JPH08332388A - Ammonia decomposing agent - Google Patents

Ammonia decomposing agent

Info

Publication number
JPH08332388A
JPH08332388A JP7175362A JP17536295A JPH08332388A JP H08332388 A JPH08332388 A JP H08332388A JP 7175362 A JP7175362 A JP 7175362A JP 17536295 A JP17536295 A JP 17536295A JP H08332388 A JPH08332388 A JP H08332388A
Authority
JP
Japan
Prior art keywords
group
elements
ammonia
nitrate
hno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7175362A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
一彦 永野
Shiroji Ikeda
城二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP7175362A priority Critical patent/JPH08332388A/en
Publication of JPH08332388A publication Critical patent/JPH08332388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To decompose and remove ammonia efficiently by causing a carrier to bear the active species of an oxide of a specific element and a group of nitrate as an ammonia decomposing agent. CONSTITUTION: A carrier of an oxide of titanium or aluminum and zeolite is caused to bear an active species selected from among oxides group Ib elements such as Cu and Ag of the periodic table, group IIb, elements such as Zn, group IIIa elements such as La, Ce, group IIIb elements such as Al, Ca, group IVa elements such as Ti, Zr group IVb elements such as Ge, Sn group Va elements such as V, Nb, group VIa elements such as Cn, Mo group VIIa elements such as Mn, or group VIII elements such as Fe, Co, Ni, and a nitrate group of manganese nitrate or iron nitrate. The catalyst thus obtained demonstrates a high activity in the decomposition of ammonia, because the selective reduction reaction of NOX is generated by ammonia by deposition of an NOX source on the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大気中あるいは各種工場
等の排ガス中に含まれるアンモニアを効率よく除去する
ことが出来るアンモニア分解剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia decomposing agent which can efficiently remove ammonia contained in the atmosphere or exhaust gas from various factories.

【0002】[0002]

【従来の技術】法定悪臭8大物質であるアンモニアは従
来、水あるいは酸性溶液に吸収させる湿式法、あるいは
添着活性炭などを用いた吸着法、あるいは貴金属系触媒
などにより酸化分解するなどの方法で処理されてきた。
しかし、これらの方法はいずれもいくつかの問題点を有
していた。すなわち湿式法は、工場排ガスなど比較的高
濃度のアンモニアを処理するのに好適であるが、排水処
理などを含め設備費が高くなる。吸着法はこれらの問題
はないが、吸着効率が十分でなく、又、吸着層に吸着熱
が蓄熱して昇温し、発火するなどの危険性を有してい
る。又、酸化分解法は、その生成物はNOなどの窒素
化合物となり好ましくない。
2. Description of the Related Art Ammonia, which is the eight major substances with a legal odor, is conventionally treated by a wet method of absorbing it in water or an acidic solution, an adsorption method using impregnated activated carbon, or a method of oxidative decomposition using a noble metal catalyst. It has been.
However, all of these methods have some problems. That is, the wet method is suitable for treating relatively high-concentration ammonia such as factory exhaust gas, but the equipment cost including wastewater treatment is high. Although the adsorption method does not have these problems, it does not have sufficient adsorption efficiency and has a risk that the adsorption heat accumulates in the adsorption layer to raise the temperature and cause ignition. Further, the oxidative decomposition method is not preferable because the product thereof becomes a nitrogen compound such as NO 2 .

【0003】[0003]

【発明が解決しようとする課題】本発明はかかる問題を
解決するためになされたものであって、アンモニアを効
率よく分解除去するための分解剤の提供を目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a decomposing agent for efficiently decomposing and removing ammonia.

【0004】[0004]

【課題を解決するための手段】1種以上の担体に、周期
律表第Ib,IIb,IIIa,IIIb,IVa,I
Vb,Va,VIa,VIIa,又はVIII族の元素
の酸化物から選ばれる少なくとも1種以上の活性種及び
硝酸根(NO)を担持させてなる。
[Means for Solving the Problems] One or more types of carriers are provided with periodic tables Ib, IIb, IIIa, IIIb, IVa, and I.
At least one active species selected from oxides of Vb, Va, VIa, VIIa, or VIII group elements and nitrate radicals (NO 3 ) are supported.

【0005】担体としては公知の担体であれば良く、特
に制限はないが、チタン、アルミニウム、ジルコニウ
ム、ケイ素などの酸化物およびゼオライトなどが好まし
く、これらを1種あるいは複数の組合せで使用する。こ
れらの活性種からなる酸化物を上記のような担体に担持
させる場合、その好適な担持率は通常0.1〜10重量
%の範囲である。
The carrier may be any known carrier and is not particularly limited, but oxides such as titanium, aluminum, zirconium and silicon and zeolite are preferable, and these are used alone or in combination of two or more. When an oxide composed of these active species is supported on the carrier as described above, the suitable supporting rate is usually in the range of 0.1 to 10% by weight.

【0006】又、硝酸根の担持率は、処理すべきアンモ
ニアの量に対応して調整すればよいが、後述するように
反応によって硝酸根が消失した場合には、新しく供給す
ることによって再生使用することも可能である。
The rate of nitrate radical loading may be adjusted in accordance with the amount of ammonia to be treated. If nitrate radicals disappear due to the reaction as will be described later, a new feed is provided to recycle them. It is also possible to do so.

【0007】次にこれらの活性元素を例示すれば、周期
律表第Ib族の元素として、例えば、Cu,Ag等を、
第IIb族の元素として、例えば、Zn等を、第III
a族元素として、例えば、La,Ce等を、第IIIb
族元素として、例えば、Al,Ga等を、第IVa族元
素として、例えば、Ti,Zr等を、第VIb族元素と
して、例えば、Ge,Sn等、第Va族元素として、例
えば、V,Nb等を、第VIa族元素として、例えば、
Cr,Mo,W等を、第VIIa族元素としては、例え
ば、Mn等を、又、第VIII族元素として、例えば、
Fe,Co,Ni等をそれぞれ挙げることができる。
Examples of these active elements include Cu, Ag, etc., as elements of Group Ib of the periodic table.
As the group IIb element, for example, Zn or the like is added to the group III
As the a-group element, for example, La, Ce or the like may be used
As the group element, for example, Al, Ga, etc., as the group IVa element, eg, Ti, Zr, etc., as the group VIb element, eg, Ge, Sn, etc., as the group Va element, eg, V, Nb And the like as a group VIa element, for example,
Cr, Mo, W, etc., as the Group VIIa element, for example, Mn, etc., and as the Group VIII element, for example,
Fe, Co, Ni, etc. can be mentioned respectively.

【0008】又、硝酸根は、HNOなどから供給され
るが、上述した各種活性元素の硝酸塩の形で供給されて
もよい。こうしたものとしては、硝酸マンガン、硝酸
鉄、硝酸ニッケル等、主に周期律表第IV周期Ib,I
Ib,VIb,VIIb及びVIII族の元素の硝酸塩
などを例示することができる。
The nitrate radicals are supplied from HNO 3 or the like, but may be supplied in the form of nitrates of various active elements described above. Examples of such compounds include manganese nitrate, iron nitrate, nickel nitrate, etc.
Illustrative examples include nitrates of Ib, VIb, VIIb, and VIII elements.

【0009】これらの触媒がアンモニアの分解において
高い活性を示すのは、触媒中にNO源を担持させるこ
とによって、アンモニアによるNOの選択的還元反応
が生起していることによると考えられる。この反応が、
通常行なわれているNHSCRとちがって高活性を示
すのは、NO源が反応点に予め供給されていることに
よる反応の高効率化であろうとおもわれる。
[0009] exhibit a high activity in the degradation of these catalysts is ammonia, by carrying the NO X source in the catalyst is believed to be due to selective reduction of the NO X is occurred with ammonia. This reaction
It is thought that, unlike NH 3 SCR, which is usually performed, shows high activity because the NO x source is pre-supplied to the reaction point to increase the efficiency of the reaction.

【0010】これらの反応が有効に行なわれる好ましい
温度域は100〜350℃の範囲であり、より好ましく
は150〜300℃の範囲である。反応温度が100℃
より低い場合には、この反応の活性は低く、又、反応温
度が300℃を超える場合には、担持したHNOの飛
散が起こるので好ましくない。これらの触媒への熱の供
給は、通常行なわれているようなガスを加熱する方法も
もちろんであるが、触媒を導電性を有する構造体に担持
し、通電加熱してもよい。
The preferred temperature range in which these reactions are effectively carried out is in the range of 100 to 350 ° C, more preferably 150 to 300 ° C. Reaction temperature is 100 ℃
When it is lower, the activity of this reaction is low, and when the reaction temperature exceeds 300 ° C., the carried HNO 3 is scattered, which is not preferable. The heat may be supplied to these catalysts by, of course, a method of heating a gas which is usually performed, but the catalyst may be supported on a conductive structure and electrically heated.

【0011】本発明による分解剤は、従来知られている
成形方法によって、ハニカム状、球状等の種の形状に成
形することができる。この成形に際し、成形助剤、成形
補強体、無機繊維、有機バインダー等を適宜配合しても
よい。また、予め成形された基材上にウォッシュコート
法等によって被覆担持させることもできる。さらに従来
知られているその他の吸着剤の調整方法によることもで
きる。
The decomposing agent according to the present invention can be molded into a seed shape such as a honeycomb shape or a spherical shape by a conventionally known molding method. At the time of this molding, a molding aid, a molding reinforcement, an inorganic fiber, an organic binder and the like may be appropriately mixed. It is also possible to carry the coating on a preformed base material by a wash coating method or the like. Furthermore, it is possible to use other conventionally known methods for adjusting the adsorbent.

【0012】[0012]

【実施 例】以下、具体的に実施例により説明する。 (1) 触媒の調整 実施例1 比表面積が115m/gの活性二酸化チタン100g
に、Vとして150g/lのメタバナジン酸アン
モニウムのシュウ酸溶液を33.3cc加え、さらに適
量の水を加えて、乳バチでよく混合した後、ドライアッ
プした。このものを350℃で4時間焼成した後、サン
プルミルにて粉砕し、V−TiO(重量比5/
100)のパウダーを得た。このパウダーをSiO
ルをバインダーとして、ピッチ約1.8mm、壁厚0.
4mmのコージェライトハニカムにウォッシュコートし
た。次に、これらを乾燥した後、HNOSolnに浸
漬し、さらに乾燥してV−TiO(重量比5/
100)を0.19g/cc,HNOを25mg/c
c担持したハニカム成形体を得た。
[Examples] Specific examples will be described below. (1) Preparation of catalyst Example 1 100 g of activated titanium dioxide having a specific surface area of 115 m 2 / g
Then, 33.3 cc of an oxalic acid solution of ammonium metavanadate of 150 g / l as V 2 O 5 was added thereto, an appropriate amount of water was further added, and the mixture was thoroughly mixed with a milk bee and then dried up. After this was baked at 350 ° C. for 4 hours, it was crushed with a sample mill and V 2 O 5 —TiO 2 (weight ratio 5 /
100) powder was obtained. This powder, using SiO 2 sol as a binder, has a pitch of about 1.8 mm and a wall thickness of 0.
A 4 mm cordierite honeycomb was wash-coated. Next, after drying these, it is immersed in HNO 3 Soln and further dried to obtain V 2 O 5 —TiO 2 (weight ratio 5 /
100) 0.19 g / cc, HNO 3 25 mg / c
A honeycomb molded body carrying c was obtained.

【0013】実施例2 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸鉄溶液とする以外は実施例1と
同様にして、Fe−TiO(重量比5/10
0)を0.18g/cc、HNOを23mg/cc担
持したハニカム成形体を得た。
Example 2 Fe 2 O 3 —TiO 2 (weight ratio: 5/10) was used in the same manner as in Example 1 except that an iron nitrate solution was used instead of the oxalic acid solution of ammonium metavanadate.
0) and 0.18 g / cc of HNO 3 and 23 mg / cc of HNO 3 were carried to obtain a honeycomb formed body.

【0014】実施例3 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸マンガン溶液とする以外は実施
例1と同様にして、MuO−TiO(重量比5/1
00)を0.20g/cc、HNOを26mg/cc
担持したハニカム成形体を得た。
Example 3 In the same manner as in Example 1 except that the manganese nitrate solution was used instead of the oxalic acid solution of ammonium metavanadate, MuO 2 —TiO 2 (weight ratio 5/1) was used.
00) 0.20 g / cc, HNO 3 26 mg / cc
A supported honeycomb molded body was obtained.

【0015】実施例4 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸クロム溶液とする以外は実施例
1と同様にして、CrO−TiO(重量比5/10
0)を0.18g/cc、HNOを25mg/cc担
持したハニカム成形体を得た。
Example 4 CrO 2 —TiO 2 (weight ratio 5/10) was used in the same manner as in Example 1 except that the solution of ammonium metavanadate was replaced with the solution of chromium nitrate instead of the solution of chromium nitrate.
0) and 0.18 g / cc of HNO 3 and 25 mg / cc of HNO 3 were carried to obtain a honeycomb formed body.

【0016】実施例5 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸コバルト溶液とする以外は実施
例1と同様にして、CoO−TiO(重量比5/10
0)を0.19g/cc、HNOを23mg/cc担
持したハニカム成形体を得た。
Example 5 CoO—TiO 2 (weight ratio 5/10) was used in the same manner as in Example 1 except that ammonium oxalate solution of ammonium metavanadate was replaced with cobalt nitrate solution.
A honeycomb molded body carrying 0. 9) of 0.19 g / cc and HNO 3 of 23 mg / cc was obtained.

【0017】実施例6 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸銅溶液とする以外は実施例1と
同様にして、CuO−TiO(重量比5/100)を
0.18g/cc、HNOを25mg/cc担持した
ハニカム成形体を得た。
Example 6 In the same manner as in Example 1 except that the ammonium oxalic acid solution of ammonium metavanadate was replaced by a copper nitrate solution, CuO—TiO 2 (weight ratio 5/100) was adjusted to 0. A honeycomb molded body carrying 0.18 g / cc and HNO 3 of 25 mg / cc was obtained.

【0018】実施例7 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸亜鉛溶液とする以外は実施例1
と同様にして、ZnO−TiO(重量比5/100)
を0.20g/cc、HNOを23mg/cc担持し
たハニカム成形体を得た。
Example 7 Example 1 was repeated except that a zinc nitrate solution was used instead of the oxalic acid solution of ammonium metavanadate.
Similarly to, ZnO-TiO 2 (weight ratio 5/100)
Of 0.20 g / cc and HNO 3 of 23 mg / cc were carried to obtain a honeycomb formed body.

【0019】実施例8 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、硝酸ニッケル溶液とする以外は実施
例1と同様にして、NiO−TiO(重量比5/10
0)を0.19g/cc、HNOを23mg/cc担
持したハニカム成形体を得た。
Example 8 NiO—TiO 2 (weight ratio: 5/10) was used in the same manner as in Example 1 except that ammonium oxalate solution of ammonium metavanadate was replaced with nickel nitrate solution.
A honeycomb molded body carrying 0. 9) of 0.19 g / cc and HNO 3 of 23 mg / cc was obtained.

【0020】実施例9 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、メタタングステン酸アンモニウム溶
液とする以外は実施例1と同様にして、WO−TiO
(重量比5/100)を0.19g/cc、HNO
を24mg/cc担持したハニカム成形体を得た。
Example 9 WO 3- TiO 2 was prepared in the same manner as in Example 1 except that ammonium metatungstate solution was used instead of the oxalic acid solution of ammonium metavanadate.
2 (weight ratio 5/100) is 0.19 g / cc, HNO 3
A honeycomb molded body carrying 24 mg / cc of was obtained.

【0021】実施例10 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、塩化スズ溶液とする以外は実施例1
と同様にして、SnO−TiO(重量比5/10
0)を0.20g/cc、HNOを25mg/cc担
持したハニカム成形体を得た。
Example 10 Example 1 was repeated except that a tin chloride solution was used instead of the oxalic acid solution of ammonium metavanadate.
Similarly to, SnO 2 —TiO 2 (weight ratio 5/10
0) was loaded with 0.20 g / cc and HNO 3 was loaded with 25 mg / cc to obtain a honeycomb molded body.

【0022】実施例11 実施例1において、メタバナジン酸アンモニウムのシュ
ウ酸溶液にかえて、モリブデン酸アンモニウム溶液とす
る以外は実施例1と同様にして、MoO−TiO(重
量比5/100)を0.18g/cc、HNOを22
mg/cc担持したハニカム成形体を得た。
Example 11 MoO—TiO 2 (weight ratio 5/100) was used in the same manner as in Example 1 except that ammonium oxalate solution of ammonium metavanadate was replaced with ammonium molybdate solution. 0.18 g / cc, HNO 3 22
A honeycomb molded body carrying mg / cc was obtained.

【0023】実施例12 実施例1において、活性酸化チタンにかえて比表面積1
30m/gの酸化ジルコニウムとする以外は実施例1
と同様にして、V−ZrO(重量比5/10
0)を0.21g/cc、HNOを25mg/cc担
持したハニカム成形体を得た。
Example 12 In Example 1, the specific surface area was changed to 1 instead of activated titanium oxide.
Example 1 except 30 m 2 / g zirconium oxide
In the same manner as in V 2 O 5 —ZrO 2 (weight ratio 5/10
0) was loaded with 0.21 g / cc and HNO 3 was loaded with 25 mg / cc to obtain a honeycomb molded body.

【0024】実施例13 実施例1において、活性酸化チタンにかえて比表面積2
20m/gのr−アルミナとする以外は実施例1と同
様にして、V−Al(重量比5/100)
を0.19g/cc、HNOを23mg/cc担持し
たハニカム成形体を得た。
Example 13 In Example 1, the specific surface area was changed to 2 instead of activated titanium oxide.
Except that the r- alumina 20 m 2 / g in the same manner as in Example 1, V 2 O 5 -Al 2 O 3 ( weight ratio 5/100)
Of 0.19 g / cc and HNO 3 of 23 mg / cc were obtained.

【0025】実施例14 実施例1において、活性酸化チタンにかえて比表面積3
50m/gの酸系型モルデナイト(SiO/Al
比16、日本化学工業(株)、HM−23)とする
以外は実施例1と同様にして、V−酸型モルデナ
イト(重量比5/100)を0.18g/cc、HNO
を22mg/cc担持したハニカム成形体を得た。
Example 14 In Example 1, the specific surface area was changed to 3 instead of activated titanium oxide.
50 m 2 / g of acid type mordenite (SiO 2 / Al 2
O 3 ratio of 16, Nippon Chemical Industrial Co., except that the HM-23) in the same manner as in Example 1, V 2 O 5 - acid mordenite (weight ratio 5/100) 0.18 g / cc, HNO
A honeycomb molded body carrying 22 mg / cc of 3 was obtained.

【0026】実施例15 実施例1において、活性酸化チタンにかえて比表面積3
20m/gの酸化ケイ素(富士デヴィソン化学製、サ
イロイド978)とする以外は実施例1と同様にして、
−SiO(重量比5/100)を0.15g
/cc、HNOを22mg/cc担持したハニカム成
形体を得た。
Example 15 In Example 1, the specific surface area was changed to 3 instead of activated titanium oxide.
In the same manner as in Example 1 except that 20 m 2 / g of silicon oxide (manufactured by Fuji Devison Chemical Co., Ltd., Syloid 978) was used.
V 2 O 5 -SiO 2 (weight ratio 5/100) 0.15 g
A honeycomb molded body carrying 22 mg / cc of / cc and HNO 3 was obtained.

【0027】比較例1 実施例1において、HNOSolnへの浸漬をせずし
て、V−TiO(重量比5/100)を0.2
0g/cc担持したハニカム成形体を得た。
Comparative Example 1 In Example 1, V 2 O 5 —TiO 2 (weight ratio 5/100) was added to 0.2 without immersion in HNO 3 Soln.
A honeycomb molded body carrying 0 g / cc was obtained.

【0028】比較例2 実施例2において、HNOSolnへの浸漬をせずし
て、Fe−TiO(重量比5/100)を0.
18g/cc担持したハニカム成形体を得た。
[0028] In Comparative Example 2 Example 2, and without immersion in HNO 3 Soln, Fe 2 O 3 -TiO 2 (weight ratio 5/100) 0.
A honeycomb molded body supporting 18 g / cc was obtained.

【0029】比較例3 比表面積115m/gの活性二酸化チタンパウダー
を、SiOゾルをバインダーとして、ピッチ約1.8
mm、壁厚0.4mmのコージェライトハニカムにウォ
ッシュコートし、以下実施例1と同様にして、TiO
を0.20g/cc、HNOを26mg/cc担持し
たハニカム成形体を得た。
Comparative Example 3 Pitch of about 1.8 using activated titanium dioxide powder having a specific surface area of 115 m 2 / g and SiO 2 sol as a binder.
mm, wall thickness 0.4 mm, cordierite honeycomb was wash-coated, and TiO 2
Of 0.20 g / cc and HNO 3 of 26 mg / cc were obtained.

【0030】比較例4 酸性表面を有する市販の添着活性炭(武田薬品工業
(株)製、破砕炭白鷺G)を粉砕し、SiOゾルをバ
インダーとして、ピッチ約1.8mm、壁厚0.4mm
のコージェライトハニカムにウォッシュコートし、活性
炭を0.15g/cc担持したハニカム成形体を得た。
Comparative Example 4 Commercially available impregnated activated carbon having an acidic surface (crushed charcoal Shirasagi G manufactured by Takeda Yakuhin Kogyo Co., Ltd.) was crushed, and SiO 2 sol was used as a binder to give a pitch of about 1.8 mm and a wall thickness of 0.4 mm.
The cordierite honeycomb of Example 1 was wash-coated to obtain a honeycomb formed body carrying activated carbon at 0.15 g / cc.

【0031】比較例5 比表面積115m/gの活性二酸化チタン100gを
リパブレ(200g/l)、HPtCl溶液をPt
にして1.0gとなるように添加した。このスラリーを
1時間撹拌後、NHOH溶液によりpH9に調製し、
撹拌しながら10wt%のヒドラジン溶液100ccを
加え、還元した。このスラリーを濾過、水洗、乾燥し、
ケーキを400℃、4時間焼成後、粉砕し、Pt−Ti
(重量比1/100)のパウダーを得た。このパウ
ダーをSiOゾルをバインダーとして、ピッチ約1.
8mm、壁厚0.4mmのコージェライトハニカムにウ
ォッシュコートし、Pt−TiO(重量比1/10
0)を0.15g/cc担持したハニカム成形体を得
た。
Comparative Example 5 100 g of activated titanium dioxide having a specific surface area of 115 m 2 / g was repaved (200 g / l), and H 2 PtCl 6 solution was added to Pt.
And 1.0 g was added. After stirring the slurry for 1 hour, the pH was adjusted to 9 with NH 4 OH solution,
While stirring, 100 cc of a 10 wt% hydrazine solution was added for reduction. This slurry is filtered, washed with water, dried,
The cake is baked at 400 ° C. for 4 hours and then crushed to obtain Pt-Ti.
O 2 (weight ratio 1/100) powder was obtained. Using this powder with SiO 2 sol as a binder, a pitch of about 1.
A cordierite honeycomb having a wall thickness of 8 mm and a wall thickness of 0.4 mm was wash-coated with Pt-TiO 2 (weight ratio: 1/10).
A honeycomb molded body carrying 0.15 g / cc of 0) was obtained.

【0032】(2) 評価試験 実施例1〜15及び比較例1〜5で得たハニカム成形体
について、下記の試験条件にて、アンモニアの接触酸化
を行ない、その除去率を下記の算式により求めた。尚、
アンモニア濃度は検知管を用いて測定した。 (試験条件) NH 25ppm 空気バランス 空間速度 15,000Hr−1 反応温度 150℃,200℃,250℃,300℃
(2) Evaluation test The honeycomb molded bodies obtained in Examples 1 to 15 and Comparative Examples 1 to 5 were subjected to catalytic oxidation of ammonia under the following test conditions, and the removal rate was calculated by the following formula. It was still,
The ammonia concentration was measured using a detector tube. (Test conditions) NH 3 25 ppm Air balance Space velocity 15,000 Hr −1 Reaction temperature 150 ° C., 200 ° C., 250 ° C., 300 ° C.

【0033】結果は表1に示す。The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】表1に示した如く、本発明はアンモニア
を効率よく除去することができる。
As shown in Table 1, the present invention can efficiently remove ammonia.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1種以上の担体に、周期律表第Ib,II
b,IIIa,IIIb,IVa,IVb,Va,VI
a,VIIa又はVIII族の元素の酸化物から選ばれ
る少なくとも1種以上の活性種及び硝酸根(NO)を
担持させてなることを特徴とするアンモニア分解剤。
1. Periodic Table Nos. Ib and II on one or more carriers.
b, IIIa, IIIb, IVa, IVb, Va, VI
An ammonia decomposing agent, comprising at least one active species selected from oxides of a, VIIa or VIII elements and nitrate radicals (NO 3 ).
JP7175362A 1995-06-06 1995-06-06 Ammonia decomposing agent Pending JPH08332388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7175362A JPH08332388A (en) 1995-06-06 1995-06-06 Ammonia decomposing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7175362A JPH08332388A (en) 1995-06-06 1995-06-06 Ammonia decomposing agent

Publications (1)

Publication Number Publication Date
JPH08332388A true JPH08332388A (en) 1996-12-17

Family

ID=15994762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7175362A Pending JPH08332388A (en) 1995-06-06 1995-06-06 Ammonia decomposing agent

Country Status (1)

Country Link
JP (1) JPH08332388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006006702A1 (en) * 2004-07-15 2008-07-31 日揮ユニバーサル株式会社 Catalyst for purifying exhaust gas containing organic nitrogen compound, and method for purifying the same exhaust gas
AU2007200916B2 (en) * 1998-10-05 2009-09-17 Kabushiki Kaisha Yakult Honsha Antibacterial agents and process for producing the same
JP2019527126A (en) * 2016-07-15 2019-09-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Method for preparing vanadium-based catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007200916B2 (en) * 1998-10-05 2009-09-17 Kabushiki Kaisha Yakult Honsha Antibacterial agents and process for producing the same
JPWO2006006702A1 (en) * 2004-07-15 2008-07-31 日揮ユニバーサル株式会社 Catalyst for purifying exhaust gas containing organic nitrogen compound, and method for purifying the same exhaust gas
JP5069467B2 (en) * 2004-07-15 2012-11-07 日揮ユニバーサル株式会社 Catalyst for purification of exhaust gas containing organic nitrogen compound, and purification method of the exhaust gas
JP2019527126A (en) * 2016-07-15 2019-09-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Method for preparing vanadium-based catalyst

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
EP0547226B1 (en) Method of oxidative decomposition of organic halogen compound
KR960006926B1 (en) Catalyst and method of preparing the catalyst
US5164351A (en) Carrier-supported catalyst for the removal of nitrogen-oxides, carbon monoxide and organic compounds from exhaust gases
JP3360333B2 (en) Method for producing photocatalyst and photocatalyst thereof
CA1122584A (en) Process for producing plate-shaped denitrating catalysts
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JPH08332388A (en) Ammonia decomposing agent
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP3321423B2 (en) Exhaust gas purification method
JPH0741146B2 (en) Deodorization method
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JPH07121361B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP3427422B2 (en) Exhaust gas purification catalyst and method for producing the same
KR20030023344A (en) Method for Removing Ozone Using Natural Manganese Ore as a Catalyst
JP4103970B2 (en) Pretreatment agent for poisonous exhaust gas with catalytic activity
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JP3707503B2 (en) Decomposition catalyst for volatile organochlorine compounds
JPH05317650A (en) Catalyst for catalytic reduction of nitrogen oxide
JPH057776A (en) Catalyst and its manufacture
JP3772364B2 (en) Ammonia decomposition agent