JP3390895B2 - Method of manufacturing MOS type semiconductor device - Google Patents

Method of manufacturing MOS type semiconductor device

Info

Publication number
JP3390895B2
JP3390895B2 JP12099595A JP12099595A JP3390895B2 JP 3390895 B2 JP3390895 B2 JP 3390895B2 JP 12099595 A JP12099595 A JP 12099595A JP 12099595 A JP12099595 A JP 12099595A JP 3390895 B2 JP3390895 B2 JP 3390895B2
Authority
JP
Japan
Prior art keywords
gate electrode
film
semiconductor device
type semiconductor
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12099595A
Other languages
Japanese (ja)
Other versions
JPH08316466A (en
Inventor
敬幸 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12099595A priority Critical patent/JP3390895B2/en
Publication of JPH08316466A publication Critical patent/JPH08316466A/en
Application granted granted Critical
Publication of JP3390895B2 publication Critical patent/JP3390895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/512Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being parallel to the channel plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、MOS型半導体装置
製造方法に関する。近年、MOSFET、MOSFET
を用いた集積回路装置等のMOS型半導体装置の集積
化、微細化が進むにともない、MOS型半導体装置のゲ
ート絶縁膜の膜厚益々薄くなりつつある。 【0002】 【従来の技術】そのような極微細MOS型半導体装置に
おいては、ゲート絶縁膜の絶縁破壊、ホットキャリアに
よる性能の劣化が重大な問題となっている。これらの極
微細MOS型半導体装置に生じる諸問題を解決する方法
の一つとして、ゲート絶縁膜に窒素を含有したシリコン
酸化膜(シリコン窒化酸化膜)を用いる方法がある。 【0003】 【発明が解決しようとする課題】極微細MOS型半導体
装置においては、絶縁破壊もホットキャリアによる劣化
もゲート電極とサイドウォールの境界近傍で生じること
が多い。したがって、ゲート電極とサイドウォールの境
界近傍にシリコン窒化酸化膜を形成することが前記の問
題を解決する上での鍵となる。ところで、極微細MOS
型半導体装置のゲート絶縁膜は、ゲート長0.2μmで
5nm程度と極めて薄いため、ゲート電極の加工時およ
び後処理においてサイドウォールの下になるゲート絶縁
膜が消失してしまうことがある。 【0004】すなわち、極微細MOS型半導体装置で
は、ゲート電極とサイドウォールの境界近傍のサイドウ
ォールの下にはシリコン窒化酸化膜が無いことになり、
そのために特性の劣化が生じることになる。本発明は、
ゲート電極の直下の一部とサイドウォールの下の少なく
とも一部にシリコン窒化酸化膜を形成して前記の特性の
劣化を防ぐことを目的とする。 【0005】 【課題を解決するための手段】本発明に依るMOS型半
導体装置の製造方法に於いては、ゲート絶縁膜の上にゲ
ート電極を形成する工程と、該ゲート電極の側壁にサイ
ドウォールを形成する工程と、該サイドウォール形成工
程の後に、前記ゲート電極の直下の一部および該サイド
ウォール直下の少なくとも一部にシリコン窒化膜または
シリコン窒化酸化膜を形成する工程とを有し、該シリコ
ン窒化膜またはシリコン窒化酸化膜を形成する工程は、
アンモニアガスまたは窒化酸化物系のガスを用いた熱処
理によって行われることを特徴とする。 【0006】前記の窒化酸化膜を形成する場合、アンモ
ニアガスに依る窒化と酸素に依る酸化に依るか、或い
は、N 2 Oガス等窒化酸化物系のガスを用いることがで
きる。 【0007】また、アンモニアガスに依る窒化と酸素に
依る酸化、或いは、N 2 Oガス等窒化酸化物系のガスを
用いる窒化酸化は、850℃以下の温度を適用すること
ができる。 【0008】また、アンモニアガスに依る窒化と酸素に
依る酸化、或いは、N 2 Oガス等窒化酸化物系のガスを
用いる窒化酸化は、高温短時間熱処理で実現することが
できる。 【0009】 【0010】 【作用】前記手段を採ることに依り、極微細MOS型半
導体装置のホットキャリア耐性(寿命)を5倍以上にす
ることができ、経時絶縁破壊までの寿命を2倍にするこ
とができる。 【0011】 【0012】また、アンモニアガスに依る窒化と酸素に
依る酸化、或いは、N2 Oガス等の窒化酸化物系のガス
によって窒化酸化膜を形成する場合、高純度のガスが安
価に得られ、そして、工程上で困難を生じることもない
から実用面で優れている。 【0013】更にまた、アンモニアガスに依る窒化と酸
素に依る酸化、または、N2 Oガス等の窒化酸化物系の
ガスによる窒化酸化を850℃以下の温度で実施する
か、或いは、高温短時間熱処理によって行うと、ソース
域やドレイン領域などの不純物分布に悪影響を与え
ことがない。 【0014】本発明者は多くの実験を行った結果、本発
明を成したので、その実験例の若干を参考の為に掲示す
る。 (実験例1) 図1は、実験例1を説明する為の工程要所に於けるMO
S型半導体装置を表す製造工程説明図であり、(A)〜
(D)は各工程を示している。図に於いて、1はシリコ
ン基板、2はフィールド酸化膜、3はゲート絶縁膜、4
はゲート電極、5はシリコン窒化膜、6はシリコン窒化
酸化膜、7はシリコン窒化酸化膜、8はサイドウォール
をそれぞれ示す。 【0015】第1工程(図1(A)参照) シリコン基板1の上面に素子形成領域を画定するフィー
ルド酸化膜(LOCOS酸化膜)2を形成し、この素子
形成領域のシリコン基板1の表面を熱酸化してシリコン
酸化物からなるゲート絶縁膜3を形成する。このゲート
絶縁膜3の上にCVDによってポリシリコン層を形成
し、このポリシリコン層をRIEによってパターニング
してゲート電極を形成する。このゲート電極4のパタ
ーニングによってゲート電極4の周囲のゲート絶縁膜3
が除去される。 【0016】第2工程(図1(B)参照) 第1工程でゲート電極4を形成したシリコン基板1をア
ンモニアガス中で、温度800℃で10分間加熱する。
その結果、ゲート電極4の表面と露出しているシリコン
基板の表面にシリコン窒化膜5が形成され、ゲート電極
4の下の内周のゲート絶縁膜3がシリコン窒化酸化膜6
に変換される。 【0017】第3工程(図1(C)参照) 第2工程でシリコン窒化膜5が形成されたシリコン基板
1を、酸素ガス中で、800℃20分間加熱する。その
結果、シリコン窒化膜5がシリコン窒化酸化膜7に変換
される。 【0018】第4工程(図1(D)参照) 第3工程で窒化酸化膜7が形成されたシリコン基板1の
上にCVDによってシリコン酸化膜を堆積し、このシリ
コン酸化膜をRIEによって異方性エッチングすること
によってゲート電極4の側壁にサイドウォール8を形成
する。 【0019】この製造工程において、シリコン窒化酸化
膜7を形成する前あるいは後に、LDDを形成するため
の不純物のイオン注入を行い、サイドウォール8を形成
した後にソース領域とドレイン領域を形成するための不
純物のイオン注入を行い、ソース領域とドレイン領域に
電極を形成してMOS型半導体装置を完成する。 【0020】この熱処理によって、ゲート電極4の下の
内周のゲート絶縁膜3がシリコン窒化酸化膜6に変換す
ることができるとともに、チャネルプロファイル、LD
D構造等の不純物分布が変化することがなかった。 【0021】(実験例2) 実験例2では、実験例1に於ける 第3工程(図1(C)
参照)の酸化を、酸素ガス中で、1000℃で10秒間
の高温短時間熱処理(Rapid Thermal P
rocess:RTP)で行う点が特徴である。この熱
処理によって、ゲート電極4の下の内周のゲート絶縁膜
3がシリコン窒化酸化膜6に変換することができると
チャネルプロファイル、LDD構造などの不純物分布
が変化することなかった。 【0022】前記説明した実験例1及び2では、工程を
慎重に進行すれば、作製したMOS型半導体装置のホッ
トキャリア耐性は充分に向上するのであるが、何れも、
サイドウォールの形成前に窒化を行っている為、その後
の各種前処理などに依って、窒化された膜が失われる危
険がある。 然しながら、以下に説明する本発明の実施例
に依れば、その危険は排除することができる。 (実施例) 図2は、本発明実施例のMOS型半導体装置の製造工程
説明図であり、(A)〜(C)は各工程を示している。
図に於いて、11はシリコン基板、12はフィールド酸
化膜い、13はゲート絶縁膜、14はゲート電極、15
はサイドウォール、16はシリコン窒化酸化膜をそれぞ
れ示している。 【0023】第1工程(図2(A)参照) シリコン基板11の上面に素子形成領域を画定するフィ
ールド酸化膜(LOCOS酸化膜)12を形成し、この
素子形成領域のシリコン基板11の表面を熱酸化してシ
リコン酸化物からなるゲート絶縁膜13を形成する。こ
のゲート絶縁膜13の上にCVDによってポリシリコン
層を形成し、このポリシリコン層をRIEによってパタ
ーニングしてゲート電極14を形成する。このゲート電
極14のパターニングによってゲート電極14の周囲の
ゲート絶縁膜13が除去される。 【0024】第2工程(図2(B)参照) 第1工程でゲート電極14が形成されたシリコン基板1
1の上にCVDによってシリコン酸化膜を堆積し、この
シリコン酸化膜を異方性エッチングすることによってゲ
ート電極14の側壁にサイドウォール15を形成する。 【0025】第3工程(図2(C)参照) 第2工程でゲート電極14の側壁にサイドウォール15
を形成したシリコン基板11をN2 Oガス(亜酸化窒素
ガス、笑気ガス)中で、1050℃の温度で10分間の
熱処理を行い、ゲート電極14の表面と、サイドウォー
ル15の下と、露出しているシリコン基板の表面にシリ
コン窒化酸化膜16を形成する。 【0026】この製造工程において、ゲート電極14を
形成した後に、LDDを形成するための不純物のイオン
注入を行い、サイドウォール15を形成した後にソース
領域とドレイン領域を形成するための不純物のイオン注
入を行い、ソース領域とドレイン領域に電極を形成して
MOS型半導体装置を完成する。 【0027】この熱処理によって、ゲート電極4の下の
内周のゲート絶縁膜3がシリコン窒化酸化膜6に変換す
ることができるとともに、チャネルプロファイル、LD
D構造等の不純物分布が変化することがなかった。 【0028】 【発明の効果】以上説明したように、本発明によると、
極微細MOS型半導体装置のホットキャリア耐性(寿
命)を5倍以上にすることができ、経時絶縁破壊までの
寿命を2倍にすることができるため、極微細MOS型半
導体装置の実用化に寄与するところが大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS type semiconductor device .
It relates to a manufacturing method. Recently, MOSFET, MOSFET
With the progress of high integration and miniaturization of MOS type semiconductor devices such as integrated circuit devices using GaN, the thickness of the gate insulating film of the MOS type semiconductor device is becoming increasingly smaller. 2. Description of the Related Art In such an ultra-fine MOS type semiconductor device, dielectric breakdown of a gate insulating film and deterioration of performance due to hot carriers are serious problems. As one of the methods for solving the problems that occur in these ultrafine MOS type semiconductor devices, there is a method using a silicon oxide film (silicon nitride oxide film) containing nitrogen for the gate insulating film. [0003] In an ultra-small MOS type semiconductor device, both dielectric breakdown and deterioration due to hot carriers often occur near the boundary between the gate electrode and the sidewall. Therefore, forming a silicon oxynitride film near the boundary between the gate electrode and the sidewall is a key to solving the above problem. By the way, ultra-fine MOS
Since the gate insulating film of the type semiconductor device is as thin as about 5 nm with a gate length of 0.2 μm, the gate insulating film below the sidewall may be lost during the processing of the gate electrode and in post-processing. That is, in the ultra-small MOS type semiconductor device, there is no silicon oxynitride film under the sidewall near the boundary between the gate electrode and the sidewall.
Therefore, the characteristics are deteriorated. The present invention
It is an object of the present invention to form a silicon oxynitride film on a part immediately below a gate electrode and at least a part below a sidewall to prevent the above-described characteristics from deteriorating. [0005] In the method of manufacturing a MOS type semiconductor device according to the present invention SUMMARY OF], gate on the gate insulating film
Forming a gate electrode, and forming a gate electrode on a side wall of the gate electrode.
Forming a sidewall, and forming the sidewall
After the step, a part immediately below the gate electrode and the side
A silicon nitride film or at least a part immediately below the wall
Forming a silicon oxynitride film.
Forming a silicon nitride film or a silicon oxynitride film,
Heat treatment using ammonia gas or nitride-based gas
It is characterized by the fact that it is carried out by management . When forming the above-mentioned nitrided oxide film, the
Depending on nitriding by near gas and oxidizing by oxygen, or
Can use nitrided oxide gas such as N 2 O gas.
Wear. In addition, nitriding and oxygen by ammonia gas
Oxidation or nitriding oxide gas such as N 2 O gas
For the nitridation and oxidation used, apply a temperature of 850 ° C or less.
Can be. In addition, nitriding and oxygen caused by ammonia gas
Oxidation or nitriding oxide gas such as N 2 O gas
The nitridation used can be realized by high-temperature short-time heat treatment.
it can. According to the above-mentioned means, an extremely fine MOS type half
Increase the hot carrier resistance (lifetime) of conductor devices by 5 times or more
Doubling the life until dielectric breakdown with time
Can be. [0011] [0012] oxidation due to nitride and oxygen according to the ammonia gas, or, in the case of forming a nitrided oxide film by nitridation oxide-based gas such as N 2 O gas, inexpensively obtained high purity gases And there is no difficulty in the process
Excellent in practical use. [0013] Furthermore, oxidation due to nitride and oxygen according to the ammonia gas, or performs a nitride oxide by oxynitride-based gas such as N 2 O gas at 8 50 ° C. below the temperature
Or, alternatively, it performed by a high-temperature short-time heat treatment, a negative impact on the distribution of impurities such as source <br/> area and drain region
Nothing. The present inventors have conducted many experiments and found that the present invention
As a result, some of the experimental examples are posted for reference.
You. (Experimental Example 1) FIG. 1 shows an MO in a process essential point for explaining Experimental Example 1 .
It is a manufacturing process explanatory view showing an S type semiconductor device, (A)-
(D) shows each step. In the figure, 1 is a silicon substrate, 2 is a field oxide film, 3 is a gate insulating film, 4
Is a gate electrode, 5 is a silicon nitride film, 6 is a silicon nitride oxide film, 7 is a silicon nitride oxide film, 8 is a sidewall.
Are respectively shown. First step (refer to FIG. 1A) A field oxide film (LOCOS oxide film) 2 for defining an element formation region is formed on the upper surface of a silicon substrate 1, and the surface of the silicon substrate 1 in the element formation region is formed. The gate insulating film 3 made of silicon oxide is formed by thermal oxidation. A polysilicon layer is formed on the gate insulating film 3 by CVD, and the polysilicon layer is patterned by RIE to form a gate electrode 4 . The gate insulating film 3 around the gate electrode 4 is formed by the patterning of the gate electrode 4.
Is removed. Second Step (See FIG. 1B) The silicon substrate 1 on which the gate electrode 4 has been formed in the first step is heated in an ammonia gas at a temperature of 800 ° C. for 10 minutes.
As a result, a silicon nitride film 5 is formed on the surface of the gate electrode 4 and the exposed surface of the silicon substrate, and the gate insulating film 3 on the inner periphery under the gate electrode 4 becomes a silicon nitride oxide film 6.
Is converted to Third Step (See FIG. 1C) The silicon substrate 1 on which the silicon nitride film 5 has been formed in the second step is heated in an oxygen gas at 800 ° C. for 20 minutes. As a result, silicon nitride film 5 is converted to silicon nitride oxide film 7. Fourth step (see FIG. 1D) A silicon oxide film is deposited by CVD on the silicon substrate 1 on which the nitrided oxide film 7 has been formed in the third step, and this silicon oxide film is anisotropically formed by RIE. The side wall 8 is formed on the side wall of the gate electrode 4 by the reactive etching. In this manufacturing process, before or after the formation of the silicon oxynitride film 7, ion implantation of impurities for forming the LDD is performed, and after forming the sidewalls 8, the source and drain regions are formed. Impurity ions are implanted, and electrodes are formed in the source region and the drain region to complete the MOS semiconductor device. By this heat treatment, the gate insulating film 3 on the inner periphery under the gate electrode 4 can be converted into the silicon oxynitride film 6, and the channel profile, LD
The impurity distribution such as the D structure did not change. (Experimental Example 2) In Experimental Example 2, the third step in Experimental Example 1 (FIG. 1C)
Oxidation) in oxygen gas at 1000 ° C. for 10 seconds (Rapid Thermal P).
process: RTP). This heat treatment, the gate insulating film 3 in the circumferential Shimonouchi the gate electrode 4 can be converted to silicon nitride oxide film 6 co
Channel profile, the distribution of impurities such as LDD structures did not change to. In Experimental Examples 1 and 2 described above, the steps were
If proceeding carefully, the hot spot of the fabricated MOS semiconductor device
Although the carrier resistance is sufficiently improved,
Since nitriding is performed before forming the sidewall,
Risk of losing nitrided film due to various pretreatments
There is a steep. However, embodiments of the present invention described below
Can eliminate that danger. (Embodiment) FIGS. 2A to 2C are explanatory views of a manufacturing process of a MOS type semiconductor device according to an embodiment of the present invention , wherein FIGS.
In the figure, 11 is a silicon substrate, 12 is a field oxide film, 13 is a gate insulating film, 14 is a gate electrode, 15
Sidewall, 16 is it a silicon nitride oxide film
Is shown. First Step (See FIG. 2A) A field oxide film (LOCOS oxide film) 12 for defining an element formation region is formed on the upper surface of a silicon substrate 11, and the surface of the silicon substrate 11 in the element formation region is removed. The gate insulating film 13 made of silicon oxide is formed by thermal oxidation. A polysilicon layer is formed on the gate insulating film 13 by CVD, and the polysilicon layer is patterned by RIE to form a gate electrode 14. The gate insulating film 13 around the gate electrode 14 is removed by the patterning of the gate electrode 14. Second Step (See FIG. 2B) The silicon substrate 1 on which the gate electrode 14 has been formed in the first step
A silicon oxide film is deposited on the substrate 1 by CVD, and the silicon oxide film is anisotropically etched to form a sidewall 15 on a side wall of the gate electrode 14. Third Step (See FIG. 2C) In the second step, a sidewall 15 is formed on the side wall of the gate electrode 14.
Is heat-treated at 1050 ° C. for 10 minutes in N 2 O gas (nitrous oxide gas, laughing gas), and the surface of the gate electrode 14 and under the sidewall 15 are A silicon nitride oxide film 16 is formed on the exposed surface of the silicon substrate. In this manufacturing process, after the gate electrode 14 is formed, ion implantation of impurities for forming the LDD is performed, and after the sidewall 15 is formed, ion implantation of impurities for forming the source region and the drain region is performed. Then, electrodes are formed in the source region and the drain region to complete the MOS semiconductor device. By this heat treatment, the gate insulating film 3 on the inner periphery under the gate electrode 4 can be converted into the silicon oxynitride film 6, and the channel profile, LD
The impurity distribution such as the D structure did not change. As described above, according to the present invention,
The hot carrier resistance (lifetime) of the ultra-fine MOS type semiconductor device can be increased five times or more, and the life until dielectric breakdown with time can be doubled, contributing to the practical use of the ultra-fine MOS type semiconductor device. The place to do is big.

【図面の簡単な説明】 【図1】実験例1のMOS型半導体装置の製造工程説明
図であり、(A)〜(D)は各工程を示している。 【図2】本発明実施例のMOS型半導体装置の製造工程
説明図であり、(A)〜(C)は各工程を示している。 【符号の説明】 1 シリコン基板 2 フィールド酸化膜 3 ゲート絶縁膜 4 ゲート電極 5 シリコン窒化膜 6 シリコン窒化酸化膜 7 シリコン窒化酸化膜 8 サイドウォール 11 シリコン基板 12 フィールド酸化膜 13 ゲート絶縁膜 14 ゲート電極 15 サイドウォール 16 シリコン窒化酸化膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a manufacturing process of a MOS type semiconductor device of Experimental Example 1, wherein (A) to (D) show respective steps. FIGS. 2A to 2C are explanatory diagrams of manufacturing steps of a MOS type semiconductor device according to an embodiment of the present invention . FIGS. DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Field oxide film 3 Gate insulating film 4 Gate electrode 5 Silicon nitride film 6 Silicon nitride oxide film 7 Silicon nitride oxide film 8 Side wall 11 Silicon substrate 12 Field oxide film 13 Gate insulating film 14 Gate electrode 15 Side wall 16 Silicon oxynitride film

Claims (1)

(57)【特許請求の範囲】 【請求項1】ゲート絶縁膜の上にゲート電極を形成する
工程と、 該ゲート電極の側壁にサイドウォールを形成する工程
と、 該サイドウォール形成工程の後に、前記ゲート電極の直
下の一部および該サイドウォール直下の少なくとも一部
にシリコン窒化膜またはシリコン窒化酸化膜を形成する
工程とを有し、 該シリコン窒化膜またはシリコン窒化酸化膜を形成する
工程は、アンモニアガスまたは窒化酸化物系のガスを用
いた熱処理によって行われる ことを特徴とするMOS型
半導体装置の製造方法。
(57) [Claim 1] A gate electrode is formed on a gate insulating film.
A step, forming a sidewall on the sidewall of the gate electrode
And immediately after the side wall forming step,
Lower part and at least part immediately below the sidewall
A silicon nitride film or silicon oxynitride film
And a step to form the silicon nitride film or a silicon nitride oxide film
The process uses ammonia gas or nitric oxide based gas.
A method of manufacturing a MOS type semiconductor device , wherein the method is performed by heat treatment .
JP12099595A 1995-05-19 1995-05-19 Method of manufacturing MOS type semiconductor device Expired - Lifetime JP3390895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12099595A JP3390895B2 (en) 1995-05-19 1995-05-19 Method of manufacturing MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12099595A JP3390895B2 (en) 1995-05-19 1995-05-19 Method of manufacturing MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH08316466A JPH08316466A (en) 1996-11-29
JP3390895B2 true JP3390895B2 (en) 2003-03-31

Family

ID=14800183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12099595A Expired - Lifetime JP3390895B2 (en) 1995-05-19 1995-05-19 Method of manufacturing MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP3390895B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041506A (en) * 1996-07-25 1998-02-13 Nec Corp Semiconductor device and its manufacture
US20050101147A1 (en) * 2003-11-08 2005-05-12 Advanced Micro Devices, Inc. Method for integrating a high-k gate dielectric in a transistor fabrication process
US7157341B2 (en) * 2004-10-01 2007-01-02 International Business Machines Corporation Gate stacks
KR100889551B1 (en) * 2007-06-25 2009-03-23 주식회사 동부하이텍 Method for manufacturing of semiconductor device

Also Published As

Publication number Publication date
JPH08316466A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
JP4168073B2 (en) Method for forming a trench isolation structure in an integrated circuit
US6686245B1 (en) Vertical MOSFET with asymmetric gate structure
JP3600476B2 (en) Method for manufacturing semiconductor device
JP5198770B2 (en) Method for individually optimizing thin gate dielectrics of PMOS and NMOS transistors in the same semiconductor chip, and devices manufactured thereby
JPH11289006A (en) Method for formation of trench isolation in integrated circuit
US8035174B2 (en) Semiconductor device and method for fabricating the same
US6417037B1 (en) Method of dual gate process
JP4582837B2 (en) Manufacturing method of semiconductor device
JP3390895B2 (en) Method of manufacturing MOS type semiconductor device
JP3923218B2 (en) Manufacturing method of semiconductor device
KR100281135B1 (en) Method for forming gate oxide film of semiconductor device
JPH1145995A (en) Semiconductor device and manufacture thereof
JP2004207560A (en) Semiconductor device and its manufacturing method
JP2004281494A (en) Method of manufacturing semiconductor device
US7166525B2 (en) High temperature hydrogen annealing of a gate insulator layer to increase etching selectivity between conductive gate structure and gate insulator layer
JPH0964362A (en) Mos semiconductor device and its manufacture
JP4193638B2 (en) Semiconductor device manufacturing method and semiconductor device
KR100608340B1 (en) Gate formation method of semiconductor device
JP3738368B2 (en) Manufacturing method of MIS field effect semiconductor device
US6127284A (en) Method of manufacturing a semiconductor device having nitrogen-bearing oxide gate insulating layer
JP5041834B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2002368211A (en) Semiconductor device
KR100412147B1 (en) Method of fabricating a semiconductor device
KR100451768B1 (en) Method for fabricating gate dielectric of semiconductor device
JP3172081B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

EXPY Cancellation because of completion of term