JP2011121164A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2011121164A
JP2011121164A JP2010123742A JP2010123742A JP2011121164A JP 2011121164 A JP2011121164 A JP 2011121164A JP 2010123742 A JP2010123742 A JP 2010123742A JP 2010123742 A JP2010123742 A JP 2010123742A JP 2011121164 A JP2011121164 A JP 2011121164A
Authority
JP
Japan
Prior art keywords
hard film
cubic boron
composite hard
content ratio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010123742A
Other languages
Japanese (ja)
Other versions
JP5471842B2 (en
Inventor
Hideaki Takashima
英彰 高島
Hidemitsu Takaoka
秀充 高岡
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010123742A priority Critical patent/JP5471842B2/en
Priority to CN201010529471.3A priority patent/CN102061466B/en
Publication of JP2011121164A publication Critical patent/JP2011121164A/en
Application granted granted Critical
Publication of JP5471842B2 publication Critical patent/JP5471842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool coated with a compound hard film exhibiting excellent tenacity, heat impact resistance and wear resistance in cutting iron group materials such as steel and cast iron. <P>SOLUTION: This surface coated cutting tool is coated with a compound hard film composed of cubic boron nitride and titanium nitride in the surface of a tool base body. The cubic boron nitride and titanium nitride as structural components of the compound hard film include the composition inclination structure that the content of the titanium nitride is high on the tool base body and the content of the cubic boron nitride is high on a surface layer side. Desirably, the content of the cubic boron nitride relative to the titanium nitride in the compound hard film of a face is higher than that of the compound hard film of a flank with a ridge of a cutting blade as a boundary between them, and the content of the cubic boron nitride relative to the titanium nitride in the surface layer of the compound hard film of the face is 1.5-4.0, and the content of the cubic boron nitride relative to the titanium nitride in the surface layer of the compound hard film of the flank is 0.67-1.5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼、鋳鉄等の鉄系材料の切削加工において、すぐれた靭性、耐熱衝撃性、耐摩耗性を発揮する立方晶窒化ホウ素(以下、cBNで示す)と窒化チタン(以下、TiNで示す)との複合硬質膜を被覆形成した表面被覆切削工具に関する。   The present invention provides cubic boron nitride (hereinafter referred to as cBN) and titanium nitride (hereinafter referred to as TiN) that exhibit excellent toughness, thermal shock resistance, and wear resistance in cutting of iron-based materials such as steel and cast iron. And a surface-coated cutting tool having a composite hard film formed thereon.

従来から、硬質薄膜の成膜法としては、物理蒸着(PVD)法、化学蒸着(CVD)法等がよく知られており、工具基体の表面に、これらの成膜法で硬質膜を被覆形成することにより、耐摩耗性を向上させるとともに表面被覆切削工具の長寿命化が図られている。
近年、硬質薄膜の他の成膜法としてエアロゾルデポジション(Aerosol Deposition。以下、ADで示す)法が開発され、このAD法を利用して、工具基体表面に硬質膜を成膜する表面被覆切削工具について注目されている。
AD法については、非特許文献1に紹介されているが、図1に示されるAD装置において、サブミクロンオーダーの原料超微粒子をエアロゾル発生器に装填し、高圧ガスと混合、エアロゾル化し、中〜低真空に排気された成膜チャンバー内の基板に高速で吹き付けることで金属、セラミックス膜を成膜するコーティング手法である。
AD法の成膜の原理は、「常温衝撃固化現象」と命名されており、特にセラミックスの成膜においては、特定範囲のサイズを持つ微細な粒子がノズルからガスと共に送られた際に得る一定範囲の運動エネルギーを持って基板に衝突する際に、微細結晶に破砕し、この粒子同士が緻密に結合しながら膜を形成するというものである。
このAD法による成膜の特徴としては、
(イ)金属やセラミックス(酸化物、非酸化物)の成膜が可能である。
(ロ)高温の熱処理が不要なため、通常の焼結プロセスでは得られない原料粉組成を維持した熱非平衡なセラミックス組織が得られる。
(ハ)高速(条件によってはPVD、CVDの30倍以上)かつ大面積で緻密な微結晶組織を持つコーティングが可能である。
(ニ)基板は、硬度や弾性率などの機械特性に配慮すれば、Si,SUS304,樹脂,ガラスなど広く選択可能である。
等が挙げられる。
Conventionally, physical vapor deposition (PVD) method, chemical vapor deposition (CVD) method, etc. are well known as film formation methods for hard thin films, and hard films are coated on the surface of the tool base by these film formation methods. As a result, the wear resistance is improved and the life of the surface-coated cutting tool is extended.
In recent years, an aerosol deposition (hereinafter referred to as AD) method has been developed as another method for forming a hard thin film, and surface coating cutting for forming a hard film on the surface of a tool substrate by using this AD method. Attention has been focused on tools.
The AD method is introduced in Non-Patent Document 1, but in the AD apparatus shown in FIG. 1, submicron-order raw material ultrafine particles are loaded into an aerosol generator, mixed with high-pressure gas, converted into aerosol, This is a coating technique in which a metal or ceramic film is formed by spraying at a high speed on a substrate in a film forming chamber evacuated to a low vacuum.
The principle of film formation by the AD method is named “normal temperature impact solidification phenomenon”, and in particular, in the film formation of ceramics, a certain amount obtained when fine particles having a specific size range are sent together with gas from a nozzle. When it collides with a substrate with a kinetic energy within a range, it breaks into fine crystals and forms a film while these particles are closely bonded.
As a feature of film formation by this AD method,
(A) Metals and ceramics (oxides, non-oxides) can be formed.
(B) Since a high-temperature heat treatment is not required, a thermal non-equilibrium ceramic structure maintaining a raw material powder composition that cannot be obtained by a normal sintering process is obtained.
(C) High-speed coating (30 or more times higher than PVD and CVD depending on conditions) and a large area and a dense microcrystalline structure are possible.
(D) The substrate can be widely selected from Si, SUS304, resin, glass, etc. in consideration of mechanical properties such as hardness and elastic modulus.
Etc.

上記AD法の具体的な適用例として、例えば、特許文献1には、Alと他のセラミックス(例えば、SiC,Si,TiN,TiCN,TiC,AlN,C,BN)材料との複合膜をAD法によって形成することにより、ステンレス鋼、合金鋼の切削ですぐれた切削性能を示す表面被覆切削工具が得られることが述べられている。
また、特許文献2には、ダイヤモンド微粒子とセラミック(例えば、Al,TiO,SiO,AlSiNO,SiC,TaC,BC,BN,SiN,Y,ZrO,MgO)粒子との複合膜をAD法によって形成することにより、密着性にすぐれ、Al合金の切削ですぐれた耐摩耗性を示す表面被覆切削工具が得られることが述べられている。
また、特許文献3には、AD法によってダイヤモンド膜を形成したダイヤモンド被覆工具が示され、このダイヤモンド被覆工具は摩擦係数が小さく耐摩耗性に優れることが述べられている。
しかし、特許文献1に示される表面被覆切削工具は基板との密着性及び耐摩耗性が十分とはいえず、また、特許文献2、3に示されるものは、硬質膜成分がダイヤモンドであり、このダイヤモンドが鉄系材料と反応を起こすため、鋼、鋳鉄等の鉄系材料の切削工具として用いることはできない。
As a specific application example of the AD method, for example, Patent Document 1 discloses Al 2 O 3 and other ceramics (for example, SiC, Si 3 N 4 , TiN, TiCN, TiC, AlN, C, and BN) materials. It is stated that a surface-coated cutting tool exhibiting excellent cutting performance in cutting stainless steel and alloy steel can be obtained by forming a composite film with
Patent Document 2 discloses diamond fine particles and ceramics (for example, Al 2 O 3 , TiO 2 , SiO 2 , AlSiNO, SiC, TaC, B 4 C, BN, SiN, Y 2 O 3 , ZrO 2 , MgO). It is stated that by forming a composite film with particles by the AD method, it is possible to obtain a surface-coated cutting tool having excellent adhesion and excellent wear resistance by cutting an Al alloy.
Patent Document 3 discloses a diamond-coated tool in which a diamond film is formed by an AD method, and it is stated that this diamond-coated tool has a small friction coefficient and excellent wear resistance.
However, the surface-coated cutting tool shown in Patent Document 1 cannot be said to have sufficient adhesion and abrasion resistance with the substrate, and those shown in Patent Documents 2 and 3 are diamonds whose hard film component is diamond, Since this diamond reacts with iron-based materials, it cannot be used as a cutting tool for iron-based materials such as steel and cast iron.

また、上記AD法によらない硬質複合膜の成膜法として、例えば、特許文献4、5には、ESC(Electrostatic Spray Coating)法によって、基体にcBN粒子を付着させた後、CVI(Chemical Vapor Infiltration)法により、cBN粒子間隙にTiNを充填することにより、cBNとTiNとからなる複合膜を成膜する方法が開示されているが、この成膜法では、高電圧・高温・真空装置が必要とされ、硬質膜の製造コストが嵩むという問題がある。また、cBN粒子を付着させてからTiNを成膜するため、膜の組成を傾斜構造にすることができない。このため、基板との密着性が問題である。   As a method for forming a hard composite film not based on the AD method, for example, in Patent Documents 4 and 5, after cBN particles are attached to a substrate by an ESC (Electrostatic Spray Coating) method, CVI (Chemical Vapor) is used. A method of forming a composite film made of cBN and TiN by filling TiBN into the cBN particle gap by the Infiltration method is disclosed. However, in this film forming method, a high voltage / high temperature / vacuum apparatus is used. There is a problem that the manufacturing cost of the hard film increases. In addition, since TiN is deposited after the cBN particles are adhered, the composition of the film cannot be an inclined structure. For this reason, adhesiveness with a board | substrate is a problem.

特開2006−131992号公報JP 2006-131992 A 特開2009−62607号公報JP 2009-62607 A 特開2008−19464号公報JP 2008-19464 A 米国特許第6607782号明細書US Pat. No. 6,607,782 米国特許出願公開第2006/0199013号明細書US Patent Application Publication No. 2006/0199013

「Synthesiology」Vol.1,No.2(2008)p.130〜138“Synthesiology” Vol. 1, No. 1 2 (2008) p. 130-138

本発明は、高電圧・高温・真空装置を必要とせず、作製コストの低減を図るとともに、鋼、鋳鉄等の鉄系材料の切削加工にあたり、AD法により膜の組成を変調させて成膜することにより、靭性、耐熱衝撃性、耐摩耗性にすぐれ、かつ、長期の使用に亘りすぐれた切削性能を発揮する複合硬質膜を被覆形成した表面被覆切削工具を提供することを目的とする。   The present invention does not require a high voltage / high temperature / vacuum device, reduces the production cost, and forms a film by modulating the composition of the film by the AD method in cutting of iron-based materials such as steel and cast iron. Accordingly, an object of the present invention is to provide a surface-coated cutting tool that is coated with a composite hard film that exhibits excellent toughness, thermal shock resistance, and wear resistance, and exhibits excellent cutting performance over a long period of use.

本発明者等は、cBNとTiNとからなる複合硬質膜に着目し、AD法によってこれを成膜することにより、工具基体との密着性に優れた複合硬質膜が形成されること、さらに、超硬合金焼結体、cBN焼結体、サーメットあるいは高速度鋼等を工具基体とし、その表面にAD法で複合硬質膜を成膜するにあたり、cBNとTiNとの含有比率をその膜厚方向に沿って調整し、さらに、すくい面、逃げ面の所望特性に応じた組成傾斜構造の複合硬質膜とすることによって、靭性、耐熱衝撃性および耐摩耗性にすぐれた鋼、鋳鉄等の鉄系材料の切削加工に好適な表面被覆切削工具が得られることを見出したのである。   The present inventors pay attention to a composite hard film composed of cBN and TiN, and by forming this by the AD method, a composite hard film having excellent adhesion to the tool substrate is formed. When a cemented carbide sintered body, cBN sintered body, cermet or high speed steel is used as a tool base and a composite hard film is formed on the surface by the AD method, the content ratio of cBN and TiN is determined in the direction of the film thickness. Steel, cast iron, and other iron systems with excellent toughness, thermal shock resistance and wear resistance by adjusting to the above and further forming a composite hard film with a composition gradient structure according to the desired characteristics of the rake face and flank face It has been found that a surface-coated cutting tool suitable for material cutting can be obtained.

本発明は、上記知見に基づいてなされたものであって、
「(1) 工具基体の表面に、立方晶窒化ホウ素と窒化チタンとの複合硬質膜が1〜15μmの膜厚で被覆形成された表面被覆切削工具において、上記複合硬質膜の構成成分である立方晶窒化ホウ素と窒化チタンは、工具基体側では窒化チタン含有比率が高く、また、表層側では立方晶窒化ホウ素の含有比率が高くなる組成傾斜構造を備えていることを特徴とする表面被覆切削工具。
(2) すくい面の複合硬質膜の窒化チタンに対する立方晶窒化ホウ素の含有比率は、切れ刃稜線を境界として、逃げ面の複合硬質膜の窒化チタンに対する立方晶窒化ホウ素の含有比率より高いことを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 少なくともすくい面の複合硬質膜における上記組成傾斜構造は、すくい面の複合硬質膜の表層の窒化チタンに対する立方晶窒化ホウ素の含有比率が1.5〜4.0であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4) 少なくとも逃げ面の複合硬質膜における上記組成傾斜構造は、逃げ面の複合硬質膜の表層の窒化チタンに対する立方晶窒化ホウ素の含有比率が0.67〜1.5であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a composite hard film of cubic boron nitride and titanium nitride is coated on the surface of a tool base with a film thickness of 1 to 15 μm, cubic that is a component of the composite hard film. A surface-coated cutting tool characterized in that the boron nitride and titanium nitride have a composition gradient structure in which the titanium nitride content ratio is high on the tool base side and the cubic boron nitride content ratio is high on the surface layer side. .
(2) The content ratio of cubic boron nitride to titanium nitride of the composite hard film on the rake face is higher than the content ratio of cubic boron nitride to titanium nitride in the composite hard film on the flank face with the cutting edge ridge as a boundary. The surface-coated cutting tool according to (1), which is characterized in that
(3) The above composition gradient structure in at least the rake face composite hard film is characterized in that the content ratio of cubic boron nitride to titanium nitride in the surface layer of the rake face composite hard film is 1.5 to 4.0. The surface-coated cutting tool according to (1) or (2).
(4) The composition gradient structure in at least the flank composite hard film is characterized in that the content ratio of cubic boron nitride to titanium nitride in the surface layer of the flank composite hard film is 0.67 to 1.5. The surface-coated cutting tool according to (1) or (2). "
It is characterized by.

本発明について、以下に説明する。   The present invention will be described below.

本発明では、複合硬質膜を形成する工具基体としては、炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ホウ素基超高圧焼結材料、高速度工具鋼等の、既によく知られている各種切削工具基体材料を用いることができる。
本発明では、上記工具基体表面に、前記AD(Aerosol Deposition)法により複合硬質膜を成膜する。
まず、本発明の複合硬質膜のAD法による成膜の概要を図1により説明する。
図1において、例えば、粒径が0.1〜1.0μmのcBN粉末、粒径が0.1〜1.0μmのTiN粉末を、それぞれエアロゾル発生器内に充填し、これを高圧ガス(He,Ar,Nあるいは空気)と混合し、エアロゾル化し、中、低真空圧の成膜チャンバー内の基板に高速で吹き付けることで、基板上にcBNとTiNとの所望の含有比率からなる複合膜を成膜することができる。
なお、本発明でいう含有比率とは、立方晶窒化ホウ素と窒化チタンの合量に占める体積比率を示し、膜厚方向に0.2μm、基板と平行方向に3オmの領域について断面方向からオージェ電子分光法による面分析を行い、その測定結果より、複合硬質層に占める各成分の体積割合を算出することによって求めた値をいう。
In the present invention, as the tool base for forming the composite hard film, tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, cubic boron nitride-based ultra-high pressure sintered material, high-speed tool steel, etc. are already well known. Various cutting tool substrate materials can be used.
In the present invention, a composite hard film is formed on the surface of the tool base by the AD (Aerosol Deposition) method.
First, an outline of film formation by the AD method of the composite hard film of the present invention will be described with reference to FIG.
In FIG. 1, for example, cBN powder having a particle size of 0.1 to 1.0 μm and TiN powder having a particle size of 0.1 to 1.0 μm are filled in an aerosol generator, and the high pressure gas (He , Ar, N 2 or air), aerosolized, and sprayed at a high speed onto the substrate in the film formation chamber of medium and low vacuum pressure, thereby forming a composite film having a desired content ratio of cBN and TiN on the substrate Can be formed.
In addition, the content ratio as used in the field of this invention shows the volume ratio which occupies for the total amount of cubic boron nitride and titanium nitride, and it is from a cross-sectional direction about the area | region of 0.2 micrometer in a film thickness direction, and 3 micrometers in a direction parallel to a board | substrate. It means a value obtained by performing surface analysis by Auger electron spectroscopy and calculating the volume ratio of each component in the composite hard layer from the measurement result.

本発明においては、上記AD法を利用して成膜するにあたり、複合硬質膜の下部層を形成する成膜初期段階では、原料微粒子粉末中のTiN含有比率が高くなるように、また、複合硬質膜の上部層を形成する成膜後期段階では、原料微粒子粉末中のcBN含有比率が高くなるように、それぞれのエアロゾル発生器内のガス圧を調節することにより、工具基体側ではTiN含有比率が高く、また、表層側ではcBNの含有比率が高くなる組成傾斜構造を備える複合硬質膜を成膜する。
なお、本発明の複合硬質膜は、その焼結性を高めるために、成膜後、アニーリング、レーザーアニーリングを行ってもよい。
本発明の複合硬質膜は、工具基体側ではTiN含有比率が高く、cBN含有比率が低くなっているため、工具基体との密着性に優れる。
一方、複合硬質膜の表層側では、cBN含有比率が高く、TiN含有比率が低くなっているため、硬質であって耐摩耗性に優れ、しかも、鉄系材料との反応性が小さいため溶着等を発生する恐れが少ない。
本発明の複合硬質膜は、その膜厚が1μm未満であると、すぐれた耐摩耗性を長期の使用に亘って発揮することはできず、一方、その膜厚が15μmを超えると、膜内に発生した残留応力により、剥離やチッピングが生じやすくなるため、複合硬質膜の膜厚は、1〜15μmと定めた。
In the present invention, when forming a film using the AD method, at the initial stage of film formation in which the lower layer of the composite hard film is formed, the TiN content ratio in the raw material fine particle powder is increased, and the composite hard In the later stage of film formation for forming the upper layer of the film, the TiN content ratio on the tool substrate side is adjusted by adjusting the gas pressure in each aerosol generator so that the cBN content ratio in the raw fine particle powder is increased. In addition, a composite hard film having a high composition gradient structure in which the content ratio of cBN is high on the surface layer side is formed.
In addition, in order to improve the sinterability, the composite hard film of the present invention may be subjected to annealing or laser annealing after film formation.
Since the composite hard film of the present invention has a high TiN content ratio and a low cBN content ratio on the tool base side, it has excellent adhesion to the tool base.
On the other hand, on the surface layer side of the composite hard film, since the cBN content ratio is high and the TiN content ratio is low, it is hard and has excellent wear resistance, and also has low reactivity with iron-based materials, so that welding, etc. There is little possibility to generate.
When the film thickness is less than 1 μm, the composite hard film of the present invention cannot exhibit excellent wear resistance over a long period of use, while when the film thickness exceeds 15 μm, Since the residual stress generated in the film tends to cause peeling and chipping, the thickness of the composite hard film was determined to be 1 to 15 μm.

上記の組成傾斜構造を有する本発明の複合硬質膜は、工具基体側の下部層では、cBNとTiNの含有比率は相対的にTiN含有割合が高いため、工具基体との密着性に優れ、工具基体と硬質膜間での付着強度が向上したものとなる。
また、複合硬質膜の表層側の上部層において、cBNとTiNの含有比率に関し、相対的にcBN含有割合が高いため、硬質であって耐摩耗性および耐酸化性に優れ、しかも、鋼や鋳鉄等の切削加工においてすぐれた耐溶着性を示す。
さらに、複合硬質膜の中間層は、cBN含有比率とTiN含有比率がほぼ同量のものとして形成されていることから、すぐれた靭性を備えたものとなるばかりか、下部層あるいは上部層との密着強度を高めることとなる。
The composite hard film of the present invention having the above-described composition gradient structure is excellent in adhesion to the tool base because the content ratio of cBN and TiN is relatively high in the lower layer on the tool base side, and the tool base The adhesion strength between the substrate and the hard film is improved.
In addition, in the upper layer on the surface layer side of the composite hard film, since the cBN content ratio is relatively high with respect to the content ratio of cBN and TiN, it is hard and has excellent wear resistance and oxidation resistance, and also steel or cast iron Excellent welding resistance in cutting such as.
Furthermore, since the intermediate layer of the composite hard film is formed so that the cBN content ratio and the TiN content ratio are approximately the same amount, it has not only excellent toughness but also the lower layer or the upper layer. The adhesion strength will be increased.

また、本発明の表面被覆切削工具は、複合硬質膜の組成傾斜構造を、切れ刃稜線を境界として、すくい面あるいは逃げ面のそれぞれに対して、調整することが望ましい。
つまり、一般的に表面被覆切削工具では、そのすくい面には、被削材に対する非反応性と膜の硬さが求められ、一方、逃げ面には界面強度と耐摩耗性が求められているところ、cBNは鉄系被削材との反応性が低いとともに硬質であるが、cBNの含有比率が高くなると、cBN粒子の界面強度が低下し、切削時に脱落したcBN粒子によってすきとり摩耗が発生しやすくなる。
そこで、本発明の表面被覆切削工具では、すくい面については、すくい面の複合硬質膜の表層のTiNに対するcBNの含有比率が1.5〜4.0となる組成傾斜構造をとることが望ましい。
ここで、すくい面では、TiNに対してcBN含有比率が高いことが望ましいが、TiNに対するcBNの含有比率が4.0(80vol%)を越えると、付着強度および界面強度の著しい低下が避けられず、一方、TiNに対するcBNの含有比率が1.5(60vol%)未満では、耐クレータ摩耗性の向上効果が少ないことから、すくい面の表層のTiNに対するcBNの含有比率は1.5〜4.0であることが望ましい。
In the surface-coated cutting tool of the present invention, it is desirable to adjust the composition gradient structure of the composite hard film with respect to each of the rake face or the flank face with the cutting edge ridge line as a boundary.
In other words, in general, surface-coated cutting tools require non-reactivity to the work material and film hardness on the rake face, while flank faces require interface strength and wear resistance. However, cBN has low reactivity with iron-based work materials and is hard, but when the content ratio of cBN increases, the interfacial strength of the cBN particles decreases, and the cBN particles dropped off during cutting generate scraping wear. It becomes easy to do.
Therefore, in the surface-coated cutting tool of the present invention, it is desirable that the rake face has a composition gradient structure in which the content ratio of cBN to TiN in the surface layer of the composite hard film on the rake face is 1.5 to 4.0.
Here, on the rake face, it is desirable that the cBN content ratio is high with respect to TiN. However, if the content ratio of cBN with respect to TiN exceeds 4.0 (80 vol%), a significant decrease in adhesion strength and interface strength can be avoided. On the other hand, if the content ratio of cBN to TiN is less than 1.5 (60 vol%), the effect of improving crater wear resistance is small, so the content ratio of cBN to TiN on the surface layer of the rake face is 1.5-4. 0.0 is desirable.

また、本発明の表面被覆切削工具では、逃げ面の複合硬質膜の表層のTiNに対するcBNの含有比率は0.67〜1.5となる組成傾斜構造をとることが望ましい。
つまり、脱落したcBN粒子によって生じるすきとり摩耗を抑制するために、cBN粒子が脱落しないように界面強度を保つ必要があることから、逃げ面の複合硬質膜の表層のTiNに対するcBNの含有比率は1.5(60vol%)以下にすることが望ましいが、逃げ面の複合硬質膜の表層のTiNに対するcBNの含有比率が0.67(40vol%)未満になると、cBNの含有率の低下により耐摩耗性が確保できなくなることから、逃げ面の複合硬質膜の表層のTiNに対するcBNの含有比率は0.67〜1.5であることが望ましい。
なお、AD法によれば、すくい面の表層あるいは逃げ面の複合硬質膜の表層のcBN含有比率は、成膜終期の基板各面へのTiNとcBNの吹き付けを調整(例えば、エアロゾル容器内のガス圧を調整)することによって、所望の含有比率を容易に得ることができる。
In the surface-coated cutting tool of the present invention, it is desirable to adopt a composition gradient structure in which the content ratio of cBN to TiN in the surface layer of the composite hard film on the flank is 0.67 to 1.5.
That is, in order to suppress the scraping abrasion caused by the dropped cBN particles, it is necessary to maintain the interface strength so that the cBN particles do not fall off. Therefore, the content ratio of cBN to TiN of the surface layer of the composite hard film on the flank surface is 1.5 (60 vol%) or less is desirable, but when the content ratio of cBN to TiN in the surface layer of the composite hard film on the flank face is less than 0.67 (40 vol%), the resistance is reduced due to a decrease in the content of cBN. Since the wearability cannot be secured, the content ratio of cBN to TiN in the surface layer of the composite hard film on the flank is preferably 0.67 to 1.5.
According to the AD method, the cBN content ratio of the surface layer of the rake face or the composite hard film of the flank face is adjusted by spraying TiN and cBN on each surface of the substrate at the end of film formation (for example, in an aerosol container). The desired content ratio can be easily obtained by adjusting the gas pressure.

上記のとおり、本発明の表面被覆切削工具は、工具基体の表面に、cBNとTiNとの複合硬質膜が形成され、かつ、複合硬質膜中のcBNとTiNは、工具基体側ではTiN含有比率が高く、一方、表層側ではcBN含有比率が高くなる組成傾斜構造を備えているので、複合硬質膜全体として、硬さ、靭性、付着強度に優れる。また、好ましくは、切れ刃稜線を境界として、すくい面の複合硬質膜における窒化チタンに対する立方晶窒化ホウ素の含有比率を、逃げ面の複合硬質膜のそれより高くすること、すくい面の複合硬質膜の表層の窒化チタンに対する立方晶窒化ホウ素の含有比率を1.5〜4.0とすること、逃げ面の複合硬質膜の表層の窒化チタンに対する立方晶窒化ホウ素の含有比率を0.67〜1.5とすることで、すくい面、逃げ面のそれぞれに求められる特性を備えることができるので、特に、鋼や鋳鉄等の鉄系材料の切削加工において、すぐれた耐溶着性、耐摩耗性を発揮し、長期の使用に亘ってすぐれた耐摩耗性を発揮するとともに、工具寿命の延命化が図られるのである。   As described above, in the surface-coated cutting tool of the present invention, the composite hard film of cBN and TiN is formed on the surface of the tool base, and the cBN and TiN in the composite hard film have a TiN content ratio on the tool base side. On the other hand, since it has a composition gradient structure in which the cBN content ratio is high on the surface layer side, the composite hard film as a whole is excellent in hardness, toughness, and adhesion strength. Preferably, the ratio of cubic boron nitride to titanium nitride in the composite hard film on the rake face is made higher than that of the composite hard film on the flank face, with the cutting edge ridge as a boundary, and the composite hard film on the rake face The content ratio of cubic boron nitride to titanium nitride in the surface layer is 1.5 to 4.0, and the content ratio of cubic boron nitride to titanium nitride in the surface layer of the composite hard film on the flank is 0.67 to 1. .5, it is possible to provide the characteristics required for each of the rake face and the flank face, so that excellent welding resistance and wear resistance can be obtained particularly in cutting of iron-based materials such as steel and cast iron. In addition to exhibiting excellent wear resistance over a long period of use, the tool life can be extended.

本発明の表面被覆切削工具の複合硬質膜を成膜するためのAD(エアロゾルデポジッション)装置を示し、(a)は概略正面図、(b)は成膜チャンバー内上部の概略平面図である。The AD (aerosol deposition) apparatus for forming the composite hard film of the surface-coated cutting tool of the present invention is shown, (a) is a schematic front view, and (b) is a schematic plan view of the upper part in the film forming chamber. . 本発明1−10の表面被覆切削工具の複合硬質膜の層構造の一例を示す。An example of the layer structure of the composite hard film | membrane of the surface coating cutting tool of this invention 1-10 is shown. 本発明11−20の表面被覆切削工具の複合硬質膜のすくい面の層構造の一例を示す。An example of the layer structure of the rake face of the composite hard film of the surface-coated cutting tool of the present invention 11-20 is shown. 本発明11−20の表面被覆切削工具の複合硬質膜の逃げ面の層構造の一例を示す。An example of the layer structure of the flank of the composite hard film of the surface coating cutting tool of this invention 11-20 is shown. 本発明21−30の表面被覆切削工具の複合硬質膜のすくい面の層構造の一例を示す。An example of the layer structure of the rake face of the composite hard film of the surface-coated cutting tool of the invention 21-30 is shown. 本発明21−30の表面被覆切削工具の複合硬質膜の逃げ面の層構造の一例を示す。An example of the layer structure of the flank of the composite hard film of the surface coating cutting tool of this invention 21-30 is shown.

以下に、本発明の表面被覆切削工具を実施例に基づいて説明する。
なお、ここでは工具基体材料として超硬合金基体を使用したが、工具基体としては、cBN焼結体、サーメットあるいは高速度鋼等の通常用いられる工具基体を使用することがもちろん可能である。
Below, the surface covering cutting tool of this invention is demonstrated based on an Example.
Although a cemented carbide substrate is used here as the tool substrate material, it is of course possible to use a commonly used tool substrate such as a cBN sintered body, cermet or high speed steel as the tool substrate.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度25°のホーニング加工を施し、仕上げ研磨を施すことにより、いずれもWC基超硬合金からなり、かつISO規格SNGA120412のインサート形状をもった超硬合金基体1〜10を製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. The mixture is blended for 96 hours by a ball mill, dried by a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering under holding conditions and processing the outer periphery to a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, and finish polishing is performed. And cemented carbide bases 1 to 10 having an ISO standard SNGA12041 insert shape were manufactured.

Figure 2011121164
Figure 2011121164

ついで、上記の超硬合金基体を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるAD装置の成膜チャンバー内の公転軸に装着し、
まず、粒径が0.1〜1.0μmのcBN粉末と、粒径が0.1〜1.0μmのTiN粉末の原料微粒子を、それぞれ、エアロゾル発生器に装入し、粉末の凝集を防ぐため、エアロゾル発生器の下の振動機を振動させながらエアロゾル発生器にガスを流し、Arガスを用いて、ガス圧力300Pa、ガス搬入速度5L/minで原料微粒子をエアロゾル化し、同様の方法でエアロゾル化したTiN粉末と混合し、成膜チャンバー内の超硬合金基体に所定時間ノズルから吹きつけ、かつ、ノズルを1〜5mm/secで移動させることにより、工具基体表面に、図2に示される所定膜厚、所定のcBN/TiN比率の複合膜(図2では、第1下部層,第2下部層,中間層,上部層として示す)を、cBNおよびTiN粉末が入ったエアロゾル容器内のガス圧を調整することで形成し、
ISO規格SNGA120412に規定するスローアウエイチップ形状の本発明複合硬質膜被覆工具1〜10(以下、本発明工具1〜10という)を作製した。
Next, the above-mentioned cemented carbide substrate is ultrasonically cleaned in acetone and dried, and attached to the revolution shaft in the film forming chamber of the AD apparatus shown in FIG.
First, raw material fine particles of a cBN powder having a particle size of 0.1 to 1.0 μm and a TiN powder having a particle size of 0.1 to 1.0 μm are respectively charged into an aerosol generator to prevent aggregation of the powder. Therefore, gas is flowed to the aerosol generator while vibrating the vibrator under the aerosol generator, and the raw material fine particles are aerosolized using Ar gas at a gas pressure of 300 Pa and a gas carry-in speed of 5 L / min. FIG. 2 shows the surface of the tool substrate by mixing with the TiN powder formed, spraying the cemented carbide substrate in the film forming chamber from the nozzle for a predetermined time, and moving the nozzle at 1 to 5 mm / sec. Aerosol container containing cBN and TiN powder with a composite film (shown as a first lower layer, a second lower layer, an intermediate layer and an upper layer in FIG. 2) having a predetermined film thickness and a predetermined cBN / TiN ratio It is formed by adjusting the gas pressure inside,
The present invention composite hard film coated tools 1 to 10 (hereinafter referred to as the present invention tools 1 to 10) having a throwaway tip shape defined in ISO standard SNGA12041 were produced.

また、上記超硬合金基体1〜10について、上記本発明工具1〜10と同様な方法により、第1下部層,第2下部層,中間層を成膜した後、上部層の成膜時に、cBNおよびTiN粉末が入ったエアロゾル容器内のガス圧を、すくい面および逃げ面のそれぞれに対して調整することにより、すくい面の表層および逃げ面の表層に、それぞれ、表4に示すcBN含有比率を有するISO規格SNGA120412に規定するスローアウエイチップ形状の本発明複合硬質膜被覆工具11〜20(以下、本発明工具11〜20という)を作製した。   Further, after the first lower layer, the second lower layer, and the intermediate layer are formed on the cemented carbide substrates 1 to 10 by the same method as the above-described tools 1 to 10, the upper layer is formed. By adjusting the gas pressure in the aerosol container containing cBN and TiN powder with respect to each of the rake face and the flank face, the cBN content ratios shown in Table 4 are respectively shown in the rake face surface and the flank face layer. The present invention composite hard film-coated tools 11 to 20 (hereinafter referred to as the present invention tools 11 to 20) having a throwaway tip shape defined in ISO standard SNGA12041 having the followings were produced.

さらに、上記超硬合金基体1〜10について、成膜初期よりcBNおよびTiN粉末が入ったエアロゾル容器内のガス圧を、すくい面および逃げ面のそれぞれに対して調整することにより、すくい面の表層および逃げ面の表層に、それぞれ、表5に示すcBN含有比率を有するISO規格SNGA120412に規定するスローアウエイチップ形状の本発明複合硬質膜被覆工具21〜30(以下、本発明工具21〜30という)を作製した。   Further, with respect to the cemented carbide substrates 1 to 10, by adjusting the gas pressure in the aerosol container containing cBN and TiN powder from the initial stage of film formation to each of the rake face and the flank face, the surface layer of the rake face In the surface layer of the flank, the present invention composite hard film coated tools 21 to 30 of the throwaway tip shape defined in ISO standard SNGA120204 having the cBN content ratio shown in Table 5 (hereinafter referred to as the present invention tools 21 to 30). Was made.

比較のため、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、AlN粉末、TiC粉末、TiCN粉末、TiAl粉末、TiAl粉末、TiAl粉末、Al粉末、Al粉末、WC粉末を用意し、これら原料粉末を表2に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:16質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置またはダイヤモンド切断機にて一辺3mmの正三角形状に分割し、さらにCo:6質量%、TaC:5質量%、WC:残りの組成およびISO規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもち、表2に示されるcBN焼結体からなるcBN工具1〜10(以下、比較例工具1〜10という)を作製した。 For comparison, cBN powder, TiN powder, AlN powder, TiC powder, TiCN powder, Ti 3 Al powder, Ti 2 Al powder, TiAl, all having an average particle diameter in the range of 0.5 to 4 μm as a raw material powder 3 powder, Al powder, Al 2 O 3 powder and WC powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 80 hours, dried, and then subjected to a diameter of 120 MPa. : Press molded into a green compact with dimensions of 50 mm × thickness: 1.5 mm, and this green compact is then subjected to a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes in a vacuum atmosphere of 1 Pa. It sinters on the conditions of holding | maintenance, and it is set as the pre-sintering body for cutting-blade pieces, This pre-sintering body prepared separately, Co: 16 mass%, WC: Remaining composition, Diameter: 50 mm x thickness: 2 mm With dimensions In a state of being superposed on a WC-based cemented carbide support piece, it is inserted into an ordinary ultra-high pressure sintering apparatus and maintained at a predetermined temperature within a range of pressure: 4 GPa, temperature: 1200 to 1400 ° C., which are normal conditions. Time: Super high pressure sintering under the condition of 0.8 hours, and after sintering, the upper and lower surfaces are polished with a diamond grindstone and divided into a regular triangle shape with a side of 3 mm by a wire electric discharge machine or a diamond cutting machine. Co: 6% by mass, TaC: 5% by mass, WC: remaining composition and WC-base cemented carbide with ISO standard SNGA1204112 shape (thickness: 4.76 mm × one side length: 12.7 mm square) For the brazing part (corner part) of the insert body, a brazing material of an Ag alloy having a composition consisting of Cu: 26%, Ti: 5%, Ni: 2.5%, and Ag: the remainder will be used. Attached to the outer circumference to the specified dimensions After processing, the cutting edge portion is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and further subjected to finish polishing to have an ISO standard SNGA12041 insert shape. From the cBN sintered body shown in Table 2 CBN tools 1 to 10 (hereinafter referred to as comparative example tools 1 to 10) were produced.

参考のため、実施例で使用した超硬合金基体1〜10の上に、粒径が0.1〜1.0μmのcBN粉末をAD法による成膜を試みたが、成膜することができなかった。   For reference, an attempt was made to form a cBN powder having a particle size of 0.1 to 1.0 μm on the cemented carbide substrates 1 to 10 used in the examples by the AD method. There wasn't.

上記本発明工具1〜30の各層の膜組成を、第1下部層、第2下部層、中間層および上部層について、その厚さ方向に0.2μm、基板と平行方向に3μmの領域の領域について、断面加工した試料の断面方向からオージェ電子分光法により測定したところ、それぞれ図2〜図6に示される目標とするcBN/TiN比率と実質的に同じcBN/TiN比率を示した。なおAD法では成膜時にセラミックス粒子が基板に衝突する際に、数GPa程度の圧縮応力が発生し、セラミックス粒子が、衝突時に脆性破壊あるいは塑性変形するため、原料粒子が細かく破砕され、前記膜厚方向に0.2μmの領域内でも含有比率を調整することが可能である。
表3、表4、表5にcBN/TiN比率を示す。
また、本発明工具1〜30の膜厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
これらの測定値を、表3、表4、表5に示す。
The film composition of each layer of the inventive tools 1 to 30 is as follows: the first lower layer, the second lower layer, the intermediate layer and the upper layer are 0.2 μm in the thickness direction and 3 μm in the direction parallel to the substrate When measured by Auger electron spectroscopy from the cross-sectional direction of the cross-section processed sample, the cBN / TiN ratio substantially the same as the target cBN / TiN ratio shown in FIGS. In the AD method, when the ceramic particles collide with the substrate during film formation, a compressive stress of about several GPa is generated, and the ceramic particles are brittlely fractured or plastically deformed during the collision. It is possible to adjust the content ratio even in the region of 0.2 μm in the thickness direction.
Tables 3, 4 and 5 show the cBN / TiN ratio.
Moreover, when the film thickness of this invention tool 1-30 was cross-sectional measured using the scanning electron microscope, all showed the average value (5 average values) substantially the same as target layer thickness.
These measured values are shown in Table 3, Table 4, and Table 5.

Figure 2011121164
Figure 2011121164

Figure 2011121164
Figure 2011121164

Figure 2011121164
Figure 2011121164

Figure 2011121164
Figure 2011121164

上記の本発明工具1〜30および比較例工具1〜10を用い、以下の切削条件で切削加工試験を実施した。
《切削条件1》
被削材: JIS・SCr420(硬さHRA:62)の丸棒、
切削速度: 230 m/min、
送り: 0.20 mm/rev、
切込み:0.20 mm、
切削時間: 5 分
の条件での、高硬度クロム鋼の乾式連続切削加工試験、
《切削条件2》
被削材: JIS・SUJ2(硬さHRA:60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min、
送り: 0.15 mm/rev、
切込み: 0.20 mm、
切削時間: 5 分
の条件での、焼入れ軸受鋼の乾式断続切削加工試験、
を行い、切刃の逃げ面摩耗幅を測定した。
上記切削条件1,2による切削加工試験の測定結果を表6に示した。
Using the above-described inventive tools 1 to 30 and comparative tools 1 to 10, a cutting test was performed under the following cutting conditions.
<< Cutting conditions 1 >>
Work material: JIS / SCr420 (hardness HRA: 62) round bar,
Cutting speed: 230 m / min,
Feed: 0.20 mm / rev,
Cutting depth: 0.20 mm,
Cutting time: Dry continuous cutting test of high-hardness chromium steel under the condition of 5 minutes,
<< Cutting conditions 2 >>
Work material: JIS / SUJ2 (Hardness HRA: 60) lengthwise equidistant four round grooved round bars,
Cutting speed: 180 m / min,
Feed: 0.15 mm / rev,
Cutting depth: 0.20 mm,
Cutting time: Dry interrupted cutting test of hardened bearing steel under the condition of 5 minutes,
The flank wear width of the cutting blade was measured.
The measurement results of the cutting test under the above cutting conditions 1 and 2 are shown in Table 6.

Figure 2011121164
Figure 2011121164

表6に示される結果から、本発明工具1〜10は、複合硬質膜がcBNとTiNの複合膜として構成され、かつ、工具基体側ではTiN含有比率が高く、また、表層側ではcBN含有比率が高くなる組成傾斜構造を備えていることから、鉄系材料の切削加工では、硬質被覆層がすぐれた密着強度、高温硬さ、靭性を備え、溶着、欠損等の発生の恐れはなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
また、本発明工具11〜30は、すくい面表層あるいは逃げ面表層で所定のcBN含有比率をさらに備えていることから、クレータ摩耗、すきとり摩耗の発生も全く見られず、長期の使用に亘ってすぐれた耐摩耗性を発揮するものであった。
これに対して、比較例工具1〜10においては、欠損発生、耐摩耗性不足等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 6, the inventive tools 1 to 10 are configured such that the composite hard film is a composite film of cBN and TiN, and the TiN content ratio is high on the tool substrate side, and the cBN content ratio is on the surface layer side. Because of the high composition gradient structure, the hard coating layer has excellent adhesion strength, high temperature hardness, toughness, and there is no risk of welding, fracture, etc. Exhibits excellent wear resistance over use.
In addition, since the tools 11 to 30 of the present invention are further provided with a predetermined cBN content ratio in the rake surface layer or the flank surface layer, no occurrence of crater wear and scraping wear is observed at all, and the tool is used for a long time. It exhibited excellent wear resistance.
On the other hand, it is apparent that the comparative tools 1 to 10 reach the service life in a relatively short time due to occurrence of defects, insufficient wear resistance, and the like.

上述のように、この発明の複合硬質膜を被覆形成した表面被覆切削工具は、鋼、鋳鉄等の切削加工に用いた場合に好適であるが、他の被削材の切削加工に用いることも勿論可能であり、さらに、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるものである。   As described above, the surface-coated cutting tool formed by coating the composite hard film of the present invention is suitable for use in cutting of steel, cast iron, etc., but may also be used for cutting of other work materials. Of course, this is possible, and it is possible to satisfactorily meet the demands for higher performance of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (4)

工具基体の表面に、立方晶窒化ホウ素と窒化チタンとの複合硬質膜が1〜15μmの膜厚で被覆形成された表面被覆切削工具において、上記複合硬質膜の構成成分である立方晶窒化ホウ素と窒化チタンは、工具基体側では窒化チタン含有比率が高く、また、表層側では立方晶窒化ホウ素の含有比率が高くなる組成傾斜構造を備えていることを特徴とする表面被覆切削工具。   In a surface-coated cutting tool in which a composite hard film of cubic boron nitride and titanium nitride is coated on the surface of the tool base with a film thickness of 1 to 15 μm, cubic boron nitride as a component of the composite hard film A surface-coated cutting tool characterized in that titanium nitride has a composition gradient structure in which the titanium nitride content ratio is high on the tool substrate side and the cubic boron nitride content ratio is high on the surface layer side. すくい面の複合硬質膜の窒化チタンに対する立方晶窒化ホウ素の含有比率は、切れ刃稜線を境界として、逃げ面の複合硬質膜の窒化チタンに対する立方晶窒化ホウ素の含有比率より高いことを特徴とする請求項1に記載の表面被覆切削工具。 The content ratio of cubic boron nitride to titanium nitride of the composite hard film on the rake face is higher than the content ratio of cubic boron nitride to titanium nitride in the composite hard film on the flank face with the cutting edge ridge as a boundary. The surface-coated cutting tool according to claim 1. 少なくともすくい面の複合硬質膜における上記組成傾斜構造は、すくい面の複合硬質膜の表層の窒化チタンに対する立方晶窒化ホウ素の含有比率が1.5〜4.0であることを特徴とする請求項1または2に記載の表面被覆切削工具。   The composition gradient structure in at least the rake face composite hard film is characterized in that the content ratio of cubic boron nitride to titanium nitride in the surface layer of the rake face composite hard film is 1.5 to 4.0. The surface-coated cutting tool according to 1 or 2. 少なくとも逃げ面の複合硬質膜における上記組成傾斜構造は、逃げ面の複合硬質膜の表層の窒化チタンに対する立方晶窒化ホウ素の含有比率が0.67〜15であることを特徴とする請求項1または2に記載の表面被覆切削工具。   The composition gradient structure in at least the flank composite hard film is characterized in that the content ratio of cubic boron nitride to titanium nitride in the surface layer of the flank composite hard film is 0.67 to 15. 2. The surface-coated cutting tool according to 2.
JP2010123742A 2009-11-12 2010-05-31 Surface coated cutting tool Expired - Fee Related JP5471842B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010123742A JP5471842B2 (en) 2009-11-12 2010-05-31 Surface coated cutting tool
CN201010529471.3A CN102061466B (en) 2009-11-12 2010-10-25 Surface coated cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009258677 2009-11-12
JP2009258677 2009-11-12
JP2010123742A JP5471842B2 (en) 2009-11-12 2010-05-31 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2011121164A true JP2011121164A (en) 2011-06-23
JP5471842B2 JP5471842B2 (en) 2014-04-16

Family

ID=44285594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123742A Expired - Fee Related JP5471842B2 (en) 2009-11-12 2010-05-31 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5471842B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057094A (en) * 2013-03-22 2014-09-24 三菱综合材料株式会社 Multilayer Gradient Functional Composite Diamond Sintered Body
CN105084813A (en) * 2015-08-07 2015-11-25 江苏塞维斯数控科技有限公司 Cutter for ultrahigh pressure water cutting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073161A (en) * 1998-08-28 2000-03-07 Shinko Seiki Co Ltd Formation of boron nitride film
JP2004338041A (en) * 2003-05-15 2004-12-02 Ngk Spark Plug Co Ltd Cutting insert and tool unit
JP2011224692A (en) * 2010-04-17 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073161A (en) * 1998-08-28 2000-03-07 Shinko Seiki Co Ltd Formation of boron nitride film
JP2004338041A (en) * 2003-05-15 2004-12-02 Ngk Spark Plug Co Ltd Cutting insert and tool unit
JP2011224692A (en) * 2010-04-17 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013046181; Wenping Jiang, Abhijeet S. More, W.D. Brown, Ajay P. Malshe: '「A cBN-TiN composite coating for carbide inserts: Coating characterization and its applications for' Surface & Coatings Technology vol.201, 2006, p2443-2449, Elsevier *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057094A (en) * 2013-03-22 2014-09-24 三菱综合材料株式会社 Multilayer Gradient Functional Composite Diamond Sintered Body
CN105084813A (en) * 2015-08-07 2015-11-25 江苏塞维斯数控科技有限公司 Cutter for ultrahigh pressure water cutting

Also Published As

Publication number Publication date
JP5471842B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5063831B2 (en) Cutting tools
JP5402515B2 (en) Surface coated cutting tool
WO2013042790A1 (en) Surface-coated cutting tool
JP2014121748A (en) Surface-coated cutting tool made of cubic crystal boron nitride group superhigh pressure sintered material excellent in crack resistance
JP5402507B2 (en) Surface coated cutting tool
JP2006131992A (en) Ceramic film and its manufacturing method, ceramic compound film and its manufacturing method, and cutting tool
JP6213269B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP5471842B2 (en) Surface coated cutting tool
JP5515734B2 (en) Surface coated cutting tool
JP2008238392A (en) Cutting tool
JP5459498B2 (en) Surface coated cutting tool
JP5447845B2 (en) Surface coated cutting tool
JP5392046B2 (en) Surface coated cutting tool
JP5392029B2 (en) Surface coated cutting tool
JP5392033B2 (en) Surface coated cutting tool
JP5446048B2 (en) Surface coated cutting tool
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
CN102061466B (en) Surface coated cutting tool
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2009034766A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance
JP6510771B2 (en) Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP2010284759A (en) Surface coated cutting tool
JP2012096303A (en) Surface coated cutting tool with superior chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees