JPH06312373A - Shot member - Google Patents

Shot member

Info

Publication number
JPH06312373A
JPH06312373A JP10133393A JP10133393A JPH06312373A JP H06312373 A JPH06312373 A JP H06312373A JP 10133393 A JP10133393 A JP 10133393A JP 10133393 A JP10133393 A JP 10133393A JP H06312373 A JPH06312373 A JP H06312373A
Authority
JP
Japan
Prior art keywords
shot
workpiece
members
fracture toughness
shot member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10133393A
Other languages
Japanese (ja)
Other versions
JP3441106B2 (en
Inventor
Mitsuaki Kitano
光明 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10133393A priority Critical patent/JP3441106B2/en
Publication of JPH06312373A publication Critical patent/JPH06312373A/en
Application granted granted Critical
Publication of JP3441106B2 publication Critical patent/JP3441106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To use shot members in a condition in which processing terms are stable for a long time, by using a spherical polycrystal sintered material having a burst-resistant toughness greater than a specific value, for shot members in a shot-peening process for surface-treatment of a metal article or the like. CONSTITUTION:In a shot-peening process, shot members 1 together with compressed air are jetted from a jet port 2 of a nozzle 3 connected with a supply port for the shot members 1 and a feed port for the compressed air and located a position remote from a workpiece A by a certain distance, so as to collide upon the outer surface of the workpiece A on which concavities and convexities are accordingly formed. In this case, spherical particles of made of polycrystal sintered material such as silicon carbide, silicon nitride, zirconia or thermet, having a fracture toughness (K1C) higher than 3.0MPasq. rt. m. The shot members 1 have a particle size which is for example, 0.3 to 1.6mm, and preferably have a sphericity of higher than 0.9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ショットピーニング法
において、特に金属製品などの表面へ噴射して表面硬化
させるためのショット部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shot member for spraying a surface of a metal product or the like for surface hardening in a shot peening method.

【0002】[0002]

【従来の技術】ショットピーニング法は、小さな粒径よ
りなる多数のショット部材を、遠心力を利用して加速さ
せたり、あるいは圧縮空気に乗せることにより、バネや
ネジに代表される機械部品や工具類などの金属製品(以
下、被加工物と略称する)の表面に噴射させて表面を硬
化させる方法であり、一般に被加工物の表面付近の組織
を変化させると共に、圧縮残留応力を生じさせて、表面
硬度と疲労強度を向上させるための方法として、従来よ
り広く行われている。
2. Description of the Related Art The shot peening method is a method for accelerating a large number of shot members each having a small grain size by utilizing centrifugal force or placing the shot members on compressed air, whereby mechanical parts or tools represented by springs and screws are used. It is a method of injecting onto the surface of a metal product such as a class (hereinafter abbreviated as a workpiece) to harden the surface. Generally, the structure near the surface of the workpiece is changed and a compressive residual stress is generated. As a method for improving the surface hardness and the fatigue strength, it has been widely used than before.

【0003】また、上記ショット部材としては、被加工
物の硬度と同等もしくはそれ以上の硬度を有する鋼、ガ
ラス、またはセラミックス粒などを使用していた(特開
昭62−278224号公報、特開昭61−18397
5号公報参照)。
Further, as the shot member, steel, glass, or ceramic grains having a hardness equal to or higher than the hardness of the workpiece is used (Japanese Patent Laid-Open No. 62-278224, JP-A-62-278224). Sho 61-18397
(See Japanese Patent Publication No. 5).

【0004】[0004]

【発明が解決しようとする課題】ところが、従来のガラ
スやセラミックスよりなるショット部材では、衝撃が加
わった場合の破損の度合いを示す耐衝撃性が小さいため
に耐久性が悪く、ショット部材を何度も繰り返し使用す
ると被加工物との衝突による摩耗、カケ、あるいは割れ
が発生してしまい加工性が落ちてしまうために、加工条
件が長期間安定しないという問題点があった。また、鋼
よりなるショット部材では、繰り返し使用すると鉄サビ
が発生して、ショット部材が劣化しやすくなり、かつ被
加工物の表面にサビが付着してしまうという問題点があ
った。
However, conventional shot members made of glass or ceramics have low impact resistance, which indicates the degree of breakage when an impact is applied, and thus have poor durability. However, if it is repeatedly used, wear, chipping, or cracking due to collision with the work piece will occur and the workability will deteriorate, so that there is a problem that the processing conditions are not stable for a long time. Further, the shot member made of steel has a problem that iron rust is generated when it is repeatedly used, the shot member is easily deteriorated, and the rust adheres to the surface of the workpiece.

【0005】さらに、ショット部材そのものが角ばった
形状であったり、あるいは摩耗、カケ、または割れた後
の形状によって角ばった形状となると、被加工物の表面
に傷を付けてしまうという問題点もあった。
Further, if the shot member itself has an angular shape, or if the shot member has an angular shape due to wear, chipping, or cracking, the surface of the workpiece may be damaged. It was

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題点に
鑑みてなされたものであり、ショットピーニング法によ
り被加工物の表面硬化処理を行う際に、表面へ噴射させ
るためのショット部材において、破壊靱性(K1c)が
3.0MPa√m以上の球状をした多結晶焼結体により
形成したものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in a shot member for jetting to the surface when the surface hardening treatment of a workpiece is performed by the shot peening method. The fracture toughness (K 1c ) is formed by a spherical polycrystalline sintered body having a fracture toughness (K 1c ) of 3.0 MPa√m or more.

【0007】なお、本発明による球状とは、エッジ部を
有しない形状であり、真球度0.75(最小外接円の半
径を1とした場合の、実際の球状の最小半径が0.7
5)以上のことであり、好ましくは真球度0.9以上で
あることをいう。
The spherical shape according to the present invention is a shape having no edge portion, and the sphericity is 0.75 (when the radius of the minimum circumscribed circle is 1, the actual minimum radius of the spherical shape is 0.7).
5) or more, and preferably the sphericity is 0.9 or more.

【0008】[0008]

【作用】本発明によれば、ショット部材を破壊靱性(K
1c)が3.0MPa√m以上の球状をした多結晶焼結体
とすることによって、長期間加工条件が安定化した状態
で使用でき、かつ被加工物の表面に傷を付けなくなる。
According to the present invention, the shot member has a fracture toughness (K
By using a spherical polycrystalline sintered body having a spherical shape of 1c ) of 3.0 MPa√m or more, it can be used in a state where the processing conditions are stable for a long period of time, and the surface of the workpiece is not scratched.

【0009】[0009]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0010】ショットピーニング法は、図1の断面図に
示すように、被加工物Aからある程度離れた位置に、シ
ョット部材1の供給口(不図示)と圧縮空気送出口(不
図示)に連結され、かつ噴出口2を有するノズル3を使
用して、噴出口2からショット部材1を圧縮空気ととも
に適当な速度で噴射させ、被加工物Aの表面に衝突させ
ることにより凹凸状を形成させるように加工することに
より行われる。
In the shot peening method, as shown in the sectional view of FIG. 1, the shot member 1 is connected to a supply port (not shown) and a compressed air delivery port (not shown) at a position apart from the workpiece A to some extent. The shot member 1 is jetted from the jet port 2 together with the compressed air at an appropriate speed by using the nozzle 3 having the jet port 2 to collide with the surface of the workpiece A so as to form an uneven shape. It is performed by processing into.

【0011】ここで、ショット部材1は、破壊靱性(K
1c)が3.0MPa√m以上の球状をした多結晶焼結体
よりなるショット部材1とするが、以下はそれらが好ま
しいものとなる根拠を述べる。
Here, the shot member 1 has a fracture toughness (K
1c ) is a shot member 1 made of a spherical polycrystalline sintered body having a pressure of 3.0 MPa√m or more, and the basis for making them preferable will be described below.

【0012】まず、破壊靱性(K1c)は、衝撃が加わっ
た場合の破損しにくさを示すものであることより大きい
程よいが、3.0MPa√mよりも小さいと、被加工物
Aとの衝突による摩耗、カケ、あるいは割れが発生しや
すくなり、耐久性が悪くなるために3.0MPa√m以
上であることが好ましく、さらには5.0MPa√m以
上であることがより好ましい。
First, it is better that the fracture toughness (K 1c ) indicates that it is less likely to be damaged when an impact is applied. However, if it is less than 3.0 MPa√m, the fracture toughness (K 1c ) of It is preferably 3.0 MPa√m or more, and more preferably 5.0 MPa√m or more, because abrasion, chipping, or cracking due to collision easily occurs and durability deteriorates.

【0013】そして、球状以外の形状であると鋭利な部
分ができ、被加工物Aの表面に傷を付けてしまいやす
く、しかもショット中に割れや欠けが生じやすいことか
ら、真球度0.75以上、さらには真球度0.9以上の
球状とすることが好ましい。
If the shape is other than spherical, a sharp portion is formed, the surface of the workpiece A is likely to be scratched, and cracks or chips are likely to occur during the shot. It is preferably 75 or more, and more preferably spherical with a sphericity of 0.9 or more.

【0014】また、ショット部材1の粒径は、0.3m
mよりも小さいと被加工物Aへの衝撃破壊力が低下し、
逆に1.6mmよりも大きいと細かな部分に入りにく
く、しかも一定面積中の個数が減少して被加工物Aにエ
ネルギーを与える効率が低下することより、0.3〜
1.6mmとすることが好ましく、これより、曲率半径
が0.15〜0.8mmであることが好ましいものとな
る。
The particle size of the shot member 1 is 0.3 m.
If it is smaller than m, the impact destructive force on the work A is reduced,
On the other hand, if it is larger than 1.6 mm, it is difficult to enter a fine portion, and the number of particles in a certain area is reduced, so that the efficiency of giving energy to the work piece A is reduced,
The thickness is preferably 1.6 mm, and the radius of curvature is preferably 0.15 to 0.8 mm.

【0015】さらに、焼結体が単結晶であれば、結晶軸
の向きにより一方向には強度が大きく、逆にその直角方
向では強度が小さいものとなるために、機械的的強度を
安定化させるために多結晶焼結体であることが好まし
い。
Further, if the sintered body is a single crystal, the strength becomes large in one direction and the strength becomes small in the direction perpendicular to the direction of the crystal axis, so that the mechanical strength is stabilized. Therefore, it is preferably a polycrystalline sintered body.

【0016】なお、破壊靱性(K1c)が3.0MPa√
m以上の多結晶焼結体としては、炭化珪素、窒化珪素、
ジルコニアなどのセラミックス、あるいはサーメットが
ある。ここで、炭化珪素質セラミックスは、SiCを主
成分として、周期律表第3a族元素の酸化物、Si
2 、Al2 3 、MgOの1種以上、またはB4 C、
Cを焼結助剤としたものである。また、窒化珪素質セラ
ミックスは、Si3 4 を主成分とし、Y2 3 などの
第3a族元素の酸化物、SiO2 、Al2 3 、MgO
の1種以上を焼結助剤としたものである。そして、ジル
コニアセラミックスは、ZrO2 を主成分とし、安定化
剤(Y2 3 、MgO、CaO、Dy2 3とCeO2
など)を適量添加し、正方晶を含む部分安定化ジルコニ
ア、特に、安定化剤としてMgOを3.0〜3.8重量
%含有した部分安定化ジルコニアを用いる。さらに、サ
ーメットは、硬質相としてチタン、ニオブ、モリブデン
などの周期律表第4a、5a、6a族元素からなる炭窒
化物を80〜99重量%と、その他が結合相としてニッ
ケルやコバルトなどの金属よりなり、かつ硬質相中の7
0重量%程度がTiC、TiN、TiCNよりなるTi
C−TiN系サーメットなどが挙げられる。
The fracture toughness (K 1c ) is 3.0 MPa√
Examples of the polycrystalline sintered body of m or more include silicon carbide, silicon nitride,
There are ceramics such as zirconia or cermet. Here, the silicon carbide-based ceramics is mainly composed of SiC, and is an oxide of a Group 3a element of the periodic table, Si.
One or more of O 2 , Al 2 O 3 and MgO, or B 4 C,
C is used as a sintering aid. The silicon nitride ceramics contains Si 3 N 4 as a main component and contains an oxide of a Group 3a element such as Y 2 O 3 , SiO 2 , Al 2 O 3 and MgO.
One or more of the above are used as sintering aids. Zirconia ceramics contains ZrO 2 as a main component and contains stabilizers (Y 2 O 3 , MgO, CaO, Dy 2 O 3 and CeO 2).
Etc.) is added in an appropriate amount, and partially stabilized zirconia containing tetragonal crystals, in particular, partially stabilized zirconia containing 3.0 to 3.8% by weight of MgO as a stabilizer is used. Further, the cermet contains 80 to 99% by weight of a carbonitride composed of elements of Groups 4a, 5a, and 6a of the periodic table such as titanium, niobium, and molybdenum as a hard phase, and other metals such as nickel and cobalt as a binder phase. And in the hard phase 7
About 0% by weight of Ti is TiC, TiN or TiCN
C-TiN type cermet etc. are mentioned.

【0017】また、上記材質よりなるショット部材1の
製造方法は、例えば核となる原料粒子にバインダー等を
噴霧させながら原料粉末上でころがすことにより、核と
なる粒子の表面に原料粉末を付着させて目的とする大き
さの球形体を形成する転動造粒法により成形して焼成す
ることにより製作される。
In the method of manufacturing the shot member 1 made of the above-mentioned material, the raw material powder is adhered to the surface of the core particle by, for example, rolling the raw material powder as a core while spraying a binder or the like on the raw material powder. It is manufactured by forming by a rolling granulation method to form a spherical body of a desired size and firing.

【0018】このようなショット部材1を使用すると、
耐衝撃性が大きいために耐久性が良くなり、加工条件が
長期間安定するようになり、さらに鉄サビによるショッ
ト部材1の劣化や被加工物Aの表面へのサビの付着も無
くなる。また、球状であるために被加工物Aの表面に傷
を付けることがなくなる。
When such a shot member 1 is used,
Since the impact resistance is large, the durability is improved, the processing conditions are stabilized for a long period of time, and the deterioration of the shot member 1 due to iron rust and the adhesion of rust to the surface of the workpiece A are eliminated. Further, since it is spherical, the surface of the work piece A is not scratched.

【0019】また、ショット部材1の硬度は、被加工物
Aと同等もしくはそれ以上の硬度であればよく、さら
に、以下の条件よりなるショット部材1とすると、より
使用に適したものとすることができる。
Further, the hardness of the shot member 1 may be equal to or higher than that of the work A, and the shot member 1 satisfying the following conditions should be more suitable for use. You can

【0020】(1)表面の中心線平均粗さ(Ra)を
0.01〜0.5μm以下とする。これは、0.5μm
よりも大きいと研削材としての特性がでてきてしまい、
被加工物の表面に傷を付けてしまうためであり、0.0
1μmよりも小さいと表面上を流れてしまうためであ
る。
(1) The center line average roughness (Ra) of the surface is set to 0.01 to 0.5 μm or less. This is 0.5 μm
If it is larger than this, the characteristics as an abrasive will come out,
This is because it scratches the surface of the work piece,
This is because if it is smaller than 1 μm, it will flow on the surface.

【0021】(2)比重を2.0〜8.0とする。これ
は8.0よりも大きいと噴射の際に圧縮空気に乗りづら
いためであり、2.0よりも小さいと軽くなりすぎ、被
加工物Aにエネルギーを与える効率が大きく低下してし
まうためである。
(2) The specific gravity is 2.0 to 8.0. This is because if it is larger than 8.0, it is difficult to get on the compressed air at the time of injection, and if it is smaller than 2.0, it becomes too light and the efficiency of giving energy to the work piece A is greatly reduced. is there.

【0022】(3)熱伝導率を4.0W/m・K以上と
する。これは、熱伝導率が4.0W/m・Kよりも小さ
いとショット部材1の蓄熱がすすみ被加工物Aの温度を
高めてしまうためである。
(3) The thermal conductivity is set to 4.0 W / m · K or more. This is because if the thermal conductivity is smaller than 4.0 W / m · K, the heat storage of the shot member 1 will proceed and the temperature of the workpiece A will be increased.

【0023】(4)平均結晶粒径を1〜30μm、さら
に好ましくは1〜10μmとする。これは、多結晶焼結
体として、材料強度及び破壊靱性(K1c)を高く維持す
るためである。
(4) The average crystal grain size is 1 to 30 μm, more preferably 1 to 10 μm. This is to maintain high material strength and fracture toughness (K 1c ) as a polycrystalline sintered body.

【0024】実験例1 ここで、本実施例によるショット部材1と、比較例とし
てガラス、クロムモリブデン鋼、そしてアルミナセラミ
ックスよりなるショット部材を使用して実際にショット
ピーニングを行った。
Experimental Example 1 Here, shot peening was actually performed using the shot member 1 according to this example and a shot member made of glass, chromium molybdenum steel, and alumina ceramics as a comparative example.

【0025】なお、実施例によるショット部材1の材質
として以下のものを使用した。
The following materials were used as the material of the shot member 1 according to the embodiment.

【0026】(1)炭化珪素質セラミックス SiC含有量が99重量%、B4 C、Cを焼結助剤とし
て、平均結晶粒径が10μmの多結晶焼結体で、ビッカ
−ス硬度が24GPa、破壊靱性(K1c)が3.4MP
a√m、比重が3.2、熱伝導率が62W/m・Kであ
る炭化珪素質セラミックス。
(1) Silicon Carbide Ceramics A polycrystalline sintered body having a SiC content of 99% by weight, B 4 C and C as a sintering aid and an average crystal grain size of 10 μm and a Vickers hardness of 24 GPa. , Fracture toughness (K 1c ) is 3.4MP
Silicon carbide ceramics having a√m, specific gravity of 3.2, and thermal conductivity of 62 W / m · K.

【0027】(2)窒化珪素質セラミックス Si3 4 含有量が92重量%、Y2 3 、Al2 3
を焼結助剤として、平均結晶粒径が10μmの多結晶焼
結体で、ビッカース硬度が14.5GPa、破壊靱性
(K1c)が5.7MPa√m、比重が3 .2、熱伝導
率が21W/m・Kである窒化珪素質セラミックス。
(2) Silicon nitride ceramics: Si 3 N 4 content: 92% by weight, Y 2 O 3 , Al 2 O 3
As a sintering aid, a polycrystalline sintered body having an average crystal grain size of 10 μm, a Vickers hardness of 14.5 GPa, a fracture toughness (K 1c ) of 5.7 MPa√m, and a specific gravity of 3. 2. Silicon nitride ceramics with a thermal conductivity of 21 W / mK.

【0028】(3)部分安定化ジルコニアセラミックス MgO含有量が3.5重量%、残部がZrO2 、平均結
晶粒径が10μmの多結晶焼結体で、ビッカース硬度が
11GPa、破壊靱性(K1c)が6.7MPa√m、比
重が6.0、熱伝導率が4W/m・Kである部分安定化
ジルコニアセラミックス。
(3) Partially stabilized zirconia ceramics A polycrystalline sintered body having a MgO content of 3.5% by weight, the balance of ZrO 2 , and an average grain size of 10 μm, a Vickers hardness of 11 GPa and a fracture toughness (K 1c). ) Is 6.7 MPa√m, specific gravity is 6.0, and thermal conductivity is 4 W / m · K, partially stabilized zirconia ceramics.

【0029】(4)TiN系サーメット 硬質相が90重量%、TiNの含有量がTiC、TiC
Nよりも多く、平均結晶粒径が5μmの多結晶焼結体
で、ビッカース硬度が1 5.3GPa、破壊靱性(K
1c)が11MPa√m、比重が7.7、熱伝導率が8W
/m・KであるTiN系サーメット。
(4) TiN-based cermet Hard phase 90% by weight, TiN content of TiC, TiC
It is a polycrystalline sintered body having a larger average crystal grain size of 5 μm than N, a Vickers hardness of 15.3 GPa, and a fracture toughness (K
1c ) is 11 MPa√m, specific gravity is 7.7, thermal conductivity is 8 W
/ M · K TiN-based cermet.

【0030】また、比較例としてのガラスは、ビッカー
ス硬度が6GPa、破壊靱性(K1c)が1.5MPa√
m、比重が2.3のものを使用した。そして、クロムモ
リブデン鋼は、ビッカース硬度が3.0GPa、破壊靱
性(K1c)が3.1MPa√m、比重が8.1のものを
使用した。さらに、アルミナは、Al2 3 の含有量が
87重量%で、平均結晶粒径が10μmの多結晶焼結体
で、ビッカース硬度が12GPa、破壊靱性(K1c)が
2.9MPa√m、比重が3.6、熱伝導率が17W/
m・Kのものを使用した。
The glass as a comparative example has a Vickers hardness of 6 GPa and a fracture toughness (K 1c ) of 1.5 MPa√.
m and specific gravity of 2.3 were used. The chromium molybdenum steel used had Vickers hardness of 3.0 GPa, fracture toughness (K 1c ) of 3.1 MPa√m, and specific gravity of 8.1. Further, alumina is a polycrystalline sintered body having an Al 2 O 3 content of 87% by weight, an average crystal grain size of 10 μm, a Vickers hardness of 12 GPa, a fracture toughness (K 1c ) of 2.9 MPa√m, Specific gravity 3.6, thermal conductivity 17W /
m · K one was used.

【0031】そして、ショット部材1としては真球度が
0.92、粒径が0.8mm、中心線平均粗さ(Ra)
が0.3μm以下のものを使用し、また被加工物Aとし
てはビッカース硬度が2.5GPaの機械構造用炭素鋼
を使用し、噴射口2と被加工物Aとを5cm離し、空気
圧を6kg/cm2 、噴射速度を25m/秒でショット
部材1を噴射するという条件で実験を行った。
The shot member 1 has a sphericity of 0.92, a grain size of 0.8 mm, and a center line average roughness (Ra).
Of 0.3 μm or less is used, and as the work piece A, carbon steel for machine structure having a Vickers hardness of 2.5 GPa is used, the injection port 2 and the work piece A are separated by 5 cm, and the air pressure is 6 kg. The test was conducted under the conditions that the shot member 1 was jetted at a velocity of / cm 2 and a jet speed of 25 m / sec.

【0032】まず、30秒間噴射し、初期のビッカース
硬度が2.5GPaであった被加工物Aの処理後の硬度
を測定した。次に、ショット部材1を連続して被加工物
Aに噴射した場合に、50%以上のショット部材1が割
れなどのために使用不可能となるまでの時間を測定し
た。結果は、表1に示す通りである。
First, jetting was performed for 30 seconds, and the hardness of the work piece A whose initial Vickers hardness was 2.5 GPa was measured. Next, when the shot members 1 were continuously jetted onto the workpiece A, the time until 50% or more of the shot members 1 became unusable due to cracking or the like was measured. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より、本発明のショット部材1を用い
た場合、処理後の被加工物Aのビッカース硬度を2.7
〜2.8GPaと高くすることができ、表面硬化させる
効果を確認できた。また、同一条件であれば、比重の大
きい材質を用いた方が効果が大きかった。
From Table 1, when the shot member 1 of the present invention was used, the Vickers hardness of the processed workpiece A was 2.7.
It was possible to increase the value to 2.8 GPa, and the effect of surface hardening was confirmed. In addition, under the same conditions, it was more effective to use a material having a large specific gravity.

【0035】次に、使用可能時間については、従来の材
質よりなるショット部材1は、ガラスで50時間、クロ
ムモリブデン鋼で150時間、そしてアルミナセラミッ
クスで250時間しか使用できないのに対し、本発明実
施例によるショット部材1は、450時間以上使用可能
であることより、本発明実施例によるショット部材1の
方がより加工条件を長期間安定させて使用可能であるこ
とがわかる。さらには、破壊靱性(K1c)が5.0MP
a√m以上の材質を用いると、500時間またはそれ以
上に使用可能となることより、破壊靱性(K1c)が5.
0MPa√m以上の材質を用いることがより好ましい。
Regarding the usable time, the shot member 1 made of the conventional material can be used only for 50 hours for glass, 150 hours for chrome-molybdenum steel, and 250 hours for alumina ceramics. Since the shot member 1 according to the example can be used for 450 hours or more, it can be seen that the shot member 1 according to the embodiment of the present invention can be used with more stable processing conditions for a long period of time. Furthermore, the fracture toughness (K 1c ) is 5.0MP
When a material of a√m or more is used, it can be used for 500 hours or more, so that the fracture toughness (K 1c ) is 5.
It is more preferable to use a material of 0 MPa√m or more.

【0036】結局、破壊靱性(K1c)が3.0MPa√
m以上、さらに好ましくは5.0MPa√m以上の球状
をした多結晶セラミックスよりなるショット部材1が好
ましいことがわかる。
After all, the fracture toughness (K 1c ) is 3.0 MPa√
It is understood that the shot member 1 made of spherical polycrystalline ceramics of m or more, and more preferably 5.0 MPa√m or more is preferable.

【0037】実験例2 次に、本発明実施例として、ジルコニアセラミックスか
ら成り真球度の異なるショット部材1を作製し、実験例
1と同じ条件で30秒間のショットピーニングを行った
後、被加工物Aの表面を顕微鏡で観察し、傷の有無を調
べた。また、連続でショットピーニングを行い50%以
上のショット部材1が割れなどのために使用不能となる
までの時間(使用可能時間)を調べた。なお、ここで真
球度とは、ショット部材1の最小外接円の半径に対す
る、実際のショット部材1の最小半径の比であり、真球
度の値が1に近いほど完全な球に近いことになる。
Experimental Example 2 Next, as an example of the present invention, shot members 1 made of zirconia ceramics and having different sphericities were produced, shot peening was performed for 30 seconds under the same conditions as in Experimental Example 1, and then the workpieces were processed. The surface of the object A was observed with a microscope to check for scratches. Further, shot peening was continuously performed to examine the time (usable time) until 50% or more of shot members 1 became unusable due to cracking or the like. Here, the sphericity is the ratio of the minimum radius of the actual shot member 1 to the radius of the minimum circumscribing circle of the shot member 1, and the closer the sphericity value is to 1, the closer to a perfect sphere. become.

【0038】結果を表2に示すように、真球度が0.7
5より小さいものでは被加工物Aに傷をつけてしまい、
この傷により被加工物Aの強度を低下させる恐れがある
だけでなく、ショット部材1自体に割れや欠けが生じや
すいことから、使用可能時間が300時間と短かった。
As shown in Table 2, the sphericity is 0.7.
If it is less than 5, it will scratch the work piece A,
This scratch not only reduces the strength of the work piece A, but also the shot member 1 itself is likely to be cracked or chipped, so that the usable time was as short as 300 hours.

【0039】これに対し、真球度が0.75以上のもの
は、被加工物Aに傷をつけることがなく、使用可能時間
も450時間以上と長期間の使用が可能であった。
On the other hand, when the sphericity is 0.75 or more, the work A is not scratched and the usable time is 450 hours or more, which means that it can be used for a long time.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】以上のように、本発明に係わるショット
部材によれば、破壊靱性(K1c)が3.0以上の球状を
した多結晶焼結体としたことによって、ショット部材自
体の欠けや摩耗を防止し、長期間安定化した状態で使用
できるとともに、被加工物の表面に傷を付けなくなるシ
ョット部材を提供することができる。
As described above, according to the shot member of the present invention, since the spherical polycrystalline sintered body having the fracture toughness (K 1c ) is 3.0 or more, the shot member itself is chipped. It is possible to provide a shot member that prevents abrasion and wear, can be used in a stable state for a long period of time, and does not scratch the surface of a workpiece.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のショット部材を用いてショットピーニ
ングを行う状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a state where shot peening is performed using a shot member of the present invention.

【符号の説明】[Explanation of symbols]

1:ショット部材 2:噴射口 3:ノズル A:被加工物 1: Shot member 2: Jet port 3: Nozzle A: Workpiece

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ショットピーニング法により金属製品など
の表面処理を行う際に、表面へ噴射させるためのショッ
ト部材であって、破壊靱性(K1c)が3.0MPa√m
以上の球状をした多結晶焼結体よりなることを特徴とす
るショット部材。
1. A shot member for jetting onto a surface when surface-treating a metal product or the like by the shot peening method, which has a fracture toughness (K 1c ) of 3.0 MPa√m.
A shot member comprising the above-mentioned spherical polycrystalline sintered body.
JP10133393A 1993-04-27 1993-04-27 Shot material Expired - Fee Related JP3441106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133393A JP3441106B2 (en) 1993-04-27 1993-04-27 Shot material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133393A JP3441106B2 (en) 1993-04-27 1993-04-27 Shot material

Publications (2)

Publication Number Publication Date
JPH06312373A true JPH06312373A (en) 1994-11-08
JP3441106B2 JP3441106B2 (en) 2003-08-25

Family

ID=14297915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133393A Expired - Fee Related JP3441106B2 (en) 1993-04-27 1993-04-27 Shot material

Country Status (1)

Country Link
JP (1) JP3441106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205270A (en) * 2001-01-10 2002-07-23 Chuo Spring Co Ltd Shot peening method of spring and spring
GB2375725A (en) * 2001-05-26 2002-11-27 Siemens Ag Blasting metallic surfaces
JP2020093352A (en) * 2018-12-13 2020-06-18 新東工業株式会社 METHOD FOR MODIFYING SURFACE OF Co-Cr ALLOY, METHOD OF MANUFACTURING HIGH FATIGUE STRENGTH Co-Cr ALLOY, AND HIGH FATIGUE STRENGTH Co-Cr ALLOY

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205270A (en) * 2001-01-10 2002-07-23 Chuo Spring Co Ltd Shot peening method of spring and spring
JP4672873B2 (en) * 2001-01-10 2011-04-20 中央発條株式会社 Spring shot peening method and spring
GB2375725A (en) * 2001-05-26 2002-11-27 Siemens Ag Blasting metallic surfaces
WO2002097150A3 (en) * 2001-05-26 2003-12-11 Siemens Ag Method for a mechanical treatment of a metallic surface
JP2020093352A (en) * 2018-12-13 2020-06-18 新東工業株式会社 METHOD FOR MODIFYING SURFACE OF Co-Cr ALLOY, METHOD OF MANUFACTURING HIGH FATIGUE STRENGTH Co-Cr ALLOY, AND HIGH FATIGUE STRENGTH Co-Cr ALLOY

Also Published As

Publication number Publication date
JP3441106B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
EP1198609B2 (en) Process for producing a hard-material-coated component
EP3054027B1 (en) Method for enhancing adhesion of low-temperature ceramic coating
CN111057988A (en) Preparation method of reinforced ceramic three-dimensional constraint coating
JP2004291218A (en) Metal bond wheel
JP3697543B2 (en) Ceramic surface toughening method and ceramic product
WO2004103615A1 (en) Method for toughening surface of sintered material cutting tool and sintered material cutting tool having long life
JP3110890B2 (en) Coated cemented carbide
JP2012245581A (en) Cutting insert made from surface coated titanium carbon nitride-based cermet, and method for manufacturing the same
JP3441106B2 (en) Shot material
JPH07308859A (en) Shot machining ball
KR950004662B1 (en) Tool of silicon nitrode sintered body
JPH05177411A (en) Cover cutting tool and its manufacture
JPH04300104A (en) Surface-coated cutting tool
JP5471842B2 (en) Surface coated cutting tool
CN207971844U (en) A kind of high-efficient elastic ceramic sand
JP3643639B2 (en) Cemented carbide structure, manufacturing method thereof and cutting tool using the same
JP2011200986A (en) Surface coat cutting tool
JP5532413B2 (en) Titanium carbonitride-based cermet cutting insert and method for producing the same
JP3219449B2 (en) Press mold
JPH08188879A (en) Coated hard alloy and its production
JP2012228751A (en) Cutting insert made of surface-coated titanium carbonitride based cermet, and method of manufacturing the same
JP5459498B2 (en) Surface coated cutting tool
KR101402214B1 (en) Polycrystalline diamond grinding edge tools with multi-layer deposition
JP2000108036A (en) Nozzle
JP4290869B2 (en) Cutting tool manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees