JP3430335B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法

Info

Publication number
JP3430335B2
JP3430335B2 JP2000203299A JP2000203299A JP3430335B2 JP 3430335 B2 JP3430335 B2 JP 3430335B2 JP 2000203299 A JP2000203299 A JP 2000203299A JP 2000203299 A JP2000203299 A JP 2000203299A JP 3430335 B2 JP3430335 B2 JP 3430335B2
Authority
JP
Japan
Prior art keywords
laser
tft
film
source
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000203299A
Other languages
English (en)
Other versions
JP2001068681A (ja
Inventor
宏勇 張
直人 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2000203299A priority Critical patent/JP3430335B2/ja
Publication of JP2001068681A publication Critical patent/JP2001068681A/ja
Application granted granted Critical
Publication of JP3430335B2 publication Critical patent/JP3430335B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、多結晶(微結晶)
シリコン薄膜トランジスタの製造方法に関するものであ
る。
【0002】
【従来の技術】多結晶(微結晶)シリコン膜を得る方法
の一つに、成膜されたアモルファスシリコン(以下「a-
Si」という)膜にレーザーを照射することによりa-Siを
結晶化させるという方法があり、一般によく知られてい
る。その技術を利用したレーザー結晶化薄膜トランジス
タは、アモルファスシリコン薄膜トランジスタ(以下
「a-SiTFT」という)に比べて電界効果移動度などの
電気特性が優れているため、アクティブ型液晶ディスプ
レイ(LCD)やイメージセンサーなどの周辺駆動回路
に使われている。
【0003】レーザー結晶化薄膜トランジスタの代表的
な作製方法は、先ず出発膜であるアモルファスシリコン
(a-si)膜をレーザーで照射することによって結晶化さ
せ、その後一連の製造プロセスによってデバイス構造を
加工するというものである。製造プロセスの最初または
途中で結晶化工程を行なうことは従来の製造方法の一番
の特徴である。
【0004】
【発明が解決しようとする課題】このような製造方法に
よって薄膜トランジスタを作製した場合、次のような問
題点が生じる。 (1)レーザー結晶化を製造工程の一環として行うこと
により、デバイス完成までTFTの電気特性を評価でき
ず、それを制御することが困難である。 (2)TFT作製当初または途中でレーザー結晶化を行
うため、デバイス構造を完成した後に諸電気特性を修正
することが不可能であり、回路システム全体の歩留りが
悪くなる。
【0005】本発明は、上記の問題点を解決するための
新しい多結晶(微結晶)薄膜トランジスタの作製方法を
提案するものである。
【0006】
【課題を解決するための手段】本発明はデバイス構造完
成後のレーザー照射による、チャネル形成領域の結晶化
およびソース・ドレインのオーミックコンタクト領域の
活性化を可能とするために、チャネル形成領域およびソ
ース・ドレイン領域のチャネル形成領域側の一部が入射
するレーザー光に対して露呈している構造、またはソー
ス・ドレイン領域がソース・ドレイン電極に対してレー
ザー光入射側に位置し、かつ前記両領域の一部がチャネ
ル形成領域のレーザー光入射側に接する構造の薄膜トラ
ンジスタを用いる。
【0007】ソース・ドレイン領域の活性化とは、真性
のa-Si膜に種々の方法によって3族または5族の不純物
原子を添加してP型またはN型の特性を得ようとすると
きに、より良好なP型またはN型の特性を得るために不
純物を添加した領域にエネルギーを与え不純物を活性化
させ、膜の導電率を向上させることをいう。
【0008】図1に、デバイス構造完成後にソース・ド
レイン領域となる不純物a-Si層とチャネル形成領域とな
る真性a-Si層に対してレーザー照射によって結晶化及び
活性化を効果的に行うことを可能とする、本願発明のT
FTの構造を示す。
【0009】図1(a)においてはTFTアイランド上
のソース電極9とドレイン電極10間の距離をソース領
域11とドレイン領域12間の距離より大きくすること
により、基板上部からのレーザー照射によるソース・ド
レイン領域11、12およびチャネル形成領域5の活性
化および結晶化を可能にしている。
【0010】この時、充分なエネルギー値をもつレーザ
ー光を照射することによりチャネル形成領域となる真性
a-Si層5のうちのソース領域およびドレイン領域の下側
の部分も結晶化し、良好な特性を持つチャネルを得るこ
とができる。またゲート絶縁膜4とチャネル形成領域と
の界面がチャネル形成領域の下側であるためレーザーの
入射によって界面特性が劣化することがないので、デバ
イスの特性を低下させることがない。
【0011】レーザー光源によく用いられるUV光はS
iO 2 を透過することができるため、パシベイション膜
13が酸化珪素(SiO 2 )であればパシベイション膜
上からレーザー照射を行なうことができる。
【0012】またこれによりレーザー照射によるa-Si膜
上側表面の乱れを防ぐことができる。すなわち、パシベ
イション膜が酸化珪素であればそのパシベイション膜が
a-Si膜のレーザー結晶化をするときに一般に用いられる
キャップ層といわれる、レーザー照射時に膜上側表面の
乱れを防ぐためにレーザー照射対象となるa-Si膜上に成
膜する酸化珪素膜と同じ役割を果たし、高品質なレーザ
ー結晶化膜を得ることが可能である。
【0013】またレーザーがガラス基板1を透過できる
ようにレーザーの波長またはガラス基板の材質を選ぶこ
とにより、ガラス基板上にガラス基板からの不純物混入
を防ぐ為に成膜した下地膜2とゲート絶縁膜がレーザー
を透過する材料(例えば酸化珪素)であれば、ゲート電
極3をソース・ドレイン電極間の幅より小さくすること
により基板下部からレーザーを照射してソース・ドレイ
ン電極の下側の不純物領域を結晶化および活性化させる
ことができ、諸特性のより大きな向上を得ることもでき
る。下地膜およびゲート絶縁膜が酸化珪素膜であれば、
それらは同時にキャップ層としても作用し、膜下側表面
の乱れを防ぐことができる。
【0014】図1(b)は図1(a)の構造をさらに発
展させ、より効果的なソース領域およびドレイン領域に
対するレーザー活性化を可能とするものである。
【0015】図 1(b)においては不純物領域であるソ
ース領域11、ドレイン領域12がソース電極9、ドレ
イン電極10の上部にそれぞれ位置し、かつチャネル形
成領域5の上側に接する構造になっており、ソース・ド
レイン領域に対するレーザー照射は上部からの照射のみ
で完全に行うことができるので図1(a)に比べてより
大きな諸特性の向上と制御しうる値の幅を得ることがで
きる構造となっている。また図1(a)と同様に充分な
エネルギー値をもつレーザー光を照射することによりチ
ャネル形成領域となる真性a-Si層5のうちのソース領域
およびドレイン領域の下側の部分も結晶化し、良好な特
性を持つチャネルを得ることができる。またゲート絶縁
膜4とチャネル形成領域との界面がチャネル形成領域の
下側であるためレーザーの入射によって界面特性が劣化
することがないので、デバイスの特性を低下させる事が
ない。またパシベイション膜が酸化珪素であればレーザ
ー照射時におけるキャップ層として作用し、ソース・ド
レイン領域である不純物a-Si膜およびチャネル形成領域
である真性a-Si膜の上側表面のレーザー照射による乱れ
を防ぐことができる。
【0016】図1(c)、(d)は図1(a)、(b)
と全く上下逆の構造をしており、レーザーがガラス基板
を透過できるようにレーザーの波長またはガラス基板の
材質を選ぶことにより、主に基板下部からのレーザー照
射をすることによりチャネル形成領域およびソース・ド
レイン領域の結晶化、活性化を可能とするものである。
【0017】図1(c)は図1(a)を全く上下逆の構
造にしたものであり、図1(a)と同様にソース電極9
とドレイン電極10間の距離をソース領域11とドレイ
ン領域12間の距離より大きくすることにより基板下部
からのレーザー照射によるソース・ドレイン領域および
チャネル形成領域5の活性化および結晶化を可能にして
いる。
【0018】この時、充分なエネルギー値をもつレーザ
ー光を照射することによりチャネル形成領域となる真性
a-Si層5のうちのソース領域およびドレイン領域の下側
の部分も結晶化し、良好な特性を持つチャネルを得るこ
とができる。またゲート絶縁膜とチャネル形成領域との
界面がチャネル形成領域の上側であるため下側からのレ
ーザーの入射によって界面特性が劣化することがないの
で、デバイスの特性を低下させる事がない。
【0019】さらにガラス基板1上にガラス基板からの
不純物混入を防ぐために成膜した下地膜2が酸化珪素膜
であればそれがキャップ層として作用し、ソース・ドレ
イン領域およびチャネル形成領域である各a-Si膜下側表
面の乱れを防ぐことができる。またパシベイション膜1
3とゲート絶縁膜4がレーザーを透過する材料、例えば
酸化珪素であれば、ゲート電極3をソース・ドレイン電
極間の幅より小さくすることにより基板上部からレーザ
ーを照射してソース・ドレイン電極の上側の不純物領域
を結晶化および活性化させることができ、諸特性のより
大きな向上を得ることもできる。その時パシベイション
膜およびゲート絶縁膜が酸化珪素であれば、それらは同
時にキャップ層としても作用し、レーザー照射によるa-
Si膜上側表面の乱れを防ぐ事ができる。
【0020】図1(d)は図1(c)の構造をさらに発
展させ、より効果的なソース領域およびドレイン領域に
対するレーザー活性化を可能とするものである。
【0021】図1(d)においては不純物領域であるソ
ース領域11、ドレイン領域12がソース電極9、ドレ
イン電極10の下部にそれぞれ位置し、かつチャネル形
成領域5の両脇下側に接する構造になっているので、ソ
ース・ドレイン領域に対するレーザー照射は下部からの
照射のみで完全に行うことができるので図1(c)に比
べてより大きな諸特性の向上と制御しうる値の幅を得る
ことができる構造となっている。また図1(c)と同様
に充分なエネルギー値をもつレーザー光を照射すること
によりチャネル形成領域となる真性a-Si層のうちのソー
ス領域およびドレイン領域の上側の部分も結晶化し、良
好な特性を持つチャネルを得ることができる。
【0022】またゲート絶縁膜4とチャネル形成領域と
の界面がチャネル形成領域の上側であるためレーザーの
入射によって界面特性が劣化することがないので、デバ
イスの特性を低下させる事がない。また下地膜が酸化珪
素であればレーザー照射時におけるキャップ層として作
用し、ソース・ドレイン領域である不純物a-Si膜および
チャネル形成領域である真性a-Si膜の下側表面のレーザ
ー照射による乱れを防ぐことができる。
【0023】以上のような構造をとることにより、a-Si
薄膜トランジスタのデバイス構造完成後のレーザー照射
によるソース・ドレイン領域およびチャネル形成領域の
活性化、結晶化を行うことができる。
【0024】以上のように、デバイス構造を加工する前
あるいはその途中でレーザー照射を行なうのではなく、
完全なa-SiTFTのプロセスでデバイスを加工し、デバ
イス構造が完成、すなわち不純物半導体層、真性半導体
層、ゲート絶縁膜の形成、ソース・ドレイン領域の形
成、ソース、ドレイン、ゲートの各電極、および保護膜
膜(パシベイション膜)の成膜まで、または回路配線の
形成までを含んだ工程を終了してから、任意の1つまた
は複数のa-SiTFTのソース・ドレイン領域とチャネル
形成領域に対しレーザーを照射することによって薄膜ト
ランジスタのチャネル形成領域の結晶化またはソース・
ドレイン領域の活性化および結晶化を行なう。この時に
電極と配線ができていれば、基板上の任意のa-SiTFT
の電気特性をリアルタイムにモニターしながら最適値に
なるまでレーザー照射を行なう事が可能となる。あるい
はレーザー照射を行なった後電気特性を測定するという
工程を繰り返しながら、所望の特性を持つ薄膜トランジ
スタを得ることができる。
【0025】これにより同一基板上に同一製造工程によ
る復数のa-SiTFTを作製しそのデバイス構造が完成し
た後に、任意の1つまたは複数のa-SiTFTを任意の電
気特性を持つTFTにすることが可能となる。すなわち
同一基板上に異なる電気特性を持つTFTを作製するこ
とが、デバイス構造完成後にレーザー照射をすることで
実現できる。
【0026】またこれにより同一基板上に同一製造工程
による複数のa-SiTFTを作製しそのデバイス構造が完
成した後、それらのa-SiTFTのうち任意の1つまたは
復数のものをレーザー結晶化による多結晶シリコン薄膜
トランジスタ(以下「 poly-SiTFT」という)とする
ことができ、デバイス構造を作製する工程を分けること
なく同一基板上にa-SiTFTと poly-SiTFTの両方が
混在するシステムを作製することが可能となる。
【0027】また、レーザー照射は極めて短い時間に行
われるため基板温度をほとんど上昇させることがなく、
poly-SiTFTを低温(室温〜400℃)で作製する事
が可能となり、これによって大面積の poly-SiTFTシ
ステムを石英ガラスのような高価なガラスを用いること
なく安価に作製することが可能となる。
【0028】以下に本発明を用いた実施例を示す。
【0029】
【実施例】〔実施例1〕 本実施例では一体化LCD(液晶ディスブレイ)システ
ムにおけるa-SiTFTと poly-SiTFT(多結晶シリコ
ン薄膜トランジスタ)の混合システムについて説明を行
なう。図2に示すような一体化LCDシステムには画素
マトリクス駆動用TFT部分30と周辺回路用TFT部
分31が必要である。2種類のTFTに対して動作速度
の要求が完全に違っており、画素駆動用のものは移動度
が1cm 2 /Vs程度であればもう十分であるが、周辺回路用
のTFTは高速動作(数MHZ)が要求される。このた
め、画素用TFTはa-Si材料で、周辺回路用TFTは p
oly-Si材料で構成するのが望ましい。
【0030】本発明によれば図2に示すようなシステム
をデバイス構造を作製する工程をa-SiTFTと poly-Si
TFTで分けることなく一度に作製することができる。
【0031】図3はTFTの製造方法を模式的に説明す
る概略図である。この実施例では図1(a)の構造、す
なわち逆スタガ型構造のTFTを用いた。もちろん他の
構造でも良い。図3(A)において石英ガラス等の高価
でない700℃以下、例えば約600℃の熱処理に耐え
うるガラス1上にマグネトロンRF(高周波)スパッタ
法を用いて下地膜2としての酸化珪素(SiO 2 )膜を
1000〜3000Å、本実施例では2000Åの厚さ
に形成する。成膜条件は酸素100%雰囲気、成膜温度
150℃、出力400〜800W、圧力0.5Paとし
た。ターゲットに石英または単結晶シリコンを用いた。
成膜速度は30〜100Å/分であった。
【0032】この上に公知のスパッタ法によりゲート電
極となるクロム(Cr)層3を成膜する。膜厚は800
〜1000Å、本実施例では1000Åとした。これを
第1のフォトマスクP1にてパターニングし第3図
(B)を得た。またゲート電極材料にタンタル(Ta)
を用いてもよい。
【0033】またゲート電極材料としてアルミニウム
(Al)を用いた場合、これを第1のフォトマスクP1
にてパターニング後、その表面を陽極酸化してもよい。
【0034】この上にゲート絶縁膜4として窒化珪素膜
(SiN x )をPCVD法により作製する。膜厚は10
00〜5000Å、本実施例では3000Åとした。原
料ガスにはシラン(SiH 4 )とアンモニアガス(N
3 )を1:3の比で用いた。成膜条件は成膜温度25
0〜350℃、本実施例においては260℃、RF周波
数は13.56MHz、RF出力は80W、圧力0.0
5Torr、成膜速度は80Å/分であった。
【0035】この上に真性a-Si層5をPCVD法により
作製する。膜厚は200〜1000Å、本実施例では7
00Åとした。原料ガスにはシラン(SiH 4 )を用
い、成膜温度は150〜300℃、本実施例においては
200℃、RF周波数は13.56MHz、RF出力は
35W、圧力は0.5Torr、成膜速度は60Å/分
であった。
【0036】この上に不純物a-Si層、ここではn + 型のa
-Si層6をPCVD法により作製する。膜厚は300〜
500Å、本実施例では500Åとした。原料ガスには
シランを用い、N型の不純物としてリンを添加するため
にホスフィン(PH 3 )をシランの1%にあたる量を加
える。成膜温度は150〜300℃、本実施例において
は200℃、RF周波数は13.56MHz、RF出力
は40W、圧力は0.5Torr、成膜速度は60Å/
分であった
【0037】以上のようにゲート絶縁膜4、真性a-Si層
5、n + a-Si層6を成膜し、図3(C)を得た。これら
はいずれもPCVD法で成膜しているので、マルチチャ
ンバ方式を用いて連続成膜することは有効である。ま
た、他の成膜方法、例えば減圧気相法、スパッタ法、光
CVD法等を用いてもよい。その後、第2のフォトマス
クP2を用いてドライエッチングを行い図3(D)に示
すようなTFTアイランド領域を形成する。
【0038】次にスパッタ法を用いてソース・ドレイン
電極となるクロム(Cr)層7を形成し図3(E)を得
る。膜厚は500〜1000Å、本実施例では800Å
とした。これを第3のフォトマスクP3にてパターニン
グする。このときレジスト8を剥離せずにn + a-Si層を
ドライエッチングにてパターニングしてチャネル形成領
域、ソース電極9、ドレイン電極10、およびソース領
域11、ドレイン12領域を形成し、図3(F)を得
る。
【0039】ここでレジストを剥離せずにウェットエッ
チングを行うことにより、ソース・ドレイン電極間をソ
ース・ドレイン領域間より大きくするためのオーバーエ
ッチングを行う。これにより上部からのレーザー照射に
よるソース・ドレイン領域の活性化および結晶化を行う
ことができる。この後レジストを剥離し、図3(G)を
得る。
【0040】この上に図3(H)に示すようにパシベイ
ション膜として酸化珪素(SiO 2 )を前述のRFスパ
ッタ法を用いて1000〜3000Å、本実施例では2
000Åの厚さに成膜した。PCVD法等を用いてもよ
い。以上でTFTのデバイス構造が完成した。
【0041】この後、配線を行い、測定器を接続してモ
ニターしながら上部からのレーザー照射を行った。測定
器にはHP−4142Bを用いた。レーザーにはエキシ
マレーザー、ここでは波長248nmのKrFエキシマ
レーザーを用いた。この波長範囲内でUV光がTFTの
上部のパシベイション膜を透過することができる。エネ
ルギーEは200〜350mJ/cm 2 、照射数1〜5
0SHOTS、照射時の基板温度T S は室温〜400
℃、であった。
【0042】これによってモニターしながらチャネル形
成領域或いはソース・ドレイン領域又はその両方にレー
ザーを照射することにより結晶化、活性化を行うことが
でき、図2の30の画素マトリクス駆動用のTFTにお
いて思いどおりのTFTの諸特性を得ることができた。
この画素マトリクス駆動用のTFTは膨大な数、例えば
640×400=256,000個ものTFTを全て同
じ特性に作らなければならないので歩留りを良くするこ
とが大変困難であったが、本発明による方法を用いるこ
とにより、特性の大きく異なる不良TFTを大幅に減ら
すことができ、著しく歩留りを向上させることができ
た。
【0043】また図2の31の周辺回路用TFT部分に
対し十分なレーザー照射をすることにより著しく特性が
向上し、レーザーを照射する前は電界効果移動度μ 1
0.5〜0.8cm 2 /vs、スレッシュホルド電圧V
th1 が10〜20Vであったのに対し、レーザー照射後
は電界効果移動度μ 2 が10〜100cm 2 /vs、スレ
ッシュホルド電圧V th2 が5〜7Vと大きな特性の向上
がみられ、液晶表示装置の周辺回路用TFTとして十分
な高速動作が得られた。a-Si膜で形成されたチャネル形
成領域が結晶化され、キャリア移動度の高い poly-Si膜
となっておりpoly-SiTFTとして十分な特性を得てい
た。
【0044】この後、基板上にITO(インジューム・
錫酸化物)をスパッタ法により0.1μmの厚みに形成
し、フォトマスクを用いて画素電極を形成した。このI
TOは室温〜150℃で成膜し、200〜400℃の酸
素または大気中のアニールにより成就した。画素電極が
レーザーによって変質しないのであれば、画素電極形成
後にTFTに対するレーザー照射を行ってもよい。
【0045】前記基板上に、オフセット法を用いて、ポ
リイミド前駆体を印刷し、非酸化性雰囲気たとえば窒素
中にて350℃1時間焼成を行った。その後、公知のラ
ビング法を用いて、ポリイミド表面を改質し、少なくと
も初期において、液晶分子を一定方向に配向させる手段
を設けた。このようにして液晶表示装置の一方の基板を
得た。
【0046】他方の基板は、ガラス基板の片側全体にI
TOを1μm厚みにスパッタ法を用いて形成しフォトマ
スクを用いて対向電極を形成した。このITOは室温〜
150℃で成膜し、200〜300℃の酸素または大気
中のアニールにより成就し、第2の基板を得た。
【0047】前記基板上に、オフセット法を用いて、ポ
リイミド前駆体を印刷し、非酸化性雰囲気たとえば窒素
中にて350℃1時間焼成を行った。その後、公知のラ
ビング法を用いて、ポリイミド表面を改質し、少なくと
も初期において、液晶分子を一定方向に配向させる手段
を設けた。
【0048】その後ネマチック液晶組成物を前記2枚の
基板で挟持し、外部配線を行い、外側に偏光板をはり、
透過型の液晶表示装置を得た。得られた液晶表示装置は
画素マトリクス駆動用TFTと周辺駆動回路を別々に作
製した物と比較しても全く遜色の無いものであった。
【0049】以上のようにデバイス構造完成後のレーザ
ー照射によりチャネル形成領域およびソース・ドレイン
領域の結晶化、活性化を行うためには、レーザー光入射
側、ここでは基板上部のパシベイション膜はUV光を透
過するものであることが必要である。またチャネル形成
領域において実際にチャネルとして動作するのはゲート
絶縁膜との界面の部分であるので、チャネル形成領域と
なる真性a-Si層は充分な結晶化を行なうためになるべく
薄い方がよい。
【0050】このようにしてデバイス構造完成後のa-Si
TFTのレーザー照射による諸特性の制御および poly-
SiTFT化が可能になった。また同一基板上の同一デバ
イス構造作製工程でありながらa-SiTFTと poly-SiT
FTとを作り分けることが可能となった。また、多くの
poly-SiTFTを用いた回路システムを室温〜400℃
といった低温で作製する事ができ、石英ガラスのような
高価なガラスを用いずに安価に作製する事が可能となっ
た。
【0051】〔実施例2〕本発明の応用として冗長回路
構成を持つ poly-SiTFT型液晶表示装置を作製したの
で、これを説明する。
【0052】poly-SiTFT型液晶表示装置のような非
常に多くの poly-SiTFTを用いた回路システムでは全
てのTFTが完全に動作するように作ることは非常に困
難で、現実には歩留り向上のために何らかの冗長構成を
とることが多い。a-SiTFT型液晶表示装置における画
素マトリクス駆動用a-SiTFTの冗長構成の一つとして
複数の、例えば2つのTFTを並列に接続し、2つのT
FTをともに動作させることで、何らかの原因で一方が
動作しなくても、もう一方のTFTが動作することで歩
留りを良くすることができるという方法がある。しかし
poly-SiTFTのON電流はTFT1個につき約0.1
mAもありa-SiTFTの約1μAの約100倍であり、
冗長目的のために2倍の数のTFTを動作させているこ
とは大変な電力の無駄となり、1画素につき1つのTF
Tで動作させることが望まれる。
【0053】また一方でレーザー結晶化 poly-SiTFT
回路システムにおいて、全く同じ回路を poly-SiTFT
で二つ作り、並列に接続できるようにしておき、当初は
一方の回路を動作させておき、それが正常に動作しなく
なったとき、あるいは動作チェック時に正常に動作しな
かったとき、他方の回路につなぎ変えるという冗長構成
をとっている場合、両方の回路をレーザー結晶化させた
poly-SiTFTで構成しなければならず、レーザー照射
時間が2倍かかることになり、消費エネルギーも2倍と
なり、作業時間の伸長と製品のコスト高を招くことにな
る。
【0054】本発明による方法を用いることにより以上
のような問題点を解決する事ができる。
【0055】図4に本発明を用いて冗長構成を行った p
oly-SiTFT型液晶表示装置を示す。図4および図5に
示すように、この液晶表示装置では画素マトリクス駆動
用TFT部分20中の全てのTFTと周辺回路中のシフ
トレジスタ回路21について、冗長構成をとっている。
画素マトリクス駆動用TFTはTFTが2つ、シフトレ
ジスタ回路は同じ回路が2つの冗長構成である。
【0056】まず冗長の対象となる全てのTFTを、図
1にあるような本発明による構造で作製し、デバイス構
造完成後にレーザーを照射することで poly-SiTFTと
して動作することができるようにした。TFTの作製は
実施例1で述べたように図3に示した工程で行った。パ
シベイション膜を形成し、画素電極を形成する前の状
態、すなわち図3(H)まで工程を進めた。
【0057】図5に画素マトリクス駆動用TFTの配置
図を示す。ここに示したように、TFTはa-SiTFTで
あり、2つのTFTは並列に接続されている。まずここ
で全ての画素電極に接続されている2つづつのTFTの
うち、どちらか一方、ここでは23のTFTにレーザー
照射を行い poly-SiTFTとする。ここで測定器を接続
し、動作チェックを行った。ここで異常が無ければ、次
の工程へとすすむ。冗長側のTFT24はa-SiTFTで
あるので動作電流が poly-SiTFTに比べ約2桁小さい
のでその影響は実質上無視できる。また閾値電圧が pol
y-SiTFTが0〜約10Vであるのに対しa-SiTFTは
約10〜約20Vであるので並列動作をすることがなく
レーザー結晶化された poly-SiTFTだけが動作するこ
とになる。
【0058】正常に動作しないTFTがあった場合、そ
のTFTの冗長側のa-SiTFT、ここでは24のTFT
にレーザー照射を行い poly-SiTFTとし、必要であれ
ば冗長側でない方のTFTへの配線、ここではA点をレ
ーザーで焼き切ることで簡単に冗長側への切り替えを行
うことができた。
【0059】このようにすることで冗長側に切り替える
必要が無かった場合において、2つのTFTで冗長構成
をとっていながら1画素を駆動する poly-SiTFTは実
質的に1つとなり、2つの poly-SiTFTを並列に接続
して冗長構成を実現している方法に比べ約半分の消費電
力にすることができた。また冗長側のTFTへの切替え
も1〜数回のレーザー照射で行うことができ、非常に簡
単で効率的な方法が実現できた。
【0060】次にシフトレジスタの冗長回路はやはり2
つの同じ回路が並列に作られ、TFTは図3(H)の状
態のあとの、電極が接続された状態までa-SiTFTとし
て作られた。コネクタ等で後から接続、切り替えをでき
るようにしておいてもよい。レーザー結晶化はまず一方
の回路、ここでは21回路中の全てのTFTに対して施
し、測定器を接続して動作チェックを行って、正常に動
作すれは次の工程へと進む。
【0061】両方の回路が並列に接続されている場合、
冗長回路中のTFTはa-SiTFTであるので動作電流が
poly-SiTFTに比べ約2桁小さいのでその影響は実質
上無視できる。また閾値電圧が poly-SiTFTが0〜約
10Vであるのに対しa-SiTFTは約10〜約20Vで
あるので並列動作をすることがなくレーザー結晶化され
た poly-SiTFTだけが動作することになる。
【0062】回路が正常に動作しなかった場合、冗長回
路22中のa-SiTFTにレーザー照射を行い poly-SiT
FTとし、必要であれば冗長側でない方の回路への配
線、ここではB点をレーザーで焼き切ることで簡単に冗
長側への切り替えを行うことができた。もちろんコネク
タ等で接続、切り替えを行っても良い。
【0063】これによって、レーザー結晶化は冗長側へ
の切替えの必要が出てきた時のみに行えばよく、TFT
製造工程の始めあるいは途中で全てのTFTにレーザー
照射を行う製造工程に比較して、レーザー照射時間が半
分になり、無駄なエネルギーを使わないで済むので、作
業時間の短縮、コストダウン、省エネルギー等を実現す
ることができた。また冗長側への切替え操作は複雑な配
線作業を伴わず非常に簡単にすることができた。
【0064】また、この方法は製造段階だけではなく、
使用中に故障となったものに対しても用いることがで
き、同様な方法で性能を回復することかできる。
【0065】このように、本発明による構造を用いるこ
とにより、 poly-SiTFTで構成された回路において、
小消費電力化、作業時間の短縮、コストダウン、省エネ
ルギー化といった、効果的な冗長方法を実現することが
可能となった。
【0066】
【発明の効果】本発明より提案した作製法を採用するこ
とにより、下記に述べるような優れた効果が得られた。
【0067】本発明によればデバイス構造完成後、電気
特性をモニターしながらレーザー照射することによって
回路システムを構成するための最適な薄膜トランジスタ
のバラメータを容易に制御することができた。それによ
って例えばTFT方式の液晶表示装置のような非常に多
くの数のTFTが均一な特性を持つ必要があるものにお
いてTFTの特性のバラツキが発生した時、本発明によ
る方法を用いることによりそれを修正することができ、
品質と歩留りを著しく向上できた。
【0068】しかも、デバイス構造上に何ら難しい工程
を加えることなく品質と歩留まりを同時に向上させるこ
とができた。
【0069】また本発明によれば同一基板上の薄膜トラ
ンジスタの移動度を始めとする諸電気特性を自由に制御
することができ、また必要なTFTだけを結晶化させa-
SiTFTと poly-SiTFTの混合システムを実現するこ
とが可能になった
【0070】また、レーザー照射はごく短時間に行われ
るため基板温度をほとんど上昇せさることがなく、 pol
y-SiTFTを低温(室温〜400℃)で作製する事が可
能となり、これによって大面積の poly-SiTFTシステ
ムを石英ガラスのような高価なガラスを用いることなく
安価に作製することが可能となった。
【0071】本発明によるTFT構造と一般のTFT構
造をa-Siにて同一基板上に作製し、本発明の構造をもっ
たTFTに対してレーザー照射を行うことで、a-SiTF
Tとpoly-SiTFTの混合システムを実現することが可
能であることは言うまでもない。
【0072】以上のように、本発明は薄膜トランジスタ
の作製方法において数多くのメリットをもたらすことが
でき、その工業上の効果は大きい。
【図面の簡単な説明】
【図1】・・・・本願発明の薄膜トランジスタの構造
【図2】・・・・液晶表示装置の構成
【図3】・・・・薄膜トランジスタの作製工程
【図4】・・・・冗長構成を持つ poly-SiTFT駆動型
液晶表示装置
【図5】・・・・図4の液晶表示装置の画素駆動用TF
Tの冗長構成
【符号の説明】
1・・・ガラス基板 2・・・下地膜 3・・・ゲート電極 4・・・ゲート絶縁膜 5・・・チャネル形成領域 9・・・ソース電極 10・・・ドレイン電極 11・・・ソース領域 12・・・ドレイン領域 13・・・パシベイション膜 20・・・ poly-SiTFT駆動型液晶表示装置の画素マ
トリクス駆動用 poly-SiTFT部分 21・・・液晶表示装置の周辺回路中のシフトレジスタ
回路 22・・・液晶表示装置の周辺回路中の冗長用シフトレ
ジスタ回路 23・・・液晶表示装置の画素マトリクス駆動用 poly-
SiTFT 24・・・液晶表示装置の画素マトリクス駆動冗長用 p
oly-SiTFT 30・・・液晶表示装置の画素マトリクス駆動用TFT
部分 31・・・液晶表示装置の周辺回路用TFT部分
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/336 H01L 21/20 H01L 21/265 G02F 1/1368

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】画素回路および駆動回路を有するアクティ
    ブマトリクス基板を有する半導体装置の作製方法であっ
    て、 基板の絶縁表面上にゲート電極を形成し、 前記ゲート電極上にゲート絶縁膜を形成し、 前記ゲート絶縁膜上にアモルファスシリコン膜を形成
    し、 前記アモルファスシリコン膜上に一対の不純物アモルフ
    ァスシリコン膜を形成し、前記一対の不純物アモルファ
    スシリコン膜のそれぞれの一部に接してソース電極およ
    びドレイン電極を形成することによって前記画素回路お
    よび駆動回路の薄膜トランジスタを形成し、 前記駆動回路の薄膜トランジスタに選択的にレーザー光
    を照射し、前記一対の不純物アモルファスシリコン膜の
    うち前記ソース電極に接していない部分および前記ドレ
    イン電極に接していない部分を結晶化し且つ活性化する
    と共に前記アモルファスシリコン膜のうちチャネル形成
    領域を結晶化することを特徴とするアクティブマトリク
    ス基板を有する半導体装置の作製方法。
  2. 【請求項2】前記レーザー光は、エキシマレーザー光で
    あることを特徴とする請求項1に記載のアクティブマト
    リクス基板を有する半導体装置の作製方法。
JP2000203299A 2000-07-05 2000-07-05 半導体装置の作製方法 Expired - Lifetime JP3430335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203299A JP3430335B2 (ja) 2000-07-05 2000-07-05 半導体装置の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203299A JP3430335B2 (ja) 2000-07-05 2000-07-05 半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000168290A Division JP3457262B2 (ja) 1991-06-19 2000-06-05 アクティブ型表示装置

Publications (2)

Publication Number Publication Date
JP2001068681A JP2001068681A (ja) 2001-03-16
JP3430335B2 true JP3430335B2 (ja) 2003-07-28

Family

ID=18700724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203299A Expired - Lifetime JP3430335B2 (ja) 2000-07-05 2000-07-05 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP3430335B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088648B1 (ko) 2008-10-22 2011-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707010B1 (ko) * 1999-12-29 2007-04-11 비오이 하이디스 테크놀로지 주식회사 박막 트랜지스터-액정표시소자의 제조방법
CN100444009C (zh) * 2006-07-25 2008-12-17 友达光电股份有限公司 阵列基板的形成方法
CN100464404C (zh) * 2007-01-30 2009-02-25 友达光电股份有限公司 像素结构的制作方法
JP2011202129A (ja) 2010-03-26 2011-10-13 Fujifilm Corp ポリエステル樹脂、並びに、これを用いた光学材料、フィルムおよび画像表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088648B1 (ko) 2008-10-22 2011-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US8912040B2 (en) 2008-10-22 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9373525B2 (en) 2008-10-22 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9691789B2 (en) 2008-10-22 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9853069B2 (en) 2008-10-22 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10211240B2 (en) 2008-10-22 2019-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2001068681A (ja) 2001-03-16

Similar Documents

Publication Publication Date Title
JP3255942B2 (ja) 逆スタガ薄膜トランジスタの作製方法
JP2791422B2 (ja) 電気光学装置およびその作製方法
US7101807B2 (en) Method of fabricating semiconductor device
JPH05190568A (ja) 絶縁ゲート薄膜トランジスタの製造方法
JPH05267667A (ja) 半導体装置とその作製方法
US5827760A (en) Method for fabricating a thin film transistor of a liquid crystal display device
JPH08264802A (ja) 半導体作製方法、薄膜トランジスタ作製方法および薄膜トランジスタ
JPH0659278A (ja) 液晶表示装置及びその製造方法
JP3430335B2 (ja) 半導体装置の作製方法
JP3435144B2 (ja) 薄膜トランジスタ及びアクティブマトリクス型表示装置
JP3457262B2 (ja) アクティブ型表示装置
JP3366626B2 (ja) 薄膜トランジスタ及びアクティブマトリクス型表示装置の作製方法
JP3133248B2 (ja) 電気光学装置
JPH11265000A (ja) 液晶表示装置およびその製造方法
JP2003023162A (ja) 薄膜トランジスタ及びその作製方法
JP2001125141A (ja) アクティブマトリクス型表示装置
JP2775883B2 (ja) 薄膜トランジスタマトリクスの製造方法
JPH08339972A (ja) 薄膜トランジスタの製造方法およびそれを用いた液晶表示装置
JP2005243938A (ja) 薄膜トランジスタおよびその製造方法
JPH10133231A (ja) 多層配線構造およびその製造方法と薄膜トランジスタアレイおよびその製造方法と液晶表示装置
JP2004064056A (ja) 半導体集積回路の作製方法
JP2000155341A (ja) 表示装置及びその作製方法
JP2000294797A (ja) 半導体装置の作製方法
JP2000155332A (ja) 表示装置及びその作製方法
JPH088363B2 (ja) 絶縁ゲイト型電界効果トランジスタの作製方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9