JP3441106B2 - Shot material - Google Patents

Shot material

Info

Publication number
JP3441106B2
JP3441106B2 JP10133393A JP10133393A JP3441106B2 JP 3441106 B2 JP3441106 B2 JP 3441106B2 JP 10133393 A JP10133393 A JP 10133393A JP 10133393 A JP10133393 A JP 10133393A JP 3441106 B2 JP3441106 B2 JP 3441106B2
Authority
JP
Japan
Prior art keywords
shot
workpiece
shot member
fracture toughness
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10133393A
Other languages
Japanese (ja)
Other versions
JPH06312373A (en
Inventor
光明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10133393A priority Critical patent/JP3441106B2/en
Publication of JPH06312373A publication Critical patent/JPH06312373A/en
Application granted granted Critical
Publication of JP3441106B2 publication Critical patent/JP3441106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ショットピーニング法
において、特に金属製品などの表面へ噴射して表面硬化
させるためのショット部材に関するものである。 【0002】 【従来の技術】ショットピーニング法は、小さな粒径よ
りなる多数のショット部材を、遠心力を利用して加速さ
せたり、あるいは圧縮空気に乗せることにより、バネや
ネジに代表される機械部品や工具類などの金属製品(以
下、被加工物と略称する)の表面に噴射させて表面を硬
化させる方法であり、一般に被加工物の表面付近の組織
を変化させると共に、圧縮残留応力を生じさせて、表面
硬度と疲労強度を向上させるための方法として、従来よ
り広く行われている。 【0003】また、上記ショット部材としては、被加工
物の硬度と同等もしくはそれ以上の硬度を有する鋼、ガ
ラス、またはセラミックス粒などを使用していた(特開
昭62−278224号公報、特開昭61−18397
5号公報参照)。 【0004】 【発明が解決しようとする課題】ところが、従来のガラ
スやセラミックスよりなるショット部材では、衝撃が加
わった場合の破損の度合いを示す耐衝撃性が小さいため
に耐久性が悪く、ショット部材を何度も繰り返し使用す
ると被加工物との衝突による摩耗、カケ、あるいは割れ
が発生してしまい加工性が落ちてしまうために、加工条
件が長期間安定しないという問題点があった。また、鋼
よりなるショット部材では、繰り返し使用すると鉄サビ
が発生して、ショット部材が劣化しやすくなり、かつ被
加工物の表面にサビが付着してしまうという問題点があ
った。 【0005】さらに、ショット部材そのものが角ばった
形状であったり、あるいは摩耗、カケ、または割れた後
の形状によって角ばった形状となると、被加工物の表面
に傷を付けてしまうという問題点もあった。 【0006】 【課題を解決するための手段】本発明は、上記問題点に
鑑みてなされたものであり、ショットピーニング法によ
り被加工物の表面硬化処理を行う際に、表面へ噴射させ
るためのショット部材において、Siを主成分と
し第3a族元素の酸化物、SiO、Al、Mg
Oの1種以上を焼結助剤とした窒化珪素質セラミック
ス、ZrOを主成分とし安定化剤としてMgOを3.
0〜3.8重量%含有した部分安定化ジルコニアセラミ
ックス、硬質層として周期率表第4a、5a、6a族元
素の炭窒化物を80〜99重量%と結合相としてニッケ
ルやコバルトを含むTiC−TiN系サーメットのいず
れかよりなり、平均結晶粒径1〜30μmであり、破壊
靱性(K1C)が5.0MPa√m以上の球状をした多
結晶焼結体よりなることを特徴とする。 【0007】なお、本発明による球状とは、エッジ部を
有しない形状であり、真球度0.75(最小外接円の半
径を1とした場合の、実際の球状の最小半径が0.7
5)以上のことであり、好ましくは真球度0.9以上で
あることをいう。 【0008】 【作用】本発明によれば、ショット部材を破壊靱性(K
1c)が3.0MPa√m以上の球状をした多結晶焼結体
とすることによって、長期間加工条件が安定化した状態
で使用でき、かつ被加工物の表面に傷を付けなくなる。 【0009】 【実施例】以下、本発明の実施例を詳細に説明する。 【0010】ショットピーニング法は、図1の断面図に
示すように、被加工物Aからある程度離れた位置に、シ
ョット部材1の供給口(不図示)と圧縮空気送出口(不
図示)に連結され、かつ噴出口2を有するノズル3を使
用して、噴出口2からショット部材1を圧縮空気ととも
に適当な速度で噴射させ、被加工物Aの表面に衝突させ
ることにより凹凸状を形成させるように加工することに
より行われる。 【0011】ここで、ショット部材1は、破壊靱性(K
1c)が3.0MPa√m以上の球状をした多結晶焼結体
よりなるショット部材1とするが、以下はそれらが好ま
しいものとなる根拠を述べる。 【0012】まず、破壊靱性(K1c)は、衝撃が加わっ
た場合の破損しにくさを示すものであることより大きい
程よいが、3.0MPa√mよりも小さいと、被加工物
Aとの衝突による摩耗、カケ、あるいは割れが発生しや
すくなり、耐久性が悪くなるために3.0MPa√m以
上であることが好ましく、さらには5.0MPa√m以
上であることがより好ましい。 【0013】そして、球状以外の形状であると鋭利な部
分ができ、被加工物Aの表面に傷を付けてしまいやす
く、しかもショット中に割れや欠けが生じやすいことか
ら、真球度0.75以上、さらには真球度0.9以上の
球状とすることが好ましい。 【0014】また、ショット部材1の粒径は、0.3m
mよりも小さいと被加工物Aへの衝撃破壊力が低下し、
逆に1.6mmよりも大きいと細かな部分に入りにく
く、しかも一定面積中の個数が減少して被加工物Aにエ
ネルギーを与える効率が低下することより、0.3〜
1.6mmとすることが好ましく、これより、曲率半径
が0.15〜0.8mmであることが好ましいものとな
る。 【0015】さらに、焼結体が単結晶であれば、結晶軸
の向きにより一方向には強度が大きく、逆にその直角方
向では強度が小さいものとなるために、機械的的強度を
安定化させるために多結晶焼結体であることが好まし
い。 【0016】なお、破壊靱性(K1c)が5.0MPa√
m以上の多結晶焼結体としては、窒化珪素、ジルコニア
などのセラミックス、あるいはサーメットがある。ここ
で、窒化珪素質セラミックスは、Si34 を主成分と
し、Y23 などの第3a族元素の酸化物、SiO2
Al23 、MgOの1種以上を焼結助剤としたもので
ある。そして、ジルコニアセラミックスは、ZrO2
主成分とし、安定化剤としてMgOを3.0〜3.8重
量%含有し、正方晶を含む部分安定化ジルコニアを用い
る。さらに、サーメットは、硬質相としてチタン、ニオ
ブ、モリブデンなどの周期律表第4a、5a、6a族元
素からなる炭窒化物を80〜99重量%と、その他が結
合相としてニッケルやコバルトなどの金属よりなり、か
つ硬質相中の70重量%程度がTiC、TiN、TiC
NよりなるTiC−TiN系サーメットが挙げられる。 【0017】また、上記材質よりなるショット部材1の
製造方法は、例えば核となる原料粒子にバインダー等を
噴霧させながら原料粉末上でころがすことにより、核と
なる粒子の表面に原料粉末を付着させて目的とする大き
さの球形体を形成する転動造粒法により成形して焼成す
ることにより製作される。 【0018】このようなショット部材1を使用すると、
耐衝撃性が大きいために耐久性が良くなり、加工条件が
長期間安定するようになり、さらに鉄サビによるショッ
ト部材1の劣化や被加工物Aの表面へのサビの付着も無
くなる。また、球状であるために被加工物Aの表面に傷
を付けることがなくなる。 【0019】また、ショット部材1の硬度は、被加工物
Aと同等もしくはそれ以上の硬度であればよく、さら
に、以下の条件よりなるショット部材1とすると、より
使用に適したものとすることができる。 【0020】(1)表面の中心線平均粗さ(Ra)を
0.01〜0.5μm以下とする。これは、0.5μm
よりも大きいと研削材としての特性がでてきてしまい、
被加工物の表面に傷を付けてしまうためであり、0.0
1μmよりも小さいと表面上を流れてしまうためであ
る。 【0021】(2)比重を2.0〜8.0とする。これ
は8.0よりも大きいと噴射の際に圧縮空気に乗りづら
いためであり、2.0よりも小さいと軽くなりすぎ、被
加工物Aにエネルギーを与える効率が大きく低下してし
まうためである。 【0022】(3)熱伝導率を4.0W/m・K以上と
する。これは、熱伝導率が4.0W/m・Kよりも小さ
いとショット部材1の蓄熱がすすみ被加工物Aの温度を
高めてしまうためである。 【0023】(4)平均結晶粒径を1〜30μm、さら
に好ましくは1〜10μmとする。これは、多結晶焼結
体として、材料強度及び破壊靱性(K1c)を高く維持す
るためである。 【0024】実験例1 ここで、本実施例によるショット部材1と、比較例とし
てガラス、クロムモリブデン鋼、そしてアルミナセラミ
ックスよりなるショット部材を使用して実際にショット
ピーニングを行った。 【0025】なお、ショット部材1の材質として、以下
の(1)に示す比較例、(2)〜(4)に示す実施例の
ものを使用した。 【0026】(1)炭化珪素質セラミックス SiC含有量が99重量%、B4 C、Cを焼結助剤とし
て、平均結晶粒径が10μmの多結晶焼結体で、ビッカ
−ス硬度が24GPa、破壊靱性(K1c)が3.4MP
a√m、比重が3.2、熱伝導率が62W/m・Kであ
る炭化珪素質セラミックス。 【0027】(2)窒化珪素質セラミックス Si3 4 含有量が92重量%、Y2 3 、Al2 3
を焼結助剤として、平均結晶粒径が10μmの多結晶焼
結体で、ビッカース硬度が14.5GPa、破壊靱性
(K1c)が5.7MPa√m、比重が3 .2、熱伝導
率が21W/m・Kである窒化珪素質セラミックス。 【0028】(3)部分安定化ジルコニアセラミックス MgO含有量が3.5重量%、残部がZrO2 、平均結
晶粒径が10μmの多結晶焼結体で、ビッカース硬度が
11GPa、破壊靱性(K1c)が6.7MPa√m、比
重が6.0、熱伝導率が4W/m・Kである部分安定化
ジルコニアセラミックス。 【0029】(4)TiN系サーメット 硬質相が90重量%、TiNの含有量がTiC、TiC
Nよりも多く、平均結晶粒径が5μmの多結晶焼結体
で、ビッカース硬度が1 5.3GPa、破壊靱性(K
1c)が11MPa√m、比重が7.7、熱伝導率が8W
/m・KであるTiN系サーメット。 【0030】また、比較例としてのガラスは、ビッカー
ス硬度が6GPa、破壊靱性(K1c)が1.5MPa√
m、比重が2.3のものを使用した。そして、クロムモ
リブデン鋼は、ビッカース硬度が3.0GPa、破壊靱
性(K1c)が3.1MPa√m、比重が8.1のものを
使用した。さらに、アルミナは、Al2 3 の含有量が
87重量%で、平均結晶粒径が10μmの多結晶焼結体
で、ビッカース硬度が12GPa、破壊靱性(K1c)が
2.9MPa√m、比重が3.6、熱伝導率が17W/
m・Kのものを使用した。 【0031】そして、ショット部材1としては真球度が
0.92、粒径が0.8mm、中心線平均粗さ(Ra)
が0.3μm以下のものを使用し、また被加工物Aとし
てはビッカース硬度が2.5GPaの機械構造用炭素鋼
を使用し、噴射口2と被加工物Aとを5cm離し、空気
圧を6kg/cm2 、噴射速度を25m/秒でショット
部材1を噴射するという条件で実験を行った。 【0032】まず、30秒間噴射し、初期のビッカース
硬度が2.5GPaであった被加工物Aの処理後の硬度
を測定した。次に、ショット部材1を連続して被加工物
Aに噴射した場合に、50%以上のショット部材1が割
れなどのために使用不可能となるまでの時間を測定し
た。結果は、表1に示す通りである。 【0033】 【表1】【0034】表1より、本発明のショット部材1を用い
た場合、処理後の被加工物Aのビッカース硬度を2.7
〜2.8GPaと高くすることができ、表面硬化させる
効果を確認できた。また、同一条件であれば、比重の大
きい材質を用いた方が効果が大きかった。 【0035】次に、使用可能時間については、従来の材
質よりなるショット部材1は、ガラスで50時間、クロ
ムモリブデン鋼で150時間、そしてアルミナセラミッ
クスで250時間しか使用できないのに対し、本発明実
施例によるショット部材1は、450時間以上使用可能
であることより、本発明実施例によるショット部材1の
方がより加工条件を長期間安定させて使用可能であるこ
とがわかる。さらには、破壊靱性(K1c)が5.0MP
a√m以上の材質を用いると、500時間またはそれ以
上に使用可能となることより、破壊靱性(K1c)が5.
0MPa√m以上の材質を用いることがより好ましい。 【0036】結局、破壊靱性(K1c)が3.0MPa√
m以上、さらに好ましくは5.0MPa√m以上の球状
をした多結晶セラミックスよりなるショット部材1が好
ましいことがわかる。 【0037】実験例2 次に、本発明実施例として、ジルコニアセラミックスか
ら成り真球度の異なるショット部材1を作製し、実験例
1と同じ条件で30秒間のショットピーニングを行った
後、被加工物Aの表面を顕微鏡で観察し、傷の有無を調
べた。また、連続でショットピーニングを行い50%以
上のショット部材1が割れなどのために使用不能となる
までの時間(使用可能時間)を調べた。なお、ここで真
球度とは、ショット部材1の最小外接円の半径に対す
る、実際のショット部材1の最小半径の比であり、真球
度の値が1に近いほど完全な球に近いことになる。 【0038】結果を表2に示すように、真球度が0.7
5より小さいものでは被加工物Aに傷をつけてしまい、
この傷により被加工物Aの強度を低下させる恐れがある
だけでなく、ショット部材1自体に割れや欠けが生じや
すいことから、使用可能時間が300時間と短かった。 【0039】これに対し、真球度が0.75以上のもの
は、被加工物Aに傷をつけることがなく、使用可能時間
も450時間以上と長期間の使用が可能であった。 【0040】 【表2】 【0041】 【発明の効果】以上のように、本発明に係わるショット
部材によれば、破壊靱性(K1c)が3.0以上の球状を
した多結晶焼結体としたことによって、ショット部材自
体の欠けや摩耗を防止し、長期間安定化した状態で使用
できるとともに、被加工物の表面に傷を付けなくなるシ
ョット部材を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shot member for shot peening, and more particularly to a shot member for spraying a surface of a metal product or the like to harden the surface. 2. Description of the Related Art In the shot peening method, a number of shot members having a small particle diameter are accelerated by using centrifugal force or are put on compressed air to thereby provide a machine represented by a spring or a screw. This is a method of hardening the surface by spraying it onto the surface of metal products such as parts and tools (hereinafter abbreviated as “workpiece”). Generally, it changes the structure near the surface of the workpiece and reduces the compressive residual stress. As a method for increasing the surface hardness and the fatigue strength by causing such a phenomenon, it has been widely used conventionally. Further, as the above-mentioned shot member, steel, glass, ceramic particles or the like having a hardness equal to or higher than the hardness of the workpiece has been used (JP-A-62-278224, JP-A-62-278224). 61-18397
No. 5). [0004] However, conventional shot members made of glass or ceramics have poor durability due to low impact resistance indicating the degree of breakage when an impact is applied. When a is repeatedly used, abrasion, chipping, or cracking due to collision with a workpiece is generated, and the workability is deteriorated. Therefore, there has been a problem that machining conditions are not stable for a long time. Further, in the case of a shot member made of steel, there has been a problem that when used repeatedly, iron rust is generated, the shot member is easily deteriorated, and rust adheres to the surface of the workpiece. [0005] Furthermore, if the shot member itself has a square shape, or if the shot member has a square shape due to abrasion, chipping, or cracked shape, the surface of the workpiece is damaged. Was. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in view of the fact that when a surface hardening treatment of a workpiece is performed by a shot peening method, the material is sprayed onto a surface. In the shot member, an oxide of a Group 3a element containing Si 3 N 4 as a main component, SiO 2 , Al 2 O 3 , Mg
2. Silicon nitride ceramics containing at least one of O as a sintering aid, and MgO as a stabilizer containing ZrO 2 as a main component.
A partially stabilized zirconia ceramic containing 0 to 3.8% by weight, a hard layer containing 80 to 99% by weight of a carbonitride of a Group 4a, 5a or 6a element in the periodic table and a TiC containing nickel or cobalt as a binder phase. It is made of any one of TiN-based cermets, has an average crystal grain size of 1 to 30 μm, and has a spherical polycrystalline sintered body having a fracture toughness (K 1C ) of 5.0 MPa な る m or more. The spherical shape according to the present invention is a shape having no edge portion, and has a sphericity of 0.75 (when the radius of the minimum circumscribed circle is 1, the actual minimum radius of the spherical shape is 0.7).
5) The above, preferably a sphericity of 0.9 or more. According to the present invention, the shot member has a fracture toughness (K
By forming a polycrystalline sintered body having a spherical shape of 1 MPa) of 3.0 MPa√m or more, it can be used in a state where processing conditions are stabilized for a long time, and the surface of the workpiece is not damaged. Embodiments of the present invention will be described below in detail. In the shot peening method, as shown in the cross-sectional view of FIG. 1, a supply port (not shown) and a compressed air outlet (not shown) of the shot member 1 are connected at a certain distance from the workpiece A. The shot member 1 is jetted from the jet port 2 together with compressed air at an appropriate speed using the nozzle 3 having the jet port 2 and the jet member 2 is caused to collide with the surface of the workpiece A so as to form irregularities. It is performed by processing. Here, the shot member 1 has a fracture toughness (K
1c ) is a shot member 1 made of a polycrystalline sintered body having a spherical shape of 3.0 MPa√m or more, and the grounds for making them preferable are described below. First, it is better that the fracture toughness (K 1c ) indicates that it is hard to break when subjected to an impact. However, if it is smaller than 3.0 MPa√m, the fracture toughness (K 1c ) of the work A It is preferably at least 3.0 MPa√m, more preferably at least 5.0 MPa√m, because wear, chipping, or cracking due to collision is likely to occur and durability is deteriorated. If the shape is other than spherical, a sharp portion is formed, and the surface of the workpiece A is easily damaged, and cracks or chips are easily generated during a shot. It is preferable to have a spherical shape with a sphericity of at least 75, more preferably at least 0.9. The particle diameter of the shot member 1 is 0.3 m
If it is smaller than m, the impact destructive force on the workpiece A decreases,
Conversely, if it is larger than 1.6 mm, it is difficult to enter a small portion, and the number of pieces in a certain area is reduced, and the efficiency of applying energy to the workpiece A is reduced.
It is preferably 1.6 mm, and from this, it is preferable that the radius of curvature is 0.15 to 0.8 mm. Furthermore, if the sintered body is a single crystal, the mechanical strength is stabilized because the strength is high in one direction and low in the direction perpendicular to the direction of the crystal axis. For this purpose, it is preferably a polycrystalline sintered body. The fracture toughness (K1c) is 5.0 MPa√
Examples of the polycrystalline sintered body of m or more include ceramics such as silicon nitride and zirconia, and cermet. Here, the silicon nitride-based ceramic has Si 3 N 4 as a main component, an oxide of a Group 3a element such as Y 2 O 3 , SiO 2 ,
At least one of Al 2 O 3 and MgO is used as a sintering aid. Then, zirconia ceramics, a ZrO 2 as a main component, MgO was contained 3.0 to 3.8 wt% as a stabilizer, using partially stabilized zirconia containing tetragonal. Further, the cermet contains 80 to 99% by weight of a carbonitride composed of an element from Groups 4a, 5a, and 6a of the periodic table, such as titanium, niobium, and molybdenum, as a hard phase, and a metal such as nickel or cobalt as a binder phase. And 70% by weight of the hard phase is TiC, TiN, TiC
A TiC-TiN-based cermet made of N; In the method of manufacturing the shot member 1 made of the above-mentioned material, for example, the raw material particles serving as nuclei are rolled on the raw material powder while being sprayed with a binder or the like so that the raw material powder adheres to the surfaces of the core particles. It is manufactured by rolling and forming by a rolling granulation method for forming a spherical body of a desired size. When such a shot member 1 is used,
Since the impact resistance is large, the durability is improved, the processing conditions are stabilized for a long time, and the deterioration of the shot member 1 due to iron rust and the adhesion of rust to the surface of the workpiece A are also eliminated. Further, since the shape is spherical, the surface of the workpiece A is not damaged. The hardness of the shot member 1 may be equal to or higher than that of the workpiece A, and if the shot member 1 has the following conditions, it is more suitable for use. Can be. (1) The center line average roughness (Ra) of the surface is set to 0.01 to 0.5 μm or less. This is 0.5 μm
If it is larger than this, the characteristics as an abrasive will appear,
This is because the surface of the workpiece is scratched,
If it is smaller than 1 μm, it flows on the surface. (2) The specific gravity is set to 2.0 to 8.0. This is because if it is larger than 8.0, it is difficult to get on the compressed air at the time of injection, and if it is smaller than 2.0, it becomes too light and the efficiency of applying energy to the workpiece A is greatly reduced. is there. (3) The thermal conductivity is set to 4.0 W / m · K or more. This is because if the thermal conductivity is smaller than 4.0 W / m · K, the heat storage of the shot member 1 proceeds to increase the temperature of the workpiece A. (4) The average crystal grain size is 1 to 30 μm, more preferably 1 to 10 μm. This is to maintain high material strength and fracture toughness (K 1c ) as a polycrystalline sintered body. Experimental Example 1 Here, shot peening was actually performed using the shot member 1 according to the present embodiment and a shot member made of glass, chromium molybdenum steel, and alumina ceramics as a comparative example. As the material of the shot member 1, the following comparative examples shown in (1) and the examples shown in (2) to (4) were used. (1) A polycrystalline sintered body having an SiC content of 99% by weight, B 4 C, and C as sintering aids and an average crystal grain size of 10 μm, and a Vickers hardness of 24 GPa. , Fracture toughness (K 1c ) is 3.4MP
A silicon carbide ceramic having a 質 m, a specific gravity of 3.2 and a thermal conductivity of 62 W / m · K. (2) Silicon nitride ceramics Si 3 N 4 content is 92% by weight, Y 2 O 3 , Al 2 O 3
Is a polycrystalline sintered body having an average crystal grain size of 10 μm, a Vickers hardness of 14.5 GPa, a fracture toughness (K 1c ) of 5.7 MPa√m, and a specific gravity of 3. 2. Silicon nitride ceramics having a thermal conductivity of 21 W / m · K. (3) Partially stabilized zirconia ceramics A polycrystalline sintered body having a MgO content of 3.5% by weight, a balance of ZrO 2 and an average crystal grain size of 10 μm, a Vickers hardness of 11 GPa and a fracture toughness (K 1c ) Is 6.7 MPa√m, specific gravity is 6.0, and thermal conductivity is 4 W / m · K. (4) 90% by weight of TiN-based cermet hard phase, TiN content of TiC, TiC
N is a polycrystalline sintered body having an average crystal grain size of 5 μm, a Vickers hardness of 15.3 GPa, and a fracture toughness (K
1c ) is 11 MPa @ m, specific gravity is 7.7, and thermal conductivity is 8 W
/ M · K TiN-based cermet. The glass as a comparative example has a Vickers hardness of 6 GPa and a fracture toughness (K 1c ) of 1.5 MPa√.
m and specific gravity of 2.3 were used. The chromium molybdenum steel used had a Vickers hardness of 3.0 GPa, a fracture toughness (K 1c ) of 3.1 MPa√m, and a specific gravity of 8.1. Further, alumina is a polycrystalline sintered body having an Al 2 O 3 content of 87% by weight and an average crystal grain size of 10 μm, a Vickers hardness of 12 GPa, a fracture toughness (K 1c ) of 2.9 MPa√m, Specific gravity is 3.6, thermal conductivity is 17W /
m · K was used. The shot member 1 has a sphericity of 0.92, a particle size of 0.8 mm, and a center line average roughness (Ra).
The workpiece A is made of carbon steel for mechanical structure having a Vickers hardness of 2.5 GPa, the injection port 2 is separated from the workpiece A by 5 cm, and the air pressure is 6 kg. / cm 2, experiments were conducted on the condition that the injection shot member 1 injection speed 25 m / sec. First, the workpiece A was sprayed for 30 seconds, and the hardness of the workpiece A having an initial Vickers hardness of 2.5 GPa was measured. Next, when the shot member 1 was continuously jetted to the workpiece A, the time until 50% or more of the shot members 1 became unusable due to cracks or the like was measured. The results are as shown in Table 1. [Table 1] According to Table 1, when the shot member 1 of the present invention is used, the Vickers hardness of the processed workpiece A is 2.7.
To 2.8 GPa, and the effect of surface hardening was confirmed. Further, under the same conditions, the effect was larger when a material having a higher specific gravity was used. Next, regarding the usable time, the shot member 1 made of the conventional material can be used only for 50 hours with glass, 150 hours with chromium molybdenum steel, and 250 hours with alumina ceramics, whereas the shot member 1 according to the present invention can be used. Since the shot member 1 according to the example can be used for 450 hours or more, it can be seen that the shot member 1 according to the embodiment of the present invention can be used with more stable processing conditions for a long time. Further, the fracture toughness (K 1c ) is 5.0MP.
When a material of a√m or more is used, it can be used for 500 hours or more, so that the fracture toughness (K 1c ) is 5.
It is more preferable to use a material of 0 MPaMPm or more. As a result, the fracture toughness (K 1c ) is 3.0 MPa√.
It can be seen that the shot member 1 made of a polycrystalline ceramic having a spherical shape of not less than m, more preferably not less than 5.0 MPa√m is preferable. EXPERIMENTAL EXAMPLE 2 Next, as an embodiment of the present invention, a shot member 1 made of zirconia ceramics and having a different sphericity was manufactured, and shot peening was performed for 30 seconds under the same conditions as in Experimental Example 1, and then the workpiece was processed. The surface of the object A was observed with a microscope, and the presence or absence of a flaw was examined. In addition, shot peening was performed continuously, and the time until 50% or more of the shot members 1 became unusable due to cracks or the like (usable time) was examined. Here, the sphericity is a ratio of the minimum radius of the actual shot member 1 to the radius of the minimum circumscribed circle of the shot member 1, and the closer the sphericity value is to 1, the closer to a perfect sphere. become. As shown in Table 2, the sphericity was 0.7
If it is smaller than 5, the work A will be damaged,
Not only may the strength of the workpiece A be reduced due to the scratch, but the shot member 1 itself is liable to crack or chip, so that the usable time is as short as 300 hours. On the other hand, when the sphericity was 0.75 or more, the workpiece A was not damaged, and the usable time was as long as 450 hours or more. [Table 2] As described above, according to the shot member according to the present invention, a spherical polycrystalline sintered body having a fracture toughness (K 1c ) of 3.0 or more is formed, and thus the shot member is obtained. It is possible to provide a shot member that prevents chipping and wear of itself, can be used in a stabilized state for a long period of time, and does not damage the surface of a workpiece.

【図面の簡単な説明】 【図1】本発明のショット部材を用いてショットピーニ
ングを行う状態を示す断面図である。 【符号の説明】 1:ショット部材 2:噴射口 3:ノズル A:被加工物
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a state in which shot peening is performed using a shot member of the present invention. [Description of Signs] 1: Shot member 2: Injection port 3: Nozzle A: Workpiece

Claims (1)

(57)【特許請求の範囲】 【請求項1】ショットピーニング法により金属製品など
の表面処理を行う際に、表面へ噴射させるためのショッ
ト部材であって、Si を主成分とし第3a族元素
の酸化物、SiO 、Al 、MgOの1種以上を
焼結助剤とした窒化珪素質セラミックス、ZrO を主
成分とし安定化剤としてMgOを3.0〜3.8重量%
含有した部分安定化ジルコニアセラミックス、硬質層と
して周期率表第4a、5a、6a族元素の炭窒化物を8
0〜99重量%と結合相としてニッケルやコバルトを含
むTiC−TiN系サーメットのいずれかよりなり、平
均結晶粒径1〜30μmであり、破壊靱性(K1C)が
5.0MPa√m以上の球状をした多結晶焼結体よりな
ることを特徴とするショット部材。
(57) [Claim 1] A shot member for spraying onto a surface when performing a surface treatment of a metal product or the like by a shot peening method, wherein the shot member is mainly composed of Si 3 N 4 . Group 3a element
Oxide, SiO 2 , Al 2 O 3 , MgO
Mainly ZrO 2 , a silicon nitride ceramic used as a sintering aid
3.0-3.8% by weight of MgO as a component and a stabilizer
Containing partially stabilized zirconia ceramics, hard layer and
To form a carbonitride of Group 4a, 5a or 6a
0 to 99% by weight and containing nickel or cobalt as binder phase
Made of any of TiC-TiN-based cermets
It has an average crystal grain size of 1 to 30 μm and a fracture toughness (K 1C )
A shot member comprising a polycrystalline sintered body having a spherical shape of 5.0 MPa√m or more.
JP10133393A 1993-04-27 1993-04-27 Shot material Expired - Fee Related JP3441106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133393A JP3441106B2 (en) 1993-04-27 1993-04-27 Shot material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133393A JP3441106B2 (en) 1993-04-27 1993-04-27 Shot material

Publications (2)

Publication Number Publication Date
JPH06312373A JPH06312373A (en) 1994-11-08
JP3441106B2 true JP3441106B2 (en) 2003-08-25

Family

ID=14297915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133393A Expired - Fee Related JP3441106B2 (en) 1993-04-27 1993-04-27 Shot material

Country Status (1)

Country Link
JP (1) JP3441106B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672873B2 (en) * 2001-01-10 2011-04-20 中央発條株式会社 Spring shot peening method and spring
GB2375725A (en) * 2001-05-26 2002-11-27 Siemens Ag Blasting metallic surfaces
JP2020093352A (en) * 2018-12-13 2020-06-18 新東工業株式会社 METHOD FOR MODIFYING SURFACE OF Co-Cr ALLOY, METHOD OF MANUFACTURING HIGH FATIGUE STRENGTH Co-Cr ALLOY, AND HIGH FATIGUE STRENGTH Co-Cr ALLOY

Also Published As

Publication number Publication date
JPH06312373A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
Wakuda et al. Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials
US5409415A (en) Shot method
JPH11322435A (en) Dense silicon nitride ceramic containing fine particle of carbide
JP2004291218A (en) Metal bond wheel
JP3697543B2 (en) Ceramic surface toughening method and ceramic product
JP2012245581A (en) Cutting insert made from surface coated titanium carbon nitride-based cermet, and method for manufacturing the same
JP3110890B2 (en) Coated cemented carbide
WO2004103615A1 (en) Method for toughening surface of sintered material cutting tool and sintered material cutting tool having long life
JP3441106B2 (en) Shot material
JPH06335865A (en) Zirconia projecting member
JP6569376B2 (en) Carbide tool and manufacturing method thereof
KR950004662B1 (en) Tool of silicon nitrode sintered body
JPH05177411A (en) Cover cutting tool and its manufacture
JP5447845B2 (en) Surface coated cutting tool
JP3643639B2 (en) Cemented carbide structure, manufacturing method thereof and cutting tool using the same
KR101402214B1 (en) Polycrystalline diamond grinding edge tools with multi-layer deposition
JP5499574B2 (en) Titanium carbonitride-based cermet cutting insert and method for producing the same
JP3722606B2 (en) Abrasion-resistant alumina sintered body
JP2000319064A (en) Ceramic material, rolling bearing and cutting tool using the same and production of the ceramic material
JP5532413B2 (en) Titanium carbonitride-based cermet cutting insert and method for producing the same
CN111018529A (en) High-temperature-scouring-resistant B4C ceramic nozzle and preparation method thereof
JP7162153B1 (en) Quartz glass base material with improved adhesion of thermal spray coating, method for producing same, and method for producing quartz glass parts having thermal spray coating
JP2012228751A (en) Cutting insert made of surface-coated titanium carbonitride based cermet, and method of manufacturing the same
JP2581936B2 (en) Alumina sintered body and method for producing the same
JP2011121164A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees