JP3372488B2 - Test device for semiconductor CMOS integrated circuit - Google Patents

Test device for semiconductor CMOS integrated circuit

Info

Publication number
JP3372488B2
JP3372488B2 JP21357598A JP21357598A JP3372488B2 JP 3372488 B2 JP3372488 B2 JP 3372488B2 JP 21357598 A JP21357598 A JP 21357598A JP 21357598 A JP21357598 A JP 21357598A JP 3372488 B2 JP3372488 B2 JP 3372488B2
Authority
JP
Japan
Prior art keywords
input
current
integrated circuit
cmos integrated
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21357598A
Other languages
Japanese (ja)
Other versions
JP2000046896A (en
Inventor
亨 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21357598A priority Critical patent/JP3372488B2/en
Publication of JP2000046896A publication Critical patent/JP2000046896A/en
Application granted granted Critical
Publication of JP3372488B2 publication Critical patent/JP3372488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体CMOS集
積回路の良否判定を容易にかつ合理的に行う試験装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a test apparatus for easily and rationally determining the quality of a semiconductor CMOS integrated circuit.

【0002】[0002]

【従来の技術】半導体CMOS集積回路の品質向上を図
る試験方法としてIDDQテストがある。
2. Description of the Related Art An IDDQ test is known as a test method for improving the quality of a semiconductor CMOS integrated circuit.

【0003】このIDDQテストとは、被測定デバイス
(以下、「DUT」と称す)にテストパターンを順次入
力しながら、内部の論理状態を定常状態とし、静止時電
源電流を測定する方法で、半導体CMOS集積回路の静
止時電源電流が原理的にゼロであることを利用したテス
ト方法である。
The IDDQ test is a method in which a test pattern is sequentially input to a device under test (hereinafter referred to as "DUT"), an internal logic state is set to a steady state, and a quiescent power supply current is measured. This is a test method utilizing the fact that the static power supply current of a CMOS integrated circuit is theoretically zero.

【0004】もし、DUT内部回路で縮退故障や耐圧不
良により、静止時電源電流が本来ゼロにもかかわらずリ
ーク電流が発生した場合、DUTは不良品と判定でき
る。但し、この方法で測定し検出されるリーク電流は、
主に内部回路の故障に起因して発生する微小電流(μA
程度あるいはこれ以下)である。
If a leak current occurs even if the stationary power supply current is originally zero due to a stuck-at fault or a breakdown voltage failure in the DUT internal circuit, the DUT can be determined as a defective product. However, the leak current measured and detected by this method is
Small current (μA) mainly caused by internal circuit failure
Degree or less).

【0005】それに対し、プルアップ/ダウン抵抗やア
ナログ回路等のデバイスが静止した状態で存在する電流
経路(以下、「DCパス」と称す)を有する回路の場
合、DCパスから生じる貫通電流はDCパス1つ当たり
1mA程度のものもある。このためDCパスを有する回
路の場合、本来検出したい回路の故障起因から生じるリ
ーク電流が、貫通電流の影響により埋もれてしまい、静
止時消費電流の増加の有無が判定困難となる。
On the other hand, in the case of a circuit having a current path (hereinafter referred to as “DC path”) in which devices such as pull-up / down resistors and analog circuits exist in a static state, a through current generated from the DC path is DC. Some pass 1 mA per pass. Therefore, in the case of a circuit having a DC path, the leak current caused by the failure of the circuit to be originally detected is buried under the influence of the through current, and it is difficult to determine whether or not the static current consumption has increased.

【0006】上記問題を解決するための従来技術として
下記の様な方法がある。
As a conventional technique for solving the above problems, there are the following methods.

【0007】半導体CMOS集積回路のDCパスとして
代表的なものに、入力のプルアップ抵抗があるが、入力
電圧がローレベルの状態では電源端子から入力端子にD
Cパスによる貫通電流が流れる。IDDQテストを行う
際に、このプルアップ抵抗により電源から流れる貫通電
流による影響を回避する方法として、例えば、入力のプ
ルアップ抵抗を分離するテスト回路を付加し抵抗による
バイパスを電源から遮断する方法や、電源電圧と入力に
電位差が生じないテストパターンを作成し、プルアップ
電流が流れない様にする方法がある(特開平9−113
575号公報参照)。
A typical DC path of a semiconductor CMOS integrated circuit has an input pull-up resistor, but when the input voltage is at a low level, D from the power supply terminal to the input terminal is used.
A through current flows due to the C path. When performing the IDDQ test, as a method of avoiding the influence of the through current flowing from the power supply by the pull-up resistor, for example, a method of adding a test circuit for separating the input pull-up resistor to cut off the bypass by the resistor from the power supply, , There is a method of creating a test pattern in which a potential difference does not occur between a power supply voltage and an input so that a pull-up current does not flow (Japanese Patent Laid-Open No. 9-113).
575).

【0008】または、DCパスの貫通電流を予め測定し
記憶させたり、シミュレーション等で予測を行い、その
結果に対し演算処理をして判定する方法等があるが(特
開平7−12886号公報、特開平9−80114号公
報参照),DCパスのない場合に比べIDDQテストを
容易に行えないことが多い。
Alternatively, there is a method in which the through current of the DC path is previously measured and stored, or a prediction is made by simulation or the like, and the result is subjected to arithmetic processing to make a determination (Japanese Patent Laid-Open No. 7-12886). (See Japanese Patent Laid-Open No. 9-80114), the IDDQ test cannot be easily performed as compared with the case where there is no DC path.

【0009】[0009]

【発明が解決しようとする課題】入力プルアップ抵抗の
様な、DCパスを有する半導体CMOS集積回路でもD
Cパスを遮断するIDDQテスト用回路を、半導体CM
OS集積回路同一チップ内に内蔵し、IDDQテストの
前にDCパスの貫通電流を回避する方法があるが、チッ
プサイズが増大しコストが上昇するなどの問題がある。
Even in a semiconductor CMOS integrated circuit having a DC path, such as an input pull-up resistor, D
IDDQ test circuit that cuts off the C path
There is a method of incorporating the OS integrated circuit in the same chip and avoiding the through current of the DC path before the IDDQ test, but there is a problem that the chip size increases and the cost increases.

【0010】また、IDDQテストにより測定された静
止時消費電流から、演算処理にて予測したDCパスの貫
通電流を差し引けば良否判定試験は可能であるが、あく
までもその貫通電流は疑似的なものであり、実際に測定
するDUTの貫通電流と予測した貫通電流の間ではDU
Tの特性状態により差が生じる。
Further, the pass / fail judgment test is possible by subtracting the through current of the DC path predicted by the arithmetic processing from the static current consumption measured by the IDDQ test, but the through current is pseudo. And between the actual measured DUT through current and the predicted through current, DU
Differences occur depending on the characteristic state of T.

【0011】また、同タイプのDCパスが複数ある場合
でも、個々のDCパスにより微妙に電流値の違いがあり
貫通電流の正確な予測は困難である。その為、特性の振
れを考慮した余裕のある貫通電流値を予測しなければな
らない。よって、微少電流値での判定を行うIDDQテ
ストでは信頼性に欠ける事となる。当然、予めDUTの
貫通電流を測定しその基準となる貫通電流値を記憶させ
ておき差し引く場合でも同様であり、基準となる貫通電
流を補正するか、貫通電流を差し引いた後の電流値の良
否判定許容値に余裕を持たせる必要がある。更に、演算
処理の為のテスト時間が長くなる等の問題がある。
Further, even when there are a plurality of DC paths of the same type, there is a slight difference in the current value depending on the individual DC paths, and it is difficult to accurately predict the through current. Therefore, it is necessary to predict a through-current value with a margin in consideration of fluctuations in characteristics. Therefore, the IDDQ test that makes a determination with a minute current value lacks reliability. Of course, the same applies to the case where the through-current of the DUT is measured in advance and the reference through-current value is stored and subtracted, and the reference through-current is corrected or the current value after the through-current is subtracted It is necessary to give some margin to the judgment allowable value. Further, there is a problem that the test time for the arithmetic processing becomes long.

【0012】その他、どうしてもIDDQテスト用回路
等でDCパスが分離出来ない場合は、DCパスの貫通電
流分を加算した状態で判定値を設定する方法もあるが、
通常DCパスの貫通電流がIDDQテストにより測定さ
れる静止時消費電流の100倍程度あり、微少電流値の
良否判定試験は問題外であった。この様に品質向上を図
る為の、最終的な良否判定に至るまでには、多大な労力
とある程度の妥協点が必要であった。
In addition, if the DC path cannot be separated by an IDDQ test circuit or the like, there is also a method of setting the judgment value in a state in which the through current of the DC path is added.
Normally, the through current of the DC path was about 100 times the current consumption in the static state measured by the IDDQ test, and the pass / fail judgment test of the minute current value was out of the question. In order to improve the quality in this way, a great deal of labor and a certain degree of compromise were required before the final quality judgment.

【0013】[0013]

【課題を解決するための手段】請求項1に記載の半導体
CMOS集積回路の試験方法は、半導体CMOS集積回
路の静止時電源電流を測定し、上記半導体CMOS集積
回路の各入力部に規定の電圧とタイミングによりテスト
パターンを与えながら同時に入力電流を測定し、上記半
導体CMOS集積回路の各入力部に入力された入力電流
測定結果を加算し、上記測定された電源電流値から、上
記測定された各入力電流の加算値を減算し、該減算結果
を、予め設定された値と比較判定することを特徴とする
ものである。
A semiconductor according to claim 1, wherein:
The method of testing a CMOS integrated circuit is a semiconductor CMOS integrated circuit.
Measures the power supply current when the road is at rest and integrates the semiconductor CMOS
Test each circuit input with specified voltage and timing
Simultaneously measure the input current while giving a pattern, and
Input current input to each input part of the conductor CMOS integrated circuit
Add the measurement results and add
The addition value of each measured input current is subtracted, and the subtraction result
Is compared with a preset value to make a determination.
It is a thing.

【0014】また、請求項2に記載の半導体CMOS集
積回路の試験装置は、半導体CMOS集積回路の静止時
電源電流を測定し、上記半導体CMOS集積回路の各入
力部に規定の電圧とタイミングによりテストパターンを
与えながら同時に入力電流を測定し、上記半導体CMO
S集積回路の各入力部に入力された入力電流測定結果を
加算し、上記測定された電源電流値から、上記測定され
た各入力電流の加算値を減算し、該減算結果を、予め設
定された値と比較判定することを特徴とするものであ
る。 また、請求項3に記載の半導体CMOS集積回路の
試験装置は、半導体CMOS集積回路の静止時電源電流
を測定する電源電流測定回路と、上記半導体CMOS集
積回路の各入力部に規定の電圧とタイミングによりテス
トパターンを与えながら同時に入力電流を測定する入力
電流測定回路と、上記半導体CMOS集積回路の各入力
部に入力された入力電流測定結果を加算する加算回路
と、上記電源電流測定回路により測定された電源電流値
から、上記加算回路により計算された各測定入力電流の
加算値を差し引く減算回路と、該減算結果を、予め設定
された値と比較判定する比較判定回路とを具備すること
を特徴とするものである。また、請求項に記載の半導
体CMOS集積回路の試験装置は、上記入力電流測定回
路が半導体CMOS集積回路の各入力規定の電圧と
タイミングにより機能試験用テストパターンを与えるこ
とを特徴とする、請求項に記載の半導体CMOS集積
回路の試験装置である。
A semiconductor CMOS device according to a second aspect of the present invention.
The product circuit tester is used when the semiconductor CMOS integrated circuit is stationary.
Power supply current is measured and each of the above semiconductor CMOS integrated circuits is turned on.
Apply a test pattern to the input section according to the specified voltage and timing.
Simultaneously measure the input current while giving the
The input current measurement result input to each input part of the S integrated circuit
Add and measure from the above measured power supply current value to the above
The added value of each input current is subtracted, and the subtraction result is set in advance.
It is characterized by comparing and determining with a set value.
It The semiconductor CMOS integrated circuit according to claim 3
The test equipment is the static power supply current of the semiconductor CMOS integrated circuit.
Power supply current measuring circuit for measuring
Test each input section of the product circuit with specified voltage and timing.
Input that simultaneously measures the input current while applying the
Current measuring circuit and each input of the semiconductor CMOS integrated circuit
Circuit that adds the input current measurement results input to the section
And the power supply current value measured by the above power supply current measurement circuit
From the measured input current calculated by the adder circuit,
A subtraction circuit for subtracting the addition value and the subtraction result are set in advance.
And a comparison / determination circuit for determining and comparing the determined value
It is characterized by. According to a fourth aspect of the present invention, there is provided a semiconductor CMOS integrated circuit testing apparatus, wherein the input current measuring circuit supplies a specified voltage to each input section of the semiconductor CMOS integrated circuit.
The test apparatus for a semiconductor CMOS integrated circuit according to claim 3 , wherein a test pattern for a function test is given at a timing .

【0015】[0015]

【発明の実施の形態】以下、一実施の形態に基づいて、
本発明を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, based on one embodiment,
The present invention will be described in detail.

【0016】図1は、本発明の一実施の形態の半導体C
MOS集積回路試験装置の構成図、図4は第2の高精度
電流測定器の構成図である。図1及び図4において、1
00は電源回路、101は内部の論理状態を定常状態に
し、静止時電源電流を測定する第1の高精度電流測定
器、102はDCパスを有する半導体CMOS集積回路
の被測定デバイス、103は高精度電流測定回路、10
3a1〜103aNは第2の高精度電流測定器、1041
〜104Nはドライバ回路、105は演算回路、105
aは加算器、105bは減算器、106は比較/判定回
路、1071〜107Nはコンパレータ回路である。
FIG. 1 shows a semiconductor C according to an embodiment of the present invention.
FIG. 4 is a block diagram of a MOS integrated circuit test device, and FIG. 4 is a block diagram of a second high-precision current measuring device. 1 and 4, in FIG.
Reference numeral 00 is a power supply circuit, 101 is a first high-precision current measuring device for measuring a power supply current at rest by setting an internal logic state to a steady state, 102 is a device under test of a semiconductor CMOS integrated circuit having a DC path, and 103 is a high Precision current measurement circuit, 10
3a 1 to 103a N are second high-precision current measuring devices, 104 1
~ 104 N is a driver circuit, 105 is an arithmetic circuit, 105
a adder, 105b subtracter, 106 comparator / judging circuit, 107 1 to 107 N are comparator circuits.

【0017】以下、図1を用いて、本発明の実施の形態
の構成を説明する。
The configuration of the embodiment of the present invention will be described below with reference to FIG.

【0018】まず、被測定デバイス(DUT)102の
電源端子(VDD)に静止時電源電流を測定し電圧変換
する第1の高精度電流測定器101を介して、電源(V
S)100から規定の電源電圧を印加し、一方、DUT
102の各入力端子にドライバ回路((DR)、今回は
パターン発生器、タイミング発生器、波形整形回路等は
説明図から省略する)1041〜104Nから、各入力端
子毎に高精度電流測定回路103を成す、複数の第2の
高精度電流測定器103a1、103a2、・・・103
Nを介して、規定の電圧とタイミングによりテストパ
ターンを与えることによりDUT102の内部論理を定
常状態にし、DCパスの貫通電流を含んだ静止時電源電
流が流れる。
First, the power source (V) is supplied to the power source terminal (VDD) of the device under test (DUT) 102 through the first high-precision current measuring device 101 for measuring the power supply current at rest and converting the voltage.
S) Apply a specified power supply voltage from 100, while DUT
Driver circuits to the input terminals of the 102 ((DR), this time the pattern generator, a timing generator, a waveform shaping circuit or the like is omitted from illustration) from 104 1 -104 N, accurate current measurement for each input terminal A plurality of second high-accuracy current measuring devices 103a 1 , 103a 2 , ... 103 forming the circuit 103.
A test pattern is applied via a N at a specified voltage and timing to bring the internal logic of the DUT 102 into a steady state, and a quiescent power supply current including a through current of the DC path flows.

【0019】そして、高精度電流測定回路103の各第
2の高精度電流測定器103a1〜103aNからの出力
部が加算器105aの入力部に接続され、第1の高精度
電流測定器101の出力部と加算器105aの出力部と
が減算器105bの入力部に接続されている。なお、演
算部105は加算器105aと減算器105bとから成
る。
The output from each of the second high-precision current measuring devices 103a 1 to 103a N of the high-precision current measuring circuit 103 is connected to the input part of the adder 105a, and the first high-precision current measuring device 101 is connected. And the output of the adder 105a are connected to the input of the subtractor 105b. The arithmetic unit 105 includes an adder 105a and a subtractor 105b.

【0020】また、比較/判定回路106の比較器の入
力部に、減算器105bの出力部が接続されており、判
定基準電圧と減算器105bの出力とを比較する。ま
た、DUT102の入力端子からドライバ104により
与えているテストパターンに機能試験用のテストパター
ンを用いることにより、出力動作結果を規定の設定アド
レスごとにコンパレータ(COMP)1071〜107N
で観測することにより、機能試験も同時に行うことがで
きる。
Further, the output part of the subtractor 105b is connected to the input part of the comparator of the comparison / judgment circuit 106, and the judgment reference voltage is compared with the output of the subtractor 105b. Further, by using the test pattern for the function test as the test pattern given from the input terminal of the DUT 102 by the driver 104, the output operation result is compared with the comparators (COMP) 107 1 to 107 N for each specified set address.
By observing at, the functional test can be performed at the same time.

【0021】次に、図2、図3のタイミングチャートに
て、本発明の詳細な動作説明をする。
Next, the detailed operation of the present invention will be described with reference to the timing charts of FIGS.

【0022】図2は良品DUTを試験した際の動作を示
すものであるが、DUT102に電源100から規定の
電源電圧が印加され、各入力端子にはドライバ104か
ら規定の電圧とタイミングにより機能試験用テストパタ
ーンが与えられる。それにより例えば、アドレス11の
様にAの入力電流(DCパスの貫通電流)を含む静止時
電源電流が第1の高精度電流測定器101で測定され
る。
FIG. 2 shows the operation when a non-defective DUT is tested. A specified power supply voltage is applied to the DUT 102 from the power supply 100, and a functional test is performed from the driver 104 to each input terminal at a specified voltage and timing. Test patterns are given. Thereby, for example, the stationary power supply current including the input current of A (through current of the DC path) like the address 11 is measured by the first high-precision current measuring device 101.

【0023】また、各入力端子にも入力電流(DCパス
の貫通電流)が流れ、それぞれの入力端子に流れる入力
電流が第2の高精度電流測定器103a1〜103aN
て測定される。その各入力電流の総和であるA’の電流
(電圧変換された)が演算回路105の加算器105a
にて求められ、さらに減算器105bにて全入力電流
(DCパスの貫通電流の総和)を含んだ静止時電源電流
から全入力電流A’を差し引く事により正味の静止時電
源電流が求められる。
Further, the flow (through current DC path) input current to the input terminals, the input current flowing to the input terminals is measured at the second precision current measuring device 103a 1 ~103a N. The current of A ′ (voltage converted), which is the sum of the respective input currents, is added by the adder 105a of the arithmetic circuit 105.
And subtracting the total input current A ′ from the stationary power supply current including the total input current (sum of through currents in the DC path) by the subtractor 105b, thereby obtaining the net stationary power supply current.

【0024】その静止時電源電流値(電圧変換された)
を比較/判定回路106にて予め設定された規定の判定
基準値と比較し良否判定を行う事ができる。
Power supply current value at rest (converted to voltage)
Can be compared with a predetermined judgment reference value set in advance in the comparison / judgment circuit 106 to make a pass / fail judgment.

【0025】図3は、図2と同様の測定条件にて不良品
DUTを試験したタイミングチャートである。例えば、
アドレス13の様に全入力電流Bとは別に故障によるリ
ーク電流Cを含んだ静止時電源電流が測定された場合、
減算器105にて全入力電流B’を差し引く事により、
故障によるリーク電流C’が求められ、規定の判定基準
値を越えている為、不良品として判定される。
FIG. 3 is a timing chart for testing a defective DUT under the same measurement conditions as in FIG. For example,
When the quiescent power supply current including the leakage current C due to a failure is measured separately from the total input current B like the address 13,
By subtracting the total input current B'in the subtractor 105,
The leak current C ′ due to the failure is obtained, and since it exceeds the specified determination reference value, it is determined as a defective product.

【0026】[0026]

【発明の効果】以上、詳細に説明したように、本発明は
DCパスを有する半導体CMOS集積回路でも、IDD
Q用テスト回路等で予め制御し、DCパスを遮断せずI
DDQテストが実施できる為、IDDQ用テスト回路の
追加が不要でチップ面積の増加を防ぐことができる。
As described above in detail, according to the present invention, the IDD can be applied to a semiconductor CMOS integrated circuit having a DC path.
It is controlled in advance by a Q test circuit, etc., and I
Since the DDQ test can be performed, it is not necessary to add an IDDQ test circuit, and an increase in chip area can be prevented.

【0027】また、DCパスの貫通電流を測定アドレス
毎に測定し、その貫通電流をそのまま加減算しながらI
DDQテストを行う事ができる為、前もってDCパスの
貫通電流値を測定したり予測して、テスト装置のメモリ
回路に記憶させ演算処理する必要もなく、DUTの特性
振れや同タイプのDCパス間のむらも考慮する必要もな
い。
Further, the through current of the DC path is measured for each measurement address, and the through current is added or subtracted as it is to I
Since it is possible to perform a DDQ test, it is not necessary to measure or predict the shoot-through current value of the DC path in advance, store it in the memory circuit of the test equipment, and perform arithmetic processing. There is no need to consider unevenness.

【0028】また機能試験用テストパターンを使用して
内部回路の論理を定常状態にする為IDDQテストと同
時に機能試験が行えテスト時間が短縮できる。それに加
えIDDQテスト用テストパターン(テストモード、即
ち実使用状態と違う動作)を使用せずに機能試験用のテ
ストパターンを使用する為、実使用モードに近い動作条
件下で試験が行える。
Further, since the logic of the internal circuit is set to the steady state by using the test pattern for function test, the function test can be performed at the same time as the IDDQ test, and the test time can be shortened. In addition, since the test pattern for functional test is used without using the test pattern for IDDQ test (test mode, that is, the operation different from the actual use state), the test can be performed under the operating condition close to the actual use mode.

【0029】よって本発明は、半導体CMOS集積回路
の良否判定の容易さはもとより、出荷品質向上、開発効
率向上及びコスト低減に有効である。
Therefore, the present invention is effective not only in easiness of quality judgment of the semiconductor CMOS integrated circuit but also in improvement of shipping quality, improvement of development efficiency and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す、半導体CMOS
集積回路の試験装置の構成図である。
FIG. 1 is a semiconductor CMOS showing an embodiment of the present invention.
It is a block diagram of the testing device of an integrated circuit.

【図2】本発明の半導体CMOS集積回路の試験装置を
用いて良品の半導体CMOS集積回路を試験した際の経
過を示すタイミングチャート図である。
FIG. 2 is a timing chart diagram showing the progress when a non-defective semiconductor CMOS integrated circuit is tested using the semiconductor CMOS integrated circuit test apparatus of the present invention.

【図3】本発明の半導体CMOS集積回路の試験装置を
用いて不良品の半導体CMOS集積回路を試験した際の
経過を示すタイミングチャート図である。
FIG. 3 is a timing chart diagram showing the progress when a defective semiconductor CMOS integrated circuit is tested using the semiconductor CMOS integrated circuit testing apparatus of the present invention.

【図4】第2の高精度電流測定器の構成図である。FIG. 4 is a configuration diagram of a second high-precision current measuring device.

【符号の説明】[Explanation of symbols]

100 電源回路 101 第1の高精度電流測定器 102 被測定デバイス 103 高精度電流測定回路 103a1〜103aN 第2の高精度電流測定器 1041〜104N ドライバ回路 105 演算回路 105a 加算器 105b 減算器 106 比較/判定回路 1071〜107N コンパレータ回路100 Power Circuit 101 First High-Precision Current Measuring Device 102 Device Under Test 103 High-Precision Current Measuring Circuit 103a 1 to 103a N Second High-Precision Current Measuring Device 104 1 to 104 N Driver Circuit 105 Arithmetic Circuit 105a Adder 105b Subtractor Comparator / Determination circuit 107 1 to 107 N Comparator circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/26 G01R 31/28 - 31/3193 H01L 21/822 H01L 27/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields investigated (Int.Cl. 7 , DB name) G01R 31/26 G01R 31/28-31/3193 H01L 21/822 H01L 27/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体CMOS集積回路の静止時電源電
流を測定し、 上記半導体CMOS集積回路の各入力部に規定の電圧と
タイミングによりテストパターンを与えながら同時に入
力電流を測定し、 上記半導体CMOS集積回路の各入力部に入力された入
力電流測定結果を加算し、 上記測定された電源電流値から、上記測定された各入力
電流の加算値を減算し、 該減算結果を、予め設定された値と比較判定することを
特徴とする、半導体CMOS集積回路の試験方法。
1. A quiescent power supply for a semiconductor CMOS integrated circuit.
Current is measured, and a specified voltage is applied to each input section of the semiconductor CMOS integrated circuit.
Input at the same time while giving a test pattern according to the timing.
The force current is measured and the input current input to each input section of the semiconductor CMOS integrated circuit is input.
Force current measurement results are added, and from the measured power supply current value, each input measured above
The addition value of the current is subtracted, and the subtraction result is compared with a preset value.
A method for testing a semiconductor CMOS integrated circuit, which is characterized.
【請求項2】 半導体CMOS集積回路の静止時電源電
流を測定し、 上記半導体CMOS集積回路の各入力部に規定の電圧と
タイミングによりテストパターンを与えながら同時に入
力電流を測定し、 上記半導体CMOS集積回路の各入力部に入力された入
力電流測定結果を加算し、 上記測定された電源電流値から、上記測定された各入力
電流の加算値を減算し、 該減算結果を、予め設定された値と比較判定することを
特徴とする、半導体CMOS集積回路の試験装置。
2. A quiescent power supply for a semiconductor CMOS integrated circuit.
Current is measured, and a specified voltage is applied to each input section of the semiconductor CMOS integrated circuit.
Input at the same time while giving a test pattern according to the timing.
The force current is measured and the input current input to each input section of the semiconductor CMOS integrated circuit is input.
Force current measurement results are added, and from the measured power supply current value, each input measured above
The addition value of the current is subtracted, and the subtraction result is compared with a preset value.
A testing device for a semiconductor CMOS integrated circuit, which is characterized.
【請求項3】 半導体CMOS集積回路の静止時電源電
流を測定する電源電流測定回路と、 上記半導体CMOS集積回路の各入力部に規定の電圧と
タイミングによりテストパターンを与えながら同時に入
力電流を測定する入力電流測定回路と、 上記半導体CMOS集積回路の各入力部に入力された入
力電流測定結果を加算する加算回路と、 上記電源電流測定回路により測定された電源電流値か
ら、上記加算回路により計算された各測定入力電流の加
算値を差し引く減算回路と、該減算結果 を、予め設定された値と比較判定する比較判
定回路とを具備することを特徴とする、半導体CMOS
集積回路の試験装置。
3. A power supply current measuring circuit for measuring a static power supply current of a semiconductor CMOS integrated circuit, and a voltage specified for each input section of the semiconductor CMOS integrated circuit.
An input current measurement circuit that simultaneously measures an input current while giving a test pattern according to timing, an addition circuit that adds the input current measurement results input to each input section of the semiconductor CMOS integrated circuit, and a power supply current measurement circuit A subtraction circuit for subtracting the addition value of each measured input current calculated by the addition circuit from the calculated power supply current value, and a comparison / determination circuit for comparing and comparing the subtraction result with a preset value. Characteristic semiconductor CMOS
Integrated circuit test equipment.
【請求項4】 上記入力電流測定回路が半導体CMOS
集積回路の各入力規定の電圧とタイミングにより機
能試験用テストパターンを与えることを特徴とする、請
求項に記載の半導体CMOS集積回路の試験装置。
4. The input current measuring circuit is a semiconductor CMOS.
Specified in the respective input of the integrated circuit voltage and the machine by the timing
The test apparatus for a semiconductor CMOS integrated circuit according to claim 3 , wherein a test pattern for performance test is provided.
JP21357598A 1998-07-29 1998-07-29 Test device for semiconductor CMOS integrated circuit Expired - Fee Related JP3372488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21357598A JP3372488B2 (en) 1998-07-29 1998-07-29 Test device for semiconductor CMOS integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21357598A JP3372488B2 (en) 1998-07-29 1998-07-29 Test device for semiconductor CMOS integrated circuit

Publications (2)

Publication Number Publication Date
JP2000046896A JP2000046896A (en) 2000-02-18
JP3372488B2 true JP3372488B2 (en) 2003-02-04

Family

ID=16641483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21357598A Expired - Fee Related JP3372488B2 (en) 1998-07-29 1998-07-29 Test device for semiconductor CMOS integrated circuit

Country Status (1)

Country Link
JP (1) JP3372488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435861A (en) * 2011-10-31 2012-05-02 上海思源电力电容器有限公司 Capacitor component detection system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105738A (en) * 2004-10-04 2006-04-20 Canon Inc Device and method for inspecting semiconductor integrated circuit and program
CN101210950B (en) 2006-12-27 2011-01-26 鸿富锦精密工业(深圳)有限公司 Electronic components voltage-resisting test apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435861A (en) * 2011-10-31 2012-05-02 上海思源电力电容器有限公司 Capacitor component detection system and method
CN102435861B (en) * 2011-10-31 2013-09-11 上海思源电力电容器有限公司 Capacitor component detection system and method

Also Published As

Publication number Publication date
JP2000046896A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US6801049B2 (en) Method and apparatus for defect analysis of semiconductor integrated circuit
US6714032B1 (en) Integrated circuit early life failure detection by monitoring changes in current signatures
US6140832A (en) Method of utilizing IDDQ tests to screen out defective parts
JPH07159496A (en) Device and method for inspecting integrated circuit
US5365180A (en) Method for measuring contact resistance
EP0714032A2 (en) Manufacturing defect analyzer
US6144214A (en) Method and apparatus for use in IDDQ integrated circuit testing
JP2000503124A (en) Method for testing integrated circuits
Athan et al. A novel built-in current sensor for I/sub DDQ/testing of deep submicron CMOS ICs
JP3372488B2 (en) Test device for semiconductor CMOS integrated circuit
JP2904129B2 (en) Fault diagnosis device and fault diagnosis method for CMOS integrated circuit
US6718524B1 (en) Method and apparatus for estimating state-dependent gate leakage in an integrated circuit
JP4314096B2 (en) Semiconductor integrated circuit inspection apparatus and semiconductor integrated circuit inspection method
JP2962283B2 (en) Fault detection method and fault detection device for integrated circuit
JP2966185B2 (en) Failure detection method
JP3398755B2 (en) IC tester current measuring device
US6720788B2 (en) High resolution current measurement method
Muhtaroglu et al. I/O self-leakage test
Vinnakota Deep submicron defect detection with the energy consumption ratio
JP2004257815A (en) Inspection method of semiconductor integrated circuit and semiconductor integrated circuit device
JP2963234B2 (en) High-speed device test method
JPH08226942A (en) Method for judging contact failure of test probe pin and in-circuit tester
KR20040096399A (en) Semiconductor device capable of self via measurement and via measurement apparatus and its measuring method
JP2006105738A (en) Device and method for inspecting semiconductor integrated circuit and program
Tehranipoor et al. Electrical tests for counterfeit detection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees