JP4191281B2 - Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery - Google Patents

Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery Download PDF

Info

Publication number
JP4191281B2
JP4191281B2 JP17306498A JP17306498A JP4191281B2 JP 4191281 B2 JP4191281 B2 JP 4191281B2 JP 17306498 A JP17306498 A JP 17306498A JP 17306498 A JP17306498 A JP 17306498A JP 4191281 B2 JP4191281 B2 JP 4191281B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
thin film
copper
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17306498A
Other languages
Japanese (ja)
Other versions
JP2000012089A (en
Inventor
赤木  隆一
徹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17306498A priority Critical patent/JP4191281B2/en
Publication of JP2000012089A publication Critical patent/JP2000012089A/en
Application granted granted Critical
Publication of JP4191281B2 publication Critical patent/JP4191281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高作動電圧、高容量及び良好な充放電サイクル特性を有する主としてケイ化銅を負極活物質とする非水系二次電池に関するものである。
【0002】
【従来の技術】
3V級の電圧を持つ非水系二次電池においては、負極活物質としてリチウム金属、正極活物質としてCo,Mn,Niに代表される遷移金属の酸化物を用いる方法が代表的である。しかし、負極にリチウム金属を用いると充電中にリチウム金属が樹枝状のデンドライトに成長し、内部ショートしたり、そのデンドライトの活性が高く、発火する危険性を持つ。そのため、これに代わる活物質としてリチウムを挿入放出できる焼成炭素質材料負極が実用化されている。しかし、炭素質材料は、体積当りの充放電容量が低いという欠点を持っている。そこで、3〜4V級のさらに高い電圧を持ち、高容量の二次電池を開発するため、より容量の大きい負極活物質が必要とされている。
【0003】
リチウムを挿入放出する負極活物質としては、遷移金属カルコゲン化合物、ルチル構造の遷移金属酸化物、例えば、WO2(米国特許第4198476号公報)、LixFe(Fe2)O4などのスピネル化合物(特開昭58−220362号公報)、電気化学的に合成されたFe23のリチウム化合物(米国特許第4464447号公報)、Fe23のリチウム化合物(特開平3−112070号公報)、Nb25(特開昭62−59412号公報、特開平2−82447号公報)、酸化鉄及び酸化コバルト(FeO,Fe23,Fe34,CoO,Co23,Co34)(特開平3−291862号公報)が知られている。一方、リチウムと合金を形成することが知られているSn,Cd(Proceedings of the Electrochemical Society,87−1,1987),Al(Solid State Ionics,20,1986),Si,Pb,Bi,Sb(Proceedings of the Electrochemical Society,87−1,1987)及びこれらのリチウムとの合金を負極活物質として用いることも検討されている(例えば、特開平7−29602号公報)。
【0004】
【発明が解決しようとする課題】
しかし、上記遷移金属カルコゲン化合物やルチル構造の遷移金属酸化物、スピネル化合物及び遷移金属酸化物の電極電位は、金属リチウムの電極電位に対して貴に大であり、これら負極活物質を負極とし、正極と組み合わせて電池を構成しても、3〜4Vの高電圧が得られないという問題がある。また、Sn,Cd,Al,Si,Pb,Bi,Sb及びこれらのリチウムとの合金は、高電流密度(例えば、1mA/cm2)において容量が小さく、さらに充放電のサイクル寿命が短いという問題がある。また、Siを活物質とした場合、高容量が期待できるが、充放電の繰り返しに伴い、電極の体積が大きく変化するため、電極の割れによる容量の低下や内部短絡が起き易いという問題がある。
【0005】
そこで、本発明は、高電流密度でも、高電圧、高容量で、かつ良好な充放電サイクル特性を有する非水系二次電池を提供することを目的とした。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明は主にケイ化銅からなる負極活物質を用いて電池を構成すれば、上記課題を解決できることを見出して完成されたものである。本発明の非水系二次電池は、主にケイ化銅からなる負極活物質を含む負極と、遷移金属を構成元素として含む金属酸化物からなる正極活物質を含む正極と、リチウムイオン導電性の非水媒体とからなることを特徴とするものである。ケイ化銅を負極活物質に用いることにより、ケイ素を用いた場合に比べ充放電時における負極の体積変化が抑制され、充放電のサイクル特性が向上する。ここで、ケイ化銅とは、ケイ素と銅の化合物であり、CuSi,Cu2Si,Cu3Si,Cu5Si等の組成をいう。また、結晶性でも非晶性でも、特に限定されない。
【0008】
また、ケイ化銅は、例えば、後で述べる真空成膜法で作製したものを用いることができる
【0011】
また、上記負極活物質として、銅基板の表面に真空成膜法により形成されたケイ素薄膜を非酸化雰囲気下で熱処理してなるケイ化銅薄膜を用いても良い。熱処理により、ケイ素薄膜と基板である銅との間の反応が進行し、ケイ化銅の薄膜が形成される。そして銅基板を集電体とすることにより、負極活物質の作製と負極の作製を同時に行うことができる。さらに銅基板との反応により、集電体である銅基板と負極活物質との界面の抵抗が低くなるため、電池の内部抵抗を低減できる。
【0016】
【発明の実施の形態】
発明に用いる負極の製造方法として、蒸着法、スパッタリング法、イオンプレーティング法、CVD法等の真空製膜法と熱処理を組み合わせても良い。真空製膜法を用いる望ましい製造方法としては、例えば、銅基板にスパッタリング法によりケイ素薄膜を製膜後、基板ごと、非酸化雰囲気下で熱処理する方法がある。熱処理温度は、300〜900℃が好ましい。
【0017】
本発明の正極活物質として用いられる正極材料は、従来公知の何れの材料も使用でき、例えば、LixCoO2,LixNiO2,MnO2,LiMnO2,LixMn24,LixMn2-y4,α−V25,TiS2等が挙げられる。
【0018】
本発明に使用されるリチウムイオン導電性の非水媒体としては、有機溶媒にリチウム化合物を溶解させた非水電解液、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させた高分子固体電解質を用いることができる。非水電解液は、有機溶媒と電解質とを適宜組み合わせて調製されるが、これら有機溶媒や電解質はこの種の電池に用いられるものであればいずれも使用可能である。有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタンメチルフォルメイト、ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソフラン、4−メチル−1,3−ジオキソフラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、1,2−ジクロロエタン、4−メチル−2−ペンタノン、1,4−ジオキサン、アニソール、ジグライム、ジメチルホルムアミド、ジメチルスルホキシド等である。これらの溶媒を2種以上併用することもできる。
【0019】
電解質としては、例えばLiClO4,LiAsF6,LiPF6,LiBF4,LiB(C654,LiCl,LiBr,LiI,LiCH3SO3,LiCF3SO3,LiAlCl4等が挙げられ、これらを単独でも、2種以上を併用することもできる。
【0020】
本発明に使用される他の媒体としては、上記の電解質から選ばれる電解質を以下に示す高分子に固溶させたものを用いることができる。例えば、ポリエチレンオキサイドやポリプロピレンオキサイドのようなポリエーテル鎖を有する高分子、ポリエチレンサクシネート、ポリカプロラクタムのようなポリエステル鎖を有する高分子、ポリエチレンイミンのようなポリアミン鎖を有する高分子、ポリアルキレンスルフィドのようなポリスルフィド鎖を有する高分子が挙げられる。
【0021】
また、本発明に使用されるさらに他の媒体としては、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリメタクリル酸メチル等の高分子に上記電解質及び非水電解液を保持させ上記高分子を可塑化させたものを用いることもできる。
【0022】
以下、実施例を用いて本発明をさらに詳細に説明する。
【実施例】
〈実施例1〉
銅基板にスパッタ蒸着装置を用いてケイ素を蒸着した後、基板ごと窒素雰囲気中で800℃で1時間熱処理を行った。熱処理後のX線回折測定から、ケイ素はケイ化銅を形成していることを確認した。
【0023】
正極は次の様にして作製した。炭酸リチウムLi2CO3と炭酸コバルトCoCO3をモル比でLi/Coが1:1となるように、秤量し、イソプロピルアルコールを用いてボールミルで湿式混合した後、溶媒を蒸発させて800℃で1時間仮焼した。仮焼粉を振動ミルで再粉砕した後、800℃で10時間焼成し、LiCoO2の粉末を得た。LiCoO2の粉末100部に導電剤として黒鉛粉末を6部、結着剤としてポリビニリデンジフルオライド8部を溶媒n−メチル−2−ピロリドンに溶解し、攪拌混合したスラリーをアルミニウム箔上に塗布し、140℃で乾燥して溶媒を除去した。乾燥した塗膜は、ロールプレス機で圧着後、所定の大きさに切断して正極とした。
【0024】
電解液はエチレンカーボネートとジメチルカーボネートの体積比1:1混合溶媒にLiPF6を1mol/l溶解したものを用いた。ボタン型電池を作製し、室温で一昼夜放置してエージングした後、200mA/gの電流密度で充放電試験を行った。結果を表1に示す。
【0025】
比較例1
ケイ素粉末と銅粉末をモル比1:2になるように秤量し、振動ミルで乾式混合した後、窒素雰囲気下900℃で10時間焼成した。焼成粉末を結着剤であるポリフッ化ビニリデンとn−メチル−2−ピロリドンとを用いてスラリー状にし、銅箔に塗布後140℃にて乾燥した後、所定の大きさに切り抜きロールプレス機で圧着した。この塗膜を窒素雰囲気下800℃で3時間加熱し、負極として使用した。正極、電解液は実施例1と同様の方法で製造した。以下、実施例1と同様の条件により電池を作製し、充放電試験を行った。結果を表1に示す。
【0026】
〈比較例
黒鉛90部とポリビニリデンジフルオライド10部とをn−メチル−2−ピロリドン中でスラリーとし、銅箔上に塗布乾燥して得られた塗膜を所定の大きさに切り抜き、ロールプレス機で圧着した。これを負極として用いた以外は、実施例1と同様にしてボタン型電池を作製し、充放電試験を行った。結果を表1に示す。
【0027】
【表1】

Figure 0004191281
【0028】
【発明の効果】
本発明においては、主にケイ化銅からなる負極活物質を用いることにより、充放電時においても負極の体積変化を抑制できるため、充放電のサイクル特性が向上した高容量で高作動電圧の非水系二次電池を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery mainly having copper silicide as a negative electrode active material having a high operating voltage, a high capacity, and good charge / discharge cycle characteristics.
[0002]
[Prior art]
In a non-aqueous secondary battery having a voltage of 3V class, a method using a lithium metal as a negative electrode active material and an oxide of a transition metal typified by Co, Mn, Ni as a positive electrode active material is typical. However, when lithium metal is used for the negative electrode, the lithium metal grows into dendritic dendrites during charging, causing an internal short circuit or high activity of the dendrites, and there is a risk of ignition. Therefore, a calcined carbonaceous material negative electrode capable of inserting and releasing lithium as an alternative active material has been put into practical use. However, the carbonaceous material has a drawback of low charge / discharge capacity per volume. Therefore, in order to develop a secondary battery having a higher voltage of 3 to 4 V and a higher capacity, a negative electrode active material having a larger capacity is required.
[0003]
Examples of the negative electrode active material that inserts and releases lithium include transition metal chalcogen compounds, transition metal oxides having a rutile structure, for example, spinel compounds such as WO 2 (US Pat. No. 4,1984,476) and Li x Fe (Fe 2 ) O 4 . (Japanese Patent Laid-Open No. 58-220362), electrochemically synthesized Fe 2 O 3 lithium compound (US Pat. No. 4,464,447), Fe 2 O 3 lithium compound (Japanese Patent Laid-Open No. 3-11070) Nb 2 O 5 (Japanese Patent Laid-Open Nos. 62-59412 and 2-82447), iron oxide and cobalt oxide (FeO, Fe 2 O 3 , Fe 3 O 4 , CoO, Co 2 O 3 , Co 3 O 4 ) (Japanese Patent Laid-Open No. 3-291862) is known. On the other hand, Sn, Cd (Proceedings of the Electrochemical Society, 87-1, 1987), Al (Solid State Ionics, 20, 1986), Si, Pb, Bi, Sb (known to form alloys with lithium) Proceedings of the Electrochemical Society, 87-1, 1987) and the use of these alloys with lithium as negative electrode active materials are also being studied (for example, JP-A-7-29602).
[0004]
[Problems to be solved by the invention]
However, the electrode potential of the transition metal chalcogen compound, the transition metal oxide of the rutile structure, the spinel compound, and the transition metal oxide is extremely large with respect to the electrode potential of metallic lithium, and these negative electrode active materials are used as the negative electrode. Even if the battery is configured in combination with the positive electrode, there is a problem that a high voltage of 3 to 4 V cannot be obtained. In addition, Sn, Cd, Al, Si, Pb, Bi, Sb and their alloys with lithium have a problem that the capacity is small at a high current density (for example, 1 mA / cm 2 ) and the cycle life of charge / discharge is short. There is. In addition, when Si is used as an active material, a high capacity can be expected, but the volume of the electrode changes greatly with repeated charging and discharging, so there is a problem that the capacity is reduced due to electrode cracking and internal short-circuiting easily occurs. .
[0005]
Accordingly, an object of the present invention is to provide a non-aqueous secondary battery having a high voltage, a high capacity, and good charge / discharge cycle characteristics even at a high current density.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has been completed by finding that the above-mentioned problems can be solved by constituting a battery using a negative electrode active material mainly composed of copper silicide. The non-aqueous secondary battery of the present invention includes a negative electrode including a negative electrode active material mainly composed of copper silicide, a positive electrode including a positive electrode active material including a metal oxide including a transition metal as a constituent element, and a lithium ion conductive material. It consists of a non-aqueous medium. By using copper silicide for the negative electrode active material, the volume change of the negative electrode during charging / discharging is suppressed as compared with the case of using silicon, and the charge / discharge cycle characteristics are improved. Here, copper silicide is a compound of silicon and copper and refers to a composition such as CuSi, Cu 2 Si, Cu 3 Si, Cu 5 Si, or the like. Further, it is not particularly limited whether it is crystalline or amorphous.
[0008]
Also, copper silicide, if example embodiment, it is possible to use those produced by a vacuum deposition method described later.
[0011]
Moreover, you may use the copper silicide thin film formed by heat-processing in the non-oxidizing atmosphere the silicon thin film formed by the vacuum film-forming method on the surface of a copper substrate as said negative electrode active material. By the heat treatment, a reaction between the silicon thin film and copper as the substrate proceeds, and a copper silicide thin film is formed. And by making a copper substrate into a collector, preparation of a negative electrode active material and preparation of a negative electrode can be performed simultaneously. Furthermore, the internal resistance of the battery can be reduced because the reaction with the copper substrate lowers the resistance at the interface between the copper substrate that is the current collector and the negative electrode active material.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As a manufacturing method of the negative electrode used in the present invention, a vacuum film forming method such as a vapor deposition method, a sputtering method, an ion plating method, a CVD method and a heat treatment may be combined. As a desirable manufacturing method using the vacuum film forming method, for example, there is a method in which a silicon thin film is formed on a copper substrate by a sputtering method, and then the entire substrate is heat-treated in a non-oxidizing atmosphere. The heat treatment temperature is preferably 300 to 900 ° C.
[0017]
As the positive electrode material used as the positive electrode active material of the present invention, any conventionally known material can be used. For example, Li x CoO 2 , Li x NiO 2 , MnO 2 , LiMnO 2 , Li x Mn 2 O 4 , Li x Mn 2-y O 4 , α-V 2 O 5 , TiS 2 and the like can be mentioned.
[0018]
As the lithium ion conductive non-aqueous medium used in the present invention, a non-aqueous electrolytic solution in which a lithium compound is dissolved in an organic solvent, or an organic solvent in which a lithium compound is dissolved in a polymer or a lithium compound is dissolved in a polymer. A retained polymer solid electrolyte can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. Examples of the organic solvent include propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane methyl formate, butyrolactone, tetrahydrofuran, and 2-methyl. Tetrahydrofuran, 1,3-dioxofuran, 4-methyl-1,3-dioxofuran, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, 4-methyl- 2-pentanone, 1,4-dioxane, anisole, diglyme, dimethylformamide, dimethyl sulfoxide and the like. Two or more of these solvents can be used in combination.
[0019]
Examples of the electrolyte include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiI, LiCH 3 SO 3 , LiCF 3 SO 3 , LiAlCl 4, and the like. Can be used alone or in combination of two or more.
[0020]
As another medium used in the present invention, a medium in which an electrolyte selected from the above electrolytes is dissolved in the following polymer can be used. For example, a polymer having a polyether chain such as polyethylene oxide or polypropylene oxide, a polymer having a polyester chain such as polyethylene succinate or polycaprolactam, a polymer having a polyamine chain such as polyethyleneimine, or a polyalkylene sulfide. Such a polymer having a polysulfide chain is exemplified.
[0021]
Further, other media used in the present invention include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polymethyl methacrylate, and the like. In addition, it is possible to use a non-aqueous electrolytic solution held and plasticized from the above polymer.
[0022]
Hereinafter, the present invention will be described in more detail with reference to examples.
【Example】
<Example 1>
After silicon was deposited on the copper substrate using a sputter deposition apparatus, the substrate was heat treated at 800 ° C. for 1 hour in a nitrogen atmosphere. From the X-ray diffraction measurement after the heat treatment, it was confirmed that silicon formed copper silicide.
[0023]
The positive electrode was produced as follows. Lithium carbonate Li 2 CO 3 and cobalt carbonate CoCO 3 were weighed so that the molar ratio of Li / Co was 1: 1, wet-mixed with a ball mill using isopropyl alcohol, and the solvent was evaporated at 800 ° C. Calcination was performed for 1 hour. The calcined powder was pulverized again with a vibration mill and then calcined at 800 ° C. for 10 hours to obtain LiCoO 2 powder. 100 parts of LiCoO 2 powder, 6 parts of graphite powder as a conductive agent, 8 parts of polyvinylidene difluoride as a binder are dissolved in a solvent n-methyl-2-pyrrolidone, and a slurry obtained by stirring and mixing is applied onto an aluminum foil. And dried at 140 ° C. to remove the solvent. The dried coating film was subjected to pressure bonding with a roll press machine and then cut into a predetermined size to obtain a positive electrode.
[0024]
The electrolytic solution used was a solution of 1 mol / l of LiPF 6 in a 1: 1 mixed solvent of ethylene carbonate and dimethyl carbonate. A button-type battery was prepared and aged at room temperature for a whole day and night, and then a charge / discharge test was performed at a current density of 200 mA / g. The results are shown in Table 1.
[0025]
< Comparative example 1 >
Silicon powder and copper powder were weighed so as to have a molar ratio of 1: 2, were dry mixed by a vibration mill, and then fired at 900 ° C. for 10 hours in a nitrogen atmosphere. The fired powder is made into a slurry using a binder, polyvinylidene fluoride and n-methyl-2-pyrrolidone, applied to a copper foil, dried at 140 ° C., then cut into a predetermined size with a roll press machine. Crimped. This coating film was heated at 800 ° C. for 3 hours under a nitrogen atmosphere and used as a negative electrode. The positive electrode and the electrolytic solution were produced in the same manner as in Example 1. Hereinafter, a battery was produced under the same conditions as in Example 1, and a charge / discharge test was performed. The results are shown in Table 1.
[0026]
<Comparative Example 2 >
90 parts of graphite and 10 parts of polyvinylidene difluoride are made into a slurry in n-methyl-2-pyrrolidone, and a coating film obtained by coating and drying on copper foil is cut out to a predetermined size, and a roll press is used. Crimped. A button type battery was produced in the same manner as in Example 1 except that this was used as the negative electrode, and a charge / discharge test was performed. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004191281
[0028]
【The invention's effect】
In the present invention, by using a negative electrode active material mainly made of copper silicide, the volume change of the negative electrode can be suppressed even during charging and discharging, so that the high-capacity and high operating voltage is improved with improved cycle characteristics of charging and discharging. An aqueous secondary battery can be provided.

Claims (13)

正極と負極とを有する非水系二次電池用の負極活物質であって、集電体である銅基板の表面に形成されたケイ素薄膜の少なくとも一部を前記銅と反応させてケイ化銅薄膜としたことを特徴とする負極活物質。  A negative electrode active material for a non-aqueous secondary battery having a positive electrode and a negative electrode, wherein at least a part of a silicon thin film formed on the surface of a copper substrate as a current collector is reacted with the copper thin film of copper silicide A negative electrode active material characterized by the above. 正極と負極とを有する非水系二次電池用の負極活物質であって、集電体である銅基板の表面に形成されるケイ化銅薄膜を有し、ケイ素を含有することを特徴とする負極活物質。  A negative electrode active material for a non-aqueous secondary battery having a positive electrode and a negative electrode, characterized by having a copper silicide thin film formed on the surface of a copper substrate as a current collector and containing silicon Negative electrode active material. 正極と負極とを有する非水系二次電池用の負極活物質であって、集電体である銅基板上に形成されるケイ化銅薄膜とケイ素を有することを特徴とする負極活物質。  A negative electrode active material for a non-aqueous secondary battery having a positive electrode and a negative electrode, comprising: a copper silicide thin film formed on a copper substrate as a current collector; and silicon. 前記反応を熱処理により進行させることを特徴とする請求項3に記載の負極活物質。  The negative electrode active material according to claim 3, wherein the reaction proceeds by heat treatment. 前記ケイ素薄膜が、銅基板の表面に真空製膜法により形成されたケイ素薄膜であることを特徴とする請求項3または4に記載の非水系二次電池用の負極活物質。  The negative electrode active material for a non-aqueous secondary battery according to claim 3 or 4, wherein the silicon thin film is a silicon thin film formed on a surface of a copper substrate by a vacuum film forming method. 正極と負極とを有する非水系二次電池用の負極であって、集電体である銅基板と、該銅基板の表面に形成されたケイ素薄膜の少なくとも一部を前記銅と反応させてケイ化銅薄膜とした負極活物質から構成されることを特徴とする負極。  A negative electrode for a non-aqueous secondary battery having a positive electrode and a negative electrode, wherein a copper substrate as a current collector and at least a part of a silicon thin film formed on the surface of the copper substrate are reacted with the copper to react with the copper. A negative electrode comprising a negative electrode active material in the form of a copper halide thin film. 正極と負極とを有する非水系二次電池用の負極であって、集電体である銅基板と、該銅基板の表面に形成されたケイ化銅薄膜を有し且つケイ素を含有する負極活物質から構成されることを特徴とする負極。  A negative electrode for a non-aqueous secondary battery having a positive electrode and a negative electrode, comprising a copper substrate as a current collector, a copper silicide thin film formed on the surface of the copper substrate, and containing silicon A negative electrode comprising a substance. 正極と負極とを有する非水系二次電池用の負極であって、集電体である銅基板と、該銅基板上に形成されたケイ化銅薄膜とケイ素を有する負極活物質から構成されることを特徴とする負極。  A negative electrode for a non-aqueous secondary battery having a positive electrode and a negative electrode, comprising a copper substrate as a current collector, a copper silicide thin film formed on the copper substrate, and a negative electrode active material having silicon A negative electrode characterized by that. 前記反応を熱処理により進行させることを特徴とする請求項8に記載の負極。  The negative electrode according to claim 8, wherein the reaction proceeds by heat treatment. 前記ケイ素薄膜が、銅基板の表面に真空製膜法により形成されたケイ素薄膜であることを特徴とする請求項8または9に記載の負極。  The negative electrode according to claim 8 or 9, wherein the silicon thin film is a silicon thin film formed on a surface of a copper substrate by a vacuum film forming method. 表面にケイ素薄膜を有する銅基板を熱処理することを特徴とする負極の製造方法。  A method for producing a negative electrode, comprising: heat treating a copper substrate having a silicon thin film on a surface thereof. 前記表面にケイ素薄膜を有する銅基板を、銅基板の表面にケイ素薄膜を真空製膜法により形成することにより製造することを特徴とする請求項11に記載の負極の製造方法。  The method for producing a negative electrode according to claim 11, wherein the copper substrate having a silicon thin film on the surface is produced by forming a silicon thin film on the surface of the copper substrate by a vacuum film-forming method. 請求項1〜5のいずれか一項に記載の負極活物質を含む負極と、遷移金属を構成元素として含む金属酸化物からなる正極活物質を含む正極と、リチウムイオン導電性の非水媒体とからなる非水系二次電池。 A negative electrode comprising the negative electrode active material according to any one of claims 1 to 5, a positive electrode comprising a positive electrode active material comprising a metal oxide comprising a transition metal as a constituent element, a lithium ion conductive non-aqueous medium, A non-aqueous secondary battery comprising:
JP17306498A 1998-06-19 1998-06-19 Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery Expired - Lifetime JP4191281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17306498A JP4191281B2 (en) 1998-06-19 1998-06-19 Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17306498A JP4191281B2 (en) 1998-06-19 1998-06-19 Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2000012089A JP2000012089A (en) 2000-01-14
JP4191281B2 true JP4191281B2 (en) 2008-12-03

Family

ID=15953550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17306498A Expired - Lifetime JP4191281B2 (en) 1998-06-19 1998-06-19 Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4191281B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031724A1 (en) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
JP3733070B2 (en) 1999-10-22 2006-01-11 三洋電機株式会社 Electrode for lithium secondary battery and lithium secondary battery
CA2388016C (en) * 1999-10-22 2009-12-22 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
AU7951300A (en) * 1999-10-22 2001-04-30 Sanyo Electric Co., Ltd. Method for producing material for electrode for lithium cell
KR100500344B1 (en) * 1999-10-22 2005-07-12 산요덴키가부시키가이샤 Electrode for lithium cell and lithium secondary cell
WO2001084654A1 (en) 2000-04-26 2001-11-08 Sanyo Electric Co., Ltd. Lithium secondary battery-use electrode and lithium secondary battery
CA2420104C (en) * 2000-09-01 2012-10-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and method for producing the same
JP3895932B2 (en) 2001-01-17 2007-03-22 三洋電機株式会社 Negative electrode for lithium secondary battery and method for producing the same
CN100365849C (en) * 2002-11-29 2008-01-30 三井金属矿业株式会社 Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery
AU2003302519A1 (en) 2002-11-29 2004-06-23 Mitsui Mining And Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
CN100359748C (en) * 2003-06-19 2008-01-02 三洋电机株式会社 Lithium secondary battery and method for producing same
JP4610213B2 (en) * 2003-06-19 2011-01-12 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP2018178153A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING Cu-Si ALLOY PARTICLE, Cu-Si ALLOY PARTICLE, MANUFACTURING METHOD OF Ni-Si ALLOY PARTICLE, Ni-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Ti-Si ALLOY PARTICLE, Ti-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Fe-Si ALLOY PARTICLE, AND Fe-Si ALLOY PARTICLE

Also Published As

Publication number Publication date
JP2000012089A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP4453111B2 (en) Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
EP3609003B1 (en) Positive electrode material, positive electrode, and lithium secondary battery which include spinel-structured lithium manganese-based positive electrode active material
US20240258499A1 (en) Positive Electrode Active Material For Secondary Battery, Method Of Preparing The Same, And Lithium Secondary Battery Including The Same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4749551B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP4191281B2 (en) Negative electrode active material, negative electrode and method for producing the same, and non-aqueous secondary battery
KR101840885B1 (en) Thin film alloy electrodes
JP2003317705A (en) Battery
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP2000348722A (en) Nonaqueous electrolyte battery
US6482546B1 (en) Rechargeable lithium battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP4101927B2 (en) Non-aqueous electrolyte secondary battery
JP2001256978A (en) Positive pole active material for lithium secondary battery and its manufacturing method
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
JP3619702B2 (en) Lithium secondary battery
JP2000058043A (en) Lithium secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JPH056765A (en) Nonaqueous solvent secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term