JP3360333B2 - Method for producing photocatalyst and photocatalyst thereof - Google Patents

Method for producing photocatalyst and photocatalyst thereof

Info

Publication number
JP3360333B2
JP3360333B2 JP35712392A JP35712392A JP3360333B2 JP 3360333 B2 JP3360333 B2 JP 3360333B2 JP 35712392 A JP35712392 A JP 35712392A JP 35712392 A JP35712392 A JP 35712392A JP 3360333 B2 JP3360333 B2 JP 3360333B2
Authority
JP
Japan
Prior art keywords
photocatalyst
gold
titanium oxide
supported
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35712392A
Other languages
Japanese (ja)
Other versions
JPH06182205A (en
Inventor
重幸 佐藤
賢一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP35712392A priority Critical patent/JP3360333B2/en
Publication of JPH06182205A publication Critical patent/JPH06182205A/en
Application granted granted Critical
Publication of JP3360333B2 publication Critical patent/JP3360333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光触媒の製造方法、及
びその光触媒に関し、さらに詳しくは、光の照射により
活性が向上して光化学反応を呈し、もって廃棄物の浄化
処理、水の分解による水素の合成、冷蔵庫や車室内等の
各種空間の脱臭等に利用される光触媒の製造方法、及び
その光触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a photocatalyst, and more particularly to a photocatalyst. The present invention relates to a method for producing a photocatalyst used for synthesizing hydrogen, deodorizing various spaces such as a refrigerator and a passenger compartment, and a photocatalyst thereof.

【0002】[0002]

【従来の技術】従来の光触媒は酸化チタンを主成分とし
たものが多い。また、この酸化チタンに金を担持させた
ものも提案されている。(化学工業日報 1992年1
0月5日号の記事)
2. Description of the Related Art Many conventional photocatalysts contain titanium oxide as a main component. Further, a material in which gold is supported on this titanium oxide has also been proposed. (The Chemical Daily 11992
Article on the 5th of October)

【0003】[0003]

【発明が解決しようとする課題】しかし、これら従来の
光触媒は、数十W程度以下の実用的な光強度(例えば、
冷蔵庫等の殺菌灯は10W程度である)における光触媒
活性が十分ではない。その理由は、光を吸収して励起し
た酸化チタンにおいて生成する電子と正孔とが容易に再
結合することによるものと思われる。
However, these conventional photocatalysts have a practical light intensity of about several tens W or less (for example,
(A germicidal lamp such as a refrigerator is about 10 W). It is considered that the reason is that electrons and holes generated in titanium oxide excited by absorbing light easily recombine.

【0004】そこで本発明者は、上記のような不具合の
ない新規な光触媒を提供すべく、酸化チタンその他の金
属酸化物への一種又は二種以上の各種の触媒金属の担持
や、その触媒金属への各種の処理等を行ってその光触媒
活性の向上を試験・研究した結果、本発明に到達した。
[0004] In order to provide a novel photocatalyst free from the above-mentioned problems, the inventor of the present invention carried one or more kinds of catalyst metals on titanium oxide and other metal oxides, and developed the catalyst metal. As a result of carrying out various treatments to test and study the improvement of the photocatalytic activity, the present invention was achieved.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本願第一発明(請求項1に記載した光触媒の製造方法
の発明)の構成は、光を吸収して励起し、電子と正孔を
生成する金属酸化物に金、ニッケル、クロム、銅、コバ
ルト、希土類元素から選ばれる少なくとも一つの微粒子
を担持させ、これをアンモニア処理した後、焼成する光
触媒の製造方法である。
Means for Solving the Problems The constitution of the first invention of the present application (the invention of the method for producing a photocatalyst described in claim 1) for solving the above-mentioned problems is to absorb and excite light to absorb electrons and holes To
Gold resulting metal oxide, nickel, chromium, copper, Koba
This is a method for producing a photocatalyst in which at least one fine particle selected from the group consisting of a catalyst and a rare earth element is supported, treated with ammonia, and then fired.

【0006】上記課題を解決するための本願第二発明
(請求項2に記載した光触媒の発明)の構成は、光を吸
収して励起し、電子と正孔を生成する金属酸化物と、こ
れに担持されてアンモニア処理された金、ニッケル、ク
ロム、銅、コバルト、希土類元素から選ばれる少なくと
も一つの微粒子との焼成体からなる光触媒である。
[0006] The structure of the second invention of the present application (the invention of the photocatalyst described in claim 2) for solving the above-mentioned problem is to absorb light.
Metal oxides that generate electrons and holes by excitation and are excited by gold , nickel,
At least one selected from ROM, copper, cobalt and rare earth elements
Is a photocatalyst comprising a fired body with one fine particle.

【0007】[0007]

【作用】本願第一発明の還元処理ないし焼成のプロセス
において金属酸化物や金等の微粒子に起こる変化は必ず
しも解明されていないが、推定として、アンモニア処理
によって金属酸化物に担持した金及び/又は遷移金属及
び/又は希土類元素の塩がアンモニウム塩(又は水酸化
物)に変化し、これが金属酸化物と特殊な錯塩を形成し
ているのではないか、と考えている。
The change that occurs in fine particles such as metal oxides and gold in the reduction or firing process of the first invention of the present application has not always been elucidated, but it is presumed that gold and / or gold carried on the metal oxide by ammonia treatment are presumed. It is thought that the salt of the transition metal and / or the rare earth element changes to an ammonium salt (or hydroxide), and this forms a special complex with the metal oxide.

【0008】本願第二発明の光触媒の作用についても必
ずしも解明されていないが、推定として、光を吸収して
励起した金属酸化物が生成する電子と、その正孔との再
結合を、金属酸化物と錯塩を形成した金及び/又は遷移
金属及び/又は希土類元素が阻止し、従って電子の活性
状態が維持されて、光エネルギーを有効に酸化還元反応
に関与させているのではないか、と考えている。
Although the action of the photocatalyst of the second invention of the present application has not necessarily been elucidated, it is presumed that recombination between electrons generated by a metal oxide excited by absorption of light and holes thereof is caused by metal oxidation. That the gold and / or transition metal and / or rare earth element which formed a complex salt with the substance block the active state of the electrons and thus effectively contribute the light energy to the redox reaction. thinking.

【0009】[0009]

【効果】本願第一発明の光触媒の製造方法により本願発
明の光触媒が有効に製造され、また、こうして製造され
た本願第二発明の光触媒は、数十W以下の実用的な光強
度においても十分な光触媒活性を示す。
The photocatalyst of the present invention is effectively produced by the method for producing a photocatalyst according to the first invention of the present application, and the photocatalyst of the second invention of the present invention thus produced is sufficient even at a practical light intensity of several tens of watts or less. It shows excellent photocatalytic activity.

【0010】[0010]

【実施態様】次に本願第一、第二発明の実施態様につい
て説明する。
Next, embodiments of the first and second aspects of the present invention will be described.

【0011】光を吸収して励起し、電子と正孔を生成す
金属酸化物とは、その代表的なものが酸化チタンTi
であるが、これに限定されるものではない。光を吸
収して励起し、電子と正孔を生成するその金属酸化物と
して、例えば、酸化タングステンWO、酸化鉄Fe
、酸化ビスマスBi、酸化スズSnO、酸
化ウランU、酸化カドミウムCdO、酸化インジ
ウムInO、酸化ニオブNb、NbO、酸化亜
鉛ZnO、酸化ニッケルNiO、酸化銅CuO、チタ
ン酸ストロンチウムSrTiO、チタン酸バリウムB
aTiO、チタン酸マンガンMnTiO、チタン酸
鉄FeTiO、チタン酸カルシウムCaTiO、ニ
オブ酸ストロンチウムSrNb、スズ酸カドミウ
ムCdSnO、タンタル酸鉄FeTa、FeT
aO、タンタル酸カリウムKTaO等を用いること
ができる。
[0011] Absorbs and excites light to generate electrons and holes.
The typical metal oxide is titanium oxide Ti
O 2 , but is not limited thereto. Absorb light
Yield and was excited, as a metal oxide generates electrons and holes, for example, tungsten oxide WO 3, iron oxide Fe 2
O 3 , bismuth oxide Bi 2 O 3 , tin oxide SnO 2 , uranium oxide U 3 O 8 , cadmium oxide CdO, indium oxide InO 3 , niobium oxide Nb 2 O 3 , NbO, zinc oxide ZnO, nickel oxide NiO, copper oxide Cu 2 O, strontium titanate SrTiO 3 , barium titanate B
aTiO 3 , manganese titanate MnTiO 3 , iron titanate FeTiO 3 , calcium titanate CaTiO 3 , strontium niobate SrNb 2 O 6 , cadmium stannate CdSnO 4 , iron tantalate FeTa 2 O 6 , FeT
aO 4 , potassium tantalate KTaO 3 or the like can be used.

【0012】金属酸化物に担持させる金、遷移金属、希
土類元素については、それらのうちの一種類のみを担持
させても良く、二種類以上を適宜組み合わせて担持させ
ても良い。上記のうち一種類のみを担持させる場合は金
が最も良い。上記のうち二種類を組み合わせて担持させ
る場合は、特段の制約はないが、一般的には、金と、遷
移金属あるいは希土類元素のうちの一種類との組み合わ
せが良く、特に金とニッケルとの組み合わせが望まし
い。
As for the gold, transition metal and rare earth element to be carried on the metal oxide, only one of them may be carried, or two or more kinds may be carried in an appropriate combination. When only one of the above is carried, gold is the best. In the case where two types of the above are combined and supported, there is no particular limitation, but in general, a combination of gold and one of transition metals or rare earth elements is good, and especially gold and nickel. Combinations are desirable.

【0013】金属酸化物に対する金の担持量については
特段の制約はないが、好適な担持量としては0.005
〜0.5重量%程度、最適の担持量としては0.1重量
%前後の担持量である。
There is no particular limitation on the amount of gold supported on the metal oxide.
The supported amount is about 0.5% by weight, and the optimal supported amount is about 0.1% by weight.

【0014】遷移金属としては、例えばニッケル、クロ
ム、銅、コバルトを用いることができ、特にニッケルが
望ましい。
As the transition metal, for example, nickel, chromium, copper, and cobalt can be used, and nickel is particularly desirable.

【0015】希土類元素としては、例えば、ランタン、
セリウム、プラセオジウム、ネオジウム、ジスプロシウ
ム、ホルミウム、エルビウム、ルテチウム等を用いるこ
とができる。
As the rare earth element, for example, lanthanum,
Cerium, praseodymium, neodymium, dysprosium, holmium, erbium, lutetium and the like can be used.

【0016】金属酸化物に対する遷移金属又は希土類元
素の担持量について特段の制約はないが、例えば0.1
重量%程度を担持させることができる。
There is no particular limitation on the amount of the transition metal or rare earth element carried on the metal oxide.
About% by weight can be supported.

【0017】本発明の光触媒は、例えば粉状、粒状で用
いても良く、また、コージェライト、活性炭、シリカ等
の所定形状(例えば、ハニカム形状)の担体に担持させ
て用いても良い。
The photocatalyst of the present invention may be used, for example, in the form of powder or granules, or may be used by being supported on a carrier of a predetermined shape (for example, a honeycomb shape) such as cordierite, activated carbon, and silica.

【0018】担体に金属酸化物を担持させ、また金属酸
化物に金、遷移金属、希土類元素を担持させる手段は特
に限定しない。通常は、担持させたい金属酸化物の水溶
液や担持させたい金属の硝酸塩水溶液等を用いたいわゆ
るウオッシュ・コート法により、まず担体に金属酸化物
を担持させ、ついで、この金属酸化物に金、遷移金属、
希土類元素を担持させる。
The means for supporting the metal oxide on the carrier and for supporting the metal oxide on gold, transition metal and rare earth elements is not particularly limited. Usually, a metal oxide is first supported on a carrier by a so-called wash coating method using an aqueous solution of a metal oxide to be supported or an aqueous solution of a nitrate of a metal to be supported, and then gold, transition metal,
A rare earth element is supported.

【0019】アンモニア処理は、上記の担持処理を終え
た担体をアンモニア水(NH4 OH)に浸漬して行う。
この際のアンモニア水の濃度や浸漬時間等の処理条件は
特に制約がない。
The ammonia treatment is carried out by immersing the carrier after the above-mentioned supporting treatment in aqueous ammonia (NH 4 OH).
At this time, the processing conditions such as the concentration of the aqueous ammonia and the immersion time are not particularly limited.

【0020】焼成温度は、コージェライト等のセラミッ
ク質の担体を用いる場合、400〜600°C程度が良
い。400°Cを下回る温度で焼成しても前記した錯塩
の形成が不十分に終わる可能性があり、また、600°
Cを上回る温度で焼成すると、金属酸化物の結晶形が崩
れたり、変化したりする可能性がある。特に望ましい焼
成温度は400〜500°C前後である。一方、活性炭
を担体に用いる場合の焼成温度は150〜200°C程
度が良い。150°Cを下回る温度で焼成しても金が分
解し難く、200°Cを上回る温度で焼成すると活性炭
が燃えてしまうからである。焼成時間は、数時間程度、
例えば2時間程度で足りるが、本発明の光触媒は耐熱性
が優れているため、500°C前後の温度で8時間にも
及ぶ焼成を行っても、その活性はあまり低下しない。
When a ceramic carrier such as cordierite is used, the firing temperature is preferably about 400 to 600 ° C. Even if calcined at a temperature lower than 400 ° C., the formation of the complex salt may be insufficiently terminated.
When firing at a temperature higher than C, the crystal form of the metal oxide may be broken or changed. A particularly desirable firing temperature is around 400 to 500 ° C. On the other hand, when activated carbon is used as the carrier, the firing temperature is preferably about 150 to 200 ° C. This is because gold is not easily decomposed even when calcined at a temperature lower than 150 ° C, and activated carbon burns when calcined at a temperature higher than 200 ° C. The firing time is about several hours,
For example, about 2 hours is sufficient, but since the photocatalyst of the present invention has excellent heat resistance, its activity does not decrease so much even if it is fired at a temperature of about 500 ° C. for 8 hours.

【0021】担体に担持させた本発明の光触媒を得る場
合、まず担体に金属酸化物を担持させた後に一度焼成
し、さらに金属酸化物に金、遷移金属、希土類元素を担
持させた後に再度焼成しても良い。
In order to obtain the photocatalyst of the present invention supported on a carrier, first, a metal oxide is supported on the carrier, and then calcined once, and further, gold, a transition metal, and a rare earth element are supported on the metal oxide, and then calcined again. You may.

【0022】本発明の光触媒は他種多様な対象物質を光
化学反応により分解するが、特に極性物質に対する活性
が高い。非極性物質、例えばトルエン等に対しても有効
な活性を示す。
The photocatalyst of the present invention decomposes various target substances by a photochemical reaction, and has a particularly high activity for polar substances. It also shows effective activity against non-polar substances such as toluene.

【0023】[0023]

【実施例】次に本発明の実施例について述べる。なお、
以下の各実施例において担持のプロセスは全てウオッシ
ュ・コート法によった。
Next, an embodiment of the present invention will be described. In addition,
In each of the following examples, the supporting process was all performed by a wash coat method.

【0024】(実施例1)No. 1〜No. 4のコージェラ
イト製のハニカム担体にそれぞれ同量の酸化チタンを担
持させた後、No. 1とNo. 2の試料体には希土類元素で
あるジスプロシウムを、No. 3とNo. 4の試料体にはや
はり希土類元素であるエルビウムを、それぞれ酸化チタ
ンに対して0.1重量%になるように担持させ、さらに
No. 2とNo. 4の試料体は1%のアンモニア水に30分
間浸漬した。そして各試料体を空気気流中、500°C
で2時間焼成した。
Example 1 After supporting the same amount of titanium oxide on each of the cordierite honeycomb carriers No. 1 to No. 4, the sample bodies No. 1 and No. 2 were treated with rare earth elements. A certain dysprosium was supported on the sample bodies of No. 3 and No. 4 by erbium, which is also a rare earth element, so as to be 0.1% by weight with respect to titanium oxide.
The sample bodies of No. 2 and No. 4 were immersed in 1% aqueous ammonia for 30 minutes. Each sample is placed in an air stream at 500 ° C.
For 2 hours.

【0025】こうして得たNo. 1〜No. 4の試料体を用
い、5Wの集光した光照射のもとに240分間、アセト
アルデヒドの浄化試験(図8に示す閉鎖循環系評価装置
1を用い、50〜200ppmのアルデヒドを含む空気
を5l/min.で光触媒層2に通じて一定時間毎にサ
ンプリングし、ガスクロマトグラフ3でアセトアルデヒ
ドの残存率を求めた。)を行ったところ、240分後の
浄化率はNo. 1が63.5%、No. 2が81.4%、N
o. 3が62.3%、No. 4が74.3%であった。な
お、ハニカム担体に酸化チタンのみを担持させ、アンモ
ニア処理した標準試料体についても同様の浄化試験を行
ったところ、浄化率は73.5 %であった。
Using the sample bodies No. 1 to No. 4 thus obtained, acetaldehyde purification test for 240 minutes under 5 W of condensed light irradiation (using the closed circulation system evaluation apparatus 1 shown in FIG. 8). , Air containing 50 to 200 ppm of aldehyde was sampled at regular intervals through the photocatalyst layer 2 at a rate of 5 l / min, and the residual ratio of acetaldehyde was determined by a gas chromatograph 3). The purification rate was 63.5% for No. 1, 81.4% for No. 2, N
o.3 was 62.3% and No.4 was 74.3%. The same purification test was carried out on a standard sample which had only titanium oxide supported on the honeycomb carrier and was treated with ammonia. The purification rate was 73.5%.

【0026】(実施例1の評価)以上の結果より、酸化
チタンへの希土類元素の担持は、アンモニア処理を伴な
った場合には、光触媒活性の向上が見られる。
(Evaluation of Example 1) From the above results, when the rare earth element is supported on titanium oxide, the photocatalytic activity is improved when ammonia treatment is involved.

【0027】(実施例2)No. 5〜No. 8のコージェラ
イト製のハニカム担体にそれぞれ同量の酸化チタンを担
持させ、ついでこれらに、それぞれ酸化チタンに対して
0.1重量%になるように金を担持させた。そして、N
o. 5は1%のアンモニア水に、No. 6は1%のカ性ソ
ーダ水溶液に、No. 7は1%のカ性カリ水溶液に、No.
8は1%の炭酸ソーダ水溶液に、それぞれ30分間浸漬
した後、いずれも500°Cで2時間焼成した。
(Example 2) The same amount of titanium oxide was carried on each of the cordierite honeycomb carriers No. 5 to No. 8, and then each of them became 0.1% by weight based on the titanium oxide. Gold was carried as described above. And N
o. 5 is for 1% aqueous ammonia, No. 6 is for 1% aqueous sodium hydroxide solution, No. 7 is for 1% aqueous potassium hydroxide solution, No.
Sample No. 8 was immersed in a 1% aqueous solution of sodium carbonate for 30 minutes and then baked at 500 ° C. for 2 hours.

【0028】こうして得たNo. 4〜No. 8の試料体を用
い、実施例1と同様の浄化試験を行ったところ、図1の
結果を得た。
Using the sample bodies No. 4 to No. 8 thus obtained, the same purification test as in Example 1 was performed, and the results shown in FIG. 1 were obtained.

【0029】(実施例2の評価)図1の結果より、酸化
チタンへの金の担持は、アンモニア処理を伴なった場合
には、光触媒活性の著しい向上が見られる。
(Evaluation of Example 2) From the results shown in FIG. 1, it can be seen that the loading of gold on titanium oxide is accompanied by a significant improvement in photocatalytic activity when accompanied by ammonia treatment.

【0030】(実施例3)No. 9〜No. 13のコージェ
ライト製のハニカム担体にそれぞれ同量の酸化チタンを
担持させ、ついでこれらに、それぞれ酸化チタンに対し
て0.1重量%(No. 9)、0.01重量%(No. 1
0)、0.001重量%(No. 11)、0.005重量
%(No. 12)、0.2重量%(No. 13)になるよう
に金を担持させた。ついで、いずれの試料体についても
前記No. 5と同じアンモニア処理及び焼成を行った。
Example 3 The same amount of titanium oxide was supported on each of cordierite honeycomb carriers No. 9 to No. 13, and then 0.1% by weight (No. 9), 0.01% by weight (No. 1)
0), 0.001% by weight (No. 11), 0.005% by weight (No. 12), and 0.2% by weight (No. 13). Next, the same ammonia treatment and calcination as in No. 5 were performed on each sample.

【0031】こうして得たNo. 9〜No. 13の試料体を
用い、実施例1と同様の浄化試験を行ったところ、図2
の結果を得た。
Using the sample bodies No. 9 to No. 13 thus obtained, the same purification test as in Example 1 was performed.
Was obtained.

【0032】(実施例3の評価)図2の結果より、酸化
チタンに金を担持させ、かつアンモニア処理を行った光
触媒においては、金の担持量は酸化チタンに対して0.
005〜0.2重量%程度が望ましく、最適の担持量と
しては0.1重量%前後の担持量であることが分かっ
た。
(Evaluation of Example 3) From the results shown in FIG. 2, it can be seen that, in the photocatalyst in which gold was supported on titanium oxide and subjected to ammonia treatment, the amount of gold supported was 0.1 to 0.1% of titanium oxide.
It was found that the amount is preferably about 005 to 0.2% by weight, and the optimal amount is about 0.1% by weight.

【0033】(実施例4)No. 14〜No. 18のコージ
ェライト製のハニカム担体にそれぞれ同量の酸化チタン
を担持させ、ついでこれらに、それぞれ酸化チタンに対
して0.1重量%になるように金を担持させて前記No.
5と同じアンモニア処理を行い、No. 14は150°
C、No. 15は300°C、No. 16は400°C、N
o. 17は600°C、No. 18は500°Cでそれぞ
れ2時間、前記No. 5と同じ焼成を行った。
Example 4 The same amount of titanium oxide was carried on each of the cordierite honeycomb carriers No. 14 to No. 18, and each of them became 0.1% by weight based on the titanium oxide. No.
The same ammonia treatment as in No. 5 was performed, and No. 14 was 150 °
C, No. 15 is 300 ° C, No. 16 is 400 ° C, N
o. 17 was fired at 600 ° C. and No. 18 was fired at 500 ° C. for 2 hours, respectively, for 2 hours.

【0034】こうして得たNo. 14〜No. 18の試料体
を用い、実施例1と同様の浄化試験を行ったところ、図
3の結果を得た。
Using the samples Nos. 14 to 18 thus obtained, the same purification test as in Example 1 was performed, and the results shown in FIG. 3 were obtained.

【0035】(実施例4の評価)図3の結果より、酸化
チタンに金を担持させ、かつアンモニア処理を行って焼
成した光触媒においては、その焼成温度は400,50
0,600°Cのものが良く、特に良い焼成温度は50
0°Cであった。
(Evaluation of Example 4) From the results shown in FIG. 3, it is found that the firing temperature of the photocatalyst obtained by supporting gold on titanium oxide and performing the ammonia treatment is 400, 50.
0,600 ° C. is preferable, and a particularly preferable firing temperature is 50 ° C.
It was 0 ° C.

【0036】(実施例5)No. 19,20のコージェラ
イト製のハニカム担体にそれぞれ同量の酸化チタンを担
持させ、ついでこれらに、それぞれ酸化チタンに対して
0.1重量%になるように金を担持させて前記No. 5と
同じアンモニア処理を行い、いずれも500°Cで、N
o. 19は2時間、No. 20は8時間にわたり、前記No.
5と同じ焼成を行った。
Example 5 The same amount of titanium oxide was carried on each of the cordierite honeycomb carriers of Nos. 19 and 20, and these were then adjusted to 0.1% by weight based on the titanium oxide. The same ammonia treatment as in No. 5 was carried out by supporting gold, and at 500 ° C., N
o. 19 for 2 hours, No. 20 for 8 hours,
The same baking as in Example 5 was performed.

【0037】こうして得たNo. 19,No. 20の試料体
を用い、実施例1と同様の浄化試験を行ったところ、図
4の結果を得た。
Using the sample bodies No. 19 and No. 20 thus obtained, the same purification test as in Example 1 was performed, and the results shown in FIG. 4 were obtained.

【0038】(実施例5の評価)図4の結果より、酸化
チタンに金を担持させ、かつアンモニア処理を行って焼
成した光触媒においては、その焼成温度が500°Cで
ある場合、焼成時間は2時間もあれば十分であり、一
方、8時間も焼成しても光触媒活性が余り落ちていない
ことから、本実施例の光触媒の耐熱性が優れていること
が分かった。
(Evaluation of Example 5) From the results shown in FIG. 4, it can be seen from the results shown in FIG. 4 that the firing time of a photocatalyst fired by carrying gold on titanium oxide and performing an ammonia treatment is 500 ° C. Two hours is sufficient, and on the other hand, the photocatalytic activity does not decrease so much even after firing for eight hours, indicating that the heat resistance of the photocatalyst of this example is excellent.

【0039】(実施例6)No. 21のコージェライト製
のハニカム担体に酸化チタンを担持させ、ついでこれ
に、酸化チタンに対して金とニッケルとを、それぞれ
0.1重量%、0.1重量%になるように担持させて前
記No. 5と同じアンモニア処理を行い、かつ前記No. 5
と同じ焼成を行った。
Example 6 Titanium oxide was supported on a cordierite honeycomb carrier of No. 21, and then 0.1% by weight and 0.1% by weight of titanium oxide were added to titanium oxide. % And carried out the same ammonia treatment as in No. 5;
The same baking was performed.

【0040】このNo. 21の試料体を用い、前記したア
ルデヒド浄化試験と同じ要領で、トルエン濃度20pp
mでトルエン浄化試験を行ったところ、図5の結果を得
た。
Using this No. 21 sample, a toluene concentration of 20 pp was obtained in the same manner as in the aldehyde purification test described above.
m, a toluene purification test was performed, and the results in FIG. 5 were obtained.

【0041】(実施例6の評価)図5の結果より、酸化
チタンに金とニッケルとを担持させ、かつアンモニア処
理を行って焼成した光触媒は、アルデヒドの場合程では
ないが、浄化活性を示すことが分かった。
(Evaluation of Example 6) From the results shown in FIG. 5, it can be seen that the photocatalyst obtained by carrying gold and nickel on titanium oxide and performing the ammonia treatment shows a purification activity, though not as large as that of the aldehyde. I understood that.

【0042】(実施例7)No. 22〜No. 24のコージ
ェライト製のハニカム担体にそれぞれ同量の酸化チタン
を担持させ、ついでこれらに、それぞれ酸化チタンに対
して0.1重量%になるように、No. 22には銅、No.
23にはコバルト、No. 24にはニッケルをそれぞれ担
持させて前記No. 5と同じアンモニア処理と焼成とを行
った。
Example 7 The same amount of titanium oxide was carried on each of the cordierite honeycomb carriers No. 22 to No. 24, and each of them became 0.1% by weight based on the titanium oxide. No. 22, copper, No. 22
No. 23 carried cobalt and No. 24 carried nickel, respectively, and the same ammonia treatment and calcination as in No. 5 were performed.

【0043】これらのNo. 22〜No. 24の試料体を用
い、実施例1と同様の浄化試験を行ったところ、図6の
結果を得た。
The same purification test as in Example 1 was performed using these sample Nos. 22 to 24, and the results shown in FIG. 6 were obtained.

【0044】(実施例7の評価)図6の結果より、酸化
チタンに遷移金属を担持させ、かつアンモニア処理を行
って焼成した光触媒は、金を担持させた場合程ではない
が、一定の浄化活性を示すことが分かった。
(Evaluation of Example 7) From the results in FIG. 6, it is found that the photocatalyst obtained by carrying a transition metal on titanium oxide and performing an ammonia treatment and firing is not as effective as the case of carrying gold, but has a constant purification. It was found to show activity.

【0045】(実施例8)No. 25〜No. 27のコージ
ェライト製のハニカム担体にそれぞれ同量の酸化チタン
を担持させ、ついでこれらに、それぞれ酸化チタンに対
して0.1重量%になるように金を担持させ、かつNo.
25については更に酸化チタンに対して0.1重量%に
なるように銅を担持させ、No. 26については更に酸化
チタンに対して0.1重量%になるようにニッケルを担
持させた後、前記No. 5と同じアンモニア処理と焼成と
を行った。
Example 8 The same amount of titanium oxide was carried on each of the cordierite honeycomb carriers No. 25 to No. 27, and each of them became 0.1% by weight based on the titanium oxide. No.
For No. 25, copper was further supported at 0.1% by weight based on titanium oxide, and for No. 26, nickel was further supported at 0.1% by weight based on titanium oxide. The same ammonia treatment and firing as in No. 5 were performed.

【0046】これらのNo. 25〜No. 27の試料体を用
い、実施例1と同様の浄化試験を行ったところ、図7の
結果を得た。
The same purification test as in Example 1 was performed using these sample Nos. 25 to 27, and the results shown in FIG. 7 were obtained.

【0047】(実施例8の評価)図7の結果より、酸化
チタンに金又は金と遷移金属とを担持させ、かつアンモ
ニア処理を行って焼成した光触媒においては、金とニッ
ケルとを担持させた場合に特に優れた浄化活性を示すこ
とが分かった。
(Evaluation of Example 8) From the results shown in FIG. 7, it was found that gold and nickel were supported in the photocatalyst which was prepared by supporting gold or gold and a transition metal on titanium oxide, and calcination after ammonia treatment. It has been found that the case shows particularly excellent purification activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2の試験結果を示すグラフである。FIG. 1 is a graph showing test results of Example 2.

【図2】実施例3の試験結果を示すグラフである。FIG. 2 is a graph showing test results of Example 3.

【図3】実施例4の試験結果を示すグラフである。FIG. 3 is a graph showing test results of Example 4.

【図4】実施例5の試験結果を示すグラフである。FIG. 4 is a graph showing test results of Example 5.

【図5】実施例6の試験結果を示すグラフである。FIG. 5 is a graph showing test results of Example 6.

【図6】実施例7の試験結果を示すグラフである。FIG. 6 is a graph showing test results of Example 7.

【図7】実施例8の試験結果を示すグラフである。FIG. 7 is a graph showing test results of Example 8.

【図8】本発明の浄化試験に用いた装置の概略図であ
る。
FIG. 8 is a schematic view of an apparatus used for a purification test of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 23/89 B01J 23/74 311A 35/02 321A ────────────────────────────────────────────────── ─── Continued on front page (51) Int.Cl. 7 Identification code FI B01J 23/89 B01J 23/74 311A 35/02 321A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光を吸収して励起し、電子と正孔を生成す
金属酸化物に金、ニッケル、クロム、銅、コバルト、
希土類元素から選ばれる少なくとも一つの微粒子を担持
させ、これをアンモニア処理した後、焼成することを特
徴とする光触媒の製造方法。
1. A method for absorbing and exciting light to generate electrons and holes.
Gold that metal oxide, nickel, chromium, copper, cobalt,
A method for producing a photocatalyst, comprising supporting at least one fine particle selected from rare earth elements, subjecting the fine particle to ammonia treatment, and firing.
【請求項2】光を吸収して励起し、電子と正孔を生成す
金属酸化物と、これに担持されてアンモニア処理され
た金、ニッケル、クロム、銅、コバルト、希土類元素
ら選ばれる少なくとも一つの微粒子との焼成体からなる
ことを特徴とする光触媒。
2. Excitation by absorbing light to generate electrons and holes.
And a metal oxide that, this is carried ammoniated gold, nickel, chromium, copper, cobalt, or a rare earth element
A photocatalyst comprising a fired body with at least one fine particle selected from the group consisting of:
JP35712392A 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof Expired - Fee Related JP3360333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35712392A JP3360333B2 (en) 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35712392A JP3360333B2 (en) 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof

Publications (2)

Publication Number Publication Date
JPH06182205A JPH06182205A (en) 1994-07-05
JP3360333B2 true JP3360333B2 (en) 2002-12-24

Family

ID=18452502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35712392A Expired - Fee Related JP3360333B2 (en) 1992-12-22 1992-12-22 Method for producing photocatalyst and photocatalyst thereof

Country Status (1)

Country Link
JP (1) JP3360333B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276297B2 (en) * 1996-10-18 2002-04-22 石原産業株式会社 Photocatalyst
IL121877A (en) * 1997-10-01 2001-09-13 Yissum Res Dev Co Photocatalysts for the degradation of organic pollutants
JP5252757B2 (en) * 2000-01-26 2013-07-31 株式会社豊田中央研究所 Hydrophilic material
DE10064317A1 (en) * 2000-12-22 2002-10-17 Studiengesellschaft Kohle Mbh New photocatalysts and methods for their discovery
JP2004357501A (en) * 2001-03-21 2004-12-24 Kankyo Device Kenkyusho:Kk Method for promoting germination
JP4576526B2 (en) 2004-07-07 2010-11-10 国立大学法人京都大学 Ultraviolet and visible light responsive titania photocatalyst
CN1305560C (en) * 2004-11-06 2007-03-21 重庆工学院 Process for preparing highly efficient titania photocatalyst
US9061272B2 (en) 2010-02-16 2015-06-23 Showa Denko K.K. Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
CN104324721B (en) * 2014-11-25 2016-08-24 黑龙江大学 A kind of FeTiO of hollow thorn-like spherical structure3the preparation method of photochemical catalyst
CN104888744B (en) * 2015-05-26 2017-04-05 景德镇陶瓷学院 A kind of CaFexTi2‑xO4(OH)2Photocatalyst material and preparation method thereof
CN106268857B (en) * 2015-06-12 2018-07-03 中国科学院苏州纳米技术与纳米仿生研究所 Metal/cuprous oxide composite photocatalyst material and preparation method thereof
CN106000384B (en) * 2016-05-13 2018-04-10 淮北师范大学 A kind of preparation method and its photocatalytic applications for forming controllable tin-based oxide
CN109012667B (en) * 2018-08-07 2021-07-20 景德镇陶瓷大学 Ag-doped CaTi with high photocatalytic activity2O5Preparation method of nano material and product prepared by preparation method
CN109225271B (en) * 2018-11-08 2019-10-01 常州大学 A kind of SrTiO3/SnCoS4The preparation method and applications of high efficiency photocatalyst
CN110937627A (en) * 2019-12-12 2020-03-31 吉林师范大学 Preparation method of defective calcium titanate nanoparticles

Also Published As

Publication number Publication date
JPH06182205A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
JP3360333B2 (en) Method for producing photocatalyst and photocatalyst thereof
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
WO2006103754A1 (en) Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
KR101892342B1 (en) The catalyst for decomposing ozone and air pollutants and preparation therof
EP0407210B1 (en) Method of decomposing chlorofluorocarbons
JPH02107339A (en) Catalyst structure and its manufacturing method and usage
KR102161131B1 (en) Antimony / titania carrier and its production method, catalyst for removal of harmful gaseous substances using the carrier, and production method thereof
EP2035111A2 (en) Metal or metalized fabrics coated with nanostructured titanium dioxide
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP2002102701A (en) Ordinary temperature catalyst
JP3932335B2 (en) Integrated catalyst and method for producing the same
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
KR20040097738A (en) Mn oxide catalyst for decomposing ozone and the method therefor
CN111632590B (en) Loaded ZnSn (OH) 6 Glass pearly-lustre catalyst and preparation method and application thereof
JP3339204B2 (en) Nitrogen oxide oxidation adsorbent and nitrogen oxide removal method
JPH09155364A (en) Treatment of waste water
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
US4206081A (en) Process for producing highly active denitrating catalysts
JPH045485B2 (en)
JPH08332388A (en) Ammonia decomposing agent
JPH11253818A (en) Photocatalyst and photocatalytic device
JP2002273208A (en) Discharge electrode formed by supporting photocatalyst, discharge reaction apparatus using the same and gas decomposition method using discharge reaction apparatus
JPH07121361B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH05212389A (en) Treatment of waste water containing organo halogen compound
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees