JP3410781B2 - Data transmission system - Google Patents
Data transmission systemInfo
- Publication number
- JP3410781B2 JP3410781B2 JP25085993A JP25085993A JP3410781B2 JP 3410781 B2 JP3410781 B2 JP 3410781B2 JP 25085993 A JP25085993 A JP 25085993A JP 25085993 A JP25085993 A JP 25085993A JP 3410781 B2 JP3410781 B2 JP 3410781B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- data
- equalization
- supplied
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Signal Processing For Digital Recording And Reproducing (AREA)
- Dc Digital Transmission (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はデータ伝送システムに係
り、特に、パーシャルレスポンス方式及び最尤復号を用
いたデータ伝送システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data transmission system, and more particularly to a data transmission system using a partial response method and maximum likelihood decoding.
【0002】近年、磁気ディスク装置の高密度化を図る
うえでパーシャルレスポンス(PR)方式及び最尤復号
(MLSE)等の信号処理技術が注目されており、特に
PR方式とMLSEとを組み合わせたPRML方式と呼
ばれる信号処理技術が注目されている。In recent years, signal processing techniques such as partial response (PR) system and maximum likelihood decoding (MLSE) have attracted attention in order to increase the density of magnetic disk devices, and in particular PRML in which the PR system and MLSE are combined. A signal processing technique called a method is drawing attention.
【0003】また、一方、磁気ディスク装置を含むデー
タ伝送システムにおいては信号処理の高速化が求められ
ている。On the other hand, in a data transmission system including a magnetic disk device, high speed signal processing is required.
【0004】[0004]
【従来の技術】図8にパーシャルレスポンス(PR:Pa
rcial Response)方式のクラス4と最尤検出(MLS
E:Maximum Likelihood Sequence Estimation;ビタビ
検出)とを組み合わせた、PRML方式と呼ばれるデー
タ伝送方式を用いた磁気ディスク装置の構成図を示す。
同図中、31は磁気記録系を示す。2. Description of the Related Art FIG. 8 shows a partial response (PR: Pa
rcial response) class 4 and maximum likelihood detection (MLS)
FIG. 3 is a configuration diagram of a magnetic disk device using a data transmission method called PRML method in combination with E: Maximum Likelihood Sequence Estimation (Viterbi detection).
In the figure, 31 indicates a magnetic recording system.
【0005】磁気記録系31には入力信号が供給され、
磁気ディスク等に入力信号に応じた信号が記録され、そ
の再生信号は(1−D)なる等化と見なすことができ
る。このとき、Dは1ビットの遅延に相当する遅延演算
子を示す。An input signal is supplied to the magnetic recording system 31,
A signal corresponding to an input signal is recorded on a magnetic disk or the like, and the reproduction signal can be regarded as (1-D) equalization. At this time, D represents a delay operator corresponding to a 1-bit delay.
【0006】PRML方式では磁気記録系31からの
(1−D)と見なおされる信号をまず、等化器32に供
給する。等化器32では供給された信号に対して(1+
D)なる等化を実施する。In the PRML system, a signal from the magnetic recording system 31 which is re-considered as (1-D) is first supplied to the equalizer 32. In the equalizer 32, (1+
D) Perform equalization.
【0007】ここで、磁気記録系31で(1−D)、等
化器32で(1+D)なる等化が施されるため、等化器
32の出力には再生信号に対して(1−D)(1+D)
=(1−D2 )なる等化が実施されることになる。Since the magnetic recording system 31 equalizes (1-D) and the equalizer 32 equalizes (1 + D), the output of the equalizer 32 is (1-D) with respect to the reproduced signal. D) (1 + D)
= (1-D 2 ) equalization will be performed.
【0008】等化器32の出力は検出器33に供給され
る。検出器33は切換回路34及び2系統の検出回路3
5,36より構成される。切換回路34は再生信号のビ
ット周期に応じて等化器32より供給された信号を検出
回路35,36に交互に供給する。The output of the equalizer 32 is supplied to the detector 33. The detector 33 includes a switching circuit 34 and a two-system detection circuit 3.
It is composed of 5,36. The switching circuit 34 alternately supplies the signals supplied from the equalizer 32 to the detection circuits 35 and 36 in accordance with the bit period of the reproduced signal.
【0009】検出回路35,36は供給された信号に対
して1/(1−D2 )なる検出を実施する。The detection circuits 35 and 36 detect 1 / (1-D 2 ) of the supplied signal.
【0010】図9にPR方式の動作波形図を示す。a,
bは磁気記録系31に供給される記録データ、cは磁気
記録系31の出力データ、dは等化器32の出力デー
タ、e,fは切換回路34の出力データ、gは検出器3
の出力データを示す。FIG. 9 shows an operation waveform diagram of the PR system. a,
b is the recording data supplied to the magnetic recording system 31, c is the output data of the magnetic recording system 31, d is the output data of the equalizer 32, e and f are the output data of the switching circuit 34, and g is the detector 3.
The output data of is shown.
【0011】記録データa,bは磁気記録系31で(1
−D)によりデータcとされる。等化器32によりデー
タcに(1+D)なる等化が行なわれ、記録データa,
bに対しては(1−D)(1+D)=(1−D2 )なる
等化が実施されたことになる。このため、D2 なる2ビ
ットの遅延が生じ、切換回路34による分割が可能とな
り、検出回路35,36で1ビット毎に交互に(1/
(1−D2 ))なる検出が行なわれ、検出回路35,3
6の出力データを合成して出力することにより、データ
gに示すように記録データaを復元している。The recording data a and b are recorded in the magnetic recording system 31 (1
The data c is obtained by -D). The data c is equalized by (1 + D) by the equalizer 32, and the recording data a,
This means that the equalization of (1-D) (1 + D) = (1-D 2 ) is performed on b. For this reason, a delay of 2 bits D 2 occurs, and the division can be performed by the switching circuit 34, and the detection circuits 35 and 36 alternately (1 / bit by bit).
(1-D 2 )) is detected and the detection circuits 35, 3
By combining and outputting the output data of No. 6, the recording data a is restored as shown by the data g.
【0012】また、図10にEPRML方式の磁気記録
再生系の構成図を示す。同図中、図8と同一構成部分に
は同一符号を付し、その説明は省略する。EPRML方
式ではSN利得を向上するために等化器32の後に(1
+D)なる等化を行なう等化器41を設け、記録データ
a,bに対して(1−D)(1+D)(1+D)=(1
−D2 )(1+D)=(1+D−D2 +D3 )なる等化
を実施、図9hに示すようなデータとする。FIG. 10 is a block diagram of a magnetic recording / reproducing system of the EPRML system. 8, those parts which are the same as those corresponding parts in FIG. 8 are designated by the same reference numerals, and a description thereof will be omitted. In the EPRML system, in order to improve the SN gain, (1
An equalizer 41 for equalizing + D) is provided, and (1-D) (1 + D) (1 + D) = (1
An equalization of −D 2 ) (1 + D) = (1 + D−D 2 + D 3 ) is performed to obtain data as shown in FIG. 9h.
【0013】検出器42では逆に〔1/(1+D−D2
−D3 )〕なる検出を行ない、図9gに示すように記録
データを復元する。On the contrary, in the detector 42, [1 / (1 + D-D 2
-D 3)] becomes performs detection to recover the recorded data as shown in FIG. 9g.
【0014】[0014]
【発明が解決しようとする課題】しかるに、PRML方
式の伝送システムではS/N利得があまり大きく取れな
いため、情報の高密度化には不利となる。However, since the S / N gain cannot be so large in the PRML type transmission system, it is disadvantageous for increasing the information density.
【0015】また、従来のEPRML方式の伝送システ
ムでは検出回路の処理が〔1/(1+D−D2 −D3 )
となり、奇数倍と偶数倍の遅延が混在するため、PRM
L方式のように2系統に分割して処理することはでき
ず、従って、処理速度を上げることはできない等の問題
点があった。Further, processing of the detection circuit in the transmission system of a conventional EPRML scheme [1 / (1 + D-D 2 -D 3)
Therefore, since the delays of odd multiple and even multiple are mixed, PRM
Unlike the L system, it cannot be divided into two systems for processing, and therefore there is a problem that the processing speed cannot be increased.
【0016】図11にMR(磁気抵抗効果型)ヘッドの
動作曲線(ρ(0-)−H特性)図を示す。MRヘッドのρ
−H特性は図11に示すようにリニアではないため、バ
イアス点により変動してしまう。例えばバイアス点hB
とした場合にはヘッド再生信号はバイアス、レベル上下
で非対称なものとなってしまう。一般に磁気記録系31
内ではMRヘッドはACカップリングされており、図1
2(A)に示すMRヘッドで再生された信号は図12
(B)に示すように0レベルがずれてしまう。FIG. 11 shows an operation curve (ρ (0-)- H characteristic) diagram of an MR (magnetoresistive effect) head. MR head ρ
Since the −H characteristic is not linear as shown in FIG. 11, it changes depending on the bias point. For example, bias point h B
In such a case, the head reproduction signal becomes asymmetrical between the bias and the level. Generally magnetic recording system 31
Inside, the MR head is AC-coupled.
The signal reproduced by the MR head shown in FIG.
As shown in (B), the 0 level shifts.
【0017】0レベルがずれると正確な等化・検出でき
ないため、データの誤り率が増大してしまう。If the 0 level is deviated, accurate equalization / detection cannot be performed, and the data error rate increases.
【0018】このように、磁気記録再生装置などにおい
ては、磁気記録再生系31で磁気ヘッドの特性により誤
り率の劣化が生じてしまう等の問題点があった。As described above, in the magnetic recording / reproducing apparatus, there is a problem that the error rate is deteriorated in the magnetic recording / reproducing system 31 due to the characteristics of the magnetic head.
【0019】本発明は上記の点に鑑みてなされたもので
高速に信号処理を行なえる伝送システムを提供すること
を目的とする。The present invention has been made in view of the above points, and an object of the present invention is to provide a transmission system capable of high-speed signal processing.
【0020】[0020]
【課題を解決するための手段】図1に本発明の原理図を
示す。伝送路1には入力信号の情報が所定の周期毎に伝
送される。第1の等化手段2は伝送路上に設けられ、
(1−D)(1+D)2〔D:1ビットの遅延演算子〕
なる等化を行なう。FIG. 1 shows the principle of the present invention. The information of the input signal is transmitted to the transmission line 1 every predetermined period. The first equalizing means 2 is provided on the transmission line,
(1-D) (1 + D) 2 [D: 1-bit delay operator]
Perform equalization.
【0021】第2の等化手段3は伝送路1上に設けら
れ、(1−D)なる等化を行なう。The second equalizing means 3 is provided on the transmission line 1 and performs (1-D) equalization.
【0022】切換手段4は伝送路1上の第1の等化手段
2及び第2の等化手段3の後に設けられ、第1の等化手
段2及び第2の等化手段3で等化された信号を2系統の
伝送路に所定の周期毎に交互に供給する。The switching means 4 is provided after the first equalization means 2 and the second equalization means 3 on the transmission line 1, and is equalized by the first equalization means 2 and the second equalization means 3. The generated signal is alternately supplied to the two transmission paths at predetermined intervals.
【0023】第1の検出手段5は切換手段4から所定の
周期毎に交互に信号が供給される2系統の伝送路の一方
に設けられ切換手段4から供給される信号に対して〔1
/(1−2D2 +D4 )なる検出を行なう。The first detecting means 5 is provided in one of the two transmission lines to which signals are alternately supplied from the switching means 4 at predetermined intervals, and the signal [1
/ (1-2D 2 + D 4 ) is detected.
【0024】第2の検出手段6は切換手段4が所定の周
期毎に交互に信号が供給される2系統の伝送路の他方に
設けられ、切換手段4から供給される信号に対して〔1
/(1−2D2 +D4 )なる検出を行なう。The second detecting means 6 is provided on the other side of the two transmission lines to which the switching means 4 is alternately supplied with a signal at predetermined intervals, and the signal supplied from the switching means 4 is [1.
/ (1-2D 2 + D 4 ) is detected.
【0025】第1の検出手段5の出力信号と第2の検出
手段6の出力信号とを合成することにより入力信号が復
元される。The input signal is restored by synthesizing the output signal of the first detecting means 5 and the output signal of the second detecting means 6.
【0026】[0026]
【作用】第1の等化手段で(1−D)(1+D)2 に等
化された信号は第2の等化手段により(1−D)2 (1
+D)2 =〔(1−D)(1+D)〕2 =(1−D2 )
2 =(1−2D2 +D4 )に等化される。With the first equalizing means (1-D) (1 + D)2And so on
The equalized signal is (1-D) by the second equalizing means.2(1
+ D)2= [(1-D) (1 + D)]2= (1-D2)
2= (1-2D2+ DFour) Is equalized to.
【0027】第1及び第2の等化手段により(1−2D
2 +D4 )に等化された信号は切換手段4により所定周
期毎に交互に2系統の伝送路に供給される。By the first and second equalizing means (1-2D
The signal equalized to ( 2 + D 4 ) is alternately supplied to the two transmission lines at predetermined intervals by the switching means 4.
【0028】一方の伝送路では第1の検出手段により
〔1/(1−2D2 +D4 )〕なる検出が行なわれ、所
定周期おきに(1−2D2 +D4 )〕に等化された信号
の復号が行なわれる。In one of the transmission lines, the detection [1 / (1-2D 2 + D 4 )] is performed by the first detection means and is equalized to (1-2D 2 + D 4 )] every predetermined period. The signal is decoded.
【0029】また、他方の伝送路では第2の検出手段に
より〔1/(1−2D2 +D4 )〕なる検出が行なわ
れ、所定周期おきに(1−2D2 +D4 )〕に等化され
た信号の復号が行なわれる。Further, on the other hand the transmission path of the detection made [1 / (1-2D 2 + D 4 ) ] by the second detection means is performed, equalized to a predetermined period every (1-2D 2 + D 4)] The decoded signal is decoded.
【0030】第1の検出手段と第2の検出手段とは信号
を所定周期おきに互いに補完していて、第1の検出手段
の出力と第2の検出手段との出力信号とを合成すること
により入力信号を復元できる。The first detecting means and the second detecting means complement each other with signals at predetermined intervals, and combine the output of the first detecting means and the output signal of the second detecting means. Can restore the input signal.
【0031】(1−2D2 +D4 )なる等化はD2 ,D
4 の偶数倍の遅延で実現できるため、信号を所定周期お
きに2系統の伝送路に分割して、入力信号の復号を行な
える。また、2系統で処理を行なうため、各系統の〔1
/(1−2D2 +D4 )〕なる検出は所定の周期の2倍
の処理を行なえばよいことになる。The equalization of (1-2D 2 + D 4 ) is D 2 , D
Since it can be realized with a delay of an even multiple of 4 , the signal can be divided into two transmission lines at predetermined intervals and the input signal can be decoded. Also, since the processing is performed in two systems, [1 of each system
/ (1-2D 2 + D 4 )] can be detected by performing processing twice as long as a predetermined cycle.
【0032】従って、処理時間の大きい〔1/(1−2
D2 +D4 )〕の等化速度を1系統だけのものより2倍
高速化できるため、全体の処理速度を高速化できる。Therefore, the processing time is long [1 / (1-2
Since the equalization speed of D 2 + D 4 )] can be made twice as fast as that of only one system, the overall processing speed can be increased.
【0033】[0033]
【実施例】図1に本発明の第1実施例の構成図を示す。
本実施例では磁気ディスク装置のEPRML方式による
データ復号処理について説明する。同図中、11は磁気
記録系を示す。磁気記録系11には記録データが供給さ
れ、記録データに応じた情報が磁気ディスクに記録され
る。1 is a block diagram of the first embodiment of the present invention.
In this embodiment, a data decoding process by the EPRML system of the magnetic disk device will be described. In the figure, 11 indicates a magnetic recording system. Recording data is supplied to the magnetic recording system 11, and information corresponding to the recording data is recorded on the magnetic disk.
【0034】磁気記録系11では一般に磁気ディスクに
記録された情報の再生信号は元の記録データに対して
(1−D)なる等化と見なされる。(1−D)なる等化
はDが1ビット分の遅延演算子を表わしており、現在供
給されているデータから1ビット前のデータを減算する
処理を示す。In the magnetic recording system 11, the reproduction signal of the information recorded on the magnetic disk is generally regarded as equalization (1-D) with respect to the original recording data. In the equalization of (1-D), D represents a delay operator for 1 bit, and indicates a process of subtracting 1 bit before data from the currently supplied data.
【0035】磁気記録系11で再生され(1−D)なる
等化が実施された信号はサンプリング用スイッチ手段1
2を介して等化器13に供給される。等化器13は磁気
記録系11から供給された信号に(1+D)2 なる等化
が実施される。(1+D)2なる等化は(1+D)なる
等化を2回実行した等化を表し、(1+D)なる等化は
現在供給されているデータに1ビット前のデータを加算
する処理を示す。ここで、記録データには磁気記録系1
1で(1−D)、等化器13で(1+D)2 なる等化が
実施され、等化器13の出力としては(1−D)(1+
D)2 なる等化が実施されたことになる。The signal reproduced by the magnetic recording system 11 and equalized by (1-D) is the sampling switch means 1.
It is supplied to the equalizer 13 via 2. The equalizer 13 performs (1 + D) 2 equalization on the signal supplied from the magnetic recording system 11. (1 + D) 2 becomes equalized represents equalization executed twice equalization comprising (1 + D), shows a process of adding 1-bit data before the data are equalized currently supply comprising (1 + D). Here, the recording data includes the magnetic recording system 1
1 equals (1-D), and equalizer 13 equalizes (1 + D) 2 and the output of equalizer 13 is (1-D) (1+
D) 2 equalization has been implemented.
【0036】等化器13の出力データは次に等化器14
に供給される。等化器14は等化器13から供給された
データに対して(1−D)なる等化を実施する。磁気記
録系11,等化器13,14により記録データには(1
−D)2 (1+D)2 =〔(1−D)(1+D)〕2 =
(1−D2 )2 =(1−2D2 +D4 )なる等化が行な
われる。The output data of the equalizer 13 is then sent to the equalizer 14
Is supplied to. The equalizer 14 performs (1-D) equalization on the data supplied from the equalizer 13. The magnetic recording system 11 and the equalizers 13 and 14 add (1
-D) 2 (1 + D) 2 = [(1-D) (1 + D)] 2 =
An equalization of (1-D 2 ) 2 = (1-2D 2 + D 4 ) is performed.
【0037】等化器14の出力信号は検出器15及びP
LL回路16に供給される。検出器15は等化器14か
らの信号を復号して元の記録データを復元する。The output signal of the equalizer 14 is the detector 15 and P.
It is supplied to the LL circuit 16. The detector 15 decodes the signal from the equalizer 14 to restore the original recorded data.
【0038】図3に検出器15の構成図を示す。検出器
15は切換手段17,検出器18,19より構成され
る。切換手段17は等化器14から信号が供給され、供
給された信号をPLL回路16からのクロックに応じて
検出器18,19に振り分ける。 PLL回路16は等
化器14から供給された信号に基づいて、クロックの位
相を制御する。PLL回路16のクロックは磁気記録系
11の出力信号と同期した周波数を有し、スイッチ手段
12,等化器13,14,検出器15に供給される。ス
イッチ手段12はPLL回路16からのクロックに応じ
てオン・オフし、磁気記録系11の出力信号をサンプリ
ングし、等化器13へ情報に応じた信号が供給されるよ
うに制御する。また、等化器13,14,検出器15は
PLL回路16からのクロックに応じてデータの取り込
み遅延等が制御され、等化検出を実施する。FIG. 3 shows a block diagram of the detector 15. The detector 15 comprises a switching means 17 and detectors 18 and 19. The switching means 17 is supplied with a signal from the equalizer 14 and distributes the supplied signal to the detectors 18 and 19 according to the clock from the PLL circuit 16. The PLL circuit 16 controls the phase of the clock based on the signal supplied from the equalizer 14. The clock of the PLL circuit 16 has a frequency synchronized with the output signal of the magnetic recording system 11, and is supplied to the switch means 12, the equalizers 13 and 14, and the detector 15. The switch means 12 is turned on / off according to the clock from the PLL circuit 16, samples the output signal of the magnetic recording system 11, and controls the equalizer 13 to supply a signal according to the information. Further, the equalizers 13 and 14 and the detector 15 are controlled in data acquisition delay and the like according to the clock from the PLL circuit 16 to perform equalization detection.
【0039】検出器18,19は共にROM等で構成さ
れており、供給される信号波形に応じたデータのパター
ンにより出力データを決定し、供給された信号に対して
〔1/(1−2D2 +D4 )〕なる検出が実施される構
成とされている。このとき、供給される信号波形が上下
のレベルで非対称となることを考慮して、上下レベルの
非対称な波形のパターンに対応して出力データを出力す
るようにデータを記憶されており、従って、上下レベル
の非対称な波形のデータでも確実に出力データが得ら
れ、誤り率を低減できる。Each of the detectors 18 and 19 is composed of a ROM or the like, and determines output data based on a data pattern corresponding to the supplied signal waveform, and [1 / (1-2D 2 + D 4 )] is performed. At this time, considering that the supplied signal waveform is asymmetrical at the upper and lower levels, the data is stored so as to output the output data corresponding to the asymmetrical waveform pattern at the upper and lower levels. It is possible to reliably obtain output data even with asymmetrical waveform data of upper and lower levels, and reduce the error rate.
【0040】検出器18,19の出力データは入力デー
タに対して〔1/(1−2D2 +D 4 )〕なる検出が施
されるため、(1−2D2 +D4 )なる等化がなされる
たデータに対しては、(1−2D2 +D4 )・〔1/
(1−2D2 +D4 )〕=1なる処理が実施される。こ
のとき、検出器18と検出器19とは1ビット毎に交互
に検出を行なうため、検出器18,19の夫々の出力は
1ビットおきの出力となる。従って、検出器18,19
の出力を合成して一つのデータとして出力することによ
り元の記録データが復元される。The output data of the detectors 18 and 19 are the input data.
[1 / (1-2D2+ D Four)]
Therefore, (1-2D2+ DFour) Is equalized
For the data that has been2+ DFour) ・ [1 /
(1-2D2+ DFour)] = 1 is performed. This
, The detector 18 and the detector 19 alternate every 1 bit.
In order to perform the detection, the outputs of the detectors 18 and 19 are
Output is every other bit. Therefore, the detectors 18, 19
By synthesizing the output of
The original recorded data is restored.
【0041】図4に本発明の一実施例の動作波形図を示
す。同図中、aは磁気記録系11に供給される記録デー
タの数値による表示、bは記録データの波形図を示す。
記録データはaのハイレベルに相当する波形として磁気
記録系11に供給される。FIG. 4 shows an operation waveform diagram of one embodiment of the present invention. In the figure, a is a numerical display of the recording data supplied to the magnetic recording system 11, and b is a waveform diagram of the recording data.
The recording data is supplied to the magnetic recording system 11 as a waveform corresponding to the high level of a.
【0042】記録データbは磁気記録系11により(1
−D)なる等化が施されたものと見なすことができ、信
号Cとされる。信号Cにおいて、例えば時刻t1 におけ
るデータ“1”は時刻t1 におけるaのデータ“1”か
らその前の時刻t0 のaのデータ“0”を減算したもの
であるから(1−0)で“1”とされる。また時刻t 2
におけるデータ“1”は時刻t2 でのaのデータ“0”
から時刻t1 でのaのデータ“1”を減算したものであ
るから(0−1)で刻t1 で“−1”とされる。以下、
同様な処理が行なわれ、図4に示される記録データa,
bより信号Cが得られる。The recording data b is recorded by the magnetic recording system 11 as (1
-D) can be regarded as having been equalized,
Issue C. In the signal C, for example, time t1Oke
The data “1” is the time t1Is the data “1” of a in
Time t before that0Subtracting the data “0” of a
Therefore, it is set to "1" in (1-0). Also at time t 2
The data “1” in is at time t2"0" of data in a
From time t1Is the result of subtracting the data "1" of a in
Since it is (0-1), t1Is set to "-1". Less than,
Similar processing is performed, and the recording data a, shown in FIG.
The signal C is obtained from b.
【0043】信号Cは等化器13に供給される。等化器
13では(1+D)2 なる等化が実施され、信号hとさ
れる。信号hにおいて、時刻t1 におけるデータ“1”
は時刻t1 におけるcのデータ“1”にその前の時刻t
1 のcのデータ“0”を加算する処理を2回実施するこ
とになるから1回目は(1+0)で“1”,さらに2回
目で(1+0)で“1”となる。時刻t2 のデータは時
刻t2 のcのデータ“−1”にその前の時刻t1 のデー
タ“1”を加算する処理を2回実施するから1回目で−
1+1で“0”,2回目で0+1で“1”となる。The signal C is supplied to the equalizer 13. In the equalizer 13, the equalization of (1 + D) 2 is carried out to obtain the signal h. Data “1” at time t 1 in signal h
Is the data “1” of c at the time t 1 and the previous time t
Since the process of adding the data "0" of c of 1 is performed twice, the first time becomes "1" at (1 + 0), and the second time becomes "1" at (1 + 0). Since the data is time t 2 carries out a process of adding the previous time t 1 of the data "1" to data "-1" of c at time t 2 2 times 1 time with -
It becomes "0" at 1 + 1 and becomes "1" at 0 + 1 at the second time.
【0044】以下、同様な処理の結果図4hに実線で示
されるような信号が得られる。Thereafter, as a result of similar processing, a signal shown by a solid line in FIG. 4h is obtained.
【0045】信号hは等化器14に供給される。等化器
14では磁気記録系11で説明したのと同様な(1−
D)なる等化が実施され、図4に示される信号iとされ
る。信号iは切換手段17により1ビット毎に検出器1
8,19に交互に供給される。このため、検出器18に
は例えば信号iのタイミングで信号が供給され、検出器
19にはλのタイミングで信号が供給されるものとする
と、検出器18に供給される信号は図4jに実線で示す
ような波形となり、また、検出器19に供給される信号
は図4kに実線で示すような波形となる。The signal h is supplied to the equalizer 14. In the equalizer 14, the same (1-
D) equalization is carried out to obtain the signal i shown in FIG. The signal i is detected by the switching means 17 bit by bit in the detector 1
It is supplied alternately to 8 and 19. Therefore, the detector 18 signal is supplied at the timing of, for example, signal i, when the detector 19 shall signal is supplied at the timing of lambda, the signal supplied to the detector 18 in FIG. 4j The waveform shown by the solid line is obtained, and the signal supplied to the detector 19 has the waveform shown by the solid line in FIG. 4k.
【0046】検出器18では信号jに対して〔1/(1
−2D2 +D4 )〕なる検出が実施され、検出器19で
は信号kに対して〔1/(1−2D2 +D4 )〕なる検
出が実施される。検出器18の出力信号と検出器19の
出力信号とを合成すると図4lに示すようなデータを
得、記録データaが復元される。図5に各方式の規格化
線密度に対するS/N利得特性図を示す。同図中、一点
鎖線はPRML方式、破線はEPRML方式の特性を示
し、実線は本実施例の特性を示す。In the detector 18, [1 / (1
-2D 2 + D 4 )] is performed, and the detector 19 performs [1 / (1-2D 2 + D 4 )] on the signal k. When the output signal of the detector 18 and the output signal of the detector 19 are combined, data as shown in FIG. 4l is obtained, and the recorded data a is restored. FIG. 5 shows an S / N gain characteristic diagram with respect to the normalized linear density of each system. In the figure, the alternate long and short dash line shows the characteristics of the PRML system, the broken line shows the characteristics of the EPRML system, and the solid line shows the characteristics of this embodiment.
【0047】図6に規格化線密度の説明図を示す。再生
波形(ローレンツ波形)の半分のレベルの幅が半値幅、
再生波形を再生するためのビットの周期がビット周期と
なる。規格化線密度は〔(半値幅)/(ビット周期)〕
により定義される。FIG. 6 shows an explanatory diagram of the normalized linear density. The half level width of the playback waveform (Lorentz waveform) is the half-value width,
The bit cycle for reproducing the reproduced waveform is the bit cycle. Normalized linear density is [(half width) / (bit period)]
Is defined by
【0048】図6に示すように本実施例によれば、EP
RML方式により信号処理が行なえるため、PRML方
式より高SN利得化が行なえると共にPR方式同様に2
分割して検出できるため、高速処理が行なえる。According to this embodiment, as shown in FIG. 6, EP
Since the signal processing can be performed by the RML method, the SN gain can be increased as compared with the PRML method, and the same as in the PR method.
Since it can be detected by dividing it, high-speed processing can be performed.
【0049】このように、本実施例によれば、検出器1
5が〔1/(1−2D2 +D4 )〕なる検出となり、偶
数倍の遅延で実現できるため、検出器18,19に分割
でき、従って、1ビットおきの処理が行なえ、最も複雑
な処理を必要とする検出器18,19の処理を高速化が
実現できるため、全体の処理スピードを向上させること
ができる。As described above, according to this embodiment, the detector 1
5 is detected as [1 / (1-2D 2 + D 4 )] and can be realized with an even delay, so that it can be divided into detectors 18 and 19, and therefore, every other bit can be processed, and the most complicated processing can be performed. Since it is possible to speed up the processing of the detectors 18 and 19 that require the above, it is possible to improve the overall processing speed.
【0050】また、本実施例によれば、等化器14によ
り1−Dなる処理を施すため、本来の0レベルは確保し
つつも、上下レベルの非対称を補償できる。Further, according to this embodiment, since the equalizer 14 performs the processing of 1-D, it is possible to compensate the asymmetry of the upper and lower levels while ensuring the original 0 level.
【0051】図7に0レベル補償動作説明図を示す。図
7(A)は等化器14に供給される信号、図7(B)は
出力信号を示す。FIG. 7 is a diagram for explaining the 0 level compensation operation. FIG. 7A shows a signal supplied to the equalizer 14, and FIG. 7B shows an output signal.
【0052】等化器14では(1−D)なる等化が実施
される。このため、時刻t1 の信号レベルL2 は時刻t
1 における信号レベルL1 ,時刻t0 の信号レベルL1
を減じた値となり、0レベルはそのままで前後信号レベ
ルの非対称を平均化できる。The equalizer 14 performs equalization (1-D). Therefore, the signal level L 2 at time t 1 is
Signal level L 1 in 1, the signal level at time t 0 L 1
Is obtained by subtracting, and the asymmetry of the front and rear signal levels can be averaged while the 0 level remains unchanged.
【0053】図8に本発明の第2実施例の構成図を示
す。同図中、図2と同一構成部分には同一符号を付し、
その説明は省略する。FIG. 8 shows a block diagram of the second embodiment of the present invention. In the figure, the same components as those in FIG.
The description is omitted.
【0054】本実施例は等化器14の後にトランスバー
サルフィルタ等の線形フィルタ41を設けることによ
り、磁気記録系11の再生信号の上下レベルの非対称の
影響を補正したものである。In this embodiment, a linear filter 41 such as a transversal filter is provided after the equalizer 14 to correct the influence of the asymmetry of the upper and lower levels of the reproduction signal of the magnetic recording system 11.
【0055】本実施例によれば、第1実施例に比べ、さ
らに上下レベル非対称の影響を除去できる。According to this embodiment, the influence of the vertical level asymmetry can be further removed as compared with the first embodiment.
【0056】[0056]
【発明の効果】上述の如く、本発明によれば、〔1/
(1−2D2 +D4 )〕なる検出を2系統に分割して所
定の周期毎に交互に検出できるため、夫々の系統での検
出処理の負担を軽減でき、したがって、全体の処理速度
を上げることができるため、高速化が行なえる等の特長
を有する。As described above, according to the present invention, [1 /
(1-2D 2 + D 4 )] can be divided into two systems and can be detected alternately in every predetermined cycle, so the load of the detection process in each system can be reduced, and therefore the overall processing speed can be increased. Therefore, it has features such as high speed.
【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.
【図2】本発明の第1実施例の構成図である。FIG. 2 is a configuration diagram of a first embodiment of the present invention.
【図3】本発明の第1実施例の検出器の構成図である。FIG. 3 is a configuration diagram of a detector according to the first embodiment of the present invention.
【図4】本発明の第1実施例の動作波形図である。FIG. 4 is an operation waveform diagram of the first embodiment of the present invention.
【図5】本発明の第1実施例の動作特性図である。FIG. 5 is an operational characteristic diagram of the first embodiment of the present invention.
【図6】規格化線密度を説明するための図である。FIG. 6 is a diagram for explaining a normalized linear density.
【図7】本発明の第1実施例の波形補償動作説明図であ
る。FIG. 7 is an explanatory diagram of a waveform compensation operation according to the first embodiment of this invention.
【図8】本発明の第2実施例の構成図である。FIG. 8 is a configuration diagram of a second embodiment of the present invention.
【図9】PRML方式の磁気記録再生系の構成図であ
る。FIG. 9 is a configuration diagram of a PRML type magnetic recording / reproducing system.
【図10】PRML方式の磁気記録再生系の動作波形図
である。FIG. 10 is an operation waveform diagram of a PRML type magnetic recording / reproducing system.
【図11】EPRML方式の磁気記録再生系の構成図で
ある。FIG. 11 is a configuration diagram of an EPRML type magnetic recording / reproducing system.
【図12】MRヘッドの動作特性図である。FIG. 12 is an operating characteristic diagram of the MR head.
【図13】0レベル補償動作説明図である。FIG. 13 is an explanatory diagram of 0 level compensation operation.
1 伝送路 2 第1の等化手段 3 第2の等化手段 4 切換手段 5 第1の検出手段 6 第2の検出手段 14 等化器 41 波形フィルタ 1 transmission line 2 First equalization means 3 Second equalization means 4 switching means 5 First detection means 6 Second detection means 14 Equalizer 41 Waveform filter
Claims (3)
送路(1)上に設けられ、(1−D)(1+D)
2 〔D:所定周期の遅延演算子〕なる等化を行なう第1
の等化手段(2)を有するデータ伝送システムにおい
て、 前記伝送路(1)上に設けられ、(1−D)なる等化を
行なう第2の等化手段(3)と、 前記伝送路上の前記第1の等化手段(2)及び前記第2
の等化手段(3)の後に設けられ、前記第1の等化手段
(2)及び前記第2の等化手段(3)で等化された信号
を2系統の伝送路に前記所定の周期毎に交互に供給する
切換手段(4)と、 前記切換手段(4)から前記所定周期毎に交互に信号が
供給される前記2系統の伝送路の一方に設けられ、前記
切換手段(4)から供給される信号に対して、〔1/
(1−2D2 +D4 )〕なる検出を行なう第1の検出手
段(5)と、 前記切換手段(4)から前記所定の周期毎に交互に信号
が供給される前記2系統の伝送路の他方に設けられ、前
記切換手段(4)から供給される信号に対して、〔1/
(1−2D2 +D4 )〕なる検出を行なう第2の検出手
段(6)とを有し、 前記第1の検出手段(5)により検出された信号と前記
第2の検出手段(6)により検出された信号とを合成す
ることにより前記入力信号を復元することを特徴とする
データ伝送システム。1. A transmission path (1) which is transmitted at a predetermined cycle of an input signal, and is (1-D) (1 + D).
2 [D: Delay operator with predetermined period] First equalization
In the data transmission system having the equalizing means (2), the second equalizing means (3) provided on the transmission path (1) and performing the equalization (1-D), and the equalizing means (2) on the transmission path. The first equalizing means (2) and the second
Is provided after the equalizing means (3), and the signals equalized by the first equalizing means (2) and the second equalizing means (3) are transmitted to the two transmission lines in the predetermined cycle. Switching means (4) for alternately supplying each of the switching means and one of the transmission paths of the two systems to which signals are alternately supplied from the switching means (4) at the predetermined cycle, and the switching means (4) For the signal supplied from [1 /
(1-2D 2 + D 4 )] of the first detection means (5) for performing detection and the transmission paths of the two systems to which signals are alternately supplied from the switching means (4) at the predetermined cycle. For the signal supplied from the switching means (4) provided on the other side, [1 /
(1-2D 2 + D 4 )] and a second detection means (6) for performing the detection, the signal detected by the first detection means (5) and the second detection means (6). A data transmission system, characterized in that the input signal is restored by synthesizing with the signal detected by.
は上下レベルの非対称な波形に応じたパターンが記憶さ
れ、該パターンに応じたデータを変換し、等化を行なう
ことを特徴とする請求項1記載のデータ伝送システム。2. The first and second detecting means (5, 6)
The data transmission system according to claim 1, wherein a pattern corresponding to an asymmetrical waveform of the upper and lower levels is stored, and data corresponding to the pattern is converted to perform equalization.
の遅延演算子〕なる等化処理が行われたデータを伝送す
るデータ伝送システムであって、 前記データに(1−D)なる等化処理を行う処理手段
と、 前記処理手段により処理された信号の 上下レベルの非対
称を補正する線形フィルタを有することを特徴とするデ
ータ伝送システム。3.(1-D) (1 + D) Two [D: predetermined cycle
Of the delay operator] is transmitted
Data transmission system, Processing means for performing (1-D) equalization processing on the data
When, Of the signal processed by the processing means Upper and lower level unpaired
A digital filter characterized by having a linear filter for correcting
Data transmission system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25085993A JP3410781B2 (en) | 1993-10-06 | 1993-10-06 | Data transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25085993A JP3410781B2 (en) | 1993-10-06 | 1993-10-06 | Data transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07107124A JPH07107124A (en) | 1995-04-21 |
JP3410781B2 true JP3410781B2 (en) | 2003-05-26 |
Family
ID=17214076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25085993A Expired - Fee Related JP3410781B2 (en) | 1993-10-06 | 1993-10-06 | Data transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3410781B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2003012789A1 (en) | 2001-07-27 | 2004-11-25 | 富士通株式会社 | Signal processing method, signal processing circuit and information recording / reproducing device |
-
1993
- 1993-10-06 JP JP25085993A patent/JP3410781B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07107124A (en) | 1995-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3366389B2 (en) | Input device including variable equalizer means for inputting a digital signal from a transmission medium | |
KR0156485B1 (en) | A data discriminating apparatus capable of correcting signal waveform distortion due to intersymbol interference | |
KR100221891B1 (en) | Device for detecting input digital data | |
US5163003A (en) | Apparatus and method for reading from and writing to a magnetic recording medium | |
KR100243218B1 (en) | Data decoding apparatus and the method | |
JPH1083624A (en) | Information detector | |
JP3410781B2 (en) | Data transmission system | |
US5579340A (en) | Waveform equalizer | |
JP3716175B2 (en) | Signal processing circuit and information recording / reproducing apparatus | |
JPH08315518A (en) | Signal processor for digital signal | |
JPH06150216A (en) | Digital signal reproducing method and apparatus | |
JP2763454B2 (en) | Data detection device | |
JP3135646B2 (en) | Binary bit stream processing device | |
JPH09330565A (en) | Digital magnetic recording/reproducing apparatus | |
JP2787895B2 (en) | Information recording / reproducing device | |
JP2888187B2 (en) | Information detection device | |
JP2824473B2 (en) | Data detection device | |
JP2880402B2 (en) | Phase locked loop | |
JP3917317B2 (en) | Equalization / phase control system and disk storage device including the same | |
JPH0997476A (en) | Automatic equalizer and digital signal reproducing device | |
JPH0793899A (en) | Magnetic recording and reproducing device | |
JPH09251718A (en) | Information reproducing device | |
JP2005012557A (en) | Device and method for decoding signal, and reference voltage generating device | |
JPH10275423A (en) | Waveform equalizing circuit | |
JPS63113981A (en) | Digital signal detecting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |