JP3350158B2 - 成形コークスの製造方法 - Google Patents
成形コークスの製造方法Info
- Publication number
- JP3350158B2 JP3350158B2 JP16655493A JP16655493A JP3350158B2 JP 3350158 B2 JP3350158 B2 JP 3350158B2 JP 16655493 A JP16655493 A JP 16655493A JP 16655493 A JP16655493 A JP 16655493A JP 3350158 B2 JP3350158 B2 JP 3350158B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- coke
- volatile content
- briquette
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coke Industry (AREA)
Description
【0001】
【産業上の利用分野】本発明は、高炉で使用する成形コ
ークスの製造方法に関するものである。
ークスの製造方法に関するものである。
【0002】
【従来の技術】高炉用コークスは、鉱石類を溶解する熱
源として、また酸化鉄を金属鉄に還元する還元剤とし
て、さらには高炉内でのガスの通気性、溶融物の通液性
を保つための高温に耐える支持材として、高炉操業にお
いて不可欠である。特に高炉内でのガスの通気性を維持
するためには、コークスは、炉内の充填層の圧力に耐え
て大きな空隙率を保持するだけの強度と形状、さらに微
粉の発生量を極力小さくするための耐摩耗性が必要とさ
れる。
源として、また酸化鉄を金属鉄に還元する還元剤とし
て、さらには高炉内でのガスの通気性、溶融物の通液性
を保つための高温に耐える支持材として、高炉操業にお
いて不可欠である。特に高炉内でのガスの通気性を維持
するためには、コークスは、炉内の充填層の圧力に耐え
て大きな空隙率を保持するだけの強度と形状、さらに微
粉の発生量を極力小さくするための耐摩耗性が必要とさ
れる。
【0003】このような高い強度と大きい耐摩耗性、大
きい空隙率を達成する性状、形状を有するコークスを製
造するためには、その原料炭の配合において、ある一定
割合以上の強粘結炭が必要である。しかし、強粘結炭の
産出は地域的、数量的、さらには価格的な制限があり、
また資源的にも近い将来枯渇が予想されている。
きい空隙率を達成する性状、形状を有するコークスを製
造するためには、その原料炭の配合において、ある一定
割合以上の強粘結炭が必要である。しかし、強粘結炭の
産出は地域的、数量的、さらには価格的な制限があり、
また資源的にも近い将来枯渇が予想されている。
【0004】このような情勢を背景に、最近では粘結成
分の少ない一般炭を利用したコークスの製造法が注目を
集めている。その一つとして一般炭にピッチ、アスファ
ルト、タールなどの粘結剤を加えて加圧成形し、乾留し
てコークス化して利用する、いわゆる、成形コークスの
利用が試験的に行われている。例えば、成形コークスの
製造方法については、Trans ISIJ, Vol 23(1983)P.700
〜709 に示されているように、ロール型ブリケット成形
機を使用し、コールタールピッチを結合剤として製造さ
れ、見掛け密度1180〜1210kg/m3、嵩密度
6.73kg/m3 前後の成形コークスが得られてい
る。そして、その成形コークスを用いた高炉操業試験に
ついては、1990 Ironmaking Conference Proceedings,
P.405 〜412 に発表されている。
分の少ない一般炭を利用したコークスの製造法が注目を
集めている。その一つとして一般炭にピッチ、アスファ
ルト、タールなどの粘結剤を加えて加圧成形し、乾留し
てコークス化して利用する、いわゆる、成形コークスの
利用が試験的に行われている。例えば、成形コークスの
製造方法については、Trans ISIJ, Vol 23(1983)P.700
〜709 に示されているように、ロール型ブリケット成形
機を使用し、コールタールピッチを結合剤として製造さ
れ、見掛け密度1180〜1210kg/m3、嵩密度
6.73kg/m3 前後の成形コークスが得られてい
る。そして、その成形コークスを用いた高炉操業試験に
ついては、1990 Ironmaking Conference Proceedings,
P.405 〜412 に発表されている。
【0005】この成形コークスを高炉で使用した場合、
(1) 送風圧力が増加し、(2) 高炉下部におけるガス流が
周辺流化し、(3) 熱損失の増大、出銑比の低下、が認め
られたとしている。
(1) 送風圧力が増加し、(2) 高炉下部におけるガス流が
周辺流化し、(3) 熱損失の増大、出銑比の低下、が認め
られたとしている。
【0006】そして、以上の高炉操業上の問題点は、
(1) 成形コークスが見掛け密度が大きくかつ嵩密度が大
きい、(2) 高温の反応性が大きい、ことが原因と考えら
れている。さらに、以上の成形コークスを使用した高炉
操業も、その成形コークス使用率が20%前後と低い水
準であり、成形コークス100%で安定して高炉を操業
する技術、またはそのように使用できる成形コークスの
品質を製造する技術は今後の課題となっている。
(1) 成形コークスが見掛け密度が大きくかつ嵩密度が大
きい、(2) 高温の反応性が大きい、ことが原因と考えら
れている。さらに、以上の成形コークスを使用した高炉
操業も、その成形コークス使用率が20%前後と低い水
準であり、成形コークス100%で安定して高炉を操業
する技術、またはそのように使用できる成形コークスの
品質を製造する技術は今後の課題となっている。
【0007】
【発明が解決しようとする課題】本発明は、上記の問題
点、すなわち嵩密度が低く、高炉操業に耐えうる高温反
応性の低い成形コークスを製造する方法を提案すること
を目的とする。
点、すなわち嵩密度が低く、高炉操業に耐えうる高温反
応性の低い成形コークスを製造する方法を提案すること
を目的とする。
【0008】
【課題を解決するための手段】本発明は、揮発分含有量
の異なる配合炭及びそれらを結合する結合剤から成る石
炭ブリケット用原料に対し、ブリケット成形時に、揮発
分含有量の異なる配合炭部位が偏在するように成形し、
のち乾留することを特徴とする成形コークスの製造方法
であり、また本発明は、より好ましくはブリケット成形
機をダブルロール型とし、2つの成形ロールの一方に揮
発分含有量の高い配合炭を供給し、他方に揮発分含有量
の低い配合炭を供給し、これらの配合炭を成形時に合わ
せて圧密し、のち乾留する成形コークスの製造方法であ
る。
の異なる配合炭及びそれらを結合する結合剤から成る石
炭ブリケット用原料に対し、ブリケット成形時に、揮発
分含有量の異なる配合炭部位が偏在するように成形し、
のち乾留することを特徴とする成形コークスの製造方法
であり、また本発明は、より好ましくはブリケット成形
機をダブルロール型とし、2つの成形ロールの一方に揮
発分含有量の高い配合炭を供給し、他方に揮発分含有量
の低い配合炭を供給し、これらの配合炭を成形時に合わ
せて圧密し、のち乾留する成形コークスの製造方法であ
る。
【0009】
【作用】本願発明者らは広範な成形コークス製造実験を
行い、以下の知見を得た。すなわち、コークス製造用の
原料炭は乾留(空気を遮断して加熱昇温)してゆくと1
00℃までは水分蒸発と同時にメタンとその同族体や吸
蔵ガスを放出する。100℃から300℃までは石炭中
に含まれる鉱物質中に含まれる結晶水や石炭に吸蔵され
ている少量のガスを放出するほかはほとんど変化がな
い。300℃を過ぎると石炭本質の熱分解が始まって、
ガスや化合水やタールが急激に発生するとともに、軟化
溶融して膨張現象を示す。
行い、以下の知見を得た。すなわち、コークス製造用の
原料炭は乾留(空気を遮断して加熱昇温)してゆくと1
00℃までは水分蒸発と同時にメタンとその同族体や吸
蔵ガスを放出する。100℃から300℃までは石炭中
に含まれる鉱物質中に含まれる結晶水や石炭に吸蔵され
ている少量のガスを放出するほかはほとんど変化がな
い。300℃を過ぎると石炭本質の熱分解が始まって、
ガスや化合水やタールが急激に発生するとともに、軟化
溶融して膨張現象を示す。
【0010】それ以降は石炭含有揮発分に応じて大きく
ガス分解、軟化溶融現象を異ならせ、500℃近く、ま
たはそれ以降になるとほとんどが収縮固化(再固化とい
う)し、多孔質塊状の半成コークスとなる。さらに、そ
の後の昇温によって、分解ガスが発生し、700℃付近
ではさらに固化収縮しながら水素を主体とする分解ガス
が発生する。
ガス分解、軟化溶融現象を異ならせ、500℃近く、ま
たはそれ以降になるとほとんどが収縮固化(再固化とい
う)し、多孔質塊状の半成コークスとなる。さらに、そ
の後の昇温によって、分解ガスが発生し、700℃付近
ではさらに固化収縮しながら水素を主体とする分解ガス
が発生する。
【0011】また、以上の乾留工程の実例として、原料
炭の揮発分含有量を変化させた場合の収縮係数の温度変
化の一例を図4に示す。石炭中の揮発分が異なると、再
固化温度の開始温度、収縮量が大きく異なることが判
る。本発明は、これらの事実からヒントを得て、嵩密度
が低い、より通常コークスに近い値をもつ形状を達成す
るために、成形コークス製造に際して、揮発分含有量の
異なる配合炭及びそれらを結合する結合剤から成る石炭
ブリケット用原料に対し、ブリケット成形時に、揮発分
含有量の異なる配合炭部位を大きく異ならして成形し、
のち乾留し、またその場合、より好ましくはブリケット
成形機をダブルロール型とし、2つの成形ロールの一方
に揮発分含有量の高い配合炭を供給し、他方に揮発分含
有量の低い配合炭を供給し、これらの配合炭を成形時に
合わせて圧密し、のち乾留したものである。
炭の揮発分含有量を変化させた場合の収縮係数の温度変
化の一例を図4に示す。石炭中の揮発分が異なると、再
固化温度の開始温度、収縮量が大きく異なることが判
る。本発明は、これらの事実からヒントを得て、嵩密度
が低い、より通常コークスに近い値をもつ形状を達成す
るために、成形コークス製造に際して、揮発分含有量の
異なる配合炭及びそれらを結合する結合剤から成る石炭
ブリケット用原料に対し、ブリケット成形時に、揮発分
含有量の異なる配合炭部位を大きく異ならして成形し、
のち乾留し、またその場合、より好ましくはブリケット
成形機をダブルロール型とし、2つの成形ロールの一方
に揮発分含有量の高い配合炭を供給し、他方に揮発分含
有量の低い配合炭を供給し、これらの配合炭を成形時に
合わせて圧密し、のち乾留したものである。
【0012】すなわち、ブリケット成形機をダブルロー
ル型とし、2つの成形ロールの一方に揮発分含有量の高
い配合炭を供給し、他方に揮発分含有量の低い配合炭を
供給し、これらの配合炭を成形時に合わせて圧密し、の
ち乾留する場合、圧密したブリケットは片側は揮発分が
高く、反対側は揮発分が低いため、乾留時にブリケット
の左右で再固化温度が異なり、変形を起こす。
ル型とし、2つの成形ロールの一方に揮発分含有量の高
い配合炭を供給し、他方に揮発分含有量の低い配合炭を
供給し、これらの配合炭を成形時に合わせて圧密し、の
ち乾留する場合、圧密したブリケットは片側は揮発分が
高く、反対側は揮発分が低いため、乾留時にブリケット
の左右で再固化温度が異なり、変形を起こす。
【0013】以下、本発明で成形したブリケットの乾留
時の変形の推移の一例を図5の断面図に基づき摸式的に
説明する。図5(a)の様に左右の揮発分含有量が異な
る様に成形された成形炭を昇温乾留する。成形炭の温度
が上昇してゆくと図5(b)の様に、揮発分の高い側が
再固化温度に達し、収縮を始める。このとき、揮発分の
低い側は軟化溶融状態にあり、揮発分の高い側は自由に
収縮できる。このとき低揮発分側も高揮発分側に合わせ
て長さが短くなる。
時の変形の推移の一例を図5の断面図に基づき摸式的に
説明する。図5(a)の様に左右の揮発分含有量が異な
る様に成形された成形炭を昇温乾留する。成形炭の温度
が上昇してゆくと図5(b)の様に、揮発分の高い側が
再固化温度に達し、収縮を始める。このとき、揮発分の
低い側は軟化溶融状態にあり、揮発分の高い側は自由に
収縮できる。このとき低揮発分側も高揮発分側に合わせ
て長さが短くなる。
【0014】さらに温度が上昇すると揮発分の低い側も
再固化温度に達し、図5(c)の様に収縮を始める。こ
の時、高揮発側はすでに固化しており、高揮発分側と低
揮発分側は互いに拘束されており、同時に収縮すること
になるが、この時点からの収縮量は後から収縮を始めた
低揮発分側の方が大きくなる。その結果、図5(d)の
様にブリケットの左右で収縮量が異なるため、ブリケッ
ト全体が低揮発分側が凹、高揮発分側が凸に湾曲する。
再固化温度に達し、図5(c)の様に収縮を始める。こ
の時、高揮発側はすでに固化しており、高揮発分側と低
揮発分側は互いに拘束されており、同時に収縮すること
になるが、この時点からの収縮量は後から収縮を始めた
低揮発分側の方が大きくなる。その結果、図5(d)の
様にブリケットの左右で収縮量が異なるため、ブリケッ
ト全体が低揮発分側が凹、高揮発分側が凸に湾曲する。
【0015】また、石炭の分類を揮発分含有量ではな
く、他の分類で区分けしても良く、只、全収縮量が左右
で異なる様な配合炭の左右の組合せのみを満たせば、図
6の様に乾留中に湾曲することは明白である。さらに、
揮発分含有量の異なる配合炭と結合剤から成る石炭ブリ
ケット用原料に対し、ブリケット成形時に、揮発分含有
量の異なる配合炭部位を半分づつではなく、異なる配合
比率や、成形部位を異ならして成形し、のち乾留して
も、同様の効果が得られることも明白である。
く、他の分類で区分けしても良く、只、全収縮量が左右
で異なる様な配合炭の左右の組合せのみを満たせば、図
6の様に乾留中に湾曲することは明白である。さらに、
揮発分含有量の異なる配合炭と結合剤から成る石炭ブリ
ケット用原料に対し、ブリケット成形時に、揮発分含有
量の異なる配合炭部位を半分づつではなく、異なる配合
比率や、成形部位を異ならして成形し、のち乾留して
も、同様の効果が得られることも明白である。
【0016】上記の様にして製造された成形コークスの
湾曲した凹部は、成形コークスが高炉内に装入され、充
填された際、広い空間を占める空隙として残り、嵩密度
の低下、空隙率の増加に寄与する。また、湾曲により形
状が非対称になることも空隙率の増加に寄与する。その
結果、高炉で使用した際には、従来の成形コークスに比
べ、通気・通液性が改善される。
湾曲した凹部は、成形コークスが高炉内に装入され、充
填された際、広い空間を占める空隙として残り、嵩密度
の低下、空隙率の増加に寄与する。また、湾曲により形
状が非対称になることも空隙率の増加に寄与する。その
結果、高炉で使用した際には、従来の成形コークスに比
べ、通気・通液性が改善される。
【0017】以上は、揮発分含有量の異なる部位を半分
づつもつ成形炭を乾留して製造する成形コークスの作
用、効果についての説明であったが、より一般的に、す
なわち、ブリケット成形時に、揮発分含有量の異なる配
合炭部位が大きく偏在するように成形してのち乾留して
製造した成形コークスにも同様の効果を得ることができ
る。
づつもつ成形炭を乾留して製造する成形コークスの作
用、効果についての説明であったが、より一般的に、す
なわち、ブリケット成形時に、揮発分含有量の異なる配
合炭部位が大きく偏在するように成形してのち乾留して
製造した成形コークスにも同様の効果を得ることができ
る。
【0018】以下に本発明の実施例を図面を参照して説
明する。
明する。
【0019】
【実施例】図1(a)、(b)は本発明を実施する際の
説明図であり、図2は従来の方法を実施する際の説明図
である。ブリケットの製造法は本発明法、従来法ともに
所定揮発分含有量に配合した石炭を3mm以下に粉砕
し、ミックスマラーに装入し、蒸気により90℃に予熱
し、140℃に加熱した室炉ピッチをバインダーとして
8重量%添加し、10分間混練した。この混練後の石炭
をロール径1mのダブルロール式の成形機のホッパーに
装入した。本発明法では、この際、図1(a)、(b)
に示すように、各ロール上に設けられた2つのホッパー
に異なる揮発分の配合炭を装入した。
説明図であり、図2は従来の方法を実施する際の説明図
である。ブリケットの製造法は本発明法、従来法ともに
所定揮発分含有量に配合した石炭を3mm以下に粉砕
し、ミックスマラーに装入し、蒸気により90℃に予熱
し、140℃に加熱した室炉ピッチをバインダーとして
8重量%添加し、10分間混練した。この混練後の石炭
をロール径1mのダブルロール式の成形機のホッパーに
装入した。本発明法では、この際、図1(a)、(b)
に示すように、各ロール上に設けられた2つのホッパー
に異なる揮発分の配合炭を装入した。
【0020】成形はローラー圧力230kg/cm2 、
ローラー回転数2.6rpmで枕型の成形コークスブリ
ケットを作成した。この成形時に、従来法では片側のロ
ールから配合炭を供給するため成形されたブリケットは
均一な石炭配合となり、ブリケット内での揮発分は一定
となる。それに対して図1(a)、(b)の本発明の実
施例においては、両方のロールから配合炭を供給し、成
形され、ブリケット化される時に両者が合体する。
ローラー回転数2.6rpmで枕型の成形コークスブリ
ケットを作成した。この成形時に、従来法では片側のロ
ールから配合炭を供給するため成形されたブリケットは
均一な石炭配合となり、ブリケット内での揮発分は一定
となる。それに対して図1(a)、(b)の本発明の実
施例においては、両方のロールから配合炭を供給し、成
形され、ブリケット化される時に両者が合体する。
【0021】この各ロール上の配合炭の揮発分含有量を
異なるものにすることにより、成形機の左右のカップで
配合炭の揮発分含有量が異なったものが合わさり、図3
(a)のように成形後の左右で揮発分含有量の異なった
ブリケットができる。すなわち、左の低揮発分側7と右
の高揮発分側8からなる。このブリケットを径300m
m、高さ3000mmのシャフト炉で乾留した。このシ
ャフト炉には上下2段の加熱ガス吹込み羽口があり、上
段から約600℃、下段から約900℃の温度の窒素ガ
スを供給し、成形炭をシャフト炉上部から供給し、下部
から排出することで、連続的に乾留した。
異なるものにすることにより、成形機の左右のカップで
配合炭の揮発分含有量が異なったものが合わさり、図3
(a)のように成形後の左右で揮発分含有量の異なった
ブリケットができる。すなわち、左の低揮発分側7と右
の高揮発分側8からなる。このブリケットを径300m
m、高さ3000mmのシャフト炉で乾留した。このシ
ャフト炉には上下2段の加熱ガス吹込み羽口があり、上
段から約600℃、下段から約900℃の温度の窒素ガ
スを供給し、成形炭をシャフト炉上部から供給し、下部
から排出することで、連続的に乾留した。
【0022】本発明法により成形されたブリケットを乾
留すると、ブリケット左右各面での揮発分の違いから収
縮状況が異なり、図3(b)のように湾曲した成形コー
クスができた。本発明で作成した成形コークスの揮発分
と嵩密度、空隙率の測定結果を表1に示す。同じく、従
来法による成形コークスと室炉コークスの場合について
も表1に併せて示す。
留すると、ブリケット左右各面での揮発分の違いから収
縮状況が異なり、図3(b)のように湾曲した成形コー
クスができた。本発明で作成した成形コークスの揮発分
と嵩密度、空隙率の測定結果を表1に示す。同じく、従
来法による成形コークスと室炉コークスの場合について
も表1に併せて示す。
【0023】左右各面の揮発分の濃度差が大きいほど、
乾留後の成形コークスは湾曲し、嵩密度が低下し、空隙
率が大きくなり、その結果として高炉に装入した場合、
通気性の向上が図れる。
乾留後の成形コークスは湾曲し、嵩密度が低下し、空隙
率が大きくなり、その結果として高炉に装入した場合、
通気性の向上が図れる。
【0024】
【表1】
【0025】
【発明の効果】本発明により、乾留時に成形コークスが
湾曲し、充填時に従来法と比較して嵩密度が低く、空隙
率が大きいものができるようになった。以上のことから
高炉で使用する際に通気・通液性の向上が期待できる。
湾曲し、充填時に従来法と比較して嵩密度が低く、空隙
率が大きいものができるようになった。以上のことから
高炉で使用する際に通気・通液性の向上が期待できる。
【図1】本発明の製造方法を示す説明図。
【図2】従来の製造方法を示す説明図。
【図3】(a)は成形後の成形コークスブリケットの断
面図、(b)は乾留後の成形コークスブリケットの断面
図。
面図、(b)は乾留後の成形コークスブリケットの断面
図。
【図4】図4はコークスの線収縮係数と再固化温度との
関係を示すグラフ。
関係を示すグラフ。
【図5】乾留中の成形コークスの収縮、変形過程を示す
説明図。
説明図。
【図6】乾留中の成形コークスの収縮、変形過程を示す
説明図。
説明図。
【符号の説明】 1 成形コークスブリケット 2 成形ロール 3 低揮発分の配合炭 4 高揮発分の配合炭 5 ダンパー 6 配合炭 7 低揮発分炭側 8 高揮発分炭側
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 義明 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (72)発明者 武田 幹治 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平4−239093(JP,A) 特開 昭54−143403(JP,A) 特開 昭54−127904(JP,A) 特開 平6−57258(JP,A) 特開 平6−57259(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10B 53/08 C10B 57/04
Claims (2)
- 【請求項1】 揮発分含有量の異なる配合炭及びそれら
を結合する結合剤から成る石炭ブリケット用原料に対
し、ブリケット成形時に、揮発分含有量の異なる配合炭
部位が偏在するように成形し、のち乾留することを特徴
とする成形コークスの製造方法。 - 【請求項2】 ブリケット成形機をダブルロール型と
し、2つの成形ロールの一方に揮発分含有量の高い配合
炭を供給し、他方に揮発分含有量の低い配合炭を供給
し、これらの配合炭を成形時に合わせて圧密し、のち乾
留することを特徴とする請求項1記載の成形コークスの
製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16655493A JP3350158B2 (ja) | 1993-07-06 | 1993-07-06 | 成形コークスの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16655493A JP3350158B2 (ja) | 1993-07-06 | 1993-07-06 | 成形コークスの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0718261A JPH0718261A (ja) | 1995-01-20 |
JP3350158B2 true JP3350158B2 (ja) | 2002-11-25 |
Family
ID=15833418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16655493A Expired - Fee Related JP3350158B2 (ja) | 1993-07-06 | 1993-07-06 | 成形コークスの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3350158B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114410328B (zh) * | 2022-02-10 | 2022-11-08 | 山西沁新能源集团股份有限公司 | 具有褶皱碳层的高碳焦及其制备方法 |
-
1993
- 1993-07-06 JP JP16655493A patent/JP3350158B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0718261A (ja) | 1995-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2290131C (en) | Pellets incorporated with carbonaceous material and method of producing reduced iron | |
JP4627236B2 (ja) | 炭材内装塊成化物の製造方法 | |
US4613363A (en) | Process of making silicon, iron and ferroalloys | |
JPH1192833A (ja) | 還元鉄用塊成化物およびその製造方法 | |
JP3502064B2 (ja) | 製鉄原料の塊成化物製造方法 | |
US4419186A (en) | Process for making strong metallurgical coke | |
JP3502011B2 (ja) | 炭材内装塊成化物の製造方法 | |
JP3350158B2 (ja) | 成形コークスの製造方法 | |
JP3502008B2 (ja) | 炭材内装塊成化物の製造方法 | |
US5078927A (en) | Process for making raw material bodies especially for the production of silicon or silicon alloys | |
JP2005053982A (ja) | 高炉用フェロコークスの製造方法 | |
EP0927770B1 (en) | High carbon content iron-base briquettes and process for preparing same | |
US4272324A (en) | Process for producing shaft furnace cokes | |
JP4996103B2 (ja) | 炭材内装塊成化物の製造方法 | |
JP4078285B2 (ja) | 高炉操業方法 | |
CN118525106A (zh) | 用于制造固体附聚物的方法和系统 | |
JP2004204295A (ja) | 高炉操業方法 | |
WO2023171468A1 (ja) | 炭材内装塊成鉱の製造方法および溶銑の製造方法 | |
JP3491092B2 (ja) | 成形コークスの製造方法 | |
JP3397432B2 (ja) | 成形コークスの製造方法 | |
JP7493121B1 (ja) | コークスの製造方法 | |
JP5470855B2 (ja) | 冶金用フェロコークスの製造方法 | |
JP4356932B2 (ja) | 製鉄用炭材内装塊成化物の製造方法 | |
KR101538845B1 (ko) | 탄재 내장 부분환원철의 제조방법 | |
JPH0753964A (ja) | 成形コ−クスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |