JP3417297B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3417297B2
JP3417297B2 JP16467998A JP16467998A JP3417297B2 JP 3417297 B2 JP3417297 B2 JP 3417297B2 JP 16467998 A JP16467998 A JP 16467998A JP 16467998 A JP16467998 A JP 16467998A JP 3417297 B2 JP3417297 B2 JP 3417297B2
Authority
JP
Japan
Prior art keywords
diffusion member
substrate
semiconductor device
thermal
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16467998A
Other languages
Japanese (ja)
Other versions
JPH11354687A (en
Inventor
保敏 栗原
恒雄 遠藤
守 飯塚
賢治 小山
利治 新津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16467998A priority Critical patent/JP3417297B2/en
Publication of JPH11354687A publication Critical patent/JPH11354687A/en
Application granted granted Critical
Publication of JP3417297B2 publication Critical patent/JP3417297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂モールド絶縁
型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin mold insulation type semiconductor device.

【0002】[0002]

【従来の技術】従来、半導体素子基体を支持する部材は
非絶縁型半導体装置の一電極を兼ねる場合が多かった。
例えば、パワートランジスタチップを銅ベース上にPb
−Snはんだ材により一体化搭載したパワートランジス
タ装置では、銅ベース(金属支持部材)はトランジスタ
のコレクタ電極と支持部材を兼ねる。このような半導体
装置では、数アンペア以上のコレクタ電流が流れ、トラ
ンジスタチップは発熱する。この発熱に起因する特性の
不安定性や寿命の劣化を避けるため、銅ベースは熱放散
のための部材を兼ねる。また、高耐圧化及び高周波化さ
れ、大電流を流すことの可能な半導体チップを上記銅ベ
ースに直接はんだ付け搭載した場合は、熱放散中継部材
としての銅ベースの役割は一層重要になる。
2. Description of the Related Art Heretofore, a member for supporting a semiconductor element substrate has often served as an electrode of a non-insulating semiconductor device.
For example, a power transistor chip on a copper base with Pb
In a power transistor device integrally mounted with -Sn solder material, the copper base (metal supporting member) serves as the collector electrode and supporting member of the transistor. In such a semiconductor device, a collector current of several amperes or more flows and the transistor chip generates heat. In order to avoid instability of characteristics and deterioration of life due to this heat generation, the copper base also serves as a member for heat dissipation. Further, when a semiconductor chip having a high breakdown voltage and a high frequency and capable of passing a large current is directly soldered and mounted on the copper base, the role of the copper base as a heat dissipation relay member becomes more important.

【0003】また、半導体装置の全ての電極を金属支持
部材から電気的に絶縁し、もって半導体装置の回路適用
上の自由度を増すことのできる絶縁型半導体装置におい
て、全ての電極は絶縁部材により金属支持部材を含む全
てのパッケージ部材から、絶縁されて外部へ引き出され
る。そのために、一対の主電極が回路上の接地電位から
浮いている使用例であっても、電極電位とは無関係にパ
ッケージを接地電位部に固定できるので、半導体装置の
実装が容易になる。
Further, in an insulated semiconductor device in which all the electrodes of the semiconductor device are electrically insulated from the metal supporting member, and thus the degree of freedom in circuit application of the semiconductor device can be increased, all electrodes are made of insulating members. It is insulated and drawn out from all the package members including the metal supporting member. Therefore, even in the use example in which the pair of main electrodes are floated from the ground potential on the circuit, the package can be fixed to the ground potential portion regardless of the electrode potential, so that the semiconductor device can be easily mounted.

【0004】絶縁型半導体装置においても、半導体素子
を安全かつ安定に動作させるためには、半導体装置の動
作時に発生する熱をパッケージの外へ効率良く放散させ
る必要がある。この熱放散は通常、発熱源である半導体
基体からこれと接着された各部材を通じて気中へ熱伝達
させることで達成される。絶縁型半導体装置ではこの熱
伝達経路中に、絶縁体及び半導体基体を接着する部分等
に用いられた接着材層を含む。
Also in the insulated semiconductor device, in order to operate the semiconductor element safely and stably, it is necessary to efficiently dissipate the heat generated during the operation of the semiconductor device to the outside of the package. This heat dissipation is usually achieved by transferring heat from the semiconductor substrate, which is a heat source, to the air through each member bonded thereto. In the insulating semiconductor device, the heat transfer path includes an adhesive material layer used for a portion for adhering the insulator and the semiconductor substrate.

【0005】また、半導体装置を含む回路の扱う電力が
高くなるほど、あるいは要求される信頼性(経時的安定
性,耐湿性,耐熱性等)が高くなるほど、完全な絶縁性
が要求される。ここで言う耐熱性には、半導体装置の周
囲温度が外因により上昇した場合のほか、半導体装置の
扱う電力が大きく、半導体基体で発生する熱が大きくな
った場合の耐熱性も含む。
Further, as the electric power handled by a circuit including a semiconductor device increases, or the required reliability (stability over time, moisture resistance, heat resistance, etc.) increases, complete insulation is required. The heat resistance referred to here includes not only the case where the ambient temperature of the semiconductor device rises due to an external cause but also the case where the electric power handled by the semiconductor device is large and the heat generated in the semiconductor substrate is large.

【0006】一方、混成集積回路装置あるいは半導体モ
ジュール装置では、一般に半導体素子を含むあるまとま
った電気回路が組み込まれるため、その回路の少なくと
も1部とこれらの装置の支持部材あるいは放熱部材等の
金属部とを電気的に絶縁する必要がある。例えば、第1
先行技術例としての風見明による“MIST基板”:工
業材料(Vol.30,No.3),22〜26頁(1983
年)には、両面に薄いアルマイト層(14〜30μm)を
形成したアルミニウム基板(1〜2mm)の一方の面上に、
エポキシ系絶縁樹脂層(28μm)を介して銅箔(35μ
m)を形成した混成集積回路装置用基板が開示されてい
る。また、上記銅箔を選択エッチングして回路配線を施
した上記混成集積回路装置用基板上に、はんだ付けによ
りパワー半導体素子及び受動素子が搭載された混成集積
回路装置が開示されている。
On the other hand, in a hybrid integrated circuit device or a semiconductor module device, since a certain electric circuit including a semiconductor element is generally incorporated, at least a part of the circuit and a metal part such as a supporting member or a heat radiating member of these devices. And must be electrically isolated. For example, the first
"MIST Substrate" by Akira Kazemi as an example of prior art: Industrial Materials (Vol. 30, No. 3), pp. 22-26 (1983)
Years), on one surface of an aluminum substrate (1-2 mm) with thin alumite layers (14-30 μm) formed on both surfaces,
Copper foil (35μ) through the epoxy insulating resin layer (28μm)
A substrate for a hybrid integrated circuit device in which m) is formed is disclosed. Further, there is disclosed a hybrid integrated circuit device in which a power semiconductor element and a passive element are mounted by soldering on the substrate for the hybrid integrated circuit device in which the copper foil is selectively etched to provide circuit wiring.

【0007】第2先行技術例としての特開昭64−5092号
公報には、アルミニウムからなる金属基板上にエポキシ
系絶縁層(20μm以上)を介して、アルミニウム箔と銅
箔(35〜1500μm)を選択形成したハイパワー用回
路基板が開示されている。また、上記回路基板の銅箔上
に、はんだ付けによりパワートランジスタ素子を複数個
搭載した混成集積回路が開示されている。
In Japanese Patent Laid-Open No. 64-5092 as a second prior art example, an aluminum foil and a copper foil (35 to 1500 μm) are provided on a metal substrate made of aluminum via an epoxy type insulating layer (20 μm or more). There is disclosed a high-power circuit board in which the. There is also disclosed a hybrid integrated circuit in which a plurality of power transistor elements are mounted on the copper foil of the circuit board by soldering.

【0008】上記先行技術例1及び2に基づく回路基板
や混成集積回路装置は、量産性に優れるとともに経済的
利点が多く、半導体実装の分野で広く利用されている。
The circuit board and the hybrid integrated circuit device based on the prior art examples 1 and 2 are excellent in mass productivity and have many economical advantages, and are widely used in the field of semiconductor mounting.

【0009】上記先行技術例1及び2に基づく回路基板
や混成集積回路装置は、放熱を促進させるため、通常、
アルミニウムフィン等のヒートシンクへ機械的に取付け
られて使用される。
The circuit board and the hybrid integrated circuit device based on the above-mentioned prior art examples 1 and 2 are usually formed in order to accelerate heat dissipation.
It is used by being mechanically attached to a heat sink such as an aluminum fin.

【0010】一方、第3先行技術例としての特開平8−3
16370 号公報には、金属放熱板上に絶縁基板を固着し、
絶縁基板に設けた導電層上に半導体素子が設けられ、半
導体素子の表面にエポキシ樹脂とシリコーンゲルを順次
被覆してなる半導体装置を開示している。特に、エポキ
シ樹脂は透湿度の低いもので構成しているため、半導体
装置内部への水分の浸入を抑え、電気的特性の劣化を回
避できるようになっている。
On the other hand, JP-A-8-3 as a third prior art example
In the 16370 publication, an insulating substrate is fixed on a metal radiator plate,
A semiconductor device is disclosed in which a semiconductor element is provided on a conductive layer provided on an insulating substrate, and the surface of the semiconductor element is sequentially coated with an epoxy resin and a silicone gel. In particular, since the epoxy resin is made of a material having a low moisture permeability, it is possible to prevent moisture from entering the inside of the semiconductor device and avoid deterioration of electrical characteristics.

【0011】[0011]

【発明が解決しようとする課題】上記先行技術例1及び
2に基づく回路基板や混成集積回路装置の場合は、熱膨
張率の小さい搭載部品、例えば、半導体素子基体:3.
5ppm/℃(Si),チップ抵抗体:7ppm/℃(アルミ
ナ),チップコンデンサ:10ppm/℃(チタン酸バリウ
ム)が、熱膨張率の大きい回路基板(Al:25ppm/
℃)上にPb−Sn系合金材のはんだ付けにより固着さ
れる。はんだ付け部は搭載部品を基板上の所定位置に固
定するとともに、上記半導体装置の配線及び熱放散路の
役割を担う。
In the case of the circuit board and the hybrid integrated circuit device based on the above-mentioned prior art examples 1 and 2, mounted components having a small coefficient of thermal expansion, for example, semiconductor element substrate: 3.
5ppm / ° C (Si), chip resistor: 7ppm / ° C (alumina), chip capacitor: 10ppm / ° C (barium titanate) is a circuit board with a large coefficient of thermal expansion (Al: 25ppm /
C) and is fixed by soldering a Pb-Sn alloy material. The soldering part serves to fix the mounted component at a predetermined position on the board and also to serve as a wiring and a heat dissipation path of the semiconductor device.

【0012】しかしながら、上記半導体装置には稼働時
や休止時に伴う熱ストレスが繰返し印加され、最終的に
はんだ付け部の熱疲労破壊を生ずるに至る。特に、はん
だ材が適切に選択されていない場合や、回路基板に対し
てモールド樹脂の熱膨張率が適切に調整されていない場
合は、両者の接合界面に過大な残留応力が内在すること
となり、これに半導体装置の稼働時の熱応力が重畳され
ると、はんだ付け部の熱疲労破壊が一層加速される。こ
の熱疲労破壊が進むと、断線,熱放散路の遮断等の悪影
響を生ずる。この結果、半導体装置はそ回路機能を失
う。
However, thermal stress is repeatedly applied to the above semiconductor device during operation or at rest, which eventually causes thermal fatigue failure of the soldered portion. In particular, if the solder material is not properly selected, or if the thermal expansion coefficient of the mold resin for the circuit board is not properly adjusted, excessive residual stress will be present at the joint interface between the two, When the thermal stress during the operation of the semiconductor device is superimposed on this, thermal fatigue fracture of the soldered portion is further accelerated. When this thermal fatigue failure progresses, there are adverse effects such as disconnection and interruption of the heat dissipation path. As a result, the semiconductor device loses its circuit function.

【0013】また、上記先行技術例1及び2に基づく回
路基板や混成集積回路装置の場合は、発熱の著しい半導
体素子基体が回路基板上に直接はんだ付け搭載されてお
り、半導体素子基体が放出する熱の効率的な外部放散を
困難にする。この結果、上記装置の放熱性が損ねられ
る。
Further, in the case of the circuit board and the hybrid integrated circuit device based on the above-mentioned prior art examples 1 and 2, the semiconductor element substrate which generates a great amount of heat is directly soldered and mounted on the circuit board, and the semiconductor element substrate emits. Makes efficient external dissipation of heat difficult. As a result, the heat dissipation of the device is impaired.

【0014】一方、先行技術例3の場合は、金属放熱板
に固着した絶縁基板に直接半導体素子が搭載されてい
る。この場合の絶縁基板は恐らくセラミックであって、
半導体素子とセラミック絶縁基板との間の熱膨張率差が
小さく、そして、セラミック絶縁基板の熱伝導率は比較
的高いため、上記先行技術例1及び2で生ずる問題はあ
まり無い。しかしながら、本技術例では高価なセラミッ
ク絶縁基板が必要となるため、経済性の点で不利にな
る。
On the other hand, in the case of the prior art example 3, the semiconductor element is directly mounted on the insulating substrate fixed to the metal radiator plate. The insulating substrate in this case is probably ceramic,
Since the difference in coefficient of thermal expansion between the semiconductor element and the ceramic insulating substrate is small, and the thermal conductivity of the ceramic insulating substrate is relatively high, there are not many problems that occur in the prior art examples 1 and 2. However, this technical example requires an expensive ceramic insulating substrate, which is economically disadvantageous.

【0015】したがって本発明の目的は、上記先行技術
例の欠点を補い、放熱性及びはんだ接続部の信頼性に優
れる樹脂モールド絶縁型半導体装置を提供することにあ
る。
Therefore, an object of the present invention is to provide a resin-molded insulation type semiconductor device which is excellent in heat dissipation and reliability of a solder connection portion, by compensating for the drawbacks of the prior art examples.

【0016】[0016]

【課題を解決するための手段】上記目的を達成する本発
明による半導体装置の特徴は、アルミニウム板の主面に
エポキシ絶縁層を介して形成された銅配線を有する絶縁
基板上に半導体基体が熱拡散部材を介して搭載され、該
半導体基体と該熱拡散部材の間の熱膨張率差が10ppm
/℃ 以下、そして、該熱拡散部材と該絶縁基板の間の
熱膨張率差が18.5ppm/℃ 以下に調整され、該半導体基
体と該熱拡散部材間が90w%以上のSnにSb,A
g,Zn,In,Bi及びCuの群から選択された1種
類以上の金属が添加された合金材によって固着され、該
熱拡散部材と該絶縁基板間がSnを35wt%以上60
wt%以下含有し残部が実質的にPbである合金材によ
って固着され、該半導体基体がエポキシ樹脂とシリコー
ンゲル樹脂によって順次被覆され、該エポキシ樹脂の熱
膨張率が13〜21ppm/℃ に調整されていることにあ
る。
The semiconductor device according to the present invention which achieves the above object is characterized in that a semiconductor substrate is heated on an insulating substrate having a copper wiring formed on the main surface of an aluminum plate via an epoxy insulating layer. Mounted via a diffusion member, the difference in coefficient of thermal expansion between the semiconductor substrate and the thermal diffusion member is 10 ppm.
/ ℃ less, and the thermal expansion coefficient difference between the heat diffusing member and the insulating substrate is adjusted to below 18.5 ppm / ℃, between the semiconductor substrate and the heat diffusion member is a Sn on 9 0w t% or less Sb, A
It is fixed by an alloy material to which one or more metals selected from the group of g, Zn, In, Bi and Cu are added, and Sn between the heat diffusion member and the insulating substrate is 35 wt% or more 60
It is fixed by an alloy material containing less than wt% and the balance is substantially Pb, the semiconductor substrate is sequentially coated with an epoxy resin and a silicone gel resin, and the thermal expansion coefficient of the epoxy resin is adjusted to 13 to 21 ppm / ° C. There is something to do.

【0017】本発明によれば、熱拡散部材の熱吸収性と
伝達性の効果により放熱性の向上が図られる。また、熱
拡散部材の剛性及び熱歪吸収性と、封止材としての樹脂
の熱膨張性の相性が合い、はんだ接続部の信頼性向上が
図られる。
According to the present invention, the heat dissipation property is improved by the effect of the heat absorption property and the transfer property of the heat diffusion member. Further, the rigidity and the thermal strain absorbing property of the heat diffusion member are compatible with the thermal expansion property of the resin as the sealing material, and the reliability of the solder connection portion is improved.

【0018】[0018]

【発明の実施の形態】以上の構成を、図面を用いて説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The above configuration will be described with reference to the drawings.

【0019】図1は、本発明の半導体装置の断面図であ
る。絶縁基板10は、母材であるアルミニウム板1の一
方の主面上にエポキシ絶縁樹脂層2を介して銅配線層3
が選択的に形成されている。絶縁基板10上には、半導
体素子基体21,チップ抵抗22やチップコンデンサ2
3からなる受動素子,端子24とが、Snを主成分とし
これにSb,Ag,Zn,In,Bi及びCuの群から
選択された1種類以上の金属が添加された合金材25,
25′によって固着されている。絶縁基板10と半導体
素子基体21の間には、熱拡散部材27が介装されてい
る。半導体素子基体21と銅配線層3の間には、Alワ
イヤ(直径:300μm)26が超音波ボンディングによ
り配線されている。また、半導体素子基体21と受動素
子の搭載部には、熱膨張率を13〜21ppm/℃ に調整
したエポキシ樹脂31がポッティング法により被覆され
ている。このエポキシ樹脂31は、シリコーンゲル樹脂
32で被覆されている。以上の構成による構造体には、
外囲器を兼ねる樹脂ケース33が設けられている。
FIG. 1 is a sectional view of a semiconductor device of the present invention. The insulating substrate 10 includes a copper wiring layer 3 and an epoxy insulating resin layer 2 on one main surface of an aluminum plate 1 which is a base material.
Are selectively formed. On the insulating substrate 10, the semiconductor element substrate 21, the chip resistor 22 and the chip capacitor 2 are provided.
The passive element composed of 3 and the terminal 24 are alloy materials 25 containing Sn as a main component and one or more kinds of metals selected from the group of Sb, Ag, Zn, In, Bi and Cu added thereto.
It is fixed by 25 '. A heat diffusion member 27 is interposed between the insulating substrate 10 and the semiconductor element base 21. An Al wire (diameter: 300 μm) 26 is wired between the semiconductor element substrate 21 and the copper wiring layer 3 by ultrasonic bonding. Further, the semiconductor element substrate 21 and the mounting portion of the passive element are covered with an epoxy resin 31 having a coefficient of thermal expansion adjusted to 13 to 21 ppm / ° C. by a potting method. The epoxy resin 31 is covered with a silicone gel resin 32. The structure with the above configuration,
A resin case 33 that also serves as an envelope is provided.

【0020】本発明における合金材25は半導体素子基
体21,受動素子,端子24を導電的かつ強固に固着す
るためのものであり、本質的に高い熱疲労破壊耐量を有
している必要がある。図2は合金材の熱疲労破壊耐量を
示す図である。合金材25,25′の熱疲労破壊耐量
を、半導体素子基体21からアルミニウム板1に至る放
熱経路間の熱抵抗の温度サイクル数依存性として表して
いる。ここでは、合金材の本質的耐量を評価するため、
図中に示すように、半導体素子基体21を絶縁基板10
上に直接はんだ付けしている。また、合金材25とし
て、曲線AはSn−5wt%Sb材(合金材A)を、曲線
BはPb−60wt%Sn材(合金材B)を、そして、曲
線CはPb−5wt%Sn材(合金材C)を適用した場合
を示す。合金材Aの場合は、温度サイクル数300回ま
では熱抵抗の変動をほとんど示していない。これに対し
て、合金材B及びCの場合は、50回あたりから変動
(熱抵抗の増大)を生じ始めている。熱抵抗増大は、温
度変化に伴うはんだ層の疲労破壊により、放熱経路が遮
断されることによってもたらされる。
The alloy material 25 in the present invention is for electrically and firmly fixing the semiconductor element base body 21, the passive element, and the terminal 24, and it is necessary to have essentially high thermal fatigue fracture resistance. . FIG. 2 is a diagram showing the thermal fatigue fracture resistance of the alloy material. The thermal fatigue fracture resistance of the alloy materials 25 and 25 'is expressed as the temperature cycle number dependence of the thermal resistance between the heat radiation paths from the semiconductor element base 21 to the aluminum plate 1. Here, in order to evaluate the intrinsic resistance of the alloy material,
As shown in FIG.
Soldered directly on top. As the alloy material 25, the curve A is a Sn-5 wt% Sb material (alloy material A), the curve B is a Pb-60 wt% Sn material (alloy material B), and the curve C is a Pb-5 wt% Sn material. The case where (alloy material C) is applied is shown. In the case of the alloy material A, there is almost no variation in thermal resistance up to 300 temperature cycles. On the other hand, in the case of the alloy materials B and C, fluctuations (increase in thermal resistance) have begun to occur around 50 times. The increase in thermal resistance is brought about by the fact that the heat dissipation path is blocked due to the fatigue breakdown of the solder layer due to the temperature change.

【0021】このように、本発明に係る合金材Aを適用
した場合は、従来のはんだ材(合金材B及びC)を適用
した場合に比べ、優れた熱疲労破壊耐量を示している。
これは、Sn−5wt%Sb材の剛性がPb−60wt
%Sn材やPb−5wt%Sn材より高く、塑性変形しに
くい材料であることに基づく。
As described above, when the alloy material A according to the present invention is applied, the thermal fatigue fracture resistance is superior to that when the conventional solder materials (alloy materials B and C) are applied.
This is because the rigidity of Sn-5 wt% Sb material is Pb-60 wt.
% Sn material and Pb-5 wt% Sn material, and is based on the fact that it is a material that is less likely to undergo plastic deformation.

【0022】合金材AとしてのSn−5wt%Sb材の
代替物としては、例えば、Sn−3.5wt%Ag,S
n−3.5wt%Ag−1.5wt%In,Sn−8.5
wt%Zn−1.5wt%In,Sn−4wt%Ag−
2wt%Zn−2wt%Bi,Sn−4.5wt%C
u,Sn−0.5wt%Cu−3wt%Ag,Sn−2
wt%Sb−0.5wt%Cu−2wt%Ag−2wt
%Zn 等が挙げられる。
As an alternative to the Sn-5 wt% Sb material as the alloy material A, for example, Sn-3.5 wt% Ag, S
n-3.5 wt% Ag-1.5 wt% In, Sn-8.5
wt% Zn-1.5 wt% In, Sn-4 wt% Ag-
2 wt% Zn-2 wt% Bi, Sn-4.5 wt% C
u, Sn-0.5 wt% Cu-3 wt% Ag, Sn-2
wt% Sb-0.5 wt% Cu-2 wt% Ag-2 wt
% Zn etc. are mentioned.

【0023】ここで、合金材Aについて説明する。Here, the alloy material A will be described.

【0024】Sn−Sb系合金材では、250℃以下の
液相線が得られる組成は90wt%Sn以上の範囲であ
る。液相線が高くなると、はんだ付けの処理温度が高く
なる。この場合は、絶縁基板10に形成されて回路の絶
縁を担うエポキシ絶縁樹脂層2が化学的に劣化し、良好
な電気絶縁性が得られなくなる。一般に半導体装置で
は、なるべく低い処理温度で作業できることが望まし
い。この観点からすれば、Sn−Sb系合金材ではんだ
材として適するのは、250℃以下の液相線が得られる
組成は90wt%Sn以上の組成範囲であると言える。
In the Sn-Sb type alloy material, the composition capable of obtaining a liquidus line at 250 ° C. or lower is in the range of 90 wt% Sn or higher. The higher the liquidus, the higher the soldering process temperature. In this case, the epoxy insulating resin layer 2 formed on the insulating substrate 10 and responsible for insulating the circuit is chemically deteriorated, and good electrical insulation cannot be obtained. Generally, in semiconductor devices, it is desirable to be able to work at processing temperatures as low as possible. From this point of view, it can be said that the Sn-Sb-based alloy material is suitable as a solder material in the composition range of 90 wt% Sn or more so that the liquidus of 250 ° C. or less can be obtained.

【0025】しかしながら、Sn含有量が90wt%に
近い組成領域では、Sn−Sb合金融液が全率固溶体的
に固相化した後、Sn−Sb合金結晶の粒界近傍にSb
が多量に含まれた包晶領域を形成しやすい。この包晶領
域は、機械的に脆く展延性に欠ける。このため、大きな
熱応力または熱歪の発生しやすい部分では、Sn−Sb
系合金はんだ材領域でクラック等の機械的破壊を生じや
すい。この結果、半導体装置の回路機能は劣化する。一
方、Sn含有量が90wt%よりも更に高い組成領域で
は、包晶領域の生成が抑制され、はんだ材の展延性も確
保される。この結果、大きな熱応力または熱歪の発生し
やすい部分にあっても、クラック等の機械的破壊を生じ
にくくなり、半導体装置の回路機能は維持される。以上
の観点から選択されるSnの濃度は、望ましくは95w
t%以上の範囲であると言える。後述する各種試験によ
っても、この点が確認されている。
However, in the composition region in which the Sn content is close to 90 wt%, the Sn—Sb alloy financial liquid is solid-solidified as a solid solution, and then Sb is formed in the vicinity of the grain boundary of the Sn—Sb alloy crystal.
It is easy to form a peritectic region containing a large amount of. This peritectic region is mechanically brittle and lacks spreadability. Therefore, Sn-Sb is generated in a portion where large thermal stress or thermal strain is likely to occur.
Mechanical damage such as cracks is likely to occur in the area of the base alloy solder material. As a result, the circuit function of the semiconductor device deteriorates. On the other hand, in a composition region in which the Sn content is higher than 90 wt%, the formation of peritectic regions is suppressed, and the ductility of the solder material is secured. As a result, even in a portion where a large thermal stress or thermal strain is likely to occur, mechanical damage such as cracks is less likely to occur, and the circuit function of the semiconductor device is maintained. The Sn concentration selected from the above viewpoint is preferably 95 w.
It can be said that the range is t% or more. This point was also confirmed by various tests described later.

【0026】また、本発明の半導体装置における合金材
25′のように合金材25との間で温度階層性を設ける
必要がある場合は、上記合金材Aと異なる融点を有し、
しかも優れた耐熱疲労性を有する材料が必要である。こ
のような場合に適合する第2のはんだ材として、Snを
35wt%以上60wt%以下含有し残部が実質的にP
bである合金材、特に好ましくはPb−50wt%Sn
の如き合金材が挙げられる。
When it is necessary to provide a temperature hierarchy with the alloy material 25 like the alloy material 25 'in the semiconductor device of the present invention, it has a melting point different from that of the alloy material A,
Moreover, a material having excellent thermal fatigue resistance is required. As a second solder material suitable for such a case, Sn is contained in an amount of 35 wt% or more and 60 wt% or less and the balance is substantially P
b alloy material, particularly preferably Pb-50 wt% Sn
Alloy materials such as

【0027】本発明では、半導体基体21と熱拡散部材
27の間の熱膨張率差が10ppm/℃以下、そして、熱
拡散部材27と絶縁基板10の間の熱膨張率差が16.
5ppm/℃以下に調整されている。ここで、熱拡散部材
27は、半導体基体21で生ずる熱流を広げて絶縁基板
10へ効率的に伝達すること、及び、半導体基体21と
絶縁基板10間の熱膨張率差を緩和して接続部の信頼性
を維持するためのものである。ここで、熱拡散部材とし
て従来から知られているCu材やMo材を用いた場合
は、十分な接続信頼性を確保することが困難であった。
これに対し、本発明に係る熱膨張率を調整した熱拡散部
材27を用いた場合は、十分な接続信頼性を確保でき
る。この点について、以下に述べる。
In the present invention, the difference in the coefficient of thermal expansion between the semiconductor substrate 21 and the thermal diffusion member 27 is 10 ppm / ° C. or less, and the difference in the coefficient of thermal expansion between the thermal diffusion member 27 and the insulating substrate 10 is 16.
It is adjusted to 5ppm / ℃ or less. Here, the heat diffusion member 27 spreads the heat flow generated in the semiconductor substrate 21 and efficiently transfers it to the insulating substrate 10, and relaxes the difference in the coefficient of thermal expansion between the semiconductor substrate 21 and the insulating substrate 10 to form the connection portion. Is to maintain the reliability of. Here, when a conventionally known Cu material or Mo material is used as the heat diffusion member, it is difficult to secure sufficient connection reliability.
On the other hand, when the thermal diffusion member 27 of which the coefficient of thermal expansion is adjusted according to the present invention is used, sufficient connection reliability can be secured. This point will be described below.

【0028】図3は半導体装置におけるはんだ接続部寿
命の熱拡散部材の熱膨張率依存性を示す。ここで、半導
体装置は図1に示した構成(半導体基体21はSi,絶
縁基板10の母材はアルミニウム板1)のものである。
ただし、熱拡散部材の熱膨張率による影響を明確に読み
取るために、エポキシ樹脂31やシリコーンゲル樹脂3
2は設けていない。また、寿命は熱抵抗が初期値の1.
5 倍に到達した時の温度サイクル数で表す。はんだ接
続部寿命は、熱拡散部材の熱膨張率が大きくなるにつれ
て増大し、10ppm/℃ を越えると低下する傾向を示し
ている。例えば、寿命は熱拡散部材がMo材(5.1ppm
/℃)の場合は約750回、Cu材(16.5ppm/℃)の
場合は約400回と短い。Mo材の場合は熱拡散部材2
7と基板10の間のはんだ層25′の破壊(モードA),
Cu材の場合は半導体基体21と熱拡散部材27の間の
はんだ層25の破壊(モードB)が、それぞれ熱抵抗を高
める支配的要因である。これに対して、Mo材やCu材
の中間の熱膨張率領域の場合はこれらより長い寿命を示
している。この場合の寿命到達後に観測される破壊は、
モードA及びBがともに混在している。熱拡散部材の熱
膨張率を調整することにより、モードAやBの破壊の進
行がそれぞれ抑制され、結果的に両接合部25,25′
の寿命を延ばす効果が得られる。
FIG. 3 shows the coefficient of thermal expansion of the thermal diffusion member of the solder connection life of the semiconductor device. Here, the semiconductor device has the structure shown in FIG. 1 (the semiconductor substrate 21 is Si, and the base material of the insulating substrate 10 is the aluminum plate 1).
However, in order to clearly read the influence of the coefficient of thermal expansion of the heat diffusion member, the epoxy resin 31 or the silicone gel resin 3
2 is not provided. In addition, the thermal resistance has an initial value of 1.
It is represented by the number of temperature cycles when it reaches 5 times. The solder connection life tends to increase as the coefficient of thermal expansion of the heat diffusion member increases, and tends to decrease when it exceeds 10 ppm / ° C. For example, the life of the heat diffusion member is Mo material (5.1 ppm).
In the case of Cu material (16.5 ppm / ° C.), it is as short as about 750 times. Heat diffusion member 2 for Mo material
Of the solder layer 25 'between the substrate 7 and the substrate 10 (mode A),
In the case of Cu material, the destruction (mode B) of the solder layer 25 between the semiconductor substrate 21 and the heat diffusion member 27 is the dominant factor for increasing the thermal resistance. On the other hand, in the case of the thermal expansion coefficient region between the Mo material and the Cu material, the life is longer than these. In this case, the damage observed after reaching the life is
Both modes A and B are mixed. By adjusting the coefficient of thermal expansion of the heat diffusion member, the progress of the destruction of modes A and B is suppressed, respectively, and as a result, both joints 25, 25 '.
The effect of extending the life of is obtained.

【0029】半導体装置の全体としての寿命は、エポキ
シ樹脂31を被覆しない状態では1000回以上である
ことが望ましい。このような観点で選択される熱膨張率
範囲は、6.5〜13.5ppm/℃ である。換言すると、
半導体基体21と熱拡散部材27の間の熱膨張率差が1
0ppm/℃ 以下、そして、熱拡散部材27と絶縁基板1
0の間の熱膨張率差が18.5ppm/℃以下に調整されて
いることが望ましい。
The life of the semiconductor device as a whole is preferably 1000 times or more when the epoxy resin 31 is not covered. The thermal expansion coefficient range selected from this point of view is 6.5 to 13.5 ppm / ° C. In other words,
The difference in the coefficient of thermal expansion between the semiconductor substrate 21 and the heat diffusion member 27 is 1
0ppm / ℃ or less, and the heat diffusion member 27 and the insulating substrate 1
It is desirable that the difference in the coefficient of thermal expansion between 0 is adjusted to 18.5 ppm / ° C or less.

【0030】本発明に係る熱拡散部材27は熱膨張率が
調整されている。図4は熱拡散部材の模式図を示す。
(a)は熱拡散部材の一例を示す断面模式図で、Cu材2
71−インバ材272−Cu材271の3層構造を有す
るものである。所望の熱膨張率及び熱伝導率に応じて、
Cu材271とインバ材272の厚さ比が調整される。
ここで、Cu材271は主として熱伝導性を高める観点
から、そして、インバ材272は熱膨張率を制御する観
点から選択される。インバ材272の代替材としては、
鉄,42アロイ等が選択される。図には示していない
が、熱拡散部材27の表面にNi等のめっきを施してお
くことは好ましいことである。また、(b)は熱拡散部材
の他の一例を示す断面模式図である。これは、(d)の平
面模式図に示すように、交互にストライプ状に接合され
たCu材271とインバ材272からなる平板からな
る。(c)は熱拡散部材の他の一例を示す断面模式図であ
る。これは、(d)及び(e)に示す平面模式図のように、
ストライプ方向を90度回転させて平板を積層、一体化
したものである。平板の積層数は、必要に応じて3層以
上にしてもよい。
The coefficient of thermal expansion of the heat diffusion member 27 according to the present invention is adjusted. FIG. 4 shows a schematic view of the heat diffusion member.
(a) is a schematic cross-sectional view showing an example of the heat diffusion member.
71-invar material 272-Cu material 271 has a three-layer structure. Depending on the desired coefficient of thermal expansion and thermal conductivity,
The thickness ratio of the Cu material 271 and the invar material 272 is adjusted.
Here, the Cu material 271 is selected mainly from the viewpoint of enhancing thermal conductivity, and the invar material 272 is selected from the viewpoint of controlling the coefficient of thermal expansion. As a substitute material for the invar material 272,
Iron, 42 alloy, etc. are selected. Although not shown in the figure, it is preferable that the surface of the heat diffusion member 27 is plated with Ni or the like. Further, (b) is a schematic sectional view showing another example of the heat diffusion member. As shown in the schematic plan view of (d), this is a flat plate composed of a Cu material 271 and an Invar material 272 which are alternately joined in a stripe shape. (c) is a schematic cross-sectional view showing another example of the heat diffusion member. This is as in the schematic plan views shown in (d) and (e),
The flat plate is laminated and integrated by rotating the stripe direction by 90 degrees. The number of stacked flat plates may be three or more as required.

【0031】本発明における熱拡散部材27は、図4で
述べた複合材に限定されるものではない。例えば、Al
やCuマトリックス中にSiC粉末,C粉末,Si粉
末,SiC繊維,C繊維を分散した複合材,Cu粉末と
Mo又はW粉末とを焼結した複合材等も代替材料として
挙げることができる。これらの代替材料は、等方的な物
性を有する。
The heat diffusion member 27 in the present invention is not limited to the composite material described in FIG. For example, Al
Alternatively, SiC powder, C powder, Si powder, SiC fibers, a composite material in which C fibers are dispersed in a Cu matrix, a composite material in which Cu powder and Mo or W powder are sintered, and the like can be cited as alternative materials. These alternative materials have isotropic physical properties.

【0032】ところで、本発明におけるエポキシ樹脂3
1は、搭載部品の機械的保護及び気密封止のための役割
を持つ。したがって、エポキシ樹脂31は基板10との
間の一体化面に過大な内部応力を生じないことが望まし
い。この第1の理由は、基板10上に搭載部品(21,
22,23,24,25,26)がはんだ付け搭載され
ており、これらの部品を固着する合金材25,25′に
過大な内部応力が導入されると、その後の稼働時の温度
変化に起因する応力が重畳されるため、熱疲労破壊を生
じやすくなるためである。第2の理由は、エポキシ樹脂
31は基板10との間の一体化面に過大な内部応力を生
ずると一体化面で剥離を生じ、この界面を通した水分の
浸入により搭載部品が腐食し、半導体装置40の正常な
回路機能を損ねるからである。
Incidentally, the epoxy resin 3 in the present invention
1 plays a role for mechanical protection and hermetic sealing of mounted parts. Therefore, it is desirable that the epoxy resin 31 does not generate an excessive internal stress on the integrated surface with the substrate 10. The first reason is that mounted components (21, 21,
(22, 23, 24, 25, 26) are mounted by soldering, and if excessive internal stress is introduced into the alloy material 25, 25 'that fixes these parts, it will be caused by the temperature change during the subsequent operation. This is because the stress that occurs is superimposed, and thermal fatigue failure is likely to occur. The second reason is that when the epoxy resin 31 causes excessive internal stress on the integrated surface with the substrate 10, peeling occurs on the integrated surface, and the mounting components corrode due to the infiltration of water through this interface, This is because the normal circuit function of the semiconductor device 40 is impaired.

【0033】図5は、本発明による一実施例のエポキシ
樹脂と絶縁基板との一体化物のそり量を示すグラフであ
る。ここで、基板10の寸法は20.5mm×38mm×1.
5mm,エポキシ樹脂31の最大厚さは約2mmである。ま
た、図5の縦軸は基板10の長手方向のそり量であり、
プラスは基板10側に凸形状になり、マイナスはエポキ
シ樹脂31側に凸形状になることを意味する。横軸はエ
ポキシ樹脂31の熱膨張率を表している。
FIG. 5 is a graph showing the amount of warpage of an integrated product of an epoxy resin and an insulating substrate according to one embodiment of the present invention. Here, the size of the substrate 10 is 20.5 mm × 38 mm × 1.
5 mm, the maximum thickness of the epoxy resin 31 is about 2 mm. Further, the vertical axis of FIG. 5 is the warpage amount of the substrate 10 in the longitudinal direction,
A plus sign means a convex shape on the substrate 10 side, and a minus sign means a convex shape on the epoxy resin 31 side. The horizontal axis represents the coefficient of thermal expansion of the epoxy resin 31.

【0034】そり量は、エポキシ樹脂31の熱膨張率が
大きくなるにつれて、プラスの大きな値を示している。
一方、基板10の初期そり量は25μmである。図にお
いて、そり量の点で考察すれば、界面内部応力が導入さ
れないようにするためには、エポキシ樹脂31を設けた
後のそり量を初期そり量に近似(望ましくは±10μm
以内)させる必要がある。このような観点から判断する
とRで示される範囲、すなわちエポキシ樹脂31の熱膨
張率が13〜21ppm/℃ の範囲であることが望まし
い。
The warpage amount shows a positive large value as the coefficient of thermal expansion of the epoxy resin 31 increases.
On the other hand, the initial warpage amount of the substrate 10 is 25 μm. In the figure, considering the amount of warpage, in order to prevent the internal stress from being introduced into the interface, the amount of warpage after providing the epoxy resin 31 is approximated to the initial amount of warpage (preferably ± 10 μm).
Must be within). Judging from this point of view, it is desirable that the range indicated by R, that is, the coefficient of thermal expansion of the epoxy resin 31 is in the range of 13 to 21 ppm / ° C.

【0035】本発明によるシリコーンゲル樹脂32は、
エポキシ樹脂31そのもの、あるいは基板10との間の
一体化面を通して水分が浸入するのを防ぐ役割を有す
る。
The silicone gel resin 32 according to the present invention is
It has a role of preventing moisture from entering through the epoxy resin 31 itself or an integrated surface with the substrate 10.

【0036】(実施例)本発明を実施例により詳細に説
明する。
(Examples) The present invention will be described in detail with reference to Examples.

【0037】本実施例では、発熱素子としてのMOS
FET素子基体及びチップ抵抗体を搭載した半導体装置
について説明する。
In this embodiment, a MOS as a heating element is used.
A semiconductor device equipped with the FET element substrate and the chip resistor will be described.

【0038】絶縁基板10は、図1に示したように、厚
さ1.5mm,面積40.7mm×22mmのアルミニウム板1
の一方の主面上に、厚さ150μmのエポキシ系絶縁樹
脂層2を介して厚さ70μmの銅配線層3が選択的に形
成されている。
The insulating substrate 10 is, as shown in FIG. 1, an aluminum plate 1 having a thickness of 1.5 mm and an area of 40.7 mm × 22 mm.
A copper wiring layer 3 having a thickness of 70 μm is selectively formed on one of the main surfaces via an epoxy insulating resin layer 2 having a thickness of 150 μm.

【0039】MOS FET素子基体(7mm×7mm,4
個)21は、熱拡散部材27を介して銅配線層3上には
んだ付けされている。MOS FET 素子基体21と熱
拡散部材27の間は厚さ70μmのSn−5wt%Sb
はんだ層25、そして、熱拡散部材27と絶縁基板10
の間は厚さ70μmのPb−50wt%Snはんだ層2
5′によりそれぞれ固着されている。熱拡散部材27
(8mm×8mm)は厚さ0.6mmで、Cu材271(厚さ:0.
2mm)−インバ材272(厚さ:0.2mm)−Cu材271
(厚さ:0.2mm)の3層構造を有している。一方、チッ
プ抵抗体(3.2mm×1.6mm,4個)22は、銅配線層3
上にSn−5wt%Sbはんだ層25により導電的に直
接固着されている。
MOS FET element substrate (7 mm × 7 mm, 4
21) are soldered onto the copper wiring layer 3 via the heat diffusion member 27. 70 μm thick Sn-5 wt% Sb is provided between the MOS FET element base 21 and the heat diffusion member 27.
Solder layer 25, and heat diffusion member 27 and insulating substrate 10
70 μm thick Pb-50 wt% Sn solder layer 2 between
They are fixed by 5 '. Heat diffusion member 27
(8 mm x 8 mm) has a thickness of 0.6 mm, and Cu material 271 (thickness: 0.0
2 mm) -Invar material 272 (thickness: 0.2 mm) -Cu material 271
It has a three-layer structure (thickness: 0.2 mm). On the other hand, the chip resistors (3.2 mm × 1.6 mm, 4 pieces) 22 are the copper wiring layers 3
An Sn-5 wt% Sb solder layer 25 is electrically conductively fixed on the top.

【0040】MOS FET素子基体21と銅配線層3
の間には、直径300μm のAlワイヤ26が超音波
ボンディングされている。また、銅配線層3の1部の領
域には、端子24がはんだ層25により導電的に固着さ
れている。絶縁基板10の周囲には、樹脂ケース33が
樹脂接着剤によって取付けられている。
MOS FET element base 21 and copper wiring layer 3
An Al wire 26 having a diameter of 300 μm is ultrasonically bonded between them. Further, the terminal 24 is conductively fixed to the region of the copper wiring layer 3 by the solder layer 25. A resin case 33 is attached around the insulating substrate 10 by a resin adhesive.

【0041】MOS FET 素子基体21,熱拡散部材
27,Alワイヤ26,チップ抵抗体22には、熱膨張
率が16ppm/℃ に調整されたエポキシ樹脂31で被覆
され、エポキシ樹脂31は更にシリコーンゲル樹脂32
で被覆されている。
The MOS FET element substrate 21, the heat diffusion member 27, the Al wire 26, and the chip resistor 22 are covered with an epoxy resin 31 whose thermal expansion coefficient is adjusted to 16 ppm / ° C., and the epoxy resin 31 is further silicone gel. Resin 32
It is covered with.

【0042】このようにして得られた半導体装置は、図
6に示すようにMOS FET 素子21と抵抗体22と
からなる電源回路を構成している。ここで、Alワイヤ
26は、過電流を生じたとき溶断する、ヒューズの役割
を担っている。
The semiconductor device thus obtained constitutes a power supply circuit composed of a MOS FET element 21 and a resistor 22, as shown in FIG. Here, the Al wire 26 plays a role of a fuse that is blown when an overcurrent is generated.

【0043】図7はMOS FET 素子搭載部の熱抵抗
の推移を示すグラフである。図中の曲線Aは本実施例の
半導体装置についてであり、比較例としての曲線B及び
Cはそれぞれ熱拡散部材がCu材及びMo材の場合につ
いて示す。比較例の場合も、はんだ層25,25′の構
成、及び、エポキシ樹脂31やシリコーンゲル樹脂32
の構成は本実施例と同様である。
FIG. 7 is a graph showing changes in the thermal resistance of the MOS FET element mounting portion. Curve A in the figure is for the semiconductor device of this example, and curves B and C as comparative examples are for the case where the heat diffusion member is a Cu material and a Mo material, respectively. Also in the case of the comparative example, the constitution of the solder layers 25 and 25 ', and the epoxy resin 31 and the silicone gel resin 32
The configuration is similar to that of this embodiment.

【0044】曲線Aでは、温度サイクル数2万回までの
試験で、熱抵抗の上昇を示していない。これに対し曲線
B及びCではそれぞれ、2000回及び4000回以降
で熱抵抗の上昇を示している。このように、本実施例の
場合に長い寿命が得られたのは、(1)はんだ層25,2
5′自体が優れた耐熱疲労性を有していることや、(2)
エポキシ樹脂31の熱膨張率が適正に調整されているた
め、基板10との一体化界面やはんだ付け界面の内部応
力を軽減できたことに加えて、(3)熱拡散部材27の熱
膨張率が適切に調整(半導体基体21と熱拡散部材27
の間の熱膨張率差が10ppm/℃ 以下、そして、熱拡散
部材27と絶縁基板10の間の熱膨張率差が16.5ppm
/℃以下に調整)されているため、モードA及びBによ
るはんだ層の破壊があまり進行せず、結果的に両接合部
25,25′の寿命を延ばす効果が得られたことによ
る。
The curve A shows no increase in thermal resistance in the test up to 20,000 temperature cycles. On the other hand, curves B and C show an increase in thermal resistance after 2000 times and 4000 times, respectively. In this way, in the case of this embodiment, the long life is obtained by (1) the solder layers 25, 2
5'has excellent thermal fatigue resistance, and (2)
Since the thermal expansion coefficient of the epoxy resin 31 is properly adjusted, in addition to being able to reduce the internal stress at the integrated interface with the substrate 10 and the soldering interface, (3) the thermal expansion coefficient of the thermal diffusion member 27. Is properly adjusted (semiconductor substrate 21 and heat diffusion member 27
Difference in thermal expansion coefficient between the thermal diffusion member 27 and the insulating substrate 10 is 16.5 ppm or less.
/ ° C. or less), the destruction of the solder layer due to modes A and B does not proceed so much, and as a result, the effect of extending the life of both joints 25 and 25 ′ is obtained.

【0045】一方、曲線B(Cu熱拡散部材)の場合は、
上述した(1)及び(2)の効果が得られているため、寿命
値そのものは図3の場合(約400回)より格段に向上し
ている。しかし、上述の(3)の効果が得られないため、
モードBの破壊(熱拡散部材と絶縁基板の間の破壊)が
早く進行し、寿命値は本実施例の2万回以上を大幅に下
回っている。曲線C(Mo熱拡散部材)の場合も、(1)と
(2)の効果が得られるため寿命値は図3の場合(約75
0回)より向上しているけれども、(3)の効果が得られ
ないためモードAの破壊(半導体基体と熱拡散部材の間
の破壊)が早く進行し、寿命値は本実施例の4万回以上
を大幅に下回っている。
On the other hand, in the case of the curve B (Cu thermal diffusion member),
Since the effects (1) and (2) described above are obtained, the life value itself is significantly improved as compared with the case of FIG. 3 (about 400 times). However, since the effect of (3) above cannot be obtained,
Mode B destruction (destruction between the heat diffusion member and the insulating substrate) progresses quickly, and the life value is significantly shorter than 20,000 times or more in this embodiment. Also in the case of the curve C (Mo heat diffusion member),
Since the effect of (2) is obtained, the life value is as shown in Fig. 3 (about 75
However, since the effect of (3) cannot be obtained, the destruction of mode A (destruction between the semiconductor substrate and the heat diffusion member) progresses quickly, and the life value is 40,000 of this embodiment. It is much less than the number of times.

【0046】[0046]

【表1】 [Table 1]

【0047】表1は各種試験による半導体装置の耐久性
能を示す。この試験に用いられた半導体装置には、熱膨
張率6〜25ppm/℃ のエポキシ樹脂31が適用されて
いる。温度サイクル試験では、半導体装置に−55〜1
50℃の温度変化を与え、はんだ層25、25′の破壊
による回路機能の劣化状況を追跡している。熱膨張率6
〜11ppm/℃の領域及び25ppm/℃の場合では、いず
れも5000回以下の温度サイクルで回路機能の劣化を
生じている。これに対し13〜21ppm/℃ の範囲で
は、いずれの試料も1万回以上の温度サイクルを印加し
ても回路機能の劣化は観測されていない。
Table 1 shows the durability performance of the semiconductor device by various tests. An epoxy resin 31 having a coefficient of thermal expansion of 6 to 25 ppm / ° C. is applied to the semiconductor device used in this test. In the temperature cycle test, the semiconductor device has −55 to 1
A temperature change of 50 ° C. is applied to trace the deterioration of the circuit function due to the destruction of the solder layers 25 and 25 ′. Coefficient of thermal expansion 6
In the range of up to 11 ppm / ° C. and in the case of 25 ppm / ° C., the circuit function is deteriorated by the temperature cycle of 5000 times or less. On the other hand, in the range of 13 to 21 ppm / ° C, no deterioration of the circuit function was observed in any of the samples even after applying the temperature cycle of 10,000 times or more.

【0048】また、高温高湿バイアス試験では、半導体
装置に85℃,85%RHの雰囲気ストレスを与えなが
ら、MOS FET 素子21のソースとドレイン間に6
0Vの直流電圧を印加して、素子21の電気的性能の劣
化状況を追跡している。熱膨張率6〜11ppm/℃の領
域及び25ppm/℃の場合では、いずれも2000h以
下で劣化を生じている。これに対し13〜21ppm/℃
の範囲では、いずれの試料も5000h以上の試験によ
っても劣化は観測されていない。
Further, in the high temperature and high humidity bias test, the semiconductor device is subjected to an atmospheric stress of 85 ° C. and 85% RH, and a 6-bit gap is applied between the source and drain of the MOS FET element 21.
A DC voltage of 0 V is applied to track the deterioration of the electrical performance of the device 21. In the range of the coefficient of thermal expansion of 6 to 11 ppm / ° C. and the case of 25 ppm / ° C., deterioration occurred in 2000 hours or less. On the other hand, 13-21ppm / ℃
In the range of 1, no deterioration was observed in any of the samples by the test for 5000 hours or more.

【0049】以上の各種試験を総合的に評価すると、望
ましいエポキシ樹脂31の熱膨張率は、13〜21ppm
/℃の範囲にあると言える。
When the above various tests are comprehensively evaluated, the desirable coefficient of thermal expansion of the epoxy resin 31 is 13 to 21 ppm.
It can be said that it is in the range of / ° C.

【0050】ところで、本発明は上述の実施例に記載し
た範囲以外にも適用され得る。エポキシ樹脂31は、フ
ィラーとしてSiO2(溶融シリカ、結晶シリカ)やZn
O粉末を添加したフェノール硬化型エポキシ樹脂が用い
られる。この場合、フィラーは50〜90%添加される
が、所望の熱膨張率及びモールド処理温度に応じて、任
意の組成を選ぶことが可能である。また、ゴム変性エポ
キシ樹脂を用いた場合でも、その熱膨張率が13〜21
ppm/℃ の範囲に選択される限り本発明の効果が得られ
る。
By the way, the present invention can be applied to other than the ranges described in the above embodiments. The epoxy resin 31 is a filler such as SiO 2 (fused silica, crystalline silica) or Zn.
A phenol-curable epoxy resin containing O powder is used. In this case, the filler is added in an amount of 50 to 90%, but it is possible to select any composition depending on the desired coefficient of thermal expansion and the molding temperature. Even when a rubber-modified epoxy resin is used, its coefficient of thermal expansion is 13 to 21.
The effects of the present invention can be obtained as long as the range is ppm / ° C.

【0051】半導体素子基体21としてはMOS FE
T素子以外に、IGBT(InsulatedGate Bipolar Trans
istor),トランジスタ,サイリスタ,ダイオード等を適
用することが可能であり、その母材がSi以外の例えば
GaAsやSiCからなる場合でも本発明の効果を享受
できる。
As the semiconductor element substrate 21, MOS FE is used.
In addition to the T element, IGBT (Insulated Gate Bipolar Transistor)
istor), a transistor, a thyristor, a diode, etc. can be applied, and the effect of the present invention can be enjoyed even when the base material is, for example, GaAs or SiC other than Si.

【0052】[0052]

【発明の効果】以上までに説明したように、本発明によ
れば固着部の耐熱疲労性と気密性に優れる半導体装置を
提供できる。
As described above, according to the present invention, it is possible to provide a semiconductor device which is excellent in heat resistance fatigue resistance and airtightness of a fixed portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device of the present invention.

【図2】合金材の熱疲労破壊耐量を示す特性図である。FIG. 2 is a characteristic diagram showing the thermal fatigue fracture resistance of an alloy material.

【図3】半導体装置におけるはんだ接続部寿命の熱拡散
部材の熱膨張率依存性を示す特性図である。
FIG. 3 is a characteristic diagram showing the thermal expansion coefficient dependence of the life of a solder joint in a semiconductor device, of a thermal diffusion member.

【図4】熱拡散部材の模式断面図である。FIG. 4 is a schematic cross-sectional view of a heat diffusion member.

【図5】一実施例のエポキシ樹脂と絶縁基板との一体化
物のそり量を示すグラフである。
FIG. 5 is a graph showing a warp amount of an integrated product of an epoxy resin and an insulating substrate according to an example.

【図6】本発明の半導体装置の電気回路を示す図であ
る。
FIG. 6 is a diagram showing an electric circuit of a semiconductor device of the present invention.

【図7】MOS FET素子搭載部の熱抵抗の推移を示
すグラフである。
FIG. 7 is a graph showing changes in thermal resistance of a MOS FET element mounting portion.

【符号の説明】[Explanation of symbols]

1…アルミニウム板、2…エポキシ絶縁樹脂層、3…銅
配線層、10…絶縁基板、21…半導体素子基体、22
…チップ抵抗、23…チップコンデンサ、24…端子、
25,25′…合金材,はんだ層、26…Alワイヤ、
27…熱拡散部材、31…エポキシ樹脂、32…シリコ
ーンゲル樹脂、271…Cu材、272…インバ材。
DESCRIPTION OF SYMBOLS 1 ... Aluminum plate, 2 ... Epoxy insulating resin layer, 3 ... Copper wiring layer, 10 ... Insulating substrate, 21 ... Semiconductor element base | substrate, 22
… Chip resistance, 23… Chip capacitor, 24… Terminal,
25, 25 '... Alloy material, solder layer, 26 ... Al wire,
27 ... Thermal diffusion member, 31 ... Epoxy resin, 32 ... Silicone gel resin, 271 ... Cu material, 272 ... Invar material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 23/40 (72)発明者 小山 賢治 東京都小平市上水本町五丁目20番1号 株式会社 日立製作所 半導体事業部内 (72)発明者 新津 利治 東京都小平市上水本町五丁目20番1号 株式会社 日立製作所 半導体事業部内 (56)参考文献 特開 平10−135377(JP,A) 特開 昭63−29562(JP,A) 特開 昭59−113649(JP,A) 特開 平10−118783(JP,A) 特開 平7−201895(JP,A) 実開 平2−44339(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 23/29 H01L 21/52 H01L 23/31 H01L 23/36 H01L 23/373 H01L 23/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H01L 23/40 (72) Inventor Kenji Koyama 5-20-1 Kamimizuhonmachi, Kodaira-shi, Tokyo Hitachi Ltd. Semiconductor Division ( 72) Inventor Toshiharu Niitsu 5-20-1, Kamisuimoto-cho, Kodaira-shi, Tokyo Inside Semiconductor Division, Hitachi, Ltd. (56) Reference JP 10-135377 (JP, A) JP 63-29562 (JP) , A) JP 59-113649 (JP, A) JP 10-118783 (JP, A) JP 7-201895 (JP, A) Actual flat 2-44339 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 23/29 H01L 21/52 H01L 23/31 H01L 23/36 H01L 23/373 H01L 23/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミニウム板の主面にエポキシ絶縁層を
介して形成された銅配線を有する絶縁基板上に半導体基
体が熱拡散部材を介して搭載され、該熱拡散部材はCu
材とインバ材の積層構造を有し、該半導体基体と該熱拡
散部材の間の熱膨張率差が10ppm/℃ 以下、そして、
該熱拡散部材と該絶縁基板の間の熱膨張率差が18.5ppm
/℃ 以下に調整され、該半導体基体と該熱拡散部材間
が90w%以上のSnに、Sb,Ag,Zn,In,
Bi及びCuの群から選択された1種類以上の金属が添
加された合金材によって固着されていることを特徴とす
る半導体装置。
1. A semiconductor substrate is mounted via a heat diffusion member on an insulating substrate having copper wiring formed on the main surface of an aluminum plate via an epoxy insulating layer, and the heat diffusion member is made of Cu.
A laminated structure of a material and an Invar material, the difference in coefficient of thermal expansion between the semiconductor substrate and the heat diffusion member is 10 ppm / ° C. or less, and
The thermal expansion coefficient difference between the heat diffusion member and the insulating substrate is 18.5 ppm.
/ ℃ is adjusted to, between the semiconductor substrate and the heat diffusion member 9 to 0w t% or more on the Sn, Sb, Ag, Zn, In,
A semiconductor device characterized by being fixed by an alloy material to which one or more kinds of metals selected from the group of Bi and Cu are added.
【請求項2】請求項1において、該熱拡散部材と該絶縁
基板間がSnを35wt%以上60wt%以下含有し残
部が実質的にPbである合金材によって固着されている
ことを特徴とする半導体装置。
2. The thermal diffusion member according to claim 1, wherein the thermal diffusion member and the insulating substrate are fixed to each other by an alloy material containing 35 wt% to 60 wt% of Sn and the balance being substantially Pb. Semiconductor device.
【請求項3】請求項1において、該半導体基体がエポキ
シ樹脂とシリコーンゲル樹脂によって順次被覆され、上
記エポキシ樹脂の熱膨張率が13〜21ppm/℃ に調整
されていることを特徴とする半導体装置。
3. A semiconductor device according to claim 1, wherein the semiconductor substrate is successively coated with an epoxy resin and a silicone gel resin, and the coefficient of thermal expansion of the epoxy resin is adjusted to 13 to 21 ppm / ° C. .
JP16467998A 1998-06-12 1998-06-12 Semiconductor device Expired - Fee Related JP3417297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16467998A JP3417297B2 (en) 1998-06-12 1998-06-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16467998A JP3417297B2 (en) 1998-06-12 1998-06-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11354687A JPH11354687A (en) 1999-12-24
JP3417297B2 true JP3417297B2 (en) 2003-06-16

Family

ID=15797796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16467998A Expired - Fee Related JP3417297B2 (en) 1998-06-12 1998-06-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3417297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3577684B1 (en) * 2017-02-03 2023-08-09 Hitachi Energy Switzerland AG Power semiconductor module

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207112B2 (en) * 2002-06-10 2009-01-14 富士電機デバイステクノロジー株式会社 Manufacturing method of resin-encapsulated semiconductor device
JP4492448B2 (en) * 2005-06-15 2010-06-30 株式会社日立製作所 Semiconductor power module
JP4681648B2 (en) * 2006-06-22 2011-05-11 富士通株式会社 Resin sealing module, optical module, and resin sealing method
JP5588766B2 (en) * 2010-06-28 2014-09-10 新電元工業株式会社 Semiconductor device
JP2014116409A (en) * 2012-12-07 2014-06-26 Denso Corp Electronic device
JP2017028174A (en) * 2015-07-24 2017-02-02 サンケン電気株式会社 Semiconductor device
JP7080161B2 (en) * 2018-12-05 2022-06-03 三菱電機株式会社 Semiconductor device
WO2020136759A1 (en) * 2018-12-26 2020-07-02 日産自動車株式会社 Semiconducor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3577684B1 (en) * 2017-02-03 2023-08-09 Hitachi Energy Switzerland AG Power semiconductor module

Also Published As

Publication number Publication date
JPH11354687A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
KR101194429B1 (en) Semiconductor device and method for producing the same
US4556899A (en) Insulated type semiconductor devices
US7501700B2 (en) Semiconductor power module having an electrically insulating heat sink and method of manufacturing the same
JP5442368B2 (en) IC chip package with direct lead wire
US7682875B2 (en) Method for fabricating a module including a sintered joint
US9991220B2 (en) Semiconductor device
JP2008041752A (en) Semiconductor module, and radiation board for it
JPH04162756A (en) Semiconductor module
JP4385324B2 (en) Semiconductor module and manufacturing method thereof
JP3417297B2 (en) Semiconductor device
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JPH10135377A (en) Molded semiconductor
JP3379349B2 (en) Molded electronic component and its manufacturing method
JPH11214612A (en) Power semiconductor module
JP2000323647A (en) Module semiconductor device and manufacture thereof
JPH07176664A (en) Semiconductor device and fabrication thereof
KR100244826B1 (en) A semiconductor device and method for manufacturing the same
JP3446829B2 (en) Semiconductor device
KR102228938B1 (en) Coupled semiconductor package
JPS62781B2 (en)
JP2010098144A (en) Lead frame and semiconductor device
JPS5835956A (en) Hybrid integrated circuit device
JPH0982858A (en) Semiconductor device and metal support plate thereof
JPS5946051A (en) Insulated type semiconductor device
JPS5952853A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees