JP3434711B2 - Heat dissipation sheet - Google Patents

Heat dissipation sheet

Info

Publication number
JP3434711B2
JP3434711B2 JP28586898A JP28586898A JP3434711B2 JP 3434711 B2 JP3434711 B2 JP 3434711B2 JP 28586898 A JP28586898 A JP 28586898A JP 28586898 A JP28586898 A JP 28586898A JP 3434711 B2 JP3434711 B2 JP 3434711B2
Authority
JP
Japan
Prior art keywords
heat
sheet
fiber
heat dissipation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28586898A
Other languages
Japanese (ja)
Other versions
JP2000101004A (en
Inventor
孝典 鈴木
実 土田
浩 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP28586898A priority Critical patent/JP3434711B2/en
Publication of JP2000101004A publication Critical patent/JP2000101004A/en
Application granted granted Critical
Publication of JP3434711B2 publication Critical patent/JP3434711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電気・電子部品、特に
CPU、パワートランジスター、コンデンサーなどの発
熱体の放熱シートに関する。 【0002】 【従来の技術】最近の電気・電子部品は多機能、高性能
化とともに、高集積化、小型、薄型化の傾向にある。そ
れに伴い、CPU回路、トランジスター内部、コンデン
サーなどから発生する熱が、それらの本体内に蓄積さ
れ、高温度レベルになるため、寿命が短くなり、また誤
作動を生じるなど信頼性が低下する。それを避けるため
に、CPUでは放熱フィンのヒートシンクとCPUの間
に、熱伝導性および密着性のある放熱シートを設けてい
る。この放熱シートとしては、マトリックス樹脂にフィ
ラーを混合したもの、あるいはマトリックス樹脂と金網
を複合化させたものが使用されている。前者の放熱シー
トでは、マトリックス樹脂として例えばシリコンエラス
トマーが用いられ、フィラーとして金属、金属酸化物な
どを粒子状成形物が用いられる。放熱シートの製造法と
しては、ロール、カレンダー押出し機などによりシート
状に成形した後にプレスして加硫する方法、マトリック
ス樹脂と熱伝導性フィラーを混合し、溶剤に希釈してド
クターブレードでシート状に成形・乾燥・プレスして加
硫する方法、ニーダーなどの密閉式混練機で混合した粉
末状ゴム材に成形し、金型に充填しプレスする方法など
がある。 【0003】前者のマトリックス樹脂にフィラーを混合
した放熱シートは、熱伝導性の低いマトリックス樹脂中
に熱伝導率の高いフィラーが分散した構造のために、シ
ート厚み方向の放熱特性は良くなかった。シート厚み方
向の放熱特性は、熱伝導性フィラーの充填率にも依存す
る。しかし放熱特性を向上させるためにフィラーの充填
率を上昇させると、シートの成形性などの加工性が低下
する。この結果、放熱シートを電気・電子部品に接着し
ても、発生した熱が放熱シートを介して放熱フィンのヒ
ートシンクまで速やかに伝達されないので、発熱体の冷
却を効率よく行うことができなかった。また、熱伝導性
フィラーの充填率を高めようとすると、密着性が不良に
なった。また、フィラーの充填率が低いために、電磁波
シールド特性も低かった。また、後者のマトリックス樹
脂と金網を複合化させた放熱シートは、基板のクッショ
ン性に乏しく、厚みが金網の太さのみに依存するため、
厚みの調整が困難であること、密着性に欠けるとこと等
の問題を生じていた。また、電磁波シールド特性を上げ
るため金網の目開きを小さくすると、特にそれらの問題
点は顕著であった。 【0004】 【発明が解決しようとする課題】本発明は、シートの厚
み方向への熱伝導率が良く、用いる金属繊維シートの厚
み加減が可能で、かつ電磁波シールド特性のある放熱シ
ートを提供することを目的とする。 【0005】 【課題を解決するための手段】本発明は、金属繊維を含
むスラリーを湿式抄造および焼結した金属繊維シート
に、マトリックス樹脂に熱伝導性フィラーを混合してな
熱伝導性接着剤を含浸、充填、または片面もしくは両
面に積層して加工処理したことを特徴とする放熱シート
である。 【0006】放熱シートの伝熱機構が伝導伝熱に従うも
のとすれば、その伝熱速度式はフーリエの法則に従い、
次式で示される。 【数1】 q=−λ(dt/dx) ここでq:熱流束〔W/m2 〕,λ:熱伝導率〔W/m
K〕,t:温度〔K〕,x:伝熱方向〔m〕を示す。
この式は温度差が存在すれば、高温部から低温部に向か
って物質内を伝導によって熱が移動することを示す。熱
伝導は、温度の異なる領域間を物体内部の固体の原子の
振動により、金属では自由電子の移動によって熱エネル
ギーを伝えることを意味する。放熱シートの表裏面の温
度差を△t、シート厚みを△xで示すと、△x間は薄い
とすれば、△x内においてλはほぼ一定と仮定でき、そ
の内部の温度分布が直線的とすれば、qは近似的に次式
で示される。 【数2】 q=−λ(△t/△x) したがって、放熱性を高めるためには、△x間の物質固
有の熱伝導率λをできるだけ大きな値にすればよいこと
が判る。 【0007】例えば金属製短繊維を抄造し、焼結した薄
葉の金属繊維シートの多孔質の空間部分に、熱伝導性接
着剤を含浸、充填させる。熱伝導性接着剤の加工処理を
した金属繊維シートは軟らかいタイプのため、作業性が
良好であり、高い熱伝導性が要求されるパソコン用CP
Uの放熱シートに最適である。それによって発熱する電
気・電子部品から効率よく熱を吸収し、金属カバーやフ
レーム、ヒートシンクへ伝播することができる。 【0008】本発明に使用される金属繊維シートは下記
の方法で製造できる。金属繊維を70重量%以上含有
し、かつ結着用繊維を含む繊維のスラリーを調製し、こ
のスラリーを湿式抄紙法によりシート化した金属繊維高
配合シートを、水素ガスあるいは窒素ガス、アルゴンガ
スなどの雰囲気下に、金属繊維の融点を越えない温度に
加熱して繊維間を焼結する。金属繊維としては、ステン
レス繊維、チタン繊維、ニッケル繊維、真鍮繊維、銅繊
維、アルミニウム繊維等が使用できる。これらの中でも
細線加工が可能であり、耐熱性、耐錆性の優れているス
テンレス繊維が好ましい。金属繊維の繊維長は2〜12
mm、好ましくは2〜6mmである。結着用繊維として
は、例えばクラレ社製のクラレビニロンフィブリッドV
P(商品名)などの水中溶解温度40〜100℃の易溶
解性ポリビニルアルコール繊維が好ましい。この金属繊
維を含有するスラリーを湿式抄紙法により脱水プレスお
よび加熱乾燥して金属繊維高配合シートを作製する。次
いで金属繊維高配合シートを、金属繊維表面の酸化防止
と還元効果を向上させるために、乾燥した水素ガス雰囲
気下で、金属繊維の融点を越えない温度に加熱して繊維
間を焼結することにより金属繊維シートが得られる。焼
結温度は金属繊維の融点近くの温度、例えばステンレス
繊維の場合は約1200℃である。ステンレス繊維を連
続焼結炉で焼結する場合は、約1200℃の温度で10
0〜700mm/minの線速度で焼結することができ
る。焼結は、水素ガスと例えば窒素ガス、アルゴンガス
等の不活性ガスとの混合ガス雰囲気下で行ってもよい。 【0009】熱伝導性接着剤としては、マトリックス樹
脂に熱伝導性フィラーを混合したものが用いられる。熱
伝導性フィラーとしては、例えばアルミニウム、金、
銀、銅などの金属、アルミナ、シリカ、マグネシアなど
の金属酸化物、窒化ボロン、窒化アルミニウムなどが挙
げられる。熱伝導性フィラーの形状は、粒状、板状、針
状等のいずれでもよい。マトリックス樹脂としては、例
えば合成ゴム、ポリアミド樹脂、ポリイミド樹脂、エポ
キシ樹脂、ポリエステル樹脂、ポリオレフィン樹脂等が
用いられる。マトリックス樹脂と熱伝導性フィラーの割
合は、重量で90:10〜40:60が好ましい。 【0010】本発明の放熱シートを製造するには、金属
繊維シートの厚み方向に、熱伝導性接着剤を含浸または
充填させるのが伝熱効率の点で最もよいが、金属繊維シ
ートの片面または両面に熱伝導性接着剤をラミネート等
の手段で積層してもよい。熱伝導性接着剤は5000〜
7000cpsに調整して、シート全体の厚みを制御す
ることができる。なお、本発明の放熱シートの使用にあ
たっては、熱伝導性接着剤をBステージ状態にしてお
き、これを発熱体の接着対象物に加圧しながら加熱・架
橋して接着することができる。 【0011】 【実施例】実施例1 繊維長4mm、繊維径8μmのステンレス繊維90重量
部およびPVA繊維(クラレ社製,フィブリボンドVP
B105−1)10重量部を70℃の水に投入してスラ
リーを調製し、このスラリーを湿式抄紙法により脱水プ
レス、加熱乾燥して坪量204g/m2 、密度1.08
g/cm3 を有するステンレス繊維シートを作製した。
ステンレス繊維の占める容積割合(空間率)は22%で
ある。したがって、78%の空間を接着剤が埋めればよ
いことになる。熱伝導性接着剤をドクターブレード法に
よってシート化し、1kg/cm2 の圧力を加え、温度
120℃で30分間加熱・架橋して、厚み0.15mm
の放熱シートを作製した。なお、熱伝導性接着剤として
は、エポキシ樹脂と窒化ボロンを含有する接着剤(大阪
造船所社製,商品名;EPOTEK T7109)を用いた。 【0012】実施例2 実施例1と同じステンレス繊維を用い、かつ同じ抄造・
焼結条件で、厚さ397μm、坪量205g/m2 、密
度0.60g/cm3 、空間率89%のステンレス繊維
シートを作製した。ついでこのシートに実施例1と同じ
熱伝導性接着剤をドクターブレード法によって塗布し、
実施例1と同じ加熱条件で架橋して厚み0.25mmの
放熱シートを作製した。 比較例1 実施例1と同じ熱伝導性接着剤のみを厚み0.15mm
にシート化して、放熱シートを作製した。 比較例2 実施例1と同じステンレス繊維シートのみに1kg/c
2 の圧力を加え、厚み0.15mmにシート化して、
放熱シートを作製した。 【0013】実施例1、2、比較例1および2の放熱シ
ートを用い、熱伝導率および電磁波の減衰率を測定し
た。その結果を表1に示す。 〔熱伝導率の測定法〕 放熱シートを銅製ヒートブロックと銅板で厚み△xの間
隔にサンドイッチ状に挟み込み、圧力0.5kg/cm
2 でセットした。前述の式を変形すると、 【数3】 λ=q(△x/△t)=(Q/A)(△x/△t) ここでQ:電力〔W〕、A:伝熱面積である。片方の一
定温度を与える伝熱面(伝熱面積4cm )のヒート
ブロックに電力20Wをかけて、5分間後にヒートブロ
ックと銅板のそれぞれの温度を測定して△tを求め、熱
伝導率λを算出した。 〔電磁波の減衰率の測定法〕 放熱シートを15cm角に切り、アドバンテスト法によ
り周波数1GHzにおける電磁波の減衰率を測定した。 【0014】 【表1】 表1から明らかなように、実施例1および2は、比較例
1および2に比べて、熱伝導率λの値が大きく、また周
波数1GHzにおける減衰率も良好な値を示した。 【0015】 【発明の効果】本発明の放熱シートは、厚み方向への熱
伝導率が良く、金属繊維シートの厚みの加減が可能であ
り、かつ良好な電磁波シールド特性を有する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating sheet for a heat generating element such as a CPU, a power transistor, and a capacitor. 2. Description of the Related Art Recent electric and electronic parts tend to be multifunctional, high-performance, highly integrated, small-sized, and thin. Accordingly, heat generated from the CPU circuit, the inside of the transistor, the capacitor, and the like is accumulated in the main body of the device, and the temperature becomes high, so that the life is shortened, and the reliability is reduced, such as malfunction. In order to avoid this, in the CPU, a heat conductive sheet having thermal conductivity and adhesion is provided between the heat sink of the heat radiation fin and the CPU. As the heat radiating sheet, a material obtained by mixing a filler with a matrix resin or a material obtained by combining a matrix resin and a wire net is used. In the former heat dissipation sheet, for example, a silicone elastomer is used as a matrix resin, and a particulate molded product of a metal, a metal oxide, or the like is used as a filler. As a method of manufacturing the heat dissipation sheet, a method of pressing and vulcanizing by forming into a sheet shape by a roll, calender extruder, etc., mixing a matrix resin and a heat conductive filler, diluting in a solvent, and forming a sheet with a doctor blade Molding, drying, pressing and vulcanizing, or molding into a powdery rubber material mixed with a closed kneader such as a kneader, filling a mold and pressing. The former heat-dissipating sheet in which a filler is mixed with a matrix resin has a poor heat-dissipating property in the sheet thickness direction because of a structure in which a filler having a high thermal conductivity is dispersed in a matrix resin having a low thermal conductivity. The heat radiation characteristics in the sheet thickness direction also depend on the filling rate of the thermally conductive filler. However, when the filling rate of the filler is increased in order to improve the heat radiation characteristics, the workability such as the formability of the sheet is reduced. As a result, even if the heat radiating sheet is adhered to the electric / electronic component, the generated heat is not quickly transmitted to the heat sink of the heat radiating fin through the heat radiating sheet, so that the heating element cannot be efficiently cooled. In addition, when trying to increase the filling rate of the thermally conductive filler, the adhesion became poor. Further, since the filling rate of the filler was low, the electromagnetic wave shielding characteristics were also low. In addition, the latter heat dissipation sheet in which the matrix resin and the wire mesh are combined has a poor cushioning property of the substrate, and the thickness depends only on the thickness of the wire mesh.
There have been problems such as difficulty in adjusting the thickness and lack of adhesion. Further, when the mesh size of the wire mesh is reduced in order to improve the electromagnetic wave shielding characteristics, those problems are particularly remarkable. SUMMARY OF THE INVENTION The present invention provides a heat radiation sheet having good heat conductivity in the thickness direction of the sheet, capable of adjusting the thickness of the metal fiber sheet to be used, and having electromagnetic wave shielding properties. The purpose is to: According to the present invention, a metal fiber sheet obtained by wet-making and sintering a slurry containing metal fibers is mixed with a matrix resin and a thermally conductive filler.
Impregnated with a thermally conductive adhesive that, filled, or a heat dissipating sheet, characterized in that one surface or laminated on both sides and processed. Assuming that the heat transfer mechanism of the heat radiating sheet follows conduction heat transfer, the heat transfer rate equation follows Fourier's law.
It is shown by the following equation. Q = -λ (dt / dx) where q: heat flux [W / m 2], λ: heat conductivity [W / m]
· K], t: temperature (K), x: shows the heat transfer direction (m).
This equation shows that if there is a temperature difference, heat moves by conduction through the substance from the high temperature part to the low temperature part. The heat conduction means that thermal energy is transferred between the regions having different temperatures by the vibration of atoms of a solid in an object, and in metal, the transfer of free electrons. If the temperature difference between the front and back surfaces of the heat radiating sheet is denoted by Δt and the sheet thickness is denoted by Δx, if it is assumed that the distance between Δx is thin, λ can be assumed to be substantially constant within Δx, and the temperature distribution inside is linear. Then, q is approximately expressed by the following equation. [Mathematical formula-see original document] Therefore, in order to enhance heat dissipation, it can be seen that the thermal conductivity [lambda] specific to the material between [Delta] x should be made as large as possible. For example, a metal short fiber is formed, and a porous space portion of a sintered thin metal fiber sheet is impregnated and filled with a heat conductive adhesive. Since the metal fiber sheet processed with a heat conductive adhesive is a soft type, it has good workability and a CP for personal computers that requires high heat conductivity.
Ideal for U heat dissipation sheet. As a result, heat can be efficiently absorbed from the electric / electronic parts that generate heat and transmitted to the metal cover, the frame, and the heat sink. [0008] The metal fiber sheet used in the present invention can be produced by the following method. A slurry of fibers containing 70% by weight or more of metal fibers and containing binding fibers is prepared, and the slurry is made into a sheet by a wet papermaking method. In an atmosphere, the fibers are heated to a temperature not exceeding the melting point of the metal fibers to sinter the fibers. As the metal fiber, stainless steel fiber, titanium fiber, nickel fiber, brass fiber, copper fiber, aluminum fiber and the like can be used. Among these, stainless steel fibers which can be processed into fine wires and have excellent heat resistance and rust resistance are preferable. The metal fiber length is 2-12
mm, preferably 2 to 6 mm. As the binding fiber, for example, Kuraray Vinylon Fibrid V manufactured by Kuraray Co., Ltd.
An easily soluble polyvinyl alcohol fiber having a dissolution temperature in water of 40 to 100 ° C. such as P (trade name) is preferable. The slurry containing the metal fibers is subjected to dehydration pressing and heat drying by a wet papermaking method to produce a metal fiber highly blended sheet. Then, in order to improve the oxidation prevention and reduction effect of the metal fiber surface, the metal fiber high blended sheet is heated to a temperature not exceeding the melting point of the metal fiber in a dry hydrogen gas atmosphere to sinter the fibers. Thus, a metal fiber sheet is obtained. The sintering temperature is a temperature near the melting point of the metal fiber, for example, about 1200 ° C. for stainless steel fiber. When sintering stainless steel in a continuous sintering furnace, the temperature should be about
Sintering can be performed at a linear speed of 0 to 700 mm / min. The sintering may be performed in a mixed gas atmosphere of a hydrogen gas and an inert gas such as a nitrogen gas and an argon gas. As the heat conductive adhesive, a mixture of a matrix resin and a heat conductive filler is used. As the thermally conductive filler, for example, aluminum, gold,
Examples include metals such as silver and copper, metal oxides such as alumina, silica, and magnesia, boron nitride, and aluminum nitride. The shape of the heat conductive filler may be any of a granular shape, a plate shape, a needle shape, and the like. As the matrix resin, for example, synthetic rubber, polyamide resin, polyimide resin, epoxy resin, polyester resin, polyolefin resin and the like are used. The ratio of the matrix resin to the thermally conductive filler is preferably 90:10 to 40:60 by weight. In order to manufacture the heat radiation sheet of the present invention, it is best to impregnate or fill a heat conductive adhesive in the thickness direction of the metal fiber sheet in terms of heat transfer efficiency. May be laminated by means such as lamination. 5000 to heat conductive adhesive
By adjusting to 7000 cps, the thickness of the entire sheet can be controlled. In using the heat radiating sheet of the present invention, the heat conductive adhesive can be in a B-stage state, and can be bonded by heating and crosslinking while applying pressure to a bonding target of the heating element. EXAMPLE 1 90 parts by weight of a stainless steel fiber having a fiber length of 4 mm and a fiber diameter of 8 μm and a PVA fiber (Fibribond VP, manufactured by Kuraray Co., Ltd.)
B105-1) 10 parts by weight were put into 70 ° C. water to prepare a slurry, and this slurry was dewatered by a wet papermaking method and dried by heating to obtain a basis weight of 204 g / m 2 and a density of 1.08.
A stainless fiber sheet having a g / cm 3 was produced.
The volume ratio (space ratio) occupied by the stainless fibers is 22%. Therefore, the adhesive only needs to fill 78% of the space. The heat conductive adhesive is sheeted by the doctor blade method, a pressure of 1 kg / cm 2 is applied, and the mixture is heated and cross-linked at a temperature of 120 ° C. for 30 minutes to have a thickness of 0.15 mm.
Was produced. Note that, as the heat conductive adhesive, an adhesive containing epoxy resin and boron nitride (trade name: EPOTEK T7109, manufactured by Osaka Zosensho Co., Ltd.) was used. Example 2 The same stainless steel fiber as in Example 1 was used, and
Under the sintering conditions, a stainless fiber sheet having a thickness of 397 μm, a basis weight of 205 g / m 2 , a density of 0.60 g / cm 3 and a porosity of 89% was produced. Then, the same thermally conductive adhesive as in Example 1 was applied to this sheet by a doctor blade method,
Crosslinking was performed under the same heating conditions as in Example 1 to produce a heat dissipation sheet having a thickness of 0.25 mm. Comparative Example 1 Only the same heat conductive adhesive as in Example 1 was applied to a thickness of 0.15 mm.
To form a heat dissipation sheet. Comparative Example 2 Only the same stainless steel fiber sheet as in Example 1 was applied at 1 kg / c.
The pressure of the m 2 was added, and sheeted to a thickness 0.15 mm,
A heat dissipation sheet was produced. Using the heat dissipation sheets of Examples 1 and 2 and Comparative Examples 1 and 2, the thermal conductivity and the attenuation of electromagnetic waves were measured. Table 1 shows the results. [Method of Measuring Thermal Conductivity] A heat dissipation sheet is sandwiched between a copper heat block and a copper plate at an interval of thickness △ x, and the pressure is 0.5 kg / cm.
Set with 2. Transforming the above equation, Equation 3] λ = - q (△ x / △ t) = - (Q / A) (△ x / △ t) where Q: Power [W], A: heat transfer area It is. A power of 20 W is applied to a heat block on one of the heat transfer surfaces (heat transfer area of 4 cm 2 ) that provides a constant temperature, and after 5 minutes, the temperatures of the heat block and the copper plate are measured to obtain Δt, and the thermal conductivity λ is obtained. Was calculated. [Method of Measuring Electromagnetic Wave Attenuation] The heat radiation sheet was cut into 15 cm squares, and the electromagnetic wave attenuation at a frequency of 1 GHz was measured by the Advantest method. [Table 1] As is evident from Table 1, Examples 1 and 2 have a larger value of the thermal conductivity λ and a better value of the attenuation rate at a frequency of 1 GHz as compared with Comparative Examples 1 and 2. The heat radiating sheet of the present invention has good thermal conductivity in the thickness direction, can adjust the thickness of the metal fiber sheet, and has good electromagnetic wave shielding characteristics.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−209157(JP,A) 特開 昭61−223105(JP,A) 特開 昭61−7652(JP,A) 特開 昭61−236659(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/36 H01L 23/373 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-209157 (JP, A) JP-A-61-223105 (JP, A) JP-A-61-7652 (JP, A) JP-A 61-223 236659 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 23/36 H01L 23/373

Claims (1)

(57)【特許請求の範囲】 【請求項1】 金属繊維を含むスラリーを湿式抄造およ
び焼結した金属繊維シートに、マトリックス樹脂に熱伝
導性フィラーを混合してなる熱伝導性接着剤を含浸、充
填、または片面もしくは両面に積層して加工処理したこ
とを特徴とする放熱シート。
(57) [Claims 1] Heat transfer to a metal fiber sheet obtained by wet-making and sintering a slurry containing metal fibers to a matrix resin.
A heat dissipation sheet characterized by being impregnated with, filled with, or laminated on one or both sides of a thermally conductive adhesive obtained by mixing a conductive filler .
JP28586898A 1998-09-24 1998-09-24 Heat dissipation sheet Expired - Fee Related JP3434711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28586898A JP3434711B2 (en) 1998-09-24 1998-09-24 Heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28586898A JP3434711B2 (en) 1998-09-24 1998-09-24 Heat dissipation sheet

Publications (2)

Publication Number Publication Date
JP2000101004A JP2000101004A (en) 2000-04-07
JP3434711B2 true JP3434711B2 (en) 2003-08-11

Family

ID=17697086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28586898A Expired - Fee Related JP3434711B2 (en) 1998-09-24 1998-09-24 Heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP3434711B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301528C (en) * 2002-04-26 2007-02-21 松下电器产业株式会社 Method for producing plasma display and disassembling method thereof
US20060263570A1 (en) * 2005-05-19 2006-11-23 Bunyan Michael H Thermal lamination module
EP2416639B1 (en) * 2009-03-31 2018-11-28 JX Nippon Mining & Metals Corporation Electromagnetic shielding material and process for producing electromagnetic shielding material
JP5165655B2 (en) * 2009-08-31 2013-03-21 阿波製紙株式会社 Paper sheet radiator
WO2011025020A1 (en) * 2009-08-31 2011-03-03 阿波製紙株式会社 Paper sheet radiator
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
EP2695733B1 (en) 2011-05-13 2020-09-16 JX Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP5822842B2 (en) 2012-01-13 2015-11-24 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
JP5851255B2 (en) * 2012-01-16 2016-02-03 阿波製紙株式会社 Manufacturing method of heat dissipation sheet
JP2016143815A (en) * 2015-02-04 2016-08-08 住友ベークライト株式会社 Heat radiation resin sheet for power module, manufacturing method of heat radiation resin sheet for power module, power module, and manufacturing method of power module
JPWO2017061307A1 (en) * 2015-10-08 2018-08-02 住友ベークライト株式会社 Radiation fin, method for manufacturing radiation fin, and semiconductor package including radiation fin
JP6639931B2 (en) * 2016-02-02 2020-02-05 Towa株式会社 Apparatus and method for manufacturing electronic component, and electronic component
JP6639567B2 (en) * 2017-06-26 2020-02-05 株式会社巴川製紙所 Cooling member
US20230282495A1 (en) * 2020-12-11 2023-09-07 Tomoegawa Co., Ltd. Temperature control unit
JPWO2022202247A1 (en) * 2021-03-25 2022-09-29

Also Published As

Publication number Publication date
JP2000101004A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
JP3434711B2 (en) Heat dissipation sheet
JPWO2018181606A1 (en) Heat transfer member and heat dissipation structure including the same
JP3969618B2 (en) Electromagnetic wave absorbing heat conductive silicone gel molded sheet and method for producing the same
JP2002198686A (en) Sheet for electronic component and method for manufacturing the same
JP2005150249A (en) Heat conductive member and heat radiating structure using the same
KR102645530B1 (en) Multifunctional composite film having heat dissipation and electronmagnetic shielding/absorption cpapticy and method for manufacturing thereof
JPH07162177A (en) Radiator
JPH06196884A (en) High-heat-conductivity composite
JP2005159318A (en) Heat conductor
US11742258B2 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
JP2001291810A (en) Heat radiating sheet and electromagnetic wave shielding sheet
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JPH11145351A (en) Heat dissipating spacer
JP2002254456A (en) Heat-conductive sheet, circuit substrate, and method for producing the sheet
JPH05299545A (en) Heat dissipation body
KR101531630B1 (en) Thin-heat film and heat-radiation sheet comparing the same
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP6976393B2 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP6987941B1 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP2003068954A (en) Package for housing semiconductor element
KR100738932B1 (en) Multilayered silicon sheet in a body and Method for making the same
CN114644908B (en) Tough high-heat-conductivity film and preparation method thereof
JP4249371B2 (en) Metal base circuit board
JP4013945B2 (en) Manufacturing method of component unit
JP4581655B2 (en) Heat sink

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees