode side current collector 6 as shown in FIG. 1.
  • the positive electrode 2 contains a positive electrode active material.
  • the positive electrode 2 may further contain a conductive material or may further contain a binder.
  • As the positive electrode active material known materials conventionally used as positive electrode active materials in lithium ion batteries (for example, lithium-containing oxides such as LiCoO 2 , LiFePO 4 , LiMn 2 O 4 ; simple sulfur and metal sulfides, etc.) The sulfur-containing material) can be applied.
  • the positive electrode 2 has at least a part of the above 1. It is preferable to contain the electroconductive composition demonstrated in the column. That is, it is preferable that the conductive composition and the positive electrode active material are mixed in at least a part of the positive electrode 2. In particular, it is preferable that the positive electrode active material is particulate or porous, and the conductive composition is present between the particles or in the pores.
  • the conductive material a known material is used.
  • carbon black and acetylene black are used as the carbon-based conductive agent.
  • the negative electrode 3 contains a negative electrode active material.
  • the negative electrode active material known materials that have been used as negative electrode active materials in lithium ion batteries, such as carbon (graphite and the like), metallic lithium, Sn, SiO, and the like, can be applied.
  • the negative electrode 3 may further contain a binder.
  • the negative electrode 3 has at least a part of the 1. It is preferable to contain the electroconductive composition demonstrated in the column. That is, it is preferable that the negative electrode active material and the conductive composition are mixed in at least a part of the negative electrode 3.
  • the negative electrode active material is preferably particulate or porous, and the conductive composition is preferably present between the particles or in the pores.
  • the solid electrolyte layer 4 is disposed between the positive electrode 2 and the negative electrode 3.
  • the solid electrolyte layer 4 contains the above-described conductive composition, preferably as a main component.
  • “containing as a main component” means that a certain substance contains a specific component in a proportion of 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight. May be.
  • the solid electrolyte layer 4 can contain various additives, binders and the like.
  • the solid electrolyte layer 4 also serves as a separator that separates the positive electrode and the negative electrode so as not to cause an electrical short circuit.
  • a known material for example, a metal such as aluminum, nickel, SUS, etc. is applied as the positive electrode side current collector of the lithium ion battery.
  • a known material for example, metal such as copper, nickel, SUS, etc. is applied as the negative electrode side current collector of the lithium ion battery.
  • the solid electrolyte battery of this embodiment can be used as a lithium ion secondary battery.
  • the manufacturing method of an electroconductive composition is the following process (a) and (b): (A) condensing silica alkoxide; (B) The silica alkoxide before step (a) or the condensate obtained in step (a), Li and I, and at least one of Co and Cu may be mixed.
  • a solid electrolyte can be directly synthesized by a sol-gel method. It can be said that the step (a) is emulsion polymerization.
  • Silica alkoxide is represented by Si (OR) 4 .
  • R is the same or different, substituted or unsubstituted hydrocarbon group.
  • a step of dissolving silica alkoxide in a solvent containing alcohol such as ethanol and methanol and water may be performed.
  • the condensation of the silica alkoxide in the step (a) may be dehydration condensation, and a known method can be applied as a method of condensing the silica alkoxide.
  • the dehydration condensation of the silica alkoxide may be performed under strongly alkaline conditions.
  • the order of adding Li, I, Co and Cu is not limited to a specific order.
  • Li, I, Co, and Cu may be used in a compound state, not in a single state, and the composition of the compound is not limited.
  • the execution order of the process (a) and the process (b) is not limited to a specific order.
  • at least a part of the substance added in the step (b) may be added before the condensation in the step (a).
  • lithium may be added to the reaction system by using lithium hydroxide (LiOH) as a basic substance (basic catalyst) that catalyzes the dehydration condensation of silica alkoxide.
  • LiOH lithium hydroxide
  • I, Co and Cu may be added before the addition of lithium hydroxide (or before the condensation reaction), and the rest may be added after the addition of lithium hydroxide (or after the condensation reaction).
  • all of I, Co, and Cu may be added before the addition of lithium hydroxide or before the condensation reaction), or all of I, Co, and Cu may be added after the addition of lithium hydroxide (or after the condensation reaction). It may be added.
  • the production method of the present embodiment may further comprise homogenizing a silica alkoxide condensate.
  • This homogenization may be performed in the reaction solution.
  • the homogenization may be performed at least after the condensation, and the number and timing thereof are not particularly limited.
  • homogenization may be performed after condensation and (1) at least one additive of Li, I, Co, and Cu is not added, or (2) all additions Homogenization may be performed after the product has been added, or (3) homogenization may be performed in both (1) and (2) above.
  • the positive electrode 2 and the negative electrode 3 are formed by, for example, applying a slurry containing an active material on a current collector or the like, or molding after mixing a powdered active material and a binder. In addition, the above-described 1.
  • the conductive composition may be added and mixed and then molded, or the molded positive electrode 2 and negative electrode 3 may be impregnated (immersed or coated). Yes, you can.
  • the solution of the conductive composition may be the above-described dispersion system. The impregnation may be performed after the positive electrode 2 and the negative electrode 3 are fired.
  • the solid electrolyte layer 4 may be formed by applying a solution or kneaded body of the conductive composition on the positive electrode 2 or the negative electrode 3, and contains the conductive composition separately from the positive electrode 2 and the negative electrode 3.
  • a sheet obtained by molding a kneaded body to be formed may be disposed between the positive electrode 2 and the negative electrode 3.
  • the positive electrode 2, the solid electrolyte layer 4 and the negative electrode 3 thus formed are fired at an appropriate temperature.
  • the obtained dispersion was dried and fired at 500 ° C. in air to obtain a powdery conductive composition.
  • the active material was obtained by mixing the conductive composition of the powder obtained in the above (1) and single sulfur at a weight ratio of 1: 1.
  • a kneaded body was obtained by mixing 70 parts by weight of an active material, 20 parts by weight of acetylene black, and 10 parts by weight of PTFE (polytetrafluoroethylene) as a binder in a mortar. The kneaded body was molded to obtain disk-shaped pellets.
  • the pellets were dried at 100 ° C. Thereafter, a metal lithium foil was attached to the surface to which the pellet slurry was applied.
  • the laminated body thus obtained was used for the following measurements.
  • the novel conductive composition has a conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm level, which is comparable to that of the liquid electrolyte.
  • an active material layer as an electrode was formed by mixing a conductive composition and carbon with sulfur as an active material.
  • the conductivity and lithium ion conductivity as an electrode could be realized by interposing carbon and a conductive composition between sulfur particles.
  • the contact area between the solid electrolyte and the active material was increased, and a high output could be obtained.
  • the conductive composition can be synthesized by emulsion polymerization, it can have a very small particle size. Therefore, it is considered that the contact area is further increased.
  • the conductive composition of the present invention is a novel substance and can be used for a lithium ion battery as a solid electrolyte.

Abstract

An electrically conductive substance comprising Li, I, Si, and additionally comprising Co and/or Cu, which has ion conductivity and therefore can be used as a solid electrolyte for a lithium ion battery.

Description

導電性組成物、分散系、導電性組成物の製造方法及び固体電解質電池Conductive composition, dispersion, method for producing conductive composition, and solid electrolyte battery
 本発明は、導電性組成物、分散系、導電性組成物の製造方法及び固体電解質電池に関する。 The present invention relates to a conductive composition, a dispersion system, a method for producing a conductive composition, and a solid electrolyte battery.
 従来、正極、負極、及び電解液を備えるリチウムイオン二次電池が提案されている。しかし、このようなリチウムイオン二次電池では、液漏れが発生する可能性があり、また有機電解液を有する電池では、有機電解液が可燃性であるため、使用環境によっては、取り扱いに注意を要することがある。そこで、電解液に代えて固体の電解質を備える全固体型電池の開発が進められている。例えば、特許文献1には、Li1.3Al0.3Ti1.7(POとテトラエトキシシランとを用いて固体電解質層を形成することが記載されている。 Conventionally, a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolytic solution has been proposed. However, in such a lithium ion secondary battery, there is a possibility that liquid leakage may occur, and in a battery having an organic electrolytic solution, the organic electrolytic solution is flammable. It may take. Therefore, development of an all-solid battery including a solid electrolyte instead of the electrolytic solution has been advanced. For example, Patent Document 1 describes that a solid electrolyte layer is formed using Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and tetraethoxysilane.
特開2001-210375号公報Japanese Patent Laid-Open No. 2001-210375
 しかし、従来の固体電解質は、電解液に比べて抵抗が高いなどの問題を有しており、電池の性能向上のためには固体電解質として利用可能な新たな物質が求められている。 However, conventional solid electrolytes have problems such as higher resistance than electrolytes, and new substances that can be used as solid electrolytes are required to improve battery performance.
 本発明の課題は、固体電解質として利用可能な新たな導電性物質等を提供することにある。 An object of the present invention is to provide a new conductive material that can be used as a solid electrolyte.
 本発明の第1観点に係る導電性組成物は、Li、I及びSiと、Co及びCuの少なくとも一方と、を含有する。 The conductive composition according to the first aspect of the present invention contains Li, I and Si and at least one of Co and Cu.
 上記導電性組成物は、液体である分散媒と、上記分散媒中に分散する上記導電性組成物と、を有する分散系に適用可能である。 The conductive composition is applicable to a dispersion system having a dispersion medium that is a liquid and the conductive composition dispersed in the dispersion medium.
 また、上記導電性組成物は、下記工程(a)及び(b):
 (a)シリカアルコキシドを縮合させること、
 (b)工程(a)の前のシリカアルコキシド又は工程(a)で得られた縮合物と、Li及びIと、Co及びCuの少なくとも一方と、を混合すること
を備える製造方法によって製造可能である。
Moreover, the said electrically conductive composition is the following process (a) and (b):
(A) condensing silica alkoxide;
(B) It can be produced by a production method comprising mixing the silica alkoxide before step (a) or the condensate obtained in step (a), Li and I, and at least one of Co and Cu. is there.
 また、上記導電性組成物は、正極と、負極と、上記正極と上記負極との間に配置された上記導電性組成物と、を備える固体電解質電池に適用可能である。 The conductive composition is applicable to a solid electrolyte battery including a positive electrode, a negative electrode, and the conductive composition disposed between the positive electrode and the negative electrode.
 また、上記導電性組成物は、正極と、負極と、上記正極と上記負極との間に配置された固体電解質層と、を備える固体電解質電池において、上記正極及び負極の少なくとも一方に含有されてもよい。 The conductive composition may be contained in at least one of the positive electrode and the negative electrode in a solid electrolyte battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. Also good.
 本願発明の導電性組成物は、固体電解質として利用可能である。 The conductive composition of the present invention can be used as a solid electrolyte.
固体電解質電池の要部構成を示す断面図Sectional drawing which shows the principal part structure of a solid electrolyte battery
 1.導電性組成物
 本実施形態の導電性組成物は、Li、I及びSiと、Co及びCuの少なくとも一方と、を含有する。
1. Conductive composition The conductive composition of this embodiment contains Li, I, and Si and at least one of Co and Cu.
 また、導電性組成物は、Siの少なくとも一部を含有するシリカアルコキシドの脱水縮合物を備えてもよい。言い換えると、Siの少なくとも一部は、シリカアルコキシドの脱水縮合物を構成してもよい。 Further, the conductive composition may include a dehydration condensate of silica alkoxide containing at least a part of Si. In other words, at least a part of Si may constitute a dehydration condensate of silica alkoxide.
 より具体的には、導電性組成物は、式Li(1-z)SiOで表される物質を含有してもよい。MはCo及びCuの少なくとも一方を含み、zは0<z<1を満たし、x及びyは、0より大きければよく、また、上記式で表される物質における価数がゼロになるような値であればよい。例えば、導電性組成物は、LiCo(1-z)SiO及びLiCu(1-z)SiOの一方又は両方を含んでもよい。 More specifically, the conductive composition may contain a substance represented by the formula Li x M z I (1-z) SiO y . M includes at least one of Co and Cu, z satisfies 0 <z <1, x and y need only be larger than 0, and the valence in the substance represented by the above formula is zero. Any value is acceptable. For example, the conductive composition may include one or both of Li x Co z I (1-z) SiO y and Li x Cu z I (1-z) SiO y .
 また、導電性組成物は、イオン伝導性、特にリチウムイオン伝導性を有する。導電性組成物の導電性(イオン伝導性)は、1.0×10-3S/cmのレベル以上であることが好ましい。導電性組成物は、後述するように、リチウムイオン電池、特にリチウムイオン二次電池の固体電解質として利用可能である。すなわち、導電性組成物は、固体であってもよい。 The conductive composition has ionic conductivity, particularly lithium ion conductivity. The conductivity (ionic conductivity) of the conductive composition is preferably at a level of 1.0 × 10 −3 S / cm or more. As described later, the conductive composition can be used as a solid electrolyte of a lithium ion battery, particularly a lithium ion secondary battery. That is, the conductive composition may be a solid.
 2.分散系
 本実施形態の分散系は、液体である分散媒と、上記分散媒中に分散する上記導電性組成物と、を含有する。分散系は、エマルション、ゾル又はコロイド等と言い換えられてもよい。
2. Dispersion system The dispersion system of this embodiment contains the dispersion medium which is a liquid, and the said electroconductive composition disperse | distributed in the said dispersion medium. The dispersion system may be paraphrased as an emulsion, a sol, or a colloid.
 分散媒は、水であってもよく、水を溶媒とする溶液であってもよい。また、分散媒は、アルコール等の有機溶媒を含有していてもよい。 The dispersion medium may be water or a solution using water as a solvent. The dispersion medium may contain an organic solvent such as alcohol.
 分散系は、後述の導電性組成物の製造方法において、合成物を、後述するようにホモジナイズすることによって製造可能である。粉末等の固体状の導電性組成物を水等の分散媒中で懸濁することで、また必要に応じて懸濁液をホモジナイズすることで、分散系を得てもよい。 The dispersion can be produced by homogenizing the composite as described later in the method for producing a conductive composition described later. A dispersion system may be obtained by suspending a solid conductive composition such as a powder in a dispersion medium such as water, and homogenizing the suspension as necessary.
 3.固体電解質電池
 本実施形態の固体電解質電池は、正極、負極、及び正極と負極との間に配置された上記電導性組成物を備える。
3. Solid electrolyte battery The solid electrolyte battery of this embodiment is equipped with the said electroconductive composition arrange | positioned between a positive electrode, a negative electrode, and a positive electrode and a negative electrode.
 具体的な構造を図1に示す。固体電解質電池1はリチウムイオン二次電池として機能し、図1に示すように、正極2、負極3、固体電解質層4、正極側集電体5及び負極側集電体6を備える。 The specific structure is shown in FIG. The solid electrolyte battery 1 functions as a lithium ion secondary battery, and includes a positive electrode 2, a negative electrode 3, a solid electrolyte layer 4, a positive electrode side current collector 5, and a negative electrode side current collector 6 as shown in FIG. 1.
 正極2は、正極活物質を含有する。また、正極2は、導電材をさらに含有してもよいし、バインダをさらに含有してもよい。正極活物質としては、従来、リチウムイオン電池において正極活物質として用いられてきた公知の材料(例えば、LiCoO、LiFePO、LiMn等のリチウム含有酸化物;硫黄単体及び金属硫化物等の硫黄含有材料)が適用可能である。 The positive electrode 2 contains a positive electrode active material. The positive electrode 2 may further contain a conductive material or may further contain a binder. As the positive electrode active material, known materials conventionally used as positive electrode active materials in lithium ion batteries (for example, lithium-containing oxides such as LiCoO 2 , LiFePO 4 , LiMn 2 O 4 ; simple sulfur and metal sulfides, etc.) The sulfur-containing material) can be applied.
 また、正極2は、少なくともその一部において、上記1.欄で説明された導電性組成物を含有することが好ましい。つまり、正極2の少なくとも一部において、導電性組成物と正極活物質とが混在していることが好ましい。特に、正極活物質が粒子状または多孔質であり、その粒子間又は孔中に導電性組成物が存在していることが好ましい。 Further, the positive electrode 2 has at least a part of the above 1. It is preferable to contain the electroconductive composition demonstrated in the column. That is, it is preferable that the conductive composition and the positive electrode active material are mixed in at least a part of the positive electrode 2. In particular, it is preferable that the positive electrode active material is particulate or porous, and the conductive composition is present between the particles or in the pores.
 導電材としては、公知の材料が用いられ、例えば、炭素系導電剤として、カーボンブラック及びアセチレンブラック等が用いられる。 As the conductive material, a known material is used. For example, carbon black and acetylene black are used as the carbon-based conductive agent.
 負極3は、負極活物質を含有する。負極活物質としては、リチウムイオン電池において負極活物質として用いられてきた公知の材料、例えば炭素(黒鉛等)、金属リチウム、Sn、SiO等が適用可能である。負極3は、さらにバインダを含有してもよい。また、負極3は、少なくともその一部において、上記1.欄で説明された導電性組成物を含有することが好ましい。つまり、負極3の少なくとも一部において、負極活物質と導電性組成物とが混在していることが好ましい。特に、負極活物質が粒子状または多孔質であり、その粒子間又は孔中に導電性組成物が存在していることが好ましい。 The negative electrode 3 contains a negative electrode active material. As the negative electrode active material, known materials that have been used as negative electrode active materials in lithium ion batteries, such as carbon (graphite and the like), metallic lithium, Sn, SiO, and the like, can be applied. The negative electrode 3 may further contain a binder. In addition, the negative electrode 3 has at least a part of the 1. It is preferable to contain the electroconductive composition demonstrated in the column. That is, it is preferable that the negative electrode active material and the conductive composition are mixed in at least a part of the negative electrode 3. In particular, the negative electrode active material is preferably particulate or porous, and the conductive composition is preferably present between the particles or in the pores.
 固体電解質層4は、正極2と負極3との間に配置される。固体電解質層4は、上述の導電性組成物を、好ましくは主成分として含有する。なお、本明細書において「主成分として含有する」とは、ある物質が、特定の成分を50重量%以上、好ましくは70重量%以上、さらに好ましくは80重量%の割合で含有することであってもよい。導電性組成物のほかに、固体電解質層4は、種々の添加物、バインダ等を含有することができる。固体電解質層4は、正極と負極との間を、電気的な短絡が起きないように分離するセパレータの役割も果たす。 The solid electrolyte layer 4 is disposed between the positive electrode 2 and the negative electrode 3. The solid electrolyte layer 4 contains the above-described conductive composition, preferably as a main component. In the present specification, “containing as a main component” means that a certain substance contains a specific component in a proportion of 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight. May be. In addition to the conductive composition, the solid electrolyte layer 4 can contain various additives, binders and the like. The solid electrolyte layer 4 also serves as a separator that separates the positive electrode and the negative electrode so as not to cause an electrical short circuit.
 正極側集電体5としては、リチウムイオン電池の正極側集電体として公知の材料(例えば、アルミニウム、ニッケル、SUS等の金属)が適用される。 As the positive electrode side current collector 5, a known material (for example, a metal such as aluminum, nickel, SUS, etc.) is applied as the positive electrode side current collector of the lithium ion battery.
 負極側集電体5としては、リチウムイオン電池の負極側集電体として公知の材料(例えば、銅、ニッケル、SUS等の金属)が適用される。 As the negative electrode side current collector 5, a known material (for example, metal such as copper, nickel, SUS, etc.) is applied as the negative electrode side current collector of the lithium ion battery.
 本実施形態の固体電解質電池は、リチウムイオン二次電池として利用可能である。 The solid electrolyte battery of this embodiment can be used as a lithium ion secondary battery.
 4.導電性組成物の製造方法
 導電性組成物の製造方法は、下記工程(a)及び(b):
 (a)シリカアルコキシドを縮合させること、
 (b)工程(a)の前のシリカアルコキシド又は工程(a)で得られた縮合物と、Li及びIと、Co及びCuの少なくとも一方と、を混合すること
を備えてもよい。
4). The manufacturing method of an electroconductive composition The manufacturing method of an electroconductive composition is the following process (a) and (b):
(A) condensing silica alkoxide;
(B) The silica alkoxide before step (a) or the condensate obtained in step (a), Li and I, and at least one of Co and Cu may be mixed.
 導電性組成物の製造方法によれば、ゾル‐ゲル法によって、固体電解質を直接合成することができる。工程(a)は、乳化重合であるとも言える。 According to the method for producing a conductive composition, a solid electrolyte can be directly synthesized by a sol-gel method. It can be said that the step (a) is emulsion polymerization.
 シリカアルコキシドは、Si(OR)で表される。Rは、同一の又は異種の、置換若しくは非置換の炭化水素基である。 Silica alkoxide is represented by Si (OR) 4 . R is the same or different, substituted or unsubstituted hydrocarbon group.
 上記工程(a)の前に、シリカアルコキシドを、エタノール及びメタノール等のアルコール、並びに水を含有する溶媒に溶解させる工程が行われてもよい。 Before the step (a), a step of dissolving silica alkoxide in a solvent containing alcohol such as ethanol and methanol and water may be performed.
 工程(a)におけるシリカアルコキシドの縮合は、脱水縮合であってもよく、シリカアルコキシドを縮合させる方法として公知の方法が適用可能である。シリカアルコキシドの脱水縮合は、強アルカリ条件下で行われてもよい。 The condensation of the silica alkoxide in the step (a) may be dehydration condensation, and a known method can be applied as a method of condensing the silica alkoxide. The dehydration condensation of the silica alkoxide may be performed under strongly alkaline conditions.
 上記工程(b)において、Li、I、Co及びCuを添加する順序は、特定の順序に限定されるものではない。また、Li,I,Co及びCuは、単体の状態でなく、化合物の状態で用いられてもよく、化合物の組成は限定されない。 In the above step (b), the order of adding Li, I, Co and Cu is not limited to a specific order. Li, I, Co, and Cu may be used in a compound state, not in a single state, and the composition of the compound is not limited.
 また、工程(a)と工程(b)との実行順序は、特定の順序に限定されるものではない。また、工程(b)で添加する物質の少なくとも一部が、工程(a)における縮合前に添加されてもよい。例えば、シリカアルコキシドの脱水縮合を触媒する塩基性物質(塩基性触媒)として水酸化リチウム(LiOH)が用いられることで、反応系にリチウムが添加されてもよい。このとき、I,Co及びCuのうちの一部が水酸化リチウムの添加前(又は縮合反応前)に添加され、残りが水酸化リチウムの添加後に(又は縮合反応後)添加されてもよい。また、I,Co及びCuの全てが水酸化リチウムの添加前又は縮合反応前)に添加されてもよいし、I,Co及びCuの全てが水酸化リチウムの添加後(又は縮合反応後)に添加されてもよい。 Also, the execution order of the process (a) and the process (b) is not limited to a specific order. Further, at least a part of the substance added in the step (b) may be added before the condensation in the step (a). For example, lithium may be added to the reaction system by using lithium hydroxide (LiOH) as a basic substance (basic catalyst) that catalyzes the dehydration condensation of silica alkoxide. At this time, some of I, Co and Cu may be added before the addition of lithium hydroxide (or before the condensation reaction), and the rest may be added after the addition of lithium hydroxide (or after the condensation reaction). In addition, all of I, Co, and Cu may be added before the addition of lithium hydroxide or before the condensation reaction), or all of I, Co, and Cu may be added after the addition of lithium hydroxide (or after the condensation reaction). It may be added.
 なお、合成前の各元素のモル比は、Si:Li:I:M=1:x:(1-z):zであってもよく、M,x、y、zの定義は、上述した通りである。 The molar ratio of each element before synthesis may be Si: Li: I: M = 1: x: (1-z): z, and the definitions of M, x, y, and z are as described above. Street.
 また、本実施形態の製造方法は、さらに、シリカアルコキシドの縮合物を、ホモジナイズすることを備えていてもよい。このホモジナイズは、反応溶液中でなされてもよい。ホモジナイズによって、縮合物の微粒子がせん断され、エマルションが得られる。ホモジナイズは、少なくとも縮合後に行われればよく、その回数及びタイミングは特に限定されない。例えば、縮合後であって、かつ、(1)Li、I、Co及びCuの少なくとも1種の添加物が添加されていないときに、ホモジナイズが行われてもよいし、(2)全ての添加物が添加された後にホモジナイズが行われてもよいし、(3)上記(1)及び(2)の両方でホモジナイズが行われてもよい。 The production method of the present embodiment may further comprise homogenizing a silica alkoxide condensate. This homogenization may be performed in the reaction solution. By homogenization, the fine particles of the condensate are sheared to obtain an emulsion. The homogenization may be performed at least after the condensation, and the number and timing thereof are not particularly limited. For example, homogenization may be performed after condensation and (1) at least one additive of Li, I, Co, and Cu is not added, or (2) all additions Homogenization may be performed after the product has been added, or (3) homogenization may be performed in both (1) and (2) above.
 5.固体電解質電池の製造方法
 図1に示す固体電解質電池の製造方法の例を説明する。
5. Method for Manufacturing Solid Electrolyte Battery An example of a method for manufacturing the solid electrolyte battery shown in FIG. 1 will be described.
 正極2及び負極3は、例えば、活物質を含有するスラリーを集電体等の上に塗布することや、粉体の活物質とバインダとを混練した後に成形することによって、形成される。また、正極2及び負極3の材料に、上記1.の導電性組成物を添加し、混合した後に成形してもよいし、成形された後の正極2及び負極3に、導電性組成物の溶液を含浸させても(浸してもよいし、塗布してもよい)よい。なお、導電性組成物の溶液は、上述の分散系であってもよい。なお、含浸は、正極2及び負極3の焼成後に行われてもよい。 The positive electrode 2 and the negative electrode 3 are formed by, for example, applying a slurry containing an active material on a current collector or the like, or molding after mixing a powdered active material and a binder. In addition, the above-described 1. The conductive composition may be added and mixed and then molded, or the molded positive electrode 2 and negative electrode 3 may be impregnated (immersed or coated). Yes, you can. Note that the solution of the conductive composition may be the above-described dispersion system. The impregnation may be performed after the positive electrode 2 and the negative electrode 3 are fired.
 固体電解質層4は、正極2又は負極3上に、導電性組成物の溶液又は混練体を塗布することで形成されてもよいし、正極2及び負極3とは別に、導電性組成物を含有する混練体を成形することで得られたシートを、正極2と負極3との間に配置してもよい。 The solid electrolyte layer 4 may be formed by applying a solution or kneaded body of the conductive composition on the positive electrode 2 or the negative electrode 3, and contains the conductive composition separately from the positive electrode 2 and the negative electrode 3. A sheet obtained by molding a kneaded body to be formed may be disposed between the positive electrode 2 and the negative electrode 3.
 こうして形成された正極2、固体電解質層4及び負極3は、適切な温度で焼成される。 The positive electrode 2, the solid electrolyte layer 4 and the negative electrode 3 thus formed are fired at an appropriate temperature.
 (1)導電性組成物の作製
 シリカアルコキシドとしての0.1molのテトラエトキシシラン(和光純薬工業社製)を、20g水、20gエタノールとを混合し、ホモジナイザー(日本精機株式会社社製 オートホモジナイザー)によって、5000回転にて5分間ホモジナイズした。
(1) Preparation of conductive composition 0.1 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) as silica alkoxide was mixed with 20 g of water and 20 g of ethanol, and homogenizer (manufactured by Nippon Seiki Co., Ltd., auto homogenizer). ) For 5 minutes at 5000 rpm.
 得られた混合液に0.2molのLiOHを添加し、さらに5分間ホモジナイズを行った。ここれによって、反応液中ではシリカアルコキシドの脱水縮合が起きた。 0.2 mol of LiOH was added to the obtained mixed solution and further homogenized for 5 minutes. As a result, dehydration condensation of silica alkoxide occurred in the reaction solution.
 反応液中に0.05molのI、及び0.05molのCo又は0.05molのCuを添加し、さらに5分間ホモジナイズを行うことで、2種類の分散系を得た。添加した各成分のモル比は、Li:Co(又はCu):I:Si=1:0.5:0.5:1であった。得られた分散系は、Coの場合は青みを帯びかつ白濁したエマルションであり、Cuの場合は肌色を帯びた同様のエマルションであった。得られた分散系を数ヶ月放置しても、沈殿は見られなかった。 In the reaction solution, 0.05 mol of I and 0.05 mol of Co or 0.05 mol of Cu were added and further homogenized for 5 minutes to obtain two types of dispersions. The molar ratio of each component added was Li: Co (or Cu): I: Si = 1: 0.5: 0.5: 1. The obtained dispersion was a bluish and cloudy emulsion in the case of Co, and a similar emulsion with a flesh color in the case of Cu. Even when the obtained dispersion was allowed to stand for several months, no precipitation was observed.
 得られた分散系を乾燥後空気中500度で焼成することで、粉末状の導電性組成物を得た。 The obtained dispersion was dried and fired at 500 ° C. in air to obtain a powdery conductive composition.
 (2)容量測定用積層体の作製
 上記(1)で得られた粉末の導電性組成物と、単体の硫黄とを、1:1の重量比で混合することで、活物質を得た。活物質70重量部と、アセチレンブラッ20重量部と、バインダであるPTFE(ポリテトラフルオロエチレン)10重量部とを、乳鉢で混合することで、混練体を得た。混練体を成形して、円盤形のペレットを得た。
(2) Production of laminate for capacity measurement The active material was obtained by mixing the conductive composition of the powder obtained in the above (1) and single sulfur at a weight ratio of 1: 1. A kneaded body was obtained by mixing 70 parts by weight of an active material, 20 parts by weight of acetylene black, and 10 parts by weight of PTFE (polytetrafluoroethylene) as a binder in a mortar. The kneaded body was molded to obtain disk-shaped pellets.
 上記(1)で得られた粉末の導電性組成物1重量部と、水1重量部とを混合してスラリーを得た。得られたスラリーを、上述のペレットの片面の全体に塗布した。 1 part by weight of the conductive composition of the powder obtained in the above (1) and 1 part by weight of water were mixed to obtain a slurry. The obtained slurry was apply | coated to the whole one side of the above-mentioned pellet.
 スラリーを乾燥させた後、ペレットを100℃で乾燥した。その後、ペレットのスラリーを塗布した面に金属リチウム箔を貼り付けた。こうして得られた積層体を、以下の測定に用いた。 After drying the slurry, the pellets were dried at 100 ° C. Thereafter, a metal lithium foil was attached to the surface to which the pellet slurry was applied. The laminated body thus obtained was used for the following measurements.
 (3)導電性の測定
 (1)により得られた導電性物質をステンレス電極で0.2kgfの圧力にて挟み、交流インピーダンス法によって、室温(約20℃)におけるインピーダンスの実数部分R(Ω)を測定した。積層体のイオン伝導率σ(S/cm)を、インピーダンス成分R(Ω)、電解質サンプルの厚さd(cm)及びリチウム箔の面積A(cm)から、イオン伝導率σ(S/cm)=d/(R×A)の式に則って求めた。
(3) Measurement of conductivity The conductive material obtained in (1) is sandwiched between stainless steel electrodes at a pressure of 0.2 kgf, and the real part R (Ω) of the impedance at room temperature (about 20 ° C) is obtained by the AC impedance method. It was measured. The ionic conductivity σ (S / cm) of the laminate is determined from the impedance component R (Ω), the thickness d (cm) of the electrolyte sample, and the area A (cm 2 ) of the lithium foil. ) = D / (R × A).
 その結果、2.2×10-3S/cmの導電性が測定された。 As a result, conductivity of 2.2 × 10 −3 S / cm was measured.
 (4)放電容量の測定
 このようにして得られた試料片について、0.01mAの定電流放電で放電容量を測定したところ、放電開始時の電圧は約2.5Vであり、放電容量は980mAh/gであった。
(4) Measurement of discharge capacity About the sample piece obtained in this way, when the discharge capacity was measured by constant current discharge of 0.01 mA, the voltage at the start of discharge was about 2.5 V, and the discharge capacity was 980 mAh. / G.
 (5)考察
 本実施例により、新規の導電性組成物が、液体電解質と同程度である1.0×10-3S/cmレベルの導電性を有することが確認された。
(5) Discussion According to this example, it was confirmed that the novel conductive composition has a conductivity of 1.0 × 10 −3 S / cm level, which is comparable to that of the liquid electrolyte.
 本実施例では、導電性組成物及び炭素を活物質である硫黄と混合することで、電極である活物質層を形成した。活物質層では、硫黄の粒子の間に、炭素及び導電性組成物が介在することで、電極としての導電性及びリチウムイオン伝導性を実現することができた。本実施例では、導電性組成物、つまり固体電解質と活物質とが混合されることで、固体電解質と活物質との接触面積が大きくなり、高い出力を得ることができた。 In this example, an active material layer as an electrode was formed by mixing a conductive composition and carbon with sulfur as an active material. In the active material layer, the conductivity and lithium ion conductivity as an electrode could be realized by interposing carbon and a conductive composition between sulfur particles. In this example, by mixing the conductive composition, that is, the solid electrolyte and the active material, the contact area between the solid electrolyte and the active material was increased, and a high output could be obtained.
 さらに、導電性組成物は乳化重合によって合成可能なので、非常に小さい粒径を有することができる。よって、さらに接触面積が大きくなると考えられる。 Furthermore, since the conductive composition can be synthesized by emulsion polymerization, it can have a very small particle size. Therefore, it is considered that the contact area is further increased.
 本発明の導電性組成物は、新規の物質であり、固体電解質としてリチウムイオン電池に利用可能である。 The conductive composition of the present invention is a novel substance and can be used for a lithium ion battery as a solid electrolyte.
 1   固体電解質電池(リチウムイオン二次電池)
 2   正極
 3   負極
 4   固体電解質層
 5   正極側集電層
 6   負極側集電層
 
1 Solid electrolyte battery (lithium ion secondary battery)
2 Positive electrode 3 Negative electrode 4 Solid electrolyte layer 5 Positive electrode side current collecting layer 6 Negative electrode side current collecting layer

Claims (7)

  1.  Li、I及びSiと、Co及びCuの少なくとも一方と、を含有する導電性組成物。 A conductive composition containing Li, I and Si and at least one of Co and Cu.
  2.  式Li(1-z)SiOで表される物質を含有し、
     MはCo及びCuの少なくとも一方を含み、x及びyは、x>0及びy>0を満たすと共に、前記式で表される物質における価数がゼロになるような値であり、zは0<z<1を満たす、
    請求項1に記載の導電性組成物。
    Containing a substance represented by the formula Li x M z I (1-z) SiO y
    M includes at least one of Co and Cu, x and y satisfy x> 0 and y> 0, and are values such that the valence in the substance represented by the above formula becomes zero, and z is 0 <Z <1 is satisfied,
    The conductive composition according to claim 1.
  3.  液体である分散媒と、
     前記分散媒中に分散する請求項1又は2に記載の導電性組成物と、
    を有する分散系。
    A liquid dispersion medium;
    The conductive composition according to claim 1 or 2 dispersed in the dispersion medium;
    A dispersion having
  4.  下記工程(a)及び(b):
     (a)シリカアルコキシドを縮合させること、
     (b)工程(a)の前のシリカアルコキシド又は工程(a)で得られた縮合物と、Li及びIと、Co及びCuの少なくとも一方と、を混合すること
    を備える導電性組成物の製造方法。
    The following steps (a) and (b):
    (A) condensing silica alkoxide;
    (B) Production of a conductive composition comprising mixing the silica alkoxide before step (a) or the condensate obtained in step (a), Li and I, and at least one of Co and Cu. Method.
  5.  前記工程(a)により得られた縮合物を、溶液中でホモジナイズすること、
    をさらに備える
    請求項4に記載の製造方法。
    Homogenizing the condensate obtained in step (a) in solution;
    The manufacturing method according to claim 4, further comprising:
  6.  正極と、
     負極と、
     前記正極と前記負極との間に配置された請求項1又は2に記載の導電性組成物と、
    を備える固体電解質電池。
    A positive electrode;
    A negative electrode,
    The conductive composition according to claim 1 or 2 disposed between the positive electrode and the negative electrode;
    A solid electrolyte battery comprising:
  7.  正極と、
     負極と、
     前記正極と前記負極との間に配置された固体電解質層と、を備え、
     前記正極及び負極の少なくとも一方が、請求項1又は2に記載の導電性組成物を含有する、
    固体電解質電池。
     
    A positive electrode;
    A negative electrode,
    A solid electrolyte layer disposed between the positive electrode and the negative electrode,
    At least one of the positive electrode and the negative electrode contains the conductive composition according to claim 1 or 2.
    Solid electrolyte battery.
PCT/JP2011/080433 2011-03-23 2011-12-28 Electrically conductive composition, dispersion system, process for producing electrically conductive composition, and solid electrolyte battery WO2012127762A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013505781A JP5681788B2 (en) 2011-03-23 2011-12-28 Ion conductive composition, dispersion, method for producing ion conductive composition, and solid electrolyte battery
CN201180069517.0A CN103443864B (en) 2011-03-23 2011-12-28 The manufacture method of conductive composition, disperse system, conductive composition and solid electrolyte cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011063921 2011-03-23
JP2011-063921 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012127762A1 true WO2012127762A1 (en) 2012-09-27

Family

ID=46878946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080433 WO2012127762A1 (en) 2011-03-23 2011-12-28 Electrically conductive composition, dispersion system, process for producing electrically conductive composition, and solid electrolyte battery

Country Status (3)

Country Link
JP (1) JP5681788B2 (en)
CN (1) CN103443864B (en)
WO (1) WO2012127762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070810A1 (en) * 2020-09-29 2022-04-07 日本製紙株式会社 Dispersion fluid, electrode composition for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310417A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Amorphous lithium ion conductive solid electrolyte and its production
JP2004128222A (en) * 2002-10-02 2004-04-22 Nippon Paint Co Ltd Storage element
JP2006120437A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Solid electrolyte battery
JP2010165527A (en) * 2009-01-14 2010-07-29 Toyota Motor Corp Preparation method for precursor solution of solid electrolyte and manufacturing method for solid electrolyte film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508239A2 (en) * 1981-06-17 1982-12-24 Gipelec Electrochemical cell with cation conductive vitreous electrolyte - formed by powder compaction on cathode with lithium disc superimposed
CN1156911A (en) * 1996-02-07 1997-08-13 王万喜 Solid polymer high-energy battery
JP3456354B2 (en) * 1996-11-06 2003-10-14 日本電池株式会社 Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JP3690684B2 (en) * 2003-04-18 2005-08-31 松下電器産業株式会社 Solid electrolyte and all-solid battery including the same
FR2912398B1 (en) * 2007-02-09 2009-04-24 Centre Nat Rech Scient MIXED SILICATES OF LITHIUM
CN101604745B (en) * 2009-07-07 2011-09-28 深圳市贝特瑞新能源材料股份有限公司 Silicate positive electrode material for lithium ion power battery, preparation method thereof and lithium ion power battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310417A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Amorphous lithium ion conductive solid electrolyte and its production
JP2004128222A (en) * 2002-10-02 2004-04-22 Nippon Paint Co Ltd Storage element
JP2006120437A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Solid electrolyte battery
JP2010165527A (en) * 2009-01-14 2010-07-29 Toyota Motor Corp Preparation method for precursor solution of solid electrolyte and manufacturing method for solid electrolyte film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070810A1 (en) * 2020-09-29 2022-04-07 日本製紙株式会社 Dispersion fluid, electrode composition for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5681788B2 (en) 2015-03-11
CN103443864B (en) 2016-01-13
CN103443864A (en) 2013-12-11
JPWO2012127762A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
KR101945968B1 (en) High Capacity Solid State Composite Cathode, Solid State Composite Separator, Solid-State Rechargeable Lithium Battery and Methods of Making Same
KR102267599B1 (en) A Method for predicting process efficiency of an electrode slurry and selecting a binder for an electrode
Hawley et al. Enabling aqueous processing for LiNi0. 80Co0. 15Al0. 05O2 (NCA)-based lithium-ion battery cathodes using polyacrylic acid
JP7269571B2 (en) Method for manufacturing all-solid-state battery
CN107681147B (en) Preparation method and application of solid electrolyte coated modified lithium ion battery positive electrode material
Kasinathan et al. Influence of the molecular weight of poly‐acrylic acid binder on performance of Si‐alloy/graphite composite anodes for lithium‐ion batteries
JP2009200007A (en) Method for manufacturing porous metal oxide coated cathode active substance and method for manufacturing lithium secondary battery
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
CN110121799A (en) Electrode for secondary battery, secondary cell, their manufacturing method
CN106784843A (en) It is a kind of more than 300wh/kg high-energy-densities, the preparation method of high security battery
JP2015506086A (en) Composite and method for producing negative electrode slurry containing the same
JP5626183B2 (en) Positive electrode conductive material paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5681788B2 (en) Ion conductive composition, dispersion, method for producing ion conductive composition, and solid electrolyte battery
JP7226314B2 (en) ELECTRODE, ELECTRODE, AND METHOD FOR MANUFACTURING ELECTRODE
JP6539029B2 (en) Method of manufacturing lithium ion secondary battery
EP3660955A1 (en) Electrode, power storage element, and method for manufacturing electrode
JP2011192499A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP7314111B2 (en) Method for manufacturing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7050361B2 (en) Electrolyte for lithium-air battery and lithium-air battery using it
CN114068913A (en) All-solid-state battery
CN113921988A (en) Battery diaphragm coating material and preparation method thereof, battery diaphragm and battery
WO2019150646A1 (en) Negative electrode material for secondary battery and secondary battery using said negative electrode material
JP7026974B2 (en) Electrolyte for lithium-air battery and lithium-air battery using it
KR20210025103A (en) Non-aqueous electrolyte, nonvolatile electrolyte, secondary battery
RU2803640C2 (en) Method of production of fully solid state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861841

Country of ref document: EP

Kind code of ref document: A1