JP3408222B2 - How to start continuous casting - Google Patents

How to start continuous casting

Info

Publication number
JP3408222B2
JP3408222B2 JP2000033138A JP2000033138A JP3408222B2 JP 3408222 B2 JP3408222 B2 JP 3408222B2 JP 2000033138 A JP2000033138 A JP 2000033138A JP 2000033138 A JP2000033138 A JP 2000033138A JP 3408222 B2 JP3408222 B2 JP 3408222B2
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
ingot
cooling water
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000033138A
Other languages
Japanese (ja)
Other versions
JP2001219256A (en
Inventor
央樹 亀山
誠 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2000033138A priority Critical patent/JP3408222B2/en
Publication of JP2001219256A publication Critical patent/JP2001219256A/en
Application granted granted Critical
Publication of JP3408222B2 publication Critical patent/JP3408222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、湯漏れ等を生じず
に容易に連続鋳造を開始する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily starting continuous casting without causing leakage of molten metal or the like.

【0002】[0002]

【従来の技術】例えば、アルミニウム鋳塊は水冷式連続
鋳造法により鋳造されるが、その鋳造開始方法は、図3
に示すように、水冷鋳型1の下部にボトムブロック2を
配し、水冷鋳型1内に、樋3を介して移送されるアルミ
ニウム溶湯4(以下、溶湯と略記する)を供給し、溶湯
4を水冷鋳型1とボトムブロック2とで冷却し所定厚さ
凝固させたのち、ボトムブロック2を油圧シリンダー5
により徐々に降下させて鋳塊6を水冷鋳型1から連続的
に引出し、さらに引出される鋳塊6の外周面に水冷鋳型
1冷却後の冷却水7を直接噴射して行われる。
2. Description of the Related Art For example, an aluminum ingot is cast by a water-cooled continuous casting method.
As shown in FIG. 3, a bottom block 2 is arranged below the water-cooled mold 1, and an aluminum molten metal 4 (hereinafter abbreviated as molten metal) transferred through a gutter 3 is supplied into the water-cooled mold 1 to After cooling with the water-cooled mold 1 and the bottom block 2 to solidify a predetermined thickness, the bottom block 2 is moved to the hydraulic cylinder 5.
Is gradually lowered to continuously draw out the ingot 6 from the water-cooled mold 1, and the cooling water 7 after cooling the water-cooled mold 1 is directly jetted to the outer peripheral surface of the ingot 6 to be drawn out.

【0003】しかし、水冷鋳型1から引出される鋳塊6
に冷却水7を直接噴射すると、図4に示すように、鋳塊
6の凝固殻8が急激に凝固収縮して鋳塊ボトムが大きく
反り上がって(バットカール)、ボトムブロック2との
間に隙間が生じ、鋳塊6が部分的に冷却されなくなる。
その結果、鋳塊内部の溶湯4の熱により凝固殻8が再溶
解して溶湯が漏れ出し、この溶湯漏れ部を起点として割
れが生じたり、最悪の場合は水蒸気爆発が起きたりす
る。
However, the ingot 6 drawn from the water-cooled mold 1
As shown in FIG. 4, when the cooling water 7 is directly injected into the ingot, the solidified shell 8 of the ingot 6 is rapidly solidified and contracted, and the ingot bottom is greatly warped (bat curl), and the space between the bottom block 2 and the bottom block 2 is increased. A gap is generated, and the ingot 6 is not cooled partially.
As a result, the solidified shell 8 is redissolved by the heat of the molten metal 4 inside the ingot, the molten metal leaks out, and cracks may occur from the molten metal leak portion, or in the worst case, steam explosion may occur.

【0004】このようなことから、鋳造開始時には、冷
却水を断続的に噴射して冷却を弱める方法(パルスドウ
ォーターシステム)が提案されたが、この方法では冷却
が不均一になり、却って割れが生じ易くなるという問題
があった。そこで、冷却水に空気又は炭酸ガスを注入し
て徐冷する方法が提案された。このうち、前者(Alc
an:ターボシステム)はその効果が小さいため、主に
後者(Alcoa:A729システム)が多用されてい
る。
Under these circumstances, a method has been proposed in which cooling water is intermittently injected at the start of casting to weaken the cooling (pulsed water system). However, this method causes uneven cooling and rather cracks. There was a problem that it was likely to occur. Therefore, a method of injecting air or carbon dioxide into cooling water and gradually cooling it has been proposed. Of these, the former (Alc
The an (turbo system) is less effective, so the latter (Alcoa: A729 system) is mainly used.

【0005】冷却水に炭酸ガスを注入すると徐冷効果が
得られる理由は、炭酸ガスが注入された冷却水が鋳塊に
噴射されると、冷却水は温度上昇して前記炭酸ガスが放
出され、この炭酸ガスが鋳塊表面に気泡膜を形成するた
めである。前記炭酸ガスによる徐冷効果は、図5に示す
ように、炭酸ガスの溶解限界量までは大きく変化し、溶
解限界量を超えるとその効果は小さくなる。これは、溶
解限界量を超えると炭酸ガスは冷却水に気泡として分散
し、この気泡の多くは鋳塊表面に噴射される前に大気中
に放散するためである。なお、炭酸ガスは、図3に示し
たように、冷却水7が貯水槽9から水冷鋳型1へ送水ポ
ンプ10により移送される間に連続的に注入される。注
入後、炭酸ガスの溶解を促進するために冷却水7は攪拌
装置(図示せず)により攪拌される。
The reason why the gradual cooling effect is obtained by injecting carbon dioxide gas into the cooling water is that when the cooling water in which the carbon dioxide gas is injected is injected into the ingot, the temperature of the cooling water rises and the carbon dioxide gas is released. This is because this carbon dioxide gas forms a bubble film on the surface of the ingot. As shown in FIG. 5, the gradual cooling effect of the carbon dioxide gas greatly changes up to the solubility limit amount of carbon dioxide gas, and the effect decreases when the solubility limit amount is exceeded. This is because if the solubility limit is exceeded, carbon dioxide will be dispersed in the cooling water as bubbles, and most of these bubbles will diffuse into the atmosphere before being sprayed onto the ingot surface. The carbon dioxide gas is continuously injected while the cooling water 7 is transferred from the water tank 9 to the water-cooled mold 1 by the water pump 10 as shown in FIG. After the injection, the cooling water 7 is stirred by a stirring device (not shown) in order to accelerate the dissolution of carbon dioxide gas.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の炭酸ガ
ス注入による徐冷方法では、図5に示すように、中程度
の徐冷効果Cは、少量の炭酸ガス注入で安定して得られ
るが、(1)比較的小さな(以下、小さなと略記する)
徐冷効果Aを得ようとすると炭酸ガス注入量が注入条件
(冷却水温度、注入圧力、攪拌条件等)が僅かに変化し
ただけで徐冷効果が大きく変動するという問題がある。
また(2)比較的大きな(以下、大きなと略記する)徐
冷効果Bを得ようとすると大量の炭酸ガスを注入する必
要があり作業が煩雑になるという問題がある。本発明
は、このような問題を解決するためになされたもので、
その目的は、小さな徐冷効果A(図5参照)が安定して
得られ、また大きな徐冷効果Bが少量の炭酸ガス注入に
より安定して得られるようにして、湯漏れ等を生じずに
容易に連続鋳造を開始する方法を提供することにある。
即ち、本発明は、硫酸アルミニウムなどを添加して
をコントロールすることにより冷却効果を安定して小さ
くし、或いはエチレングリールなどを添加することによ
り少量の炭酸ガス注入により徐冷効果を安定して大きく
する方法である。
However, in the conventional slow cooling method by injecting carbon dioxide gas, as shown in FIG. 5, a moderate annealing effect C can be stably obtained by injecting a small amount of carbon dioxide gas. , (1) Relatively small (hereinafter abbreviated as small)
When the gradual cooling effect A is to be obtained, there is a problem that the gradual cooling effect greatly changes even if the injection conditions of the carbon dioxide gas (cooling water temperature, injection pressure, stirring conditions, etc.) are slightly changed.
(2) If a relatively large (hereinafter abbreviated as large) slow cooling effect B is to be obtained, a large amount of carbon dioxide gas needs to be injected, which complicates the work. The present invention has been made to solve such a problem,
The purpose thereof is that a small slow cooling effect A (see FIG. 5) can be stably obtained, and a large slow cooling effect B can be stably obtained by injecting a small amount of carbon dioxide gas, so that no hot water leak occurs. It is to provide a method for easily starting continuous casting.
That is, the present invention is the addition of aluminum sulfate p H
Is a method for stably reducing the cooling effect, or adding ethylene glycol or the like to stably increase the slow cooling effect by injecting a small amount of carbon dioxide gas.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
水冷鋳型から引出される鋳造開始時の鋳塊に、Hが
5.0以下の冷却水に炭酸ガスをその溶解限界量を超え
注入した冷却水を噴射することを特徴とする連続鋳造
開始方法である。
The invention according to claim 1 is
The ingot during casting start drawn from the water-cooled mold, the carbon dioxide beyond its solubility limit amount in p H 5.0 or less of the cooling water
A continuous casting start method characterized by injecting the injected coolant Te.

【0008】請求項2記載の発明は、水冷鋳型から引出
される鋳造開始時の鋳塊に、硫酸アルミニウムを50〜
2000ppm添加し、さらに炭酸ガスを所定量注入し
た冷却水を噴射することを特徴とする連続鋳造開始方法
である。
According to a second aspect of the present invention, aluminum sulfate is added in an amount of 50 to 50 in the ingot at the start of casting drawn from the water-cooled mold.
It is a continuous casting start method characterized by adding 2000 ppm and further injecting cooling water into which a predetermined amount of carbon dioxide gas has been injected.

【0009】請求項3記載の発明は、水冷鋳型から引出
される鋳造開始時の鋳塊に、エチレングリコール、プロ
ピレングリコール又はグリセリンのうちの少なくとも1
種を合計で5〜1000ppm添加し、さらに炭酸ガス
を所定量注入した冷却水を噴射することを特徴とする連
続鋳造開始方法である。
According to the third aspect of the invention, at least one of ethylene glycol, propylene glycol or glycerin is added to the ingot at the start of casting which is drawn from the water-cooled mold.
A continuous casting start method is characterized in that the seeds are added in a total amount of 5 to 1000 ppm, and further, a predetermined amount of carbon dioxide gas is injected and cooling water is injected.

【0010】[0010]

【発明の実施の形態】請求項1記載の発明は、冷却水の
H(水素イオン濃度)を5.0以下に規定することに
より、図1に示すように、冷却水への炭酸ガスの溶解限
界量を低下させたもので、小さな徐冷効果が得られるも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is directed to cooling water.
By defining p H (hydrogen ion concentration) 5.0 below, as shown in FIG. 1, which has reduced the solubility limit of carbon dioxide gas to the cooling water, which small slow cooling effect is obtained Is.

【0011】 この冷却水により小さな徐冷効果Aを得る
には、炭酸ガスは溶解限界量を超えて注入することにな
り、このため炭酸ガス注入量が多少変化しても徐冷効果
が大幅に変動することがなく、鋳塊は安定して徐冷さ
れ、湯漏れによる鋳塊割れや爆発等を起こさずに鋳造を
開始できる。
In order to obtain a small gradual cooling effect A with this cooling water, carbon dioxide must be injected in excess of the solubility limit amount. Therefore, even if the carbon dioxide injection amount changes a little, the gradual cooling effect is significantly increased. The ingot does not fluctuate, the ingot is cooled slowly, and the casting can be started without causing the ingot to crack or explode due to the leakage of the molten metal.

【0012】この発明において、冷却水のHを5.0
以下にするには、冷却水に硫酸アルミニウム等のHを
5.0以下にする任意の化合物を添加して行う。Hを
5.0以下にするには、硫酸アルミニウムの場合は、5
0ppm以上添加する必要がある。一方、多量に添加し
てもその効果は飽和するので上限は2000ppmとす
るのがコスト的に有利である。
In the present invention, the cooling water has a pH of 5.0.
To below, performs the cooling water by the addition of any compound that the p H of aluminum sulfate to 5.0 or less. In the case of aluminum sulphate, it is 5 to adjust pH to 5.0 or less.
It is necessary to add 0 ppm or more. On the other hand, the effect is saturated even if added in a large amount, so the upper limit is 2000 ppm, which is advantageous in terms of cost.

【0013】請求項3記載の発明は、エチレングリコー
ル、プロピレングリコールまたはグリセリンの有機化合
物を添加し、前記有機化合物のアルコール基に炭酸ガス
を結合させて、冷却水への炭酸ガスの溶解量を増大させ
たもので、図2に示すように、大きな徐冷効果Bを得よ
うとするときは、従来の冷却水(図5参照)に較べて、
小量の炭酸ガス注入で安定した徐冷効果が得られる。前
記アルコール基に結合された炭酸ガスは鋳塊に接すると
容易に炭酸ガスを放出して徐冷効果に有効に寄与する。
The invention according to claim 3 is ethylene glycol
2, an organic compound of propylene glycol or glycerin is added, carbon dioxide is bonded to the alcohol group of the organic compound to increase the amount of carbon dioxide dissolved in the cooling water, and as shown in FIG. When trying to obtain a large gradual cooling effect B, compared to conventional cooling water (see FIG. 5),
A stable slow cooling effect can be obtained by injecting a small amount of carbon dioxide gas. When the carbon dioxide gas bonded to the alcohol group comes into contact with the ingot, the carbon dioxide gas is easily released to effectively contribute to the slow cooling effect.

【0014】前記エチレングリコール、プロピレングリ
コール、グリセリンは単独添加でも、2種以上を複合添
加しても良いが、合計添加量が5ppm未満ではその効
果が十分に得られない。一方、多量に添加してもその効
果は飽和するので上限を1000ppmとするのがコス
ト的に有利である。
[0014] Before disappeared Ji glycol, propylene glycol, also in glycerin is added alone, or two or more may be added in combination, but the amount of the total added, the effect is not sufficiently obtained in less than 5 ppm. On the other hand, even if added in a large amount, the effect is saturated, so the upper limit of 1000 ppm is advantageous in terms of cost.

【0015】本発明において、徐冷効果を小さくする
か、大きくするかは、鋳造する鋳塊の種類(合金組成や
鋳塊サイズ等)により選定される。
In the present invention, whether the slow cooling effect is reduced or increased is selected depending on the type of ingot to be cast (alloy composition, ingot size, etc.).

【0016】[0016]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1) 図3に示した水冷式連続鋳造法により、JIS−303
4(Al−Mn系)合金鋳塊(断面寸法500mm×1
800mm)の連続鋳造開始実験を行った。貯水槽9中
の冷却水に硫酸アルミニウムを所定量添加しておき、貯
水槽9から水冷鋳型1に移送される冷却水に炭酸ガスを
連続的に注入し攪拌した。炭酸ガスは500リットル/
分の量注入した。鋳造開始直前から水冷鋳型1に冷却水
7を1400リットル/分の量流した。炭酸ガスは15
分間注入した。硫酸アルミニウムの添加量は50〜20
00ppmの範囲で変化させた。Al合金溶湯の鋳型へ
の供給温度は720℃とし、ボトムブロックの降下速度
は60mm/分とした。鋳造開始直後に水冷鋳型から出
てくる冷却水(鋳塊に噴射される冷却水)をサンプリン
グしてHを常法により測定した。
EXAMPLES The present invention will be described in detail below with reference to examples. (Example 1) According to the water-cooled continuous casting method shown in FIG.
4 (Al-Mn-based) alloy ingot (section size 500 mm x 1
800 mm) continuous casting start experiment was conducted. A predetermined amount of aluminum sulfate was added to the cooling water in the water storage tank 9, and carbon dioxide gas was continuously injected into the cooling water transferred from the water storage tank 9 to the water-cooled mold 1 and stirred. Carbon dioxide is 500 liters /
Injected the amount. Immediately before the start of casting, cooling water 7 was flown into the water-cooled mold 1 in an amount of 1400 liters / minute. Carbon dioxide is 15
Infused for a minute. Addition amount of aluminum sulfate is 50 to 20
It was changed in the range of 00 ppm. The temperature for supplying the molten Al alloy to the mold was 720 ° C., and the descending speed of the bottom block was 60 mm / min. The p H was determined by a conventional method cooling water emerging from the water-cooled mold immediately after the start of casting (the cooling water to be injected into the ingot) by sampling.

【0017】(比較例1) 貯水槽中の冷却水に硫酸アルミニウムを添加しないか、
30ppm添加した他は、実施例1と同じ方法により連
続鋳造開始実験を行った。
(Comparative Example 1) Whether aluminum sulfate is added to the cooling water in the water tank,
A continuous casting start experiment was conducted in the same manner as in Example 1 except that 30 ppm was added.

【0018】実施例1および比較例1における鋳造開始
状況を表1に示す。
Table 1 shows the starting conditions of casting in Example 1 and Comparative Example 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1より明らかなように、本発明例のN
o.1〜4は、いずれも湯漏れが発生したりせず、問題
なく鋳造を開始できた。これに対し、比較例のNo.
5、6は、いずれもHが5.0を超えたため、炭酸ガ
スの注入量が溶解限界量以下となり、炭酸ガスの注入条
件の僅かな変化で徐冷効果が大きく変動して冷却が不安
定になり、その結果、湯漏れが生じて、前者では鋳塊割
れが発生し、後者では小爆発が発生した。
As is clear from Table 1, N of the present invention example
o. In Nos. 1 to 4, no molten metal leak occurred, and casting could be started without problems. On the other hand, in Comparative Example No.
5 and 6, for both p H exceeds 5.0, injection volume of carbon dioxide gas becomes less solubility limit amount, cooling fluctuates slow cooling effect is increased with a slight change in the implantation conditions of carbon dioxide not It became stable, and as a result, molten metal leaked, causing ingot cracking in the former and small explosion in the latter.

【0021】(実施例2) 図1に示したのと同様の水冷式連続鋳造法により、JI
S5083(Al−Mg系)合金鋳塊の連続鋳造開始実
験を行った。貯水槽中の冷却水にエチレングリコール、
プロピレングリコール又はグリセリンをそれぞれ5〜1
000ppm添加した他は、実施例1と同じ方法に依っ
た。
(Embodiment 2) By the same water-cooled continuous casting method as shown in FIG.
A continuous casting start experiment of an S5083 (Al-Mg based) alloy ingot was conducted. Ethylene glycol in the cooling water in the water tank,
Propylene glycol or glycerin 5-1 respectively
The same method as in Example 1 was used except that 000 ppm was added.

【0022】(比較例2) 貯水槽中の冷却水にアルコール基を含む有機化合物を添
加しない他は、実施例2と同じ方法によりJIS508
3合金の連続鋳造開始実験を行った。
Comparative Example 2 JIS 508 was prepared in the same manner as in Example 2 except that the organic compound containing an alcohol group was not added to the cooling water in the water storage tank.
A continuous casting start experiment of 3 alloys was performed.

【0023】(比較例3) 貯水槽中の冷却水にアルコール基を含む有機化合物を添
加せずに、かつ炭酸ガスを8000リットル/分の量注
入した他は、実施例2と同じ方法によりJIS5083
合金の連続鋳造開始実験を行った。
(Comparative Example 3) JIS 5083 was carried out in the same manner as in Example 2 except that the organic compound containing an alcohol group was not added to the cooling water in the water tank and carbon dioxide gas was injected at a rate of 8000 l / min.
An experiment for starting continuous casting of the alloy was conducted.

【0024】実施例2および比較例2、3における鋳造
開始状況を表2に示す。
Table 2 shows the starting conditions of casting in Example 2 and Comparative Examples 2 and 3.

【0025】[0025]

【表2】 [Table 2]

【0026】表2より明らかなように、本発明例のN
o.11〜16は、いずれも湯漏れが発生せず、問題な
く鋳造を開始できた。これに対し、比較例のNo.1
7、18はアルコール基を含む有機化合物が添加されて
いないため、前者は目的とする大きな徐冷効果が得られ
ず、湯漏れに起因する鋳塊割れが発生し、後者は大きな
徐冷効果を安定して得るのに炭酸ガスを大量に注入する
必要があった。
As is clear from Table 2, N of the present invention example
o. No. 11 to 16 did not leak molten metal and could start casting without problems. On the other hand, in Comparative Example No. 1
In Nos. 7 and 18, since no organic compound containing an alcohol group was added, the former was not able to obtain the desired large gradual cooling effect, ingot cracks caused by leakage of molten metal occurred, and the latter was liable to have a large gradual cooling effect. It was necessary to inject a large amount of carbon dioxide gas in order to obtain it stably.

【0027】[0027]

【発明の効果】以上に述べたように、本発明によれば、
小さな徐冷効果が安定して得られ、また大きな徐冷効果
が少量の炭酸ガス注入により安定して得られる。依っ
て、湯漏れ等を生じずに容易に連続鋳造を開始すること
ができ、工業上顕著な効果を奏する。
As described above, according to the present invention,
A small slow cooling effect can be stably obtained, and a large slow cooling effect can be stably obtained by injecting a small amount of carbon dioxide gas. Therefore, continuous casting can be started easily without causing leakage of molten metal, which has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にて用いる冷却水の第1の実施形態を示
す徐冷効果の説明図である。
FIG. 1 is an explanatory diagram of a gradual cooling effect showing a first embodiment of cooling water used in the present invention.

【図2】本発明にて用いる冷却水の第2の実施形態を示
す徐冷効果の説明図である。
FIG. 2 is an explanatory diagram of a gradual cooling effect showing a second embodiment of cooling water used in the present invention.

【図3】水冷式連続鋳造法における鋳造開始方法の説明
図である。
FIG. 3 is an explanatory diagram of a casting start method in a water-cooled continuous casting method.

【図4】水冷式連続鋳造法における鋳造開始時の湯漏れ
発生状況の説明図である。
FIG. 4 is an explanatory diagram of a molten metal leakage occurrence state at the start of casting in the water-cooled continuous casting method.

【図5】従来の水冷式連続鋳造法にて用いる冷却水の徐
冷効果の説明図である。
FIG. 5 is an explanatory diagram of a gradual cooling effect of cooling water used in a conventional water-cooled continuous casting method.

【符号の説明】[Explanation of symbols]

1 水冷鋳型 2 ボトムブロック 3 樋 4 アルミニウム溶湯 5 油圧シリンダー 6 鋳塊 7 冷却水 8 凝固殻 9 貯水槽 10 送水ポンプ 1 Water-cooled mold 2 bottom block 3 gutter 4 molten aluminum 5 hydraulic cylinder 6 ingot 7 cooling water 8 solidified shell 9 water tank 10 water pump

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22D 11/055 B22D 11/124 B22D 11/22 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B22D 11/055 B22D 11/124 B22D 11/22

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水冷鋳型から引出される鋳造開始時の鋳
塊に、Hが5.0以下の冷却水に炭酸ガスをその溶解
限界量を超えて注入した冷却水を噴射することを特徴と
する連続鋳造開始方法。
The ingot during casting start drawn from 1. A water-cooled mold, the dissolved carbon dioxide in the p H of 5.0 or less of the cooling water
A method for initiating continuous casting, which comprises injecting cooling water injected in excess of a limit amount .
【請求項2】 水冷鋳型から引出される鋳造開始時の鋳
塊に、硫酸アルミニウムを50〜2000ppm添加
し、さらに炭酸ガスを所定量注入した冷却水を噴射する
ことを特徴とする連続鋳造開始方法。
2. A continuous casting start method, characterized by adding 50 to 2000 ppm of aluminum sulfate to a ingot at the start of casting drawn out from a water-cooled mold and further injecting cooling water into which a predetermined amount of carbon dioxide gas has been injected. .
【請求項3】 水冷鋳型から引出される鋳造開始時の鋳
塊に、エチレングリコール、プロピレングリコール又は
グリセリンのうちの少なくとも1種を合計で5〜100
0ppm添加し、さらに炭酸ガスを所定量注入した冷却
水を噴射することを特徴とする連続鋳造開始方法。
3. A total of 5 to 100 of at least one of ethylene glycol, propylene glycol or glycerin is added to the ingot at the start of casting drawn from the water-cooled mold.
A method for starting continuous casting, which comprises adding 0 ppm and injecting a predetermined amount of carbon dioxide gas to inject cooling water.
JP2000033138A 2000-02-10 2000-02-10 How to start continuous casting Expired - Fee Related JP3408222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000033138A JP3408222B2 (en) 2000-02-10 2000-02-10 How to start continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000033138A JP3408222B2 (en) 2000-02-10 2000-02-10 How to start continuous casting

Publications (2)

Publication Number Publication Date
JP2001219256A JP2001219256A (en) 2001-08-14
JP3408222B2 true JP3408222B2 (en) 2003-05-19

Family

ID=18557657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033138A Expired - Fee Related JP3408222B2 (en) 2000-02-10 2000-02-10 How to start continuous casting

Country Status (1)

Country Link
JP (1) JP3408222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226470A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Manufacturing method for aluminum ingot or aluminum alloy ingot
CN108246991B (en) * 2018-01-26 2022-03-18 龙岩学院 Semi-continuous casting device and method for inhibiting cracking of magnesium alloy ingot blank

Also Published As

Publication number Publication date
JP2001219256A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP3408222B2 (en) How to start continuous casting
EP0533133A1 (en) Cooling method of continuous casting and its mold
JP4337739B2 (en) Continuous casting method for molten steel
US4473106A (en) Process for cooling a continuously cast strand of metal during casting
JP3262672B2 (en) Starting method in twin roll casting of aluminum alloy
JPH07303951A (en) Secondary cooling method for continuous casting and the device thereof
JP3390606B2 (en) Steel continuous casting method
JP3197806B2 (en) Vertical continuous casting method of aluminum
JPS63168260A (en) Hot working method for continuously cast billet
JP3115189B2 (en) Vertical continuous casting of metal
JP3341673B2 (en) Continuous casting method of stainless steel containing boron
JP3522172B2 (en) Hot water supply method in vertical injection casting
JP3156528B2 (en) Metal casting apparatus and casting method
JP3126237B2 (en) Continuous casting of aluminum
JP2770691B2 (en) Steel continuous casting method
JPS60141B2 (en) Continuous slab casting method
JPH0734168A (en) Aluminum alloy for casting and method thereof
JP2004306039A (en) Continuously casting method for magnesium alloy molten metal
JP2937061B2 (en) Manufacturing method of austenitic stainless steel for neutron shielding
JP4466335B2 (en) Steel continuous casting method
JPH05269561A (en) Method for continuously casting steel
JPH05104237A (en) Method for cooling steel ingot
JPH09271903A (en) Mold for continuously casing steel
JPH0242575B2 (en)
JPH05177322A (en) Method for secondary-cooling continuously cast slab

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees