JPH0242575B2 - - Google Patents

Info

Publication number
JPH0242575B2
JPH0242575B2 JP57005380A JP538082A JPH0242575B2 JP H0242575 B2 JPH0242575 B2 JP H0242575B2 JP 57005380 A JP57005380 A JP 57005380A JP 538082 A JP538082 A JP 538082A JP H0242575 B2 JPH0242575 B2 JP H0242575B2
Authority
JP
Japan
Prior art keywords
aluminum
casting
continuous casting
semi
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57005380A
Other languages
Japanese (ja)
Other versions
JPS58125342A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP538082A priority Critical patent/JPS58125342A/en
Publication of JPS58125342A publication Critical patent/JPS58125342A/en
Publication of JPH0242575B2 publication Critical patent/JPH0242575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、アルミニウムまたは、アルミニウム
合金の連続鋳造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for aluminum or an aluminum alloy.

一般に、アルミニウムまたは、アルミニウム合
金の塑性加工用柱状鋳塊としてのスラブまたはビ
レツトの鋳造は、垂直半連続鋳造法によつて行な
われる。
Generally, slabs or billets of aluminum or aluminum alloys as columnar ingots for plastic working are cast by a vertical semi-continuous casting method.

半連続鋳造装置は、第1図に示す如く、水冷ジ
ヤケツト付強制冷却環状鋳型1と、この内壁に嵌
合する昇降自在な下型2等から構成されている。
鋳造は、アルミニウム溶湯を、上方より鋳型1内
に連続的に注入し、鋳型内で溶湯の熱を奪うこと
により溶湯の外殻を凝固させ、鋳型直下において
スプレー装置4により、連続的に注水することに
より内部まで凝固させることにより成され、下型
2は、鋳塊が形成されるに従つて下降する。
As shown in FIG. 1, the semi-continuous casting apparatus is comprised of a forced cooling annular mold 1 with a water-cooled jacket, a lower mold 2 that fits into the inner wall of the mold, and is movable up and down.
In casting, molten aluminum is continuously injected into the mold 1 from above, the outer shell of the molten metal is solidified by removing heat from the molten metal within the mold, and water is continuously injected directly below the mold using a spray device 4. The lower die 2 is lowered as the ingot is formed.

第1図において、3は、サンプとよばれる溶融
アルミニウムの部分であり、5は凝固した固体の
アルミニウム鋳塊の部分である。
In FIG. 1, numeral 3 is a portion of molten aluminum called a sump, and numeral 5 is a portion of a solidified aluminum ingot.

アルミニウムの半連続鋳造においては、鋳造ス
タート時にコールドクラツクと呼ばれる中心割れ
が発生することが多い。これは、2000番系、7000
番系の合金において特に発生し易く、また、鋳塊
の断面が大きくなる程発生し易い。
In semi-continuous aluminum casting, center cracks called cold cracks often occur at the start of casting. This is the 2000 series, 7000
This phenomenon is particularly likely to occur in alloys of various grades, and the larger the cross-section of the ingot, the more likely it is to occur.

コールドクラツクは、鋳造初期の熱的に不安定
な状態において、鋳塊表面と内部とに大きな温度
差がついて、表面に圧縮応力、中心部に引張応力
が発生し、それがもとで発生すると云われてい
る。
Cold cracks occur when there is a large temperature difference between the surface and the inside of the ingot during the thermally unstable state at the initial stage of casting, resulting in compressive stress on the surface and tensile stress in the center. It is said that then.

コールドクラツクは鋳造速度が遅いと防止し易
いので、スタート時に鋳造速度を遅くし、その後
正常な鋳造速度に戻して、コールドクラツクの発
生を防止する方法がとられることが多いが、鋳造
速度が遅いと、冷接現象(コールドシヤツト)が
発生する。コールドシヤツトの鋳肌の部分は、不
良製品となるので、この方法では、製品の収率が
低下する。また鋳造速度を切り替えるために、作
業が煩雑になる。
Cold cracks are easier to prevent when the casting speed is slow, so a method is often used to prevent the occurrence of cold cracks by slowing down the casting speed at the start and then returning it to the normal casting speed. If it is slow, a cold welding phenomenon (cold shut) will occur. Since the casting surface portion of the cold shaft becomes a defective product, the yield of the product decreases in this method. In addition, changing the casting speed makes the work complicated.

コールドクラツクの発生し易いアルミニウム合
金を鋳造する際、予め応力集中の少ないアルミニ
ウムを鋳込み、次いで応力集中の多いアルミニウ
ム合金を鋳造する方法も提案されている(特開昭
54−128936)が、この方法も、鋳造作業の途中
で、アルミニウム合金の組成を変更するので、作
業の煩雑さと製品の歩留りの低下という欠点をも
つ。
When casting aluminum alloys that are prone to cold cracks, a method has been proposed in which aluminum with low stress concentration is first cast, and then aluminum alloys with high stress concentration are cast (Japanese Patent Application Laid-open No.
54-128936), however, this method also has the disadvantage of complicating the work and reducing the yield of the product, since the composition of the aluminum alloy is changed during the casting process.

本発明の目的は、アルミニウムまたはアルミニ
ウム合金の鋳造スタート時におけるコールドクラ
ツクの発生を防止し、容易に安定した鋳造を行う
方法を提供することにある。
An object of the present invention is to provide a method that prevents the occurrence of cold cracks at the start of casting of aluminum or aluminum alloy, and easily performs stable casting.

コールドクラツクは既述のように、鋳塊表面と
内部との温度差が大きい程発生し易く、従つて一
方向凝固する場合は発生しないと云われている。
この状態においては、鋳塊の凝固界面の形状は、
フラツトになる。
As mentioned above, cold cracks are more likely to occur as the temperature difference between the surface and inside of the ingot increases, and therefore, it is said that cold cracks do not occur in the case of unidirectional solidification.
In this state, the shape of the solidification interface of the ingot is
becomes flat.

このような観点より発明者は、鋳造初期の鋳塊
の凝固界面の形状に着目し、この形状がフラツト
に近い程、コールドクラツクが発生し難いことを
見出した。
From this point of view, the inventor focused on the shape of the solidification interface of the ingot at the initial stage of casting, and found that the closer the shape is to the flatness, the less likely cold cracks will occur.

通常使用されている下形の形状は、フラツトで
あるか、第1図に示すような凹型であり、冷却方
法から云つて、凝固界面は凹面である。
The shape of the bottom generally used is either flat or concave as shown in FIG. 1, and the solidification interface is concave due to the cooling method.

第2図に、下方に向つて拡大している隆起曲面
をもつた下型で鋳造した鋳塊(ビレツト)の凝固
界面の形状の経時変化の例を示す。
FIG. 2 shows an example of the change over time in the shape of the solidification interface of an ingot (billet) cast using a lower die with a raised curved surface that expands downward.

このように、下方に向つて拡大している隆起曲
面をもつた下型で鋳造した鋳塊の凝固界面の形状
は、第2図に示すように、鋳造した直後aは、下
型の形状に近似の隆起形状を示し、W字型を経過
してb,c、最終的には凹型dになり、途中にお
いてフラツトに近い凝固界面の形状を呈し、コー
ルドクラツクが発生し難いことを確認した。そし
てこのフラツトな凝固界面の位置は、ビレツトで
は1/2R以上(Rは、ビレツトの径)、スラブで
は、1/4H以上(Hは、スラブ短辺側の長さ)で
あることが望ましい。
As shown in Figure 2, the shape of the solidification interface of an ingot cast using a lower die with a raised curved surface that expands downward is that immediately after casting, a It showed an approximate raised shape, passed through a W-shape, then became a concave shape, and finally became a concave shape, d. In the middle, the solidification interface had a shape that was close to flat, and it was confirmed that cold cracks were unlikely to occur. . The position of this flat solidification interface is desirably 1/2R or more (R is the diameter of the billet) for billets, and 1/4H or more for slabs (H is the length of the short side of the slab).

下型の形状については、さらに詳細に検討し、
実質的に、鋳塊の凝固界面を倒置した形状が最も
好ましいことを見出した。
We considered the shape of the lower die in more detail,
It has been found that a shape in which the solidification interface of the ingot is substantially inverted is most preferable.

ここで、図面に基づいて、代表的な鋳塊である
ビレツト及びスラブについて、本発明の詳細を説
明する。
Here, the details of the present invention will be explained with reference to billets and slabs, which are typical ingots, based on the drawings.

第3図にビレツト鋳造用下型の断面図を示す。
点線及び実線で描かれた下方に向つて拡大してい
る隆起曲面は、鋳塊の凝固界面の形状を倒置した
ものであり、このうち実線部分が下型である。鋳
塊の凝固界面の性状から云つて、この下方に向つ
て拡大している隆起曲面は、環状鋳型の軸心を頂
点としている。但し下方に向つて拡大している隆
起曲面は、後述するように截頂隆起面であつても
よい。
FIG. 3 shows a sectional view of the lower die for billet casting.
The downwardly expanding raised curved surface drawn by dotted lines and solid lines is an inverted version of the shape of the solidification interface of the ingot, and the solid line portion is the lower mold. Judging from the properties of the solidification interface of the ingot, this downwardly expanding protruding curved surface has its apex at the axis of the annular mold. However, the downwardly expanding raised curved surface may be a truncated raised surface as described later.

Rは、下型の径であり、γ1は隆起した部分の下
端の径、γ2は上端の径である。hは、隆起した部
分の高さである。
R is the diameter of the lower mold, γ 1 is the diameter of the lower end of the raised portion, and γ 2 is the diameter of the upper end. h is the height of the raised portion.

γ1=R、γ2=0であれば、下型の形状は、鋳塊
の凝固界面を倒置したものと同じ形状になるが Rγ11/5R 4/5Rγ20 h1/4R の条件を満たせば、第3図に示すように、隆起し
た曲面の上部を切断した形状即ち截頂隆起面でも
よい。
If γ 1 = R and γ 2 = 0, the shape of the lower mold will be the same as that of the solidified ingot with the solidified interface inverted, but if the condition of Rγ 1 1/5R 4/5Rγ 2 0 h1/4R is If it satisfies the above requirements, it may be a raised curved surface with the upper part cut off, that is, a truncated raised surface, as shown in FIG.

第4図及び第5図は、それぞれスラブ鋳造用下
型の斜視図及び、スラブの短辺に平行な面で切つ
たa−a断面図である。点線及び実線で描かれた
下方に向つて拡大している隆起曲面は、鋳塊の凝
固界面を倒置した形状のものであり、このうち実
線部分が実際の下型である。
4 and 5 are respectively a perspective view of the lower die for slab casting and a sectional view taken along the line a-a along a plane parallel to the short side of the slab. The downwardly expanding raised curved surface drawn by dotted lines and solid lines has a shape obtained by inverting the solidification interface of the ingot, and the solid line portion is the actual lower die.

H、t1、t2は、それぞれ、スラブの短辺方向か
ら見たスラブの巾、下型の隆起した部分の下端の
巾である。
H, t 1 and t 2 are the width of the slab as seen from the short side direction of the slab and the width of the lower end of the raised portion of the lower die, respectively.

スラブの鋳造においても、ビレツト鋳造の場合
の状況と同様に、以下の条件を満たせば、下方に
向つて拡大している隆起曲面の上部を切断したも
のであつてもよい。
In the case of slab casting, similarly to the situation in billet casting, the upper part of a downwardly expanding raised curved surface may be cut off as long as the following conditions are met.

1/2Ht11/10H 2/5Ht20 h1/8H さらに、これらの効果をより大きいものにする
ために、下型の内部に空洞を穿設し、強制冷却す
ることもできる。冷却方法としては、工業的に
は、例えば冷却水をこの空洞中に充満させる方
法、冷却水を噴射する方法などがある(第6図)。
1/2Ht 1 1/10H 2/5Ht 2 0 h1/8H Furthermore, in order to make these effects even greater, it is also possible to form a cavity inside the lower mold and perform forced cooling. As a cooling method, there are, for example, a method in which the cavity is filled with cooling water, a method in which the cooling water is injected, etc. (FIG. 6).

次に本発明を、さらに実施例について説明する
が、本発明は以下の実施例に限定されるものでは
ないことは云うまでもない。
Next, the present invention will be further described with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.

実施例 2024合金(AA規格)の12インチ径のビレツト
を、気体加圧ホツトトツプ方式による垂直半連続
鋳造法により鋳造した。鋳造速度80mm/min、冷
却水量120/min、の鋳造条件で、下型には、
第6図に示す本発明になるものを使用し、90/
minの冷却水を、供給管6を経て供給し、下型を
水冷した。鋳造に際して、コールドクラツクは全
く発生せず健全な鋳塊が得られた。
EXAMPLE A 12 inch diameter billet of 2024 alloy (AA standard) was cast by a vertical semi-continuous casting method using a gas pressurized hot top method. Under the casting conditions of a casting speed of 80 mm/min and a cooling water flow rate of 120/min, the lower mold has the following properties:
Using the invention shown in FIG. 6, 90/
Min of cooling water was supplied through the supply pipe 6 to water-cool the lower mold. During casting, no cold cracks occurred and a sound ingot was obtained.

一方、第1図に示す、公知の下型を使用し、実
施例と同一のビレツトを、同一の鋳造装置、同一
の鋳造条件(但し、下型の水冷はしていない)で
鋳造したが、鋳造初期に、コールドクラツクが発
生した。
On the other hand, the same billet as in the example was cast using the known lower mold shown in FIG. 1 under the same casting equipment and under the same casting conditions (however, the lower mold was not water-cooled). A cold crack occurred in the early stages of casting.

以上説明したように、本発明によれば環状鋳型
の軸心を頂点とする下方に向つて拡大している隆
起曲面を有する下型を使用することにより、アル
ミニウムまたはアルミニウム合金の鋳造スタート
時におけるコールドクラツクの発生を防止でき
る。
As explained above, according to the present invention, by using a lower mold having a raised curved surface that expands downward with the axis of the annular mold as its apex, cold molding at the start of casting of aluminum or aluminum alloy can be achieved. This can prevent cracks from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、垂直半連続鋳造装置の模式断面図、
第2図は、環状鋳型の軸心を頂点とする下方に向
つて拡大している隆起曲面をもつた下型で鋳造し
た鋳塊の凝固界面の経時変化を示す断面図、第3
図は、本発明を説明するための、ビレツト鋳造用
下型の断面図、第4図は、本発明を説明するため
の、スラブ鋳造用下型の斜視図、第5図は、第4
図の下型のa−a断面図、第6図は、本発明の方
法に従う、下方に向つて拡大している隆起曲面を
有し、下型内部に、強制冷却用の空胴を穿設した
ビレツト鋳造用下型の断面図である。 1……水冷ジヤケツト付強制冷却環状鋳型、2
……下型、3……溶融アルミニウム、5……凝固
したアルミニウム鋳塊、6……下型冷却水供給
管。
Figure 1 is a schematic cross-sectional view of a vertical semi-continuous casting device;
Figure 2 is a cross-sectional view showing the change over time of the solidification interface of an ingot cast using a lower mold with a raised curved surface that expands downward with the axis of the annular mold at its apex;
The figure is a sectional view of a lower die for billet casting to explain the present invention, FIG. 4 is a perspective view of a lower die for slab casting to explain the present invention, and FIG.
The a-a sectional view of the lower mold in the figure, FIG. 6, has a protruding curved surface expanding downward, and a cavity for forced cooling is bored inside the lower mold according to the method of the present invention. FIG. 3 is a cross-sectional view of the lower mold for billet casting. 1... Forced cooling annular mold with water cooling jacket, 2
... lower mold, 3 ... molten aluminum, 5 ... solidified aluminum ingot, 6 ... lower mold cooling water supply pipe.

Claims (1)

【特許請求の範囲】 1 強制冷却された環状鋳型の上方から該鋳型内
にアルミニウムまたはアルミニウム合金溶湯が連
続的に注入され、凝固した柱状鋳塊が、上面が上
記環状鋳型の軸心を頂点とする下方に向つて拡大
している隆起曲面を形成してなる昇降可能の下型
上に支承されて実質的に垂直下方に引き降ろされ
るアルミニウムまたはアルミニウム合金の半連続
鋳造法。 2 下型上面の下方に向つて拡大している隆起曲
面が、実質的に連続鋳造中の凝固鋳塊の頂部の凝
固界面を倒置した形状であることを特徴とする特
許請求の範囲1のアルミニウムまたはアルミニウ
ム合金の半連続鋳造法。 3 下型が内部に空洞を有し、空洞内壁が冷却媒
体によつて強制冷却されることを特徴とする特許
請求の範囲1のアルミニウムまたはアルミニウム
合金の半連続鋳造法。 4 空洞内壁面に、直接、液体冷却媒体を噴射し
て強制冷却することを特徴とする、特許請求の範
囲3のアルミニウムまたはアルミニウム合金の半
連続鋳造法。
[Scope of Claims] 1. Aluminum or aluminum alloy molten metal is continuously injected into the forcibly cooled annular mold from above, and solidified columnar ingots are formed such that the upper surface thereof is aligned with the apex of the axis of the annular mold. A semi-continuous casting method for aluminum or aluminum alloy in which the aluminum or aluminum alloy is supported on a lower die which can be lowered and lowered and which is formed with a raised curved surface that expands downward. 2. The aluminum according to claim 1, wherein the raised curved surface expanding downward on the upper surface of the lower mold has a shape substantially inverted from the solidification interface at the top of the solidified ingot during continuous casting. or semi-continuous casting of aluminum alloys. 3. The semi-continuous casting method for aluminum or aluminum alloy according to claim 1, wherein the lower die has a cavity therein, and the inner wall of the cavity is forcibly cooled by a cooling medium. 4. The semi-continuous casting method for aluminum or aluminum alloy according to claim 3, characterized in that forced cooling is performed by directly injecting a liquid cooling medium onto the inner wall surface of the cavity.
JP538082A 1982-01-19 1982-01-19 Semi-continuous casting method of aluminum or aluminum alloy Granted JPS58125342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP538082A JPS58125342A (en) 1982-01-19 1982-01-19 Semi-continuous casting method of aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP538082A JPS58125342A (en) 1982-01-19 1982-01-19 Semi-continuous casting method of aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPS58125342A JPS58125342A (en) 1983-07-26
JPH0242575B2 true JPH0242575B2 (en) 1990-09-25

Family

ID=11609555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP538082A Granted JPS58125342A (en) 1982-01-19 1982-01-19 Semi-continuous casting method of aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JPS58125342A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074704B2 (en) 2009-03-27 2011-12-13 Titanium Metals Corporation Method and apparatus for semi-continuous casting of hollow ingots and products resulting therefrom
JP2013091072A (en) * 2011-10-25 2013-05-16 Sumitomo Light Metal Ind Ltd System for semi-continuous casting of aluminum and method for semi-continuous casting of aluminum using the same
CN108246991B (en) * 2018-01-26 2022-03-18 龙岩学院 Semi-continuous casting device and method for inhibiting cracking of magnesium alloy ingot blank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453620A (en) * 1977-10-07 1979-04-27 Nippon Light Metal Co Continuous slab casting
JPS56136258A (en) * 1980-03-26 1981-10-24 Sumitomo Light Metal Ind Ltd Continuous casting method of molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453620A (en) * 1977-10-07 1979-04-27 Nippon Light Metal Co Continuous slab casting
JPS56136258A (en) * 1980-03-26 1981-10-24 Sumitomo Light Metal Ind Ltd Continuous casting method of molten metal

Also Published As

Publication number Publication date
JPS58125342A (en) 1983-07-26

Similar Documents

Publication Publication Date Title
US4166495A (en) Ingot casting method
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JP2000042690A (en) Mold for continuous casting of metal
JPH0242575B2 (en)
US6050324A (en) Continuous casting mold for the vertical casting of metals
JPH09220645A (en) Method for lubricating wall of metallic mold for continuous casting and mold therefor
US2867871A (en) Hot-top for ingot mold
JP2560935B2 (en) Semi-continuous casting method for ingots with multiple extensions
JP3082834B2 (en) Continuous casting method for round slabs
US12023727B2 (en) Starting head for a continuous casting mold and associated method
JPS5917475Y2 (en) Bottom metal for continuous casting
JP2520534B2 (en) Continuous casting method
JPS5923898B2 (en) Continuous casting method for high silicon aluminum alloy
JP3344070B2 (en) Aluminum square ingot semi-continuous casting pedestal and method of manufacturing square ingot
JP3126237B2 (en) Continuous casting of aluminum
KR100515460B1 (en) Continuous casting ingot mould for the vertical casting of metals
SU1187907A1 (en) Arrangement for horizontal casting of hollow billets
Mahardika The Start-Up Phase of Aluminum Billet Production Using Direct Chill Casting
Rajagukguk et al. The Start-Up Phase of Aluminum Billet Production Using Direct Chill Casting
JPH0550186A (en) Lower mold for semi-continuous casting apparatus for aluminum
EP4329963A1 (en) Starting head for a continuous casting mold and associated continuous casting mold
JPH0138584B2 (en)
JPS58187241A (en) Horizontal and continuous casting method of metal
JPH06344101A (en) Continuous casting method
JP2000288691A (en) Production of cast alkali metal ingot