JP3426901B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3426901B2
JP3426901B2 JP05494797A JP5494797A JP3426901B2 JP 3426901 B2 JP3426901 B2 JP 3426901B2 JP 05494797 A JP05494797 A JP 05494797A JP 5494797 A JP5494797 A JP 5494797A JP 3426901 B2 JP3426901 B2 JP 3426901B2
Authority
JP
Japan
Prior art keywords
salt
negative electrode
group
metal
metalloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05494797A
Other languages
Japanese (ja)
Other versions
JPH10255796A (en
Inventor
修二 伊藤
年秀 村田
靖彦 美藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05494797A priority Critical patent/JP3426901B2/en
Priority to EP97122297A priority patent/EP0853347B1/en
Priority to DE69707637T priority patent/DE69707637T2/en
Priority to US08/993,735 priority patent/US6124057A/en
Publication of JPH10255796A publication Critical patent/JPH10255796A/en
Application granted granted Critical
Publication of JP3426901B2 publication Critical patent/JP3426901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特にその負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a negative electrode thereof.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。これまで非水
電解液二次電池の正極活物質には、LiMn24、Li
CoO2、LiNiO2、25、Cr25、MnO2、T
iS2、MoS2などの遷移金属の酸化物およびカルコゲ
ン化合物が知られいる。これらは層状またはトンネル構
造を有し、リチウムイオンが出入りできる結晶構造を持
っている。一方、負極活物質としては金属リチウムが多
く検討されてきた。しかしながら、充電時にリチウム表
面に樹枝状にリチウムが析出し、充放電効率の低下また
は正極と接して内部短絡を生じるという問題点を有して
いた。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted. Until now, LiMn 2 O 4 , Li
CoO 2 , LiNiO 2, V 2 O 5 , Cr 2 O 5 , MnO 2 , T
Oxides of transition metals such as iS 2 and MoS 2 and chalcogen compounds are known. These have a layered or tunnel structure, and have a crystal structure through which lithium ions can enter and exit. On the other hand, lithium metal has been widely studied as a negative electrode active material. However, there is a problem in that lithium is deposited in a dendritic manner on the lithium surface during charging, and the charging / discharging efficiency is reduced, or an internal short circuit occurs upon contact with the positive electrode.

【0003】このような問題を解決する手段として、リ
チウムの樹枝状成長を抑制しリチウムを吸蔵・放出する
ことができるリチウム−アルミニウムなどのリチウム合
金を負極を用いる検討がなされている。しかしながら、
リチウム合金を用いた場合、深い充放電を繰り返すと電
極の微細化が生じ、サイクル特性に問題があった。そこ
で、アルミニウムなどにおいてはさらに他の元素を添加
した合金を電極とすることで、電極の微細化を抑制する
提案がある(特開昭62−119856号公報、特開平
4−109562号公報など)。しかしながら、十分な
特性改善がなさなされておらず、現在はこれら負極活物
質よりも容量が小さいが、リチウムを可逆的に吸蔵・放
出でき、サイクル性、安全性に優れた炭素材料を負極に
用いたリチウムイオン電池が実用化されている。
As means for solving such a problem, studies have been made on the use of a negative electrode made of a lithium alloy such as lithium-aluminum which can suppress the dendritic growth of lithium and occlude / release lithium. However,
In the case of using a lithium alloy, if the charge and discharge are repeated deeply, the electrode becomes finer, and there is a problem in the cycle characteristics. Therefore, there is a proposal to suppress the miniaturization of the electrode by using an alloy of aluminum or the like to which another element is added as an electrode (Japanese Patent Application Laid-Open Nos. 62-119856 and 4-109562). . However, the characteristics have not been sufficiently improved, and at present the capacity is smaller than those of these negative electrode active materials, but a carbon material that can store and release lithium reversibly and has excellent cycleability and safety is used for the negative electrode. Lithium-ion batteries have been put to practical use.

【0004】このような中、一層の高容量化を目的に、
負極に例えば結晶質のSnO、SnO2などの酸化物を
用いる提案(特開平7−122274号公報、特開平7
−235293号公報)、さらにSnSiO3やSnS
1-xx3などの非晶質酸化物を負極に用いることで
サイクル特性を改善する提案がなされている(特開平7
−288123号公報)。しかし、未だ十分な特性改善
がなされていない。
Under these circumstances, with the aim of further increasing the capacity,
Proposal of using an oxide such as crystalline SnO or SnO 2 for the negative electrode (JP-A-7-122274, JP-A-7-124274)
-235293), and furthermore, SnSiO 3 and SnS.
A proposal has been made to improve the cycle characteristics by using an amorphous oxide such as i 1-x P x O 3 for the negative electrode (Japanese Unexamined Patent Publication No.
-288123). However, the characteristics have not yet been sufficiently improved.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、充放電サイクル特性に優れた非水電解質二次
電池用負極を提供することを目的とする。本発明は、充
電によりリチウムを吸蔵しデンドライトを発生せず、電
気容量が大きく、かつサイクル寿命の優れた負極を提供
するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a negative electrode for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics in view of the above prior art. An object of the present invention is to provide a negative electrode which occludes lithium upon charging, does not generate dendrites, has a large electric capacity, and has an excellent cycle life.

【0006】[0006]

【課題を解決するための手段】本発明の非水電解質二次
電池は、充放電可能な正極、非水電解質、および充放電
可能な負極を具備し、前記負極の活物質に、少なくとも
所定のタングステン酸、モリブデン酸、チタン酸
、クロム酸、ジルコン酸、ニオブ酸、タンタル
およびマンガン酸からなる群より選択される少
なくとも一つ金属塩または半金属塩を用いる。前記金
属塩または半金属塩の金属または半金属MIは、Al、
Si、Pb、Cd、Bi、Sb、In、Zn、Mg、G
e、およびGaからなる群より選択される少なくとも一
つであり、前記タングステン酸塩は、MIWO 4 および
MIWO 6 よりなる群から選択される少なくとも1種で
あり、前記モリブデン酸塩は、MIMoO 4 およびMI
Mo 4 6 よりなる群から選択される少なくとも1種であ
り、前記チタン酸塩は、MITiO 4 、MITiO 5 およ
びMITi 3 7 よりなる群から選択される少なくとも1
種であり、前記ジルコン酸塩は、MIZrO 4 であり、
前記クロム酸塩が、MICrO 4 、MICr 2 4 および
MICrO 6 よりなる群から選択される少なくとも1種
であり、前記ニオブ酸塩は、MINbO 4 、MINb 2
6 およびMINb 2 7 よりなる群から選択される少なく
とも1種であり、前記タンタル酸塩は、MITaO 4
よびMITa 2 7 よりなる群から選択される少なくとも
1種であり、前記マンガン酸塩は、MIMnO 4 および
MIMnO 6 よりなる群から選択される少なくとも1種
である。 本発明は、また、充放電可能な正極、非水電解
質、および充放電可能な負極を具備し、前記負極の活物
質が、Al 3 (WO 4 3 、AlWO 4 、Si(WO 4 2
PbWO 4 、CdWO 4 、Bi 2 WO 6 、Bi 2 (W
4 3 、In 2 (WO 4 3 、In(WO 3 3 、Sb 2 (W
4 3 、ZnWO 4 、Ga 2 (WO 4 3 、Ga 2 (WO 3
3 、Ge(WO 4 2 、Ge(WO 3 2 、MgWO 4 、Al
2 (MoO 4 3 、SiMo 2 8 、PbMoO 4 、CdMo
4 、Bi 2 (MoO 4 3 、In 2 (MoO 4 3 、InM
4 6 、Sb 2 (MoO 4 3 、ZnMoO 4 、Ga 2 (M
oO 4 3 、GeMoO 4 、MgMoO 4 、AlTiO 5
SiTiO 8 、PbTi 3 7 、Bi 2 TiO 5 、Bi 2 Ti
2 7 、In 2 TiO 5 、Sb 3 Ti 2 10 、GaTiO 5
MgTiO 4 Al 2 (ZrO 3 3 、SiZrO 4 、Bi 2
(ZrO 3 3 、In 2 (ZrO 3 3 、Sb 2 (Zr
3 3 、Ga 2 (ZrO 3 3 、Si(CrO 4 2 、Pb 3
CrO 6 、PbCrO 4 、CdCr 2 4 、Bi 2 CrO 6
In 2 CrO 6 、Sb 2 (CrO 4 3 、ZnCrO 4 、Ga
2 (CrO 4 3 、GeCrO 4 、MgCr 2 7 、AlNb
4 、SiNbO 4 、PbNb 2 6 、Pb 2 Nb 2 7 、C
2 Nb 2 7 、BiNbO 4 、InNbO 4 、SbNb
4 、ZnNb 2 6 、GaNbO 4 、GeNb 2 6 、Mg
Nb 2 6 、AlTaO 4 、SiTa 2 7 、Pb 2 Ta
2 7 、Cd 2 Ta 2 7 、BiTaO 4 、InTaO 4 、S
bTaO 4 、Zn 2 Ta 2 7 、GaTaO 4 、Ge 2 Ta 2
7 、Mg 2 Ta 2 7 、Al 2 MnO 6 、Bi 2 MnO 4 、B
2 MnO 6 、In 2 MnO 4 、In 2 MnO 6 、Sb 2 Mn
4 、Sb 2 MnO 6 およびGa 2 MnO 4 よりなる群から
選択される少なくとも1種であることを特徴とする非水
電解質二次電池に関する。前記の負極は、活物質、炭素
材、および結着剤の混合物から構成するのが好ましい。
SUMMARY OF THE INVENTION The non-aqueous electrolyte secondary of the present invention
The battery has a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a charge / discharge
A possible negative electrode, and the active material of the negative electrode has at least
PredeterminedTungstic acidsalt, Molybdic acidsalt, Titanic acid
salt, Chromic acidsalt, Zirconic acidsalt, Niobatesalt,tantalum
acidsalt,andManganic acidsaltSelected from the group consisting of
At least oneofUse metal salts or metalloid salts.The gold
The metal or metalloid MI of the genus salt or metalloid salt is Al,
Si, Pb, Cd, Bi, Sb, In, Zn, Mg, G
at least one selected from the group consisting of e and Ga
Wherein the tungstate is MIWO Four and
MIWO 6 At least one selected from the group consisting of
And the molybdate is MIMoO Four And MI
Mo Four O 6 At least one selected from the group consisting of
And the titanate is MITiO Four , MITiO Five And
And MITi Three O 7 At least one selected from the group consisting of
The zirconate salt is MIZrO. Four And
The chromate is MICrO. Four , MICr Two O Four and
MICrO 6 At least one selected from the group consisting of
Wherein the niobate is MINbO Four , MINb Two O
6 And MINb Two O 7 Less selected from the group consisting of
And the tantalum salt is MITaO Four You
And MITa Two O 7 At least selected from the group consisting of
One kind, wherein the manganate is MIMnO Four and
MIMnO 6 At least one selected from the group consisting of
It is. The present invention also provides a chargeable / dischargeable positive electrode,
Comprising a negative electrode capable of charging and discharging, and an active material of the negative electrode.
Quality is Al Three (WO Four ) Three , AlWO Four , Si (WO Four ) Two ,
PbWO Four , CdWO Four , Bi Two WO 6 , Bi Two (W
O Four ) Three , In Two (WO Four ) Three , In (WO Three ) Three , Sb Two (W
O Four ) Three , ZnWO Four , Ga Two (WO Four ) Three , Ga Two (WO Three )
Three , Ge (WO Four ) Two , Ge (WO Three ) Two , MgWO Four , Al
Two (MoO Four ) Three , SiMo Two O 8 , PbMoO Four , CdMo
O Four , Bi Two (MoO Four ) Three , In Two (MoO Four ) Three , InM
o Four O 6 , Sb Two (MoO Four ) Three , ZnMoO Four , Ga Two (M
oO Four ) Three , GeMoO Four , MgMoO Four , AlTiO Five ,
SiTiO 8 , PbTi Three O 7 , Bi Two TiO Five , Bi Two Ti
Two O 7 , In Two TiO Five , Sb Three Ti Two O Ten , GaTiO Five ,
MgTiO Four , Al Two (ZrO Three ) Three , SiZrO Four , Bi Two
(ZrO Three ) Three , In Two (ZrO Three ) Three , Sb Two (Zr
O Three ) Three , Ga Two (ZrO Three ) Three , Si (CrO Four ) Two , Pb Three
CrO 6 , PbCrO Four , CdCr Two O Four , Bi Two CrO 6 ,
In Two CrO 6 , Sb Two (CrO Four ) Three , ZnCrO Four , Ga
Two (CrO Four ) Three , GeCrO Four , MgCr Two O 7 , AlNb
O Four , SiNbO Four , PbNb Two O 6 , Pb Two Nb Two O 7 , C
d Two Nb Two O 7 , BiNbO Four , InNbO Four , SbNb
O Four , ZnNb Two O 6 , GaNbO Four , GeNb Two O 6 , Mg
Nb Two O 6 , AlTaO Four , SiTa Two O 7 , Pb Two Ta
Two O 7 , Cd Two Ta Two O 7 , BiTaO Four , InTaO Four , S
bTaO Four , Zn Two Ta Two O 7 , GaTaO Four , Ge Two Ta Two
O 7 , Mg Two Ta Two O 7 , Al Two MnO 6 , Bi Two MnO Four , B
i Two MnO 6 , In Two MnO Four , In Two MnO 6 , Sb Two Mn
O Four , Sb Two MnO 6 And Ga Two MnO Four From the group consisting of
Non-aqueous water characterized by at least one selected from
The present invention relates to an electrolyte secondary battery.The negative electrode comprises an active material, carbon
It is preferred to be composed of a mixture of a material and a binder.

【0007】[0007]

【発明の実施の形態】本発明は、各種金属塩を負極活物
質として検討した結果、金属あるいは半金属が、酸素と
タングステンからなるタングステン酸、酸素とモリブデ
ンからなるモリブデン酸、酸素とチタンからなるチタン
酸、酸素とクロムからなるクロム酸、酸素とジルコニウ
ムからなるジルコン酸、酸素とニオブからなるニオブ
酸、酸素とタンタルからなるタンタル酸、酸素とマンガ
ンからなるマンガン酸などの、遷移金属酸塩で囲まれた
結晶構造を有する化合物が高容量でサイクル特性に優れ
ていることを見いだしたことに基づいている。現在のと
ころ、これら金属塩のLiの収納サイトの詳細は不明で
あるが、本発明のタングステン酸、モリブデン酸、チタ
ン酸、クロム酸、ジルコン酸、ニオブ酸、タンタル酸、
マンガン酸などの遷移金属を含む金属塩あるいは半金属
塩の結晶構造が、多量のLiの出入りを伴う負極活物質
の膨張収縮に対して有効に作用するものと考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a result of studying various metal salts as a negative electrode active material, the metal or metalloid is composed of tungstic acid composed of oxygen and tungsten, molybdic acid composed of oxygen and molybdenum, and oxygen and titanium. titanate, oxygen and chromic acid of chromium, zirconate consisting of oxygen and zirconium, niobium acid consisting of oxygen and niobium tantalate consisting of oxygen and tantalum, which a manganate consisting of oxygen and manganese, a transition metal salt It is based on the finding that a compound having an enclosed crystal structure has high capacity and excellent cycle characteristics. At present, details of the storage site for Li of these metal salts are unknown, but the tungstic acid, molybdic acid, titanic acid, chromic acid, zirconic acid, niobic acid, tantalic acid,
The crystal structure of the metal salt or metalloid salt include any transition metal manganese acid, believed to act effectively against expansion and contraction of the negative electrode active material with the entry and exit of large amounts of Li.

【0008】本発明の負極活物質である前記の金属塩あ
るいは半金属塩の金属あるいは半金属は、Al、Si、
Pb、Cd、Bi、In、Zn、Mg、Ge、およびG
aからなる群より選択される少なくとも1つであること
が好ましい。中でもPb、In、Biが特に好ましい。
金属タングステン酸塩あるいは半金属タングステン酸塩
としては、MIWO4 、MIWO6などが挙げられる。た
だし、MIは前記の金属あるいは半金属を表す。金属モ
リブデン酸塩あるいは半金属モリブデン酸塩としては、
MIMoO4、MIMo46などが挙げられる。
The metal or metalloid of the metal salt or metalloid salt which is the negative electrode active material of the present invention is Al , Si,
Pb, Cd, Bi, In, Zn, Mg, Ge, and G
It is preferably at least one selected from the group consisting of a. P b in the middle, an In, Bi is particularly preferred.
Examples of the metal tungstate or metalloid tungstate include MIWO 4 and MIWO 6 . Here, MI represents the above-mentioned metal or metalloid. As metal molybdate or metalloid molybdate,
MIMoO 4 , MIMo 4 O 6 and the like.

【0009】金属チタン酸塩あるいは半金属チタン酸塩
としては、MITiO4、MITiO5、MITi37
どが挙げられる。金属ジルコン酸塩あるいは半金属ジル
コン酸塩としては、MIZrO4などが挙げられる。金
属クロム酸あるいは半金属クロム酸塩としては、MIC
rO4、MICr24、MICrO6などが挙げられる。
金属ニオブ酸塩、半金属ニオブ酸塩としては、MINb
4、MINb26、MINb27などが挙げられる。
[0009] As the metal titanate or a semi-metal titanates, M ITiO 4, MITiO 5, MITi 3 like O 7 and the like. Examples of the metal zirconate or metalloid zirconate include M IZrO 4 . Metal chromic acid or as the metalloid chromate, M IC
rO 4 , MICr 2 O 4 , MICrO 6 and the like.
As metal niobate and metalloid niobate, MINb
O 4 , MINb 2 O 6 , MINb 2 O 7 and the like.

【0010】金属タンタル酸塩あるいは半金属タンタル
酸塩としては、MITaO4、MITa27などが挙げ
られる。金属マンガン酸塩あるいは半金属マンガン酸塩
としては、MIMnO4、MIMnO6などが挙げられ
中でも金属クロム酸塩あるいは半金属クロム酸塩、
金属タングステン酸塩あるいは半金属タングステン酸
塩、金属モリブデン酸塩あるいは半金属モリブデン酸
、金属マンガン酸塩あるいは半金属マンガン酸塩、金
属タンタル酸塩あるいは半金属タンタル酸塩が好まし
い。金属クロム酸塩、半金属クロム酸塩、金属タングス
テン酸塩、半金属タングステン酸塩、金属モリブデン酸
塩、半金属モリブデン酸塩は、サイクル特性改善に特に
好ましい。
Examples of the metal tantalate or the metalloid tantalate include MITaO 4 and MITa 2 O 7 . Metal manganate or metalloid manganese salt, and the like M IMnO 4, MIMnO 6. Among them, metal chromates or metalloid chromates,
Metal tungstates or metalloid tungstates, metal molybdates or metalloid molybdates, metals manganese salt or a metalloid manganate, metal tantalate or metalloid tantalate salts. Metal chromates, metalloid chromates, metal tungstates, metalloid tungstates, metal molybdates, metalloid molybdates are particularly preferred for improving cycle characteristics.

【0011】[0011]

【実施例】以下、本発明の具体的実施例について説明す
る。 《実施例1》まず、表1に示す各種金属タングステン酸
あるいは半金属タングステン酸塩の負極活物質としての
電極特性を検討するため、図1に示す試験セルを作製し
た。活物質粉末6gに、導電剤としての黒鉛粉末3g、
および結着剤としてのポリエチレン粉末1gを混合して
合剤とした。この合剤0.1gを直径17.5mmの円
盤に加圧成型して電極1とした。この電極1をケース2
の中央に配置し、その上に微孔性ポリプロピレンフィル
ムからなるセパレータ3を設置した。1モル/lの過塩
素酸リチウム(LiClO4)を溶解したエチレンカー
ボネートとジメトキシエタンの体積比1:1の混合溶液
からなる非水電解液をセパレータ上に注液した。この上
に、内側に直径17.5mmの金属リチウム4を張り付
け、外周部にポリプロピレン製ガスケット5を付けた封
口板6を組み合わせ、封口して試験セルとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. Example 1 First, a test cell shown in FIG. 1 was prepared in order to examine the electrode characteristics of various metal tungstic acids or metalloid tungstates shown in Table 1 as a negative electrode active material. 6 g of active material powder, 3 g of graphite powder as a conductive agent,
And 1 g of polyethylene powder as a binder was mixed to prepare a mixture. 0.1 g of this mixture was pressed into a disk having a diameter of 17.5 mm to obtain an electrode 1. This electrode 1 is in case 2
And a separator 3 made of a microporous polypropylene film was placed thereon. A non-aqueous electrolyte composed of a mixed solution of ethylene carbonate and dimethoxyethane at a volume ratio of 1: 1 in which 1 mol / l of lithium perchlorate (LiClO 4 ) was dissolved was injected onto the separator. A metal lithium 4 having a diameter of 17.5 mm was adhered on the inner side, and a sealing plate 6 having a gasket 5 made of polypropylene on the outer periphery was combined and sealed to form a test cell.

【0012】この試験セルについて、2mAの定電流
で、電極がLi対極に対して0Vになるまでカソード分
極(活物質電極を負極として見る場合には充電に相当)
し、次に電極が1.5Vになるまでアノード分極(放電
に相当)した。このカソード分極、アノード分極を繰り
返して電極特性を評価した。また、比較例として、表2
に示すこれまでに報告されている結晶質のWO2、Fe2
3、SnO、PbO、SnSの酸化物あるいは硫化
物、ならびに非晶質のSnSiO3、SnSi0.80.2
3.1の金属酸化物についても、実施例と同様に試験セ
ルを作製し、同様にして電極特性を評価した。表1に1
サイクル目の活物質1g当たりの放電容量を示す。本実
施例のセルは、いずれも充放電することがわかった。こ
の試験セルの10サイクル目のカソード分極が終了した
後、試験セルを分解したところ、いずれも金属Liの析
出は認められなかった。以上より本発明の活物質を用い
る電極は、カソード分極でLiが電極中に吸蔵され、ア
ノード分極で吸蔵されたLiが放出され、金属Liの析
出はないことがわかった。
[0013] Cathode polarization of this test cell at a constant current of 2 mA until the electrode becomes 0 V with respect to the Li counter electrode (corresponding to charging when the active material electrode is viewed as a negative electrode).
Then, anodic polarization (corresponding to discharge) was performed until the voltage of the electrode reached 1.5 V. The electrode characteristics were evaluated by repeating this cathodic polarization and anodic polarization. Table 2 shows a comparative example.
Crystalline WO 2 , Fe 2
Oxide or sulfide of O 3 , SnO, PbO, SnS, and amorphous SnSiO 3 , SnSi 0.8 P 0.2
Regarding the O3.1 metal oxide, a test cell was prepared in the same manner as in the example, and the electrode characteristics were evaluated in the same manner. Table 1
The discharge capacity per 1 g of the active material at the cycle is shown. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. From the above, it was found that in the electrode using the active material of the present invention, Li was occluded in the electrode by the cathodic polarization, and the occluded Li was released by the anodic polarization, and no metal Li was deposited.

【0013】次に、表1に示す各種金属タングステン酸
あるいは半金属タングステン酸塩を負極に用いた電池の
サイクル特性を評価するため、図2に示す円筒型電池を
作製した。その作製手順は次の通りである。正極活物質
であるLiMn1.8Co0.24は、Li2CO3とMn3
4とCoCO3とを所定のモル比で混合し、900℃で加
熱することによって合成した。さらに、これを100メ
ッシュ以下に分級したものを正極活物質とした。正極活
物質100gに、導電剤としての炭素粉末10g、結着
剤としてのポリ4フッ化エチレンの水性ディスパージョ
ンを固形分で8g、および純水を加えてペースト状にし
た。このペーストをチタンの芯材に塗布し、乾燥後、圧
延して正極を得た。一方、負極活物質である各種金属タ
ングステン酸あるいは半金属タングステン酸塩と導電剤
としての黒鉛粉末と、結着剤としてのテフロンバインダ
−を重量比で60:30:10の割合で混合し、石油系
溶剤を用いてペ−スト状とした。このペーストを銅の芯
材に塗布した後、100℃で乾燥し、負極板とした。セ
パレ−タには微孔性ポリプロピレンフィルムを用いた。
Next, in order to evaluate the cycle characteristics of the batteries using various metal tungstic acids or metalloid tungstates shown in Table 1 for the negative electrode, cylindrical batteries shown in FIG. 2 were prepared. The manufacturing procedure is as follows. LiMn 1.8 Co 0.2 O 4 , which is a positive electrode active material, is composed of Li 2 CO 3 and Mn 3 O
4 and CoCO 3 were mixed at a predetermined molar ratio and heated at 900 ° C. to synthesize. Furthermore, what classified this into 100 mesh or less was used as the positive electrode active material. To 100 g of the positive electrode active material, 10 g of carbon powder as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder in solid content, and pure water were added to form a paste. This paste was applied to a titanium core material, dried, and then rolled to obtain a positive electrode. On the other hand, various metal tungstic acids or metalloid tungstates, which are negative electrode active materials, graphite powder as a conductive agent, and Teflon binder as a binder are mixed at a weight ratio of 60:30:10. A paste was formed using a system solvent. After this paste was applied to a copper core material, it was dried at 100 ° C. to obtain a negative electrode plate. A microporous polypropylene film was used as a separator.

【0014】スポット溶接にて取り付けた芯材と同材質
の正極リード14を有する正極板11と、負極リード1
5を有する負極板12、および両電極板間に介在させた
極板より幅の広い帯状の多孔性ポリプロピレン製セパレ
ータ13を渦巻状に捲回して極板群を構成した。この極
板群を上下それぞれにポリプロピレン製の絶縁板16、
17を配して電槽18に挿入し、電槽18の上部に段部
を形成させた後、非水電解液として、1モル/lの過塩
素酸リチウムを溶解したエチレンカーボネートとジメト
キシエタンの等比体積混合溶液を注入し、正極端子20
を有する封口板19で密閉した。これら電池は、試験温
度30℃で、充放電電流1mA/cm2、充放電電圧範
囲4.3V〜2.6Vで充放電サイクル試験を行い、2
サイクル目の放電容量に対する100サイクル目の放電
容量維持率を表1に示す。
A positive electrode plate 11 having a positive electrode lead 14 made of the same material as the core material attached by spot welding;
5 and a strip of porous polypropylene separator 13 having a width wider than the electrode plate interposed between the two electrode plates was spirally wound to form an electrode plate group. This electrode plate group is placed on the upper and lower sides of a polypropylene insulating plate 16,
17 and inserted into a battery case 18 to form a step on the upper portion of the battery case 18, and then a non-aqueous electrolytic solution of ethylene carbonate and dimethoxyethane in which 1 mol / l lithium perchlorate is dissolved. An isobaric mixed solution is injected, and the positive electrode terminal 20
And sealed with a sealing plate 19 having These batteries were subjected to a charge / discharge cycle test at a test temperature of 30 ° C., a charge / discharge current of 1 mA / cm 2 , and a charge / discharge voltage range of 4.3 V to 2.6 V.
Table 1 shows the discharge capacity retention ratio at the 100th cycle with respect to the discharge capacity at the cycle.

【0015】[0015]

【表1】 [Table 1]

【0016】また、比較例として、表2に示すこれまで
に報告されている結晶質のWO2、Fe23、SnO、
PbO、SnSの酸化物あるいは硫化物、非晶質のSn
SiO3、SnSi0.80.23.1の金属酸化物について
も、上記と同様に試験電池を作製し、同様にサイクル特
性を評価した。表2に結果を示す。本実施例の金属タン
グステン酸塩あるいは半金属タングステン酸塩を負極活
物質に用いた電池は、従来の金属酸化物に比べてサイク
ル特性が向上した。
Further, as comparative examples, crystalline WO 2 , Fe 2 O 3 , SnO, and
PbO, SnS oxide or sulfide, amorphous Sn
With respect to the metal oxides of SiO 3 and SnSi 0.8 P 0.2 O 3.1 , a test battery was prepared in the same manner as described above, and the cycle characteristics were similarly evaluated. Table 2 shows the results. The battery using the metal tungstate or metalloid tungstate of the present example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0017】[0017]

【表2】 [Table 2]

【0018】《実施例2》本実施例では、表3に示す各
種金属モリブデン酸あるいは半金属モリブデン酸塩の負
極活物質としての電極特性を検討するため、実施例1と
同様の試験セルを作製し、同様の条件で評価した。表3
に結果を示す。本実施例のセルは、いずれも充放電する
ことがわかった。この試験セルの10サイクル目のカソ
ード分極が終了した後、試験セルを分解したところ、い
ずれも金属Liの析出は認められなかった。以上より本
発明の活物質を用いた電極は、カソード分極でLiが電
極中に吸蔵され、アノード分極で吸蔵されたLiが放出
され、金属Liの析出はないことがわかった。次に、各
種金属モリブデン酸あるいは半金属モリブデン酸塩を負
極に用いた電池のサイクル特性を評価するため、実施例
1と同様の円筒型電池を作製し、同様の条件で評価し
た。表3に結果を示す。本実施例の金属モリブデン酸あ
るいは半金属モリブデン酸塩を負極活物質に用いた電池
は、従来の金属酸化物に比べてサイクル特性が向上し
た。
Example 2 In this example, a test cell similar to that of Example 1 was prepared in order to examine the electrode characteristics of various metal molybdates or metalloid molybdates shown in Table 3 as a negative electrode active material. And evaluated under the same conditions. Table 3
Shows the results. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. From the above, it was found that in the electrode using the active material of the present invention, Li was occluded in the electrode by cathodic polarization, and the occluded Li was released by anodic polarization, and no metal Li was deposited. Next, in order to evaluate the cycle characteristics of a battery using various types of metal molybdic acid or metalloid molybdate for the negative electrode, a cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions. Table 3 shows the results. The battery using the metal molybdate or metalloid molybdate of the present example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0019】[0019]

【表3】 [Table 3]

【0020】《実施例3》本実施例では、表4に示す各
種金属チタン酸塩あるいは半金属チタン酸塩の負極活物
質としての電極特性を検討するため、実施例1と同様の
試験セルを作製し、同様の条件で評価した。本実施例の
セルは、いずれも充放電することがわかった。この試験
セルの10サイクル目のカソード分極が終了した後、試
験セルを分解したところ、いずれも金属Liの析出は認
められなかった。以上より本実施例の活物質を用いた電
極は、カソード分極でLiが電極中に吸蔵され、アノー
ド分極で吸蔵されたLiが放出され、金属Liの析出は
ないことがわかった。次に、各種金属チタン酸塩あるい
は半金属チタン酸塩を負極に用いた電池のサイクル特性
を評価するため、実施例1と同様の円筒型電池を作製
し、同様の条件で評価した。表4に結果を示す。本実施
例の金属ほう酸塩を負極活物質に用いた電池は、従来の
金属酸化物に比べてサイクル特性が向上した。中でも水
素を含有した金属ほう酸水素塩は、一層サイクル特性が
向上した。
Example 3 In this example, a test cell similar to that of Example 1 was used to examine the electrode characteristics of various metal titanates or metalloid titanates shown in Table 4 as a negative electrode active material. It was fabricated and evaluated under the same conditions. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. From the above, it was found that, in the electrode using the active material of the present example, Li was occluded in the electrode by cathodic polarization, the occluded Li was released by anodic polarization, and no metal Li was deposited. Next, in order to evaluate the cycle characteristics of a battery using various metal titanates or metalloid titanates for the negative electrode, a cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions. Table 4 shows the results. The battery using the metal borate of this example as the negative electrode active material had improved cycle characteristics as compared with the conventional metal oxide. Above all, the hydrogen-containing metal borate salt containing hydrogen had further improved cycle characteristics.

【0021】[0021]

【表4】 [Table 4]

【0022】《実施例4》本実施例では、表5に示す各
種金属ジルコン酸塩あるいは半金属ジルコン酸塩の負極
活物質としての電極特性を検討するため、実施例1と同
様の試験セルを作製し、同様の条件で評価した。本実施
例のセルは、いずれも充放電することがわかった。この
試験セルの10サイクル目のカソード分極が終了した
後、試験セルを分解したところ、いずれも金属Liの析
出は認められなかった。以上より本実施例の活物質を用
いた電極は、カソード分極でLiが電極中に吸蔵され、
アノード分極で吸蔵されたLiが放出され、金属Liの
析出はないことがわかった。次に、各種金属ジルコン酸
塩あるいは半金属ジルコン酸塩を負極に用いた電池のサ
イクル特性を評価するため、実施例1と同様の円筒型電
池を作製し、同様の条件で評価し、表5に結果を示す。
本実施例の金属ジルコン酸塩あるいは半金属ジルコン酸
塩を負極活物質に用いた電池は、従来の金属酸化物に比
べてサイクル特性が向上した。
Example 4 In this example, a test cell similar to that of Example 1 was used to study the electrode characteristics of various metal zirconates or metalloid zirconates shown in Table 5 as a negative electrode active material. It was fabricated and evaluated under the same conditions. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. As described above, in the electrode using the active material of this example, Li was occluded in the electrode by cathodic polarization,
It was found that the occluded Li was released by the anodic polarization, and no metal Li was deposited. Next, in order to evaluate the cycle characteristics of a battery using various metal zirconates or metalloid zirconates for the negative electrode, a cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions. Shows the results.
The battery using the metal zirconate or the metalloid zirconate of this example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0023】[0023]

【表5】 [Table 5]

【0024】《参考》 本参考例では、表6に示す各種金属バナジン酸塩あるい
は半金属バナジン酸塩の負極活物質としての電極特性を
検討するため、実施例1と同様の試験セルを作製し、同
様の条件で評価した。本参考例のセルは、いずれも充放
電することがわかった。この試験セルの10サイクル目
のカソード分極が終了した後、試験セルを分解したとこ
ろ、いずれも金属Liの析出は認められなかった。以上
より本参考例の活物質を用いた電極は、カソード分極で
Liが電極中に吸蔵され、アノード分極で吸蔵されたL
iが放出され、金属Liの析出はないことがわかった。
次に、各種金属バナジン酸塩あるいは半金属バナジン酸
塩を負極に用いた電池のサイクル特性を評価するため、
実施例1と同様の円筒型電池を作製し、同様の条件で評
価し、表6に示す。本参考例の金属バナジン酸塩あるい
は半金属バナジン酸塩を負極活物質に用いた電池は、従
来の金属酸化物に比べてサイクル特性が向上した。
Reference Example 1 In this reference example, a test cell similar to that of Example 1 was used to examine the electrode characteristics of various metal vanadates or metalloid vanadates shown in Table 6 as a negative electrode active material. It was fabricated and evaluated under the same conditions. It was found that all of the cells of this reference example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. As described above, in the electrode using the active material of the present reference example, Li was occluded in the electrode by cathodic polarization, and L was occluded by anodic polarization.
It was found that i was released and no metal Li was deposited.
Next, in order to evaluate the cycle characteristics of batteries using various metal vanadates or metalloid vanadates for the negative electrode,
A cylindrical battery similar to that of Example 1 was manufactured, and evaluated under the same conditions. The battery using the metal vanadate or the metalloid vanadate of this reference example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0025】[0025]

【表6】 [Table 6]

【0026】《実施例》 本実施例では、表7に示す各種金属クロム酸塩あるいは
半金属クロム酸塩の負極活物質としての電極特性を検討
するため、実施例1と同様の試験セルを作製し、同様の
条件で評価した。本実施例のセルは、いずれも充放電す
ることがわかった。この試験セルの10サイクル目のカ
ソード分極が終了した後、試験セルを分解したところ、
いずれも金属Liの析出は認められなかった。以上より
本実施例の活物質を用いた電極は、カソード分極でLi
が電極中に吸蔵され、アノード分極で吸蔵されたLiが
放出され、金属Liの析出はないことがわかった。次
に、各種金属クロム酸塩あるいは半金属クロム酸塩を負
極に用いた電池のサイクル特性を評価するため、実施例
1と同様の円筒型電池を作製し、同様の条件で評価し
た。その結果を表7に示す。本実施例の金属クロム酸塩
あるいは半金属クロム酸塩を負極活物質に用いた電池
は、従来の金属酸化物に比べてサイクル特性が向上し
た。
Example 5 In this example, a test cell similar to that of Example 1 was used to examine the electrode characteristics of various metal chromates or metalloid chromates shown in Table 7 as a negative electrode active material. It was fabricated and evaluated under the same conditions. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled.
No precipitation of metallic Li was observed in any case. From the above, the electrode using the active material of the present example was Li-cathode-polarized.
Was occluded in the electrode, the occluded Li was released by anodic polarization, and no metal Li was deposited. Next, in order to evaluate the cycle characteristics of a battery using various metal chromates or metalloid chromates for the negative electrode, a cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions. Table 7 shows the results. The battery using the metal chromate or the metalloid chromate of this example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0027】[0027]

【表7】 [Table 7]

【0028】《実施例》 本実施例では、表8に示す各種金属ニオブ酸塩あるいは
半金属ニオブ酸塩の負極活物質としての電極特性を検討
するため、実施例1と同様の試験セルを作製し、同様の
条件で評価した。本実施例のセルは、いずれも充放電す
ることがわかった。この試験セルの10サイクル目のカ
ソード分極が終了した後、試験セルを分解したところ、
いずれも金属Liの析出は認められなかった。以上より
本実施例の活物質を用いた電極は、カソード分極でLi
が電極中に吸蔵され、アノード分極で吸蔵されたLiが
放出され、金属Liの析出はないことがわかった。次
に、各種金属ニオブ酸塩あるいは半金属ニオブ酸塩を負
極に用いた電池のサイクル特性を評価するため、実施例
1と同様の円筒型電池を作製し、同様の条件で評価し
。その結果を表8に示す。本実施例の金属ニオブ酸塩
あるいは半金属ニオブ酸塩を負極活物質に用いた電池
は、従来の金属酸化物に比べてサイクル特性が向上し
た。
Example 6 In this example, a test cell similar to that of Example 1 was used to study the electrode characteristics of various metal niobates or metalloid niobates shown in Table 8 as a negative electrode active material. It was fabricated and evaluated under the same conditions. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled.
No precipitation of metallic Li was observed in any case. From the above, the electrode using the active material of the present example was Li-cathode-polarized.
Was occluded in the electrode, the occluded Li was released by anodic polarization, and no metal Li was deposited. Next, in order to evaluate the cycle characteristics of a battery using various metal niobates or metalloid niobates for the negative electrode, a cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions.
Was . Table 8 shows the results. The battery using the metal niobate or the metalloid niobate of this example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0029】[0029]

【表8】 [Table 8]

【0030】《実施例》 本実施例では、表9に示す各種金属タンタル酸塩あるい
は半金属タンタル酸塩の負極活物質としての電極特性を
検討するため、実施例1と同様の試験セルを作製し、同
様の条件で評価した。本実施例のセルは、いずれも充放
電することがわかった。この試験セルの10サイクル目
のカソード分極が終了した後、試験セルを分解したとこ
ろ、いずれも金属Liの析出は認められなかった。以上
より本実施例の活物質を用いた電極は、カソード分極で
Liが電極中に吸蔵され、アノード分極で吸蔵されたL
iが放出され、金属Liの析出はないことがわかった。
次に、各種金属タンタル酸塩あるいは半金属タンタル酸
塩を負極に用いた電池のサイクル特性を評価するため、
実施例1と同様の円筒型電池を作製し、同様の条件で評
価した。その結果を表9に示す。本実施例の金属タンタ
ル酸塩あるいは半金属タンタル酸塩を負極活物質に用い
た電池は、従来の金属酸化物に比べてサイクル特性が向
上した。
Example 7 In this example, a test cell similar to that in Example 1 was used in order to examine the electrode characteristics of various metal tantalate or metalloid tantalate shown in Table 9 as a negative electrode active material. It was fabricated and evaluated under the same conditions. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. As described above, in the electrode using the active material of the present example, Li was occluded in the electrode by the cathodic polarization, and L was occluded by the anodic polarization.
It was found that i was released and no metal Li was deposited.
Next, in order to evaluate the cycle characteristics of batteries using various metal tantalate or metalloid tantalate for the negative electrode,
A cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions. Table 9 shows the results. The battery using the metal tantalate or the metalloid tantalate of the present example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0031】[0031]

【表9】 [Table 9]

【0032】《実施例》 本実施例では、表10に示す各種金属マンガン酸塩ある
いは半金属マンガン酸塩の負極活物質としての電極特性
を検討するため、実施例1と同様の試験セルを作製し、
同様の条件で評価した。本実施例のセルは、いずれも充
放電することがわかった。この試験セルの10サイクル
目のカソード分極が終了した後、試験セルを分解したと
ころ、いずれも金属Liの析出は認められなかった。以
上より本実施例の活物質を用いた電極は、カソード分極
でLiが電極中に吸蔵され、アノード分極で吸蔵された
Liが放出され、金属Liの析出はないことがわかっ
た。次に、各種金属マンガン酸塩あるいは半金属マンガ
ン酸塩を負極に用いた電池のサイクル特性を評価するた
め、実施例1と同様の円筒型電池を作製し、同様の条件
で評価した。その結果を表10に示す。本実施例の金属
タンタル酸塩あるいは半金属タンタル酸塩を負極活物質
に用いた電池は、従来の金属酸化物に比べてサイクル特
性が向上した。
Example 8 In this example, a test cell similar to that of Example 1 was used to examine the electrode characteristics of various metal manganates or semimetal manganates shown in Table 10 as a negative electrode active material. Made,
Evaluation was performed under the same conditions. It was found that all the cells of this example were charged and discharged. After the cathode polarization in the 10th cycle of this test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. From the above, it was found that, in the electrode using the active material of the present example, Li was occluded in the electrode by cathodic polarization, the occluded Li was released by anodic polarization, and no metal Li was deposited. Next, in order to evaluate the cycle characteristics of a battery using various metal manganates or semimetal manganates for the negative electrode, a cylindrical battery similar to that of Example 1 was manufactured and evaluated under the same conditions. Table 10 shows the results. The battery using the metal tantalate or the metalloid tantalate of the present example as the negative electrode active material has improved cycle characteristics as compared with the conventional metal oxide.

【0033】[0033]

【表10】 [Table 10]

【0034】なお、実施例では正極としてLiMn1.8
Co0.24を用いた例を説明したが、LiMn24、
iCoO2 、LiNiO2などをはじめとする充放電に
対して可逆性を有する正極と組み合わせた場合にも同様
の効果が得られることはいうまでもない。
In the examples, LiMn 1.8
An example using Co 0.2 O 4 has been described, but LiMn 2 O 4, L
Needless to say, the same effect can be obtained also when the positive electrode having reversibility with respect to charge / discharge such as iCoO 2 and LiNiO 2 is used.

【0035】[0035]

【発明の効果】本発明によれば、高容量で、サイクル寿
命の極めて優れた信頼性の高い非水電解質二次電池を与
える負極を提供することが可能となる。
According to the present invention, it is possible to provide a negative electrode which provides a highly reliable non-aqueous electrolyte secondary battery having a high capacity and an extremely excellent cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の活物質の電極特性を評価するための試
験セルの断面概略図である。
FIG. 1 is a schematic cross-sectional view of a test cell for evaluating electrode characteristics of an active material of the present invention.

【図2】本発明の負極を用いた円筒型電池の縦断面図で
ある。
FIG. 2 is a longitudinal sectional view of a cylindrical battery using the negative electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 試験電極 2 ケース 3 セパレータ 4 金属Li 5 ガスケット 6 封口板 11 正極 12 本発明負極 13 セパレータ 14 正極リード板 15 負極リード板 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 1 Test electrode 2 cases 3 separator 4 Metal Li 5 Gasket 6 sealing plate 11 Positive electrode 12. Negative electrode of the present invention 13 Separator 14 Positive lead plate 15 Negative electrode lead plate 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−338325(JP,A) 特開 平6−275269(JP,A) 特開 平7−29607(JP,A) 特開 平6−60867(JP,A) 特開 平8−241707(JP,A) 特開 平6−302320(JP,A) 特開 平6−215770(JP,A) 特開 平4−264370(JP,A) 特開 平7−85878(JP,A) 特開 平6−275263(JP,A) 特開 平7−302587(JP,A) 特開 平10−69922(JP,A) 特開 平10−27627(JP,A) 特開 平10−27586(JP,A) 特開 平9−320587(JP,A) 特開 平9−309728(JP,A) 特開 平9−309727(JP,A) 特開 平9−306491(JP,A) 特開 平9−199179(JP,A) 特表2000−503622(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku               1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric               Kiki Sangyo Co., Ltd.                (56) References JP-A-6-338325 (JP, A)                 JP-A-6-275269 (JP, A)                 JP-A-7-29607 (JP, A)                 JP-A-6-60867 (JP, A)                 JP-A-8-241707 (JP, A)                 JP-A-6-302320 (JP, A)                 JP-A-6-215770 (JP, A)                 JP-A-4-264370 (JP, A)                 JP-A-7-85878 (JP, A)                 JP-A-6-275263 (JP, A)                 JP-A-7-302587 (JP, A)                 JP-A-10-69922 (JP, A)                 JP-A-10-27627 (JP, A)                 JP-A-10-27586 (JP, A)                 JP-A-9-320587 (JP, A)                 JP-A-9-309728 (JP, A)                 JP-A-9-309727 (JP, A)                 JP-A-9-306491 (JP, A)                 JP-A-9-199179 (JP, A)                 Special table 2000-503622 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記負極の活物質がタン
グステン酸、モリブデン酸、チタン酸、クロム酸
、ジルコン酸、ニオブ酸、タンタル酸および
マンガン酸からなる群より選択される少なくとも一つ
金属塩または半金属塩を含み、 前記金属塩または半金属塩の金属または半金属MIが、
Al、Si、Pb、Cd、Bi、Sb、In、Zn、M
g、Ge、およびGaからなる群より選択される少なく
とも一つであり、 前記タングステン酸塩が、MIWO 4 およびMIWO 6
りなる群から選択される少なくとも1種であり、 前記モリブデン酸塩が、MIMoO 4 およびMIMo 4
6 よりなる群から選択される少なくとも1種であり、 前記チタン酸塩が、MITiO 4 、MITiO 5 およびM
ITi 3 7 よりなる群から選択される少なくとも1種で
あり、 前記ジルコン酸塩が、MIZrO 4 であり、 前記クロム酸塩が、MICrO 4 、MICr 2 4 および
MICrO 6 よりなる群から選択される少なくとも1種
であり、 前記ニオブ酸塩が、MINbO 4 、MINb 2 6 および
MINb 2 7 よりなる群から選択される少なくとも1種
であり、 前記タンタル酸塩が、MITaO 4 およびMITa 2 7
よりなる群から選択される少なくとも1種であり、 前記マンガン酸塩が、MIMnO 4 およびMIMnO 6
りなる群から選択される少なくとも1種であ ることを特
徴とする非水電解質二次電池。
1. A rechargeable positive electrode, a nonaqueous electrolyte, and includes a chargeable and dischargeable negative electrode, the active material of the negative electrode, tungstic acid salts, molybdate salts, titanates, chromic acid
Least one salt, zirconate salts, niobate, is selected from the group consisting of tantalum salts and <br/> manganate,
By weight of metal salt or metalloid salt, metal or metalloid MI of the metal salt or metalloid salt,
Al, Si, Pb, Cd, Bi, Sb, In, Zn, M
g selected from the group consisting of g, Ge, and Ga
And tungstate is the same as MIWO 4 and MIWO 6 .
At least one member selected from the group consisting of MIMoO 4 and MIMo 4 O
6 , wherein said titanate is MITiO 4 , MITiO 5 and M
At least one selected from the group consisting of ITi 3 O 7
The zirconate salt is MIZrO 4 and the chromate salt is MICrO 4 , MICr 2 O 4 and
At least one selected from the group consisting of MICrO 6
, And the said niobate salt, MINbO 4, MINb 2 O 6 and
At least one selected from the group consisting of MINb 2 O 7
, And the said tantalate salt, MITaO 4 and mita 2 O 7
It is at least one selected from the group consisting of, wherein the manganese salt is, MIMnO 4 and MIMnO 6
A non-aqueous electrolyte secondary battery, which is at least one selected from the group consisting of :
【請求項2】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記負極の活物質が、Al
3 (WO 4 3 、AlWO 4 、Si(WO 4 2 、PbW
4 、CdWO 4 、Bi 2 WO 6 、Bi 2 (WO 4 3 、In 2
(WO 4 3 、In(WO 3 3 、Sb 2 (WO 4 3 、Zn
WO 4 、Ga 2 (WO 4 3 、Ga 2 (WO 3 3 、Ge(W
4 2 、Ge(WO 3 2 、MgWO 4 、Al 2 (Mo
4 3 、SiMo 2 8 、PbMoO 4 、CdMoO 4 、B
2 (MoO 4 3 、In 2 (MoO 4 3 、I nMo 4 6
Sb 2 (MoO 4 3 、ZnMoO 4 、Ga 2 (Mo
4 3 、GeMoO 4 、MgMoO 4 、AlTiO 5 、S
iTiO 8 、PbTi 3 7 、Bi 2 TiO 5 、Bi 2 Ti 2
7 、In 2 TiO 5 、Sb 3 Ti 2 10 、GaTiO 5 、M
gTiO 4 、Al 2 (ZrO 3 3 、SiZrO 4 、Bi
2 (ZrO 3 3 、In 2 (ZrO 3 3 、Sb 2 (ZrO 3
3 、Ga 2 (ZrO 3 3 、Si(CrO 4 2 、Pb 3 Cr
6 、PbCrO 4 、CdCr 2 4 、Bi 2 CrO 6 、In
2 CrO 6 、Sb 2 (CrO 4 3 、ZnCrO 4 、Ga
2 (CrO 4 3 、GeCrO 4 、MgCr 2 7 、AlNb
4 、SiNbO 4 、PbNb 2 6 、Pb 2 Nb 2 7 、C
2 Nb 2 7 、BiNbO 4 、InNbO 4 、SbNb
4 、ZnNb 2 6 、GaNbO 4 、GeNb 2 6 、Mg
Nb 2 6 、AlTaO 4 、SiTa 2 7 、Pb 2 Ta
2 7 、Cd 2 Ta 2 7 、BiTaO 4 、InTaO 4 、S
bTaO 4 、Zn 2 Ta 2 7 、GaTaO 4 、Ge 2 Ta 2
7 、Mg 2 Ta 2 7 、Al 2 MnO 6 、Bi 2 MnO 4 、B
2 MnO 6 、In 2 MnO 4 、In 2 MnO 6 、Sb 2 Mn
4 、Sb 2 MnO 6 およびGa 2 MnO 4 よりなる群から
選択される少なくとも1種であることを特徴とする非水
電解質二次電池。
(2)A chargeable and dischargeable positive electrode, a non-aqueous electrolyte, and
A negative electrode capable of charging and discharging, wherein the active material of the negative electrode is Al
Three (WO Four ) Three , AlWO Four , Si (WO Four ) Two , PbW
O Four , CdWO Four , Bi Two WO 6 , Bi Two (WO Four ) Three , In Two
(WO Four ) Three , In (WO Three ) Three , Sb Two (WO Four ) Three , Zn
WO Four , Ga Two (WO Four ) Three , Ga Two (WO Three ) Three , Ge (W
O Four ) Two , Ge (WO Three ) Two , MgWO Four , Al Two (Mo
O Four ) Three , SiMo Two O 8 , PbMoO Four , CdMoO Four , B
i Two (MoO Four ) Three , In Two (MoO Four ) Three , I nMo Four O 6 ,
Sb Two (MoO Four ) Three , ZnMoO Four , Ga Two (Mo
O Four ) Three , GeMoO Four , MgMoO Four , AlTiO Five , S
iTiO 8 , PbTi Three O 7 , Bi Two TiO Five , Bi Two Ti Two
O 7 , In Two TiO Five , Sb Three Ti Two O Ten , GaTiO Five , M
gTiO Four , Al Two (ZrO Three ) Three , SiZrO Four , Bi
Two (ZrO Three ) Three , In Two (ZrO Three ) Three , Sb Two (ZrO Three )
Three , Ga Two (ZrO Three ) Three , Si (CrO Four ) Two , Pb Three Cr
O 6 , PbCrO Four , CdCr Two O Four , Bi Two CrO 6 , In
Two CrO 6 , Sb Two (CrO Four ) Three , ZnCrO Four , Ga
Two (CrO Four ) Three , GeCrO Four , MgCr Two O 7 , AlNb
O Four , SiNbO Four , PbNb Two O 6 , Pb Two Nb Two O 7 , C
d Two Nb Two O 7 , BiNbO Four , InNbO Four , SbNb
O Four , ZnNb Two O 6 , GaNbO Four , GeNb Two O 6 , Mg
Nb Two O 6 , AlTaO Four , SiTa Two O 7 , Pb Two Ta
Two O 7 , Cd Two Ta Two O 7 , BiTaO Four , InTaO Four , S
bTaO Four , Zn Two Ta Two O 7 , GaTaO Four , Ge Two Ta Two
O 7 , Mg Two Ta Two O 7 , Al Two MnO 6 , Bi Two MnO Four , B
i Two MnO 6 , In Two MnO Four , In Two MnO 6 , Sb Two Mn
O Four , Sb Two MnO 6 And Ga Two MnO Four From the group consisting of
Non-aqueous water characterized by at least one selected from
Electrolyte secondary battery.
【請求項3】 前記負極が、さらに、炭素材と結着剤を
含む請求項1または2記載の非水電解質二次電池。
3. The negative electrode further comprises a carbon material and a binder.
The non-aqueous electrolyte secondary battery according to claim 1, comprising:
JP05494797A 1996-12-20 1997-03-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3426901B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP05494797A JP3426901B2 (en) 1997-03-10 1997-03-10 Non-aqueous electrolyte secondary battery
EP97122297A EP0853347B1 (en) 1996-12-20 1997-12-17 Non-aqueous electrolyte secondary battery
DE69707637T DE69707637T2 (en) 1996-12-20 1997-12-17 Secondary battery with non-aqueous electrolyte
US08/993,735 US6124057A (en) 1996-12-20 1997-12-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05494797A JP3426901B2 (en) 1997-03-10 1997-03-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10255796A JPH10255796A (en) 1998-09-25
JP3426901B2 true JP3426901B2 (en) 2003-07-14

Family

ID=12984862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05494797A Expired - Fee Related JP3426901B2 (en) 1996-12-20 1997-03-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3426901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011576A1 (en) * 2016-07-13 2018-01-18 Universitetet I Oslo Electrode material
US11721806B2 (en) 2020-08-28 2023-08-08 Echion Technologies Limited Active electrode material
US11799077B2 (en) 2020-06-03 2023-10-24 Echion Technologies Limited Active electrode material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3390327B2 (en) * 1996-12-20 2003-03-24 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP2002289188A (en) * 2001-03-22 2002-10-04 Yusaku Takita Electrode active material for nonaqueous electrolyte secondary battery, electrode comprising it, and battery
JP4944341B2 (en) * 2002-02-26 2012-05-30 日本電気株式会社 Method for producing negative electrode for lithium ion secondary battery
JP2009099522A (en) * 2007-09-25 2009-05-07 Sanyo Electric Co Ltd Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US9011713B2 (en) * 2011-07-05 2015-04-21 Samsung Sdi Co., Ltd. Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
JP6036769B2 (en) 2014-09-03 2016-11-30 トヨタ自動車株式会社 Negative electrode active material for sodium ion battery and sodium ion battery
CN112573572A (en) * 2020-12-28 2021-03-30 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of magnesium vanadyl acid nano material, product and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011576A1 (en) * 2016-07-13 2018-01-18 Universitetet I Oslo Electrode material
US11799077B2 (en) 2020-06-03 2023-10-24 Echion Technologies Limited Active electrode material
US11721806B2 (en) 2020-08-28 2023-08-08 Echion Technologies Limited Active electrode material
US11973220B2 (en) 2020-08-28 2024-04-30 Echion Technologies Limited Active electrode material

Also Published As

Publication number Publication date
JPH10255796A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
US5418090A (en) Electrodes for rechargeable lithium batteries
EP1347524B1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
KR101253713B1 (en) Positive electrode active material, non-aqueous electrolyte secondary battery and method for manufacturing positive electrode active material
US5591546A (en) Secondary cell
US6534217B2 (en) Positive electrode material and secondary battery using the same
JP2004528691A (en) Improved cathode composition for lithium ion batteries
KR20020025815A (en) Nonaqueous Electrolyte Secondary Battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JPH04267053A (en) Lithium secondary battery
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3277631B2 (en) Electrochemical element
JP3426901B2 (en) Non-aqueous electrolyte secondary battery
JPH08241707A (en) Secondary battery using oxide thin film as negative electrode active material
US6083475A (en) Method for making lithiated metal oxide
JP4191281B2 (en) Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery
JP2007066745A (en) Cathode active material, cathode, and battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPH041994B2 (en)
JPH08306390A (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JP2004200101A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JPH07142054A (en) Nonaqueous or solid electrolyte secondary battery
JPH10112307A (en) Nonaqueous electrolyte secondary battery
JPH0945330A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees