JP3349379B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3349379B2
JP3349379B2 JP00554597A JP554597A JP3349379B2 JP 3349379 B2 JP3349379 B2 JP 3349379B2 JP 00554597 A JP00554597 A JP 00554597A JP 554597 A JP554597 A JP 554597A JP 3349379 B2 JP3349379 B2 JP 3349379B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
electrolyte secondary
aqueous electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00554597A
Other languages
Japanese (ja)
Other versions
JPH10199573A (en
Inventor
竜司 大下
智一 吉田
浩志 渡辺
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00554597A priority Critical patent/JP3349379B2/en
Publication of JPH10199573A publication Critical patent/JPH10199573A/en
Application granted granted Critical
Publication of JP3349379B2 publication Critical patent/JP3349379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、リチウムイオン
の吸蔵,放出が可能な正極及び負極と、非水電解質とを
備えた非水電解質二次電池に係り、特に、上記の正極と
負極とを巻いた状態で電池缶内に収容させた非水電解質
二次電池において、充放電を繰り返して行なった場合
に、上記のような巻いた状態にある電極が変形して、サ
イクル特性が低下するということが少なく、十分な電池
容量が得られる非水電解質二次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte. In a non-aqueous electrolyte secondary battery housed in a battery can in a wound state, when charging and discharging are repeatedly performed, the wound electrode is deformed as described above, and the cycle characteristics are reduced. The present invention relates to a non-aqueous electrolyte secondary battery having a low battery capacity and a sufficient battery capacity.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
二次電池の1つとして、リチウムイオンの吸蔵,放出が
可能な正極及び負極を用いて、リチウムの酸化,還元を
利用した高起電力の非水電解質二次電池が利用されるよ
うになった。
2. Description of the Related Art In recent years, as one of new high-power, high-energy-density secondary batteries, a high electromotive force utilizing oxidation and reduction of lithium using a positive electrode and a negative electrode capable of inserting and extracting lithium ions. Non-aqueous electrolyte secondary batteries have come to be used.

【0003】ここで、このような非水電解質二次電池に
おいては、一般に、上記の正極と負極とをセパレータを
介して渦巻状に巻き取り、このように巻き取った電極を
粘着テープで固定させ、これを電池缶内に収容させるよ
うにしていた。
Here, in such a non-aqueous electrolyte secondary battery, generally, the above-described positive electrode and negative electrode are spirally wound through a separator, and the thus wound electrode is fixed with an adhesive tape. This was housed in a battery can.

【0004】しかし、上記のように巻き取った電極を粘
着テープで固定させて電池缶内に収容させた非水電解質
二次電池において充放電を繰り返して行なった場合、リ
チウムイオンの吸蔵,放出により上記のように巻き取っ
た電極が変形し、この電極を固定していた粘着テープが
剥がれる等により、充放電が上手く行なえなくなり、サ
イクル特性が次第に低下するという問題があった。
However, when charging and discharging are repeatedly performed in a non-aqueous electrolyte secondary battery in which the wound electrode is fixed with an adhesive tape and accommodated in a battery can, absorption and release of lithium ions are caused. The electrode wound up as described above is deformed, and the adhesive tape fixing the electrode is peeled off, so that charging and discharging cannot be performed well, and there is a problem that the cycle characteristics gradually decrease.

【0005】そこで、従来においては、特開平5−18
2647号公報に示されるように、上記のように巻き取
った電極を収容させる電池缶の内面に電解液を含浸する
と膨張する樹脂層を設け、上記のように巻き取った電極
が充放電により変形するのをこの樹脂層によって抑制す
るようにしたものが提案された。
Therefore, conventionally, Japanese Patent Laid-Open Publication No.
As shown in Japanese Patent No. 2647, a resin layer that expands when the electrolyte is impregnated is provided on the inner surface of the battery can in which the electrode wound as described above is accommodated, and the electrode wound as described above is deformed by charging and discharging. This has been proposed in which this is suppressed by this resin layer.

【0006】しかし、このように電池缶内に充放電に関
与しない樹脂層を設けた場合、この樹脂層の分だけ電池
容量が低下するという問題があった。
However, when a resin layer not involved in charge / discharge is provided in the battery can, there is a problem that the battery capacity is reduced by the amount of the resin layer.

【0007】[0007]

【発明が解決しようとする課題】この発明は、リチウム
イオンの吸蔵,放出が可能な正極及び負極と、非水電解
質とを備え、上記の正極と負極を巻いた状態で電池缶内
に収容させた非水電解質二次電池における上記のような
問題を解決することを課題とするものであり、上記のよ
うに正極と負極を巻いた状態で電池缶内に収容させた電
極が充放電により変形してサイクル特性が劣化するとい
うことがなく、また電池缶の内面に樹脂層を設けた場合
のように電池容量が低下するということもなく、十分な
電池容量を有すると共に優れた充放電サイクル特性を示
す非水電解質二次電池を提供することを課題とするもの
である。
SUMMARY OF THE INVENTION The present invention comprises a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte. The above positive electrode and negative electrode are wound and accommodated in a battery can. It is an object of the present invention to solve the above-described problem in the nonaqueous electrolyte secondary battery, and the electrode housed in the battery can with the positive electrode and the negative electrode wound as described above is deformed by charging and discharging. The battery has sufficient battery capacity and excellent charge / discharge cycle characteristics without deterioration in cycle characteristics, and without reduction in battery capacity as in the case where a resin layer is provided on the inner surface of a battery can. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery showing the following.

【0008】[0008]

【課題を解決するための手段】この発明における非水電
解質二次電池においては、上記のような課題を解決する
ため、リチウムイオンの吸蔵,放出が可能な正極及び負
極と、非水電解質とを備え、上記の正極と負極とを巻い
た状態で電池缶内に収容させた非水電解質二次電池にお
いて、電池缶に負極が接続される場合には該電池缶の内
面にリチウムイオンの吸蔵,放出が可能な負極材料を含
む層、または、電池缶に正極が接続される場合には該電
池缶の内面にリチウムイオンの吸蔵,放出が可能な正極
材料を含む層を設けるようにしたものである。また、こ
の発明における非水電解質二次電池においては、上記負
極が接続される電池缶の内面に銅のメッキ層を設け、こ
の銅のメッキ層上に上記のリチウムイオンの吸蔵,放出
が可能な負極材料を含む層を設けるようにしたものであ
る。
In order to solve the above-mentioned problems, a nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte. In a nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are wound and accommodated in a battery can, the negative electrode is connected to the battery can when the negative electrode is connected to the battery can.
The surface contains a negative electrode material that can absorb and release lithium ions.
When the positive electrode is connected to the
Positive electrode capable of inserting and extracting lithium ions on the inner surface of a pond can
A layer containing a material is provided. Also,
In the non-aqueous electrolyte secondary battery according to
Provide a copper plating layer on the inner surface of the battery
Absorption and release of the above lithium ions on the copper plating layer
A layer containing a negative electrode material capable of
You.

【0009】ここで、この発明における非水電解質二次
電池のように、電池缶に負極が接続される場合には該電
池缶の内面にリチウムイオンの吸蔵,放出が可能な負極
材料を含む層、または、電池缶に正極が接続される場合
には該電池缶の内面にリチウムイオンの吸蔵,放出が可
能な正極材料を含む層を設けると、上記のように正極と
負極を巻いた状態で電池缶内に収容させた電極が充放電
によって変形するのが、上記の層によって抑制され、こ
の非水電解質二次電池におけるサイクル特性の劣化が少
なくなると共に、上記の層においてもリチウムイオンの
吸蔵,放出が行なわれて、電極と同様の作用を示し、電
池缶の内面に樹脂層を設けた場合のように、電池容量が
低下するということがなく、十分な電池容量が得られる
ようになる。
Here, when a negative electrode is connected to a battery can as in the non-aqueous electrolyte secondary battery of the present invention, the battery is not charged.
A negative electrode that can store and release lithium ions on the inner surface of a pond can
When the positive electrode is connected to a layer containing materials or a battery can
Can absorb and release lithium ions on the inner surface of the battery can.
When a layer containing a positive electrode material is provided, deformation of the electrode housed in the battery can in the state where the positive electrode and the negative electrode are wound as described above due to charging and discharging is suppressed by the above-described layer. Deterioration of the cycle characteristics in the electrolyte secondary battery is reduced, and lithium ions are absorbed and released also in the above-mentioned layers, exhibiting the same function as the electrodes, and when the resin layer is provided on the inner surface of the battery can. As described above, a sufficient battery capacity can be obtained without a decrease in the battery capacity.

【0010】また、この発明における非水電解質二次電
池において、上記のように負極に接続される電池缶の内
面にリチウムイオンの吸蔵,放出が可能な負極材料を含
む層を設けるにあたり、この電池缶の内面に銅のメッキ
層を設け、この銅のメッキ層の上に上記の層を設けるよ
うにすると、銅のメッキ層を通して電気が流れやすくな
り、この非水電解質二次電池における容量がさらに向上
する。
In the nonaqueous electrolyte secondary battery according to the present invention, when a layer containing a negative electrode material capable of absorbing and releasing lithium ions is provided on the inner surface of the battery can connected to the negative electrode as described above, If a copper plating layer is provided on the inner surface of the can, and the above layer is provided on the copper plating layer, electricity easily flows through the copper plating layer, and the capacity of the nonaqueous electrolyte secondary battery is further increased. improves.

【0011】ここで、この発明における非水電解質二次
電池において、その正極に使用する正極材料としては、
従来より使用されている公知の正極材料を用いることが
でき、リチウムイオンの吸蔵,放出が可能な金属化合
物、例えば、マンガン、コバルト、ニッケル、鉄、バナ
ジウム、ニオブ等を少なくとも一種含むリチウム遷移金
属複合酸化物等を使用することができる。
Here, in the nonaqueous electrolyte secondary battery according to the present invention, the positive electrode material used for the positive electrode includes:
A known positive electrode material that has been conventionally used can be used, and a lithium transition metal composite containing at least one metal compound capable of inserting and extracting lithium ions, for example, manganese, cobalt, nickel, iron, vanadium, niobium, or the like. An oxide or the like can be used.

【0012】また、この発明における非水電解質二次電
池において、その負極に用いる負極材料としても、従来
より使用されている公知の負極材料を用いることがで
き、例えば、金属リチウムやリチウム合金の他に、黒
鉛,コークス,有機物焼成体等の炭素材料を用いること
ができる。
In the non-aqueous electrolyte secondary battery according to the present invention, as the negative electrode material used for the negative electrode, a conventionally known negative electrode material can be used. In addition, a carbon material such as graphite, coke, and a fired organic material can be used.

【0013】さらに、この発明における非水電解質二次
電池において、上記の非水電解質としても、従来より使
用されている公知の非水電解液等を用いることができ、
この非水電解液における溶媒としては、例えば、エチレ
ンカーボネート、プロピレンカーボネート、ブチレンカ
ーボネート、ビニレンカーボネート、シクロペンタノ
ン、スルホラン、ジメチルスルホラン、3−メチル−
1,3−オキサゾリジン−2−オン、γ−ブチロラクト
ン、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネート、メチルプロピルカーボネー
ト、ブチルメチルカーボネート、エチルプロピルカーボ
ネート、ブチルエチルカーボネート、ジプロピルカーボ
ネート、1,2−ジメトキシエタン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソ
ラン、酢酸メチル、酢酸エチル等の有機溶媒を1種又は
2種以上組み合わせて使用することができる。
Further, in the non-aqueous electrolyte secondary battery according to the present invention, as the above-mentioned non-aqueous electrolyte, a conventionally known non-aqueous electrolyte and the like can be used.
As the solvent in the non-aqueous electrolyte, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, dimethyl sulfolane, 3-methyl-
1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane , Tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, methyl acetate, ethyl acetate, and other organic solvents can be used alone or in combination of two or more.

【0014】また、この非水電解質において、上記の溶
媒に溶解させる溶質としても、従来より一般に使用され
ている溶質を用いることができ、例えば、LiPF6
LiCF3 SO3 、LiBF4 、LiAsF6 、LiN
(CF3 SO2 2 、LiC(CF3 SO2 3 等を使
用することができる。
In the non-aqueous electrolyte, a solute generally used conventionally can be used as the solute to be dissolved in the above-mentioned solvent. For example, LiPF 6 ,
LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN
(CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like can be used.

【0015】[0015]

【実施例】以下、この発明に係る非水電解質二次電池に
ついて実施例を挙げて具体的に説明すると共に、この発
明の実施例に係る非水電解質二次電池が充放電サイクル
特性や電池容量の点で優れていることを比較例を挙げて
明らかにする。なお、この発明における非水電解質二次
電池は、下記の実施例に示したものに限定されるもので
はなく、その要旨を変更しない範囲において適宜変更し
て実施できるものである。
EXAMPLES Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and the charge / discharge cycle characteristics and battery capacity of the nonaqueous electrolyte secondary battery according to the examples of the present invention will be described. It will be clarified that Comparative Example 1 is superior in terms of Comparative Example. The non-aqueous electrolyte secondary battery according to the present invention is not limited to those shown in the following examples, but can be implemented by appropriately changing the scope of the invention without changing its gist.

【0016】(実施例1)この実施例1においては、下
記のようにして作製した正極と負極と非水電解液とを用
い、図1及び図2に示すような単3サイズの円筒型の非
水電解質二次電池を作製した。
Example 1 In Example 1, a positive electrode, a negative electrode, and a non-aqueous electrolyte prepared as described below were used, and a single-size cylindrical type as shown in FIGS. 1 and 2 was used. A non-aqueous electrolyte secondary battery was manufactured.

【0017】[正極の作製]正極を作製するにあたって
は、正極材料としてLiCoO2 粉末を用い、このLi
CoO2 粉末と、導電剤としての人造黒鉛と、結着剤と
してのポリフッ化ビニリデンとが重量比90:5:5の
割合になるように、LiCoO2 粉末に対して、人造黒
鉛と、ポリフッ化ビニリデンをN−メチル−2−ピロリ
ドン(NMP)に5重量%溶解させた結着剤溶液とを加
え、これらを混練して正極スラリーを調整した。
[Preparation of Positive Electrode] To prepare a positive electrode, LiCoO 2 powder was used as a positive electrode material.
The artificial graphite and the polyfluoride are added to the LiCoO 2 powder so that the CoO 2 powder, the artificial graphite as the conductive agent, and the polyvinylidene fluoride as the binder have a weight ratio of 90: 5: 5. A binder solution in which vinylidene was dissolved at 5% by weight in N-methyl-2-pyrrolidone (NMP) was added, and these were kneaded to prepare a positive electrode slurry.

【0018】そして、この正極スラリーをアルミニウム
箔で構成された正極集電体の両面にドクターブレード法
により塗布し、これを150℃で2時間真空乾燥させて
正極を作製した。
Then, this positive electrode slurry was applied to both surfaces of a positive electrode current collector composed of aluminum foil by a doctor blade method, and this was vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode.

【0019】[負極の作製]負極を作製するにあたって
は、負極材料として、(002)面における面間隔d
002 が3.35Åの天然黒鉛を用い、この天然黒鉛と結
着剤であるポリフッ化ビニリデンとが重量比95:5の
割合になるように、天然黒鉛に対してポリフッ化ビニリ
デンをNMPに5重量%溶解させた結着剤溶液を加え、
これらを混練して負極スラリーを調整した。
[Preparation of Negative Electrode] In preparing the negative electrode, the surface distance d on the (002) plane was used as the negative electrode material.
002 is 3.35% of natural graphite, and polyvinylidene fluoride is added to NMP in an amount of 5% by weight to natural graphite so that the weight ratio of the natural graphite to polyvinylidene fluoride as a binder is 95: 5. % Dissolved binder solution,
These were kneaded to prepare a negative electrode slurry.

【0020】そして、この負極スラリーを銅箔で構成さ
れた負極集電体の両面にドクターブレード法によって塗
布し、これを150℃で2時間真空乾燥させて負極を作
製した。
Then, this negative electrode slurry was applied to both surfaces of a negative electrode current collector made of copper foil by a doctor blade method, and this was vacuum-dried at 150 ° C. for 2 hours to produce a negative electrode.

【0021】[非水電解液の作製]非水電解液を作製す
るにあたっては、その溶媒として、エチレンカーボネー
トとジエチルカーボネートとを体積比1:1の割合で混
合した混合溶媒を用い、この混合溶媒にLiPF6 を1
mol/lの割合で溶解させて非水電解液を作製した。
[Preparation of Non-Aqueous Electrolyte] In preparing the non-aqueous electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used as the solvent. 1 LiPF 6
A non-aqueous electrolyte was prepared by dissolving at a mol / l ratio.

【0022】[電池の作製]電池を作製するにあたって
は、内面にニッケルメッキを行なった鉄製の電池缶を用
い、図1及び図2に示すように、ニッケルメッキされた
電池缶4の内面に上記の負極の作製において調整した負
極スラリーを30〜80μmの厚みになるように塗布
し、これを120℃で1時間乾燥させて、電池缶4の内
面に上記の負極と同じリチウムイオンの吸蔵,放出が可
能な天然黒鉛を含む層9を設けた。
[Preparation of Battery] In preparing a battery, an iron battery can having an inner surface plated with nickel was used, and as shown in FIGS. The negative electrode slurry prepared in the preparation of the negative electrode was applied so as to have a thickness of 30 to 80 μm, and dried at 120 ° C. for 1 hour to occlude and release the same lithium ions on the inner surface of the battery can 4 as the negative electrode. A layer 9 containing natural graphite capable of being provided was provided.

【0023】そして、上記のようにして作製した正極1
と負極2との間にセパレータ3としてリチウムイオン透
過性のポリプロピレン製の微多孔膜を介在させ、これら
をスパイラル状に巻いて上記の電池缶4内に収容させた
後、この電池缶4内に上記の非水電解液を注液して封口
し、正極1を正極リード5を介して正極蓋6に接続させ
ると共に、負極2を負極リード7を介して電池缶4に接
続させ、電池缶4と正極蓋6とを絶縁パッキン8により
電気的に分離させた。
Then, the positive electrode 1 produced as described above
A lithium ion permeable polypropylene microporous membrane is interposed as a separator 3 between the anode and the negative electrode 2, and these are spirally wound and accommodated in the battery can 4. The above non-aqueous electrolyte is injected and sealed, and the positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7. And the positive electrode cover 6 were electrically separated by an insulating packing 8.

【0024】(比較例1)この比較例1においては、上
記の実施例1における電池の作製において、電池缶の内
面に負極スラリーを塗布せず、リチウムイオンの吸蔵,
放出が可能な天然黒鉛を含む層を設けないようにし、そ
れ以外については、上記の実施例1の場合と同様にして
非水電解質二次電池を作製した。
(Comparative Example 1) In Comparative Example 1, the negative electrode slurry was not applied to the inner surface of the battery can in the production of the battery in Example 1 described above.
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that no layer containing natural graphite that could be released was provided.

【0025】(実施例2〜4)これらの実施例2〜4に
おいては、上記の実施例1における負極の作製において
使用する負極材料を変更し、実施例2ではd002 が3.
37Åになった人造黒鉛を、実施例3ではd002 が3.
47Åになった石油コークスを、実施例4ではd002
3.48Åになったアセチレンブラックを用いてそれぞ
れ負極スラリーを調整し、これらの負極スラリーを使用
して各負極を作製すると共に、各負極スラリーを、上記
の実施例1の場合と同様に、それぞれニッケルメッキさ
れた電池缶4の内面に30〜80μmの厚みになるよう
に塗布し、これを120℃で1時間乾燥させて、それぞ
れ電池缶4の内面にリチウムイオンの吸蔵,放出が可能
な各負極材料を含む層9を設け、それ以外については、
上記の実施例1の場合と同様にして、各非水電解質二次
電池を作製した。
(Examples 2 to 4) In Examples 2 to 4, the negative electrode material used in the production of the negative electrode in Example 1 was changed, and in Example 2, d 002 was 3.
In Example 3, d 002 was 3.
The negative electrode slurry was adjusted using petroleum coke that became 47 ° and acetylene black with d 002 that became 3.48 ° in Example 4, and each negative electrode was prepared using these negative electrode slurries. The slurry was applied to the inner surface of each nickel-plated battery can 4 to a thickness of 30 to 80 μm in the same manner as in Example 1 above, and dried at 120 ° C. for 1 hour. On the inner surface of the can 4, a layer 9 containing each negative electrode material capable of inserting and extracting lithium ions is provided.
Each non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 described above.

【0026】(比較例2〜4)これらの比較例2〜4に
おいては、上記の比較例1の場合と負極に使用する負極
材料を変更し、比較例2では実施例2と同じ人造黒鉛
を、比較例3では実施例3と同じ石油コークスを、比較
例4では実施例4と同じアセチレンブラックを用いるよ
うにし、それ以外については、上記の比較例1の場合と
同様にして非水電解質二次電池を作製し、電池缶の内面
にリチウムイオンの吸蔵,放出が可能な負極材料を含む
層を設けないようにした。
(Comparative Examples 2 to 4) In Comparative Examples 2 to 4, the negative electrode material used for the negative electrode was changed from that of Comparative Example 1 described above, and in Comparative Example 2, the same artificial graphite as that of Example 2 was used. In Comparative Example 3, the same petroleum coke as in Example 3 was used, and in Comparative Example 4, the same acetylene black as in Example 4 was used. Otherwise, the non-aqueous electrolyte was used in the same manner as in Comparative Example 1. A secondary battery was manufactured, and a layer containing a negative electrode material capable of inserting and extracting lithium ions was not provided on the inner surface of the battery can.

【0027】(実施例5)この実施例5においては、上
記の実施例1における電池の作製において、内面に銅メ
ッキを行なった鉄製の電池缶を用い、上記の実施例1の
場合と同様に、この銅メッキされた電池缶4の内面に天
然黒鉛を用いた負極スラリーを塗布し、これを120℃
で1時間乾燥させて、リチウムイオンの吸蔵,放出が可
能な天然黒鉛を含む層9を設け、それ以外については、
上記の実施例1の場合と同様にして、非水電解質二次電
池を作製した。
Embodiment 5 In this embodiment 5, in the manufacture of the battery in the above-mentioned embodiment 1, an iron battery can whose inner surface is plated with copper is used, in the same manner as in the above-mentioned embodiment 1. A negative electrode slurry using natural graphite was applied to the inner surface of the copper-plated battery can 4, and this was heated to 120 ° C.
For 1 hour to provide a layer 9 containing natural graphite capable of occluding and releasing lithium ions.
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 described above.

【0028】(比較例5)この比較例5においては、上
記の実施例1における電池の作製において、電池缶の内
面にリチウムイオンの吸蔵,放出が可能な天然黒鉛を含
む層を設ける代わりに、この電池缶の内面に約50μm
の厚みの樹脂層を設けるようにし、それ以外について
は、上記の実施例1の場合と同様にして、非水電解質二
次電池を作製した。
(Comparative Example 5) In Comparative Example 5, instead of providing a layer containing natural graphite capable of occluding and releasing lithium ions on the inner surface of the battery can in the production of the battery in Example 1 described above, About 50μm on the inner surface of this battery can
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a resin layer having a thickness of was provided.

【0029】(実施例6)この実施例6においては、上
記の実施例1における負極の作製において、負極材料と
して金属リチウムの箔を用い、この金属リチウム箔を銅
箔からなる負極集電体の両面に貼り付けて厚みが約14
0μmになった負極を作製すると共に、ニッケルメッキ
された電池缶4の内面に上記の金属リチウム箔を取り付
けて、電池缶4の内面にリチウムイオンの吸蔵,放出が
可能な金属リチウムの層9を設けるようにし、それ以外
については、上記の実施例1の場合と同様にして、非水
電解質二次電池を作製した。
Example 6 In Example 6, a negative electrode current collector made of copper foil was used as a negative electrode material in the preparation of the negative electrode in Example 1 above, using a lithium metal foil as the negative electrode material. Attached to both sides and thickness is about 14
A negative electrode having a thickness of 0 μm was prepared, and the above-described metal lithium foil was attached to the inner surface of the nickel-plated battery can 4. A metal lithium layer 9 capable of inserting and extracting lithium ions was formed on the inner surface of the battery can 4. A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except for the above.

【0030】(比較例6)この比較例6においては、上
記の実施例6の場合と同様に、負極材料として金属リチ
ウムの箔を用いて作製した負極を使用する一方、電池缶
の内面に金属リチウム箔を取り付けないようにし、それ
以外は、上記の実施例6の場合と同様にして、非水電解
質二次電池を作製した。
(Comparative Example 6) In Comparative Example 6, as in the case of the above-described Example 6, a negative electrode made of a metal lithium foil was used as a negative electrode material, while a metal A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 6 except that the lithium foil was not attached.

【0031】次に、上記のようにして作製した実施例1
〜6及び比較例1〜6の各非水電解質二次電池について
それぞれ充電電流200mAで充電終止電圧4.2Vま
で充電を行ない、その後、放電電流200mAで放電終
止電圧2.75Vまで放電を行ない、各非水電解質二次
電池における初期容量を測定し、その結果を下記の表1
に示すと共に、上記の充放電を1サイクルとして充放電
を繰り返して行ない、サイクル数の増加に伴う放電容量
の変化を調べ、その結果を図3に示した。
Next, the first embodiment manufactured as described above was used.
-6 and each of the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 6 were charged at a charging current of 200 mA to a charging end voltage of 4.2 V, and then discharged at a discharging current of 200 mA to a discharging end voltage of 2.75 V. The initial capacity of each non-aqueous electrolyte secondary battery was measured, and the results are shown in Table 1 below.
In addition, the charge / discharge was repeated by setting the above charge / discharge as one cycle, and the change in the discharge capacity with the increase in the number of cycles was examined. The result is shown in FIG.

【0032】[0032]

【表1】 [Table 1]

【0033】この表1の結果から明らかなように、電池
缶4の内面に負極と同じ材料の層9を設けた実施例1〜
6の各非水電解質二次電池は、このような層を設けなか
った比較例1〜4,6の各非水電解質二次電池や、電池
缶の内面に樹脂層を設けた比較例5の非水電解質二次電
池に比べて初期容量が高くなっており、電池容量の高い
非水電解質二次電池が得られた。特に、電池缶4の内面
に銅のメッキ層を設けた実施例5の非水電解質二次電池
においては、この銅のメッキ層を通して電気がスムーズ
に流れ、電池容量がさらに向上した。
As is clear from the results shown in Table 1, in Examples 1 to 4 in which the layer 9 of the same material as the negative electrode was provided on the inner surface of the battery can 4.
Each of the nonaqueous electrolyte secondary batteries of Comparative Example 6 and Comparative Examples 1 to 4 and 6 in which such a layer was not provided, and those of Comparative Example 5 in which a resin layer was provided on the inner surface of a battery can. The initial capacity was higher than that of the nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery having a high battery capacity was obtained. In particular, in the nonaqueous electrolyte secondary battery of Example 5 in which the copper plating layer was provided on the inner surface of the battery can 4, electricity smoothly flowed through the copper plating layer, and the battery capacity was further improved.

【0034】また、図3の結果から明らかなように、上
記のように電池缶4の内面に負極と同じ材料の層9を設
けた実施例1〜6の各非水電解質二次電池は、このよう
な層を設けなかった比較例1〜4,6の各非水電解質二
次電池に比べて、サイクル数の増加に伴う容量の低下が
少なくなっていた。
As is clear from the results of FIG. 3, each of the nonaqueous electrolyte secondary batteries of Examples 1 to 6 in which the layer 9 of the same material as the negative electrode was provided on the inner surface of the battery can 4 as described above, Compared with the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 4 and 6 in which such a layer was not provided, a decrease in capacity with an increase in the number of cycles was reduced.

【0035】(実施例7)この実施例7においては、上
記の実施例1の場合と同様にして、正極と負極と非水電
解液とを作製する一方、電池缶として、図4に示すよう
な角型になったアルミニウム製の電池缶4を用いるよう
にした。
Example 7 In Example 7, a positive electrode, a negative electrode and a non-aqueous electrolyte were prepared in the same manner as in Example 1 described above, and a battery can was used as shown in FIG. An aluminum battery can 4 having a square shape was used.

【0036】ここで、この実施例7においては、角型に
なった非水電解質二次電池を作製するにあたり、図4に
示すように、上記の電池缶4の内面に、前記の正極の作
製において調整した正極スラリーを30〜80μmの厚
みになるように塗布し、これを120℃で1時間乾燥さ
せて、電池缶4の内面に正極と同じリチウムイオンの吸
蔵,放出が可能なLiCoO2 を含む層9を設けた。
Here, in Example 7, when producing a non-aqueous electrolyte secondary battery having a square shape, as shown in FIG. The positive electrode slurry prepared in the above was applied so as to have a thickness of 30 to 80 μm, and dried at 120 ° C. for 1 hour. LiCoO 2 capable of absorbing and releasing the same lithium ions as the positive electrode was formed on the inner surface of the battery can 4. The layer 9 containing the metal was provided.

【0037】そして、上記の実施例1の場合と同様にし
て作製した正極1と負極2との間にセパレータ3として
リチウムイオン透過性のポリプロピレン製の微多孔膜を
介在させ、これらを角型の電池缶4に対応するように巻
いて、上記の電池缶4内に収容させた後、この電池缶4
内に上記の非水電解液を注液して封口し、正極1を正極
端子(図示せず)に接続させると共に、負極2を負極端
子(図示せず)に接続させるようにした。
Then, a lithium ion permeable polypropylene microporous membrane is interposed as a separator 3 between the positive electrode 1 and the negative electrode 2 produced in the same manner as in the above-mentioned Example 1, and these are square-shaped. After being wound so as to correspond to the battery can 4 and housed in the battery can 4, the battery can 4
The above-mentioned non-aqueous electrolyte was injected into the inside and sealed, so that the positive electrode 1 was connected to a positive electrode terminal (not shown) and the negative electrode 2 was connected to a negative electrode terminal (not shown).

【0038】(比較例7)この比較例7においては、上
記の実施例7における電池の作製において、電池缶の内
面に正極スラリーを塗布せず、リチウムイオンの吸蔵,
放出が可能なLiCoO2 を含む層を設けないように
し、それ以外については、上記の実施例7の場合と同様
にして非水電解質二次電池を作製した。
(Comparative Example 7) In Comparative Example 7, in the manufacture of the battery in Example 7 described above, the positive electrode slurry was not applied to the inner surface of the battery can, and the lithium ions were absorbed and absorbed.
A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 7 except that no layer containing LiCoO 2 capable of being released was provided.

【0039】(実施例8〜11)これらの実施例8〜1
1においては、前記の実施例1における正極の作製にお
いて使用する正極材料を変更し、実施例8ではLiNi
2 粉末を、実施例9ではLiMn2 4 粉末を、実施
例10ではLiNi0.5 Co0.5 2 粉末を、実施例1
1ではLiV2 5 粉末を用いてそれぞれ正極スラリー
を調整し、これらの正極スラリーを使用して各正極を作
製すると共に、各正極スラリーを上記の実施例7の場合
と同様に、それぞれ角型になったアルミニウム製の電池
缶4の内面に30〜80μmの厚みになるように塗布
し、これを120℃で1時間乾燥させて、電池缶4の内
面に各正極と同じリチウムイオンの吸蔵,放出が可能な
正極材料を含む層9を設け、上記の実施例7の場合と同
様にして、各非水電解質二次電池を作製した。
(Examples 8 to 11) These Examples 8 to 1
In Example 1, the cathode material used in the production of the cathode in Example 1 was changed, and in Example 8, LiNi was used.
The O 2 powder, a LiMn 2 O 4 powder in Example 9, the LiNi 0.5 Co 0.5 O 2 powder in Example 10, Example 1
In No. 1, positive electrode slurries were prepared using LiV 2 O 5 powders, and each positive electrode was prepared using these positive electrode slurries. Each positive electrode slurry was formed into a square shape in the same manner as in Example 7 above. It is applied to the inner surface of the aluminum battery can 4 having a thickness of 30 to 80 μm, and dried at 120 ° C. for 1 hour to occlude the same lithium ions as the respective positive electrodes on the inner surface of the battery can 4. A layer 9 containing a positive electrode material capable of being released was provided, and each nonaqueous electrolyte secondary battery was manufactured in the same manner as in Example 7 described above.

【0040】(比較例8〜11)これらの比較例8〜1
1においては、上記の比較例7の場合と正極に使用する
正極材料を変更し、比較例8では実施例8と同じLiN
iO2 粉末を、比較例9では実施例9と同じLiMn2
4 粉末を、比較例10では実施例10と同じLiNi
0.5 Co0.5 2 粉末を、比較例11では実施例11と
同じLiV2 5粉末を用いるようにし、それ以外につ
いては、上記の比較例7の場合と同様にして各非水電解
質二次電池を作製し、電池缶の内面にリチウムイオンの
吸蔵,放出が可能な正極材料を含む層を設けないように
した。
(Comparative Examples 8 to 11) These Comparative Examples 8 to 1
In Comparative Example 1, the positive electrode material used for the positive electrode was changed from that in Comparative Example 7, and in Comparative Example 8, the same LiN was used as in Example 8.
iO 2 powder, the same LiMn 2 Example 9 Comparative Example 9
The O 4 powder was used in Comparative Example 10 in the same LiNi as in Example 10.
For the 0.5 Co 0.5 O 2 powder, the same LiV 2 O 5 powder as in Example 11 was used in Comparative Example 11, and the other non-aqueous electrolyte secondary batteries were otherwise the same as in Comparative Example 7. And a layer containing a positive electrode material capable of inserting and extracting lithium ions was not provided on the inner surface of the battery can.

【0041】次に、上記のようにして作製した実施例7
〜11及び比較例7〜11の各非水電解質二次電池につ
いても、前記の場合と同様に、それぞれ充電電流200
mAで充電終止電圧4.2Vまで充電を行ない、その
後、放電電流200mAで放電終止電圧2.75Vまで
放電を行ない、各非水電解質二次電池における初期容量
を測定し、その結果を下記の表2に示した。
Next, the seventh embodiment manufactured as described above was used.
Each of the non-aqueous electrolyte secondary batteries of Comparative Examples 7 to 11 and Comparative Examples 7 to 11 also has a charging current of 200
The battery was charged to a final charge voltage of 4.2 V at mA, then discharged to a final discharge voltage of 2.75 V at a discharge current of 200 mA, and the initial capacity of each non-aqueous electrolyte secondary battery was measured. 2 is shown.

【0042】[0042]

【表2】 [Table 2]

【0043】この結果から明らかなように、電池缶4の
内面に正極と同じ材料の層9を設けた実施例7〜11の
各非水電解質二次電池も、電池缶4の内面に負極と同じ
材料の層9を設けた実施例1〜6の各非水電解質二次電
池と同様に、このような材料の層を設けなかった比較例
7〜11の各非水電解質二次電池に比べて初期容量が高
くなっており、電池容量の高い非水電解質二次電池が得
られ、このように電池缶4の内面に正極と同じ材料の層
9を設けた実施例7〜11の各非水電解質二次電池は、
このような層を設けなかった比較例7〜11の各非水電
解質二次電池に比べて、サイクル数の増加に伴う容量の
低下も少なくなっていた。
As is apparent from the results, the nonaqueous electrolyte secondary batteries of Examples 7 to 11 in which the layer 9 of the same material as the positive electrode was provided on the inner surface of the battery can 4 also have the negative electrode on the inner surface of the battery can 4. Similar to the non-aqueous electrolyte secondary batteries of Examples 1 to 6 provided with the layer 9 of the same material, as compared with the non-aqueous electrolyte secondary batteries of Comparative Examples 7 to 11 not provided with the layer of such material. Thus, a non-aqueous electrolyte secondary battery having a high initial capacity and a high battery capacity can be obtained. Water electrolyte secondary batteries are
Compared with the non-aqueous electrolyte secondary batteries of Comparative Examples 7 to 11 in which such a layer was not provided, the decrease in capacity due to the increase in the number of cycles was smaller.

【0044】[0044]

【発明の効果】以上詳述したように、この発明における
非水電解質二次電池においては、リチウムイオンの吸
蔵,放出が可能な正極と負極とを巻いた状態で電池缶内
に収容させるにあたり、電池缶に負極が接続される場合
には該電池缶の内面にリチウムイオンの吸蔵,放出が可
能な負極材料を含む層、または、電池缶に正極が接続さ
れる場合には該電池缶の内面にリチウムイオンの吸蔵,
放出が可能な正極材料を含む層を設けたため、上記のよ
うに正極と負極を巻いた電極が充放電によって変形する
のが上記の層によって抑制されると共に、この層におい
てもリチウムイオンの吸蔵,放出が行なわれるようにな
り、サイクル特性の劣化が少なくなると共に、電池缶の
内面に樹脂層を設けた場合のように、電池容量が低下す
るということもなく、十分な電池容量を有すると共に、
優れた充放電サイクル特性を示す非水電解質二次電池が
得られた。
As described in detail above, in the nonaqueous electrolyte secondary battery according to the present invention, when the positive electrode and the negative electrode capable of inserting and extracting lithium ions are accommodated in a battery can in a wound state, When the negative electrode is connected to the battery can
Can absorb and release lithium ions on the inner surface of the battery can.
The positive electrode is connected to a layer containing a functional negative electrode material or a battery can.
When the battery can be stored, lithium ions are stored on the inner surface of the battery can.
Since a layer containing a positive electrode material capable of being released is provided, the above-mentioned layer suppresses deformation of the electrode wound around the positive electrode and the negative electrode due to charge and discharge, and also stores and absorbs lithium ions in this layer. Release is performed, and deterioration of cycle characteristics is reduced, and as in the case where a resin layer is provided on the inner surface of the battery can, the battery capacity is not reduced, and while having sufficient battery capacity,
A non-aqueous electrolyte secondary battery showing excellent charge / discharge cycle characteristics was obtained.

【0045】また、この発明における非水電解質二次電
池においては、負極に接続される電池缶の内面に銅のメ
ッキ層を設け、この銅のメッキ層の上に上記の負極材料
を含む層を設けるようにすると、銅のメッキ層を通して
電気が流れやすくなり、この非水電解質二次電池におけ
る容量がさらに向上した。
The non-aqueous electrolyte secondary battery according to the present invention
In the pond, the inner surface of the battery can connected to the negative electrode
An anode layer is provided on the copper plating layer.
If you try to provide a layer containing, through the copper plating layer
Electricity flows easily, and this non-aqueous electrolyte secondary battery
Capacity has been further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1〜6の各非水電解質二次電
池の内部構造を示した縦断面図である。
FIG. 1 is a longitudinal sectional view showing the internal structure of each of the nonaqueous electrolyte secondary batteries of Examples 1 to 6 of the present invention.

【図2】この発明の実施例1〜6の各非水電解質二次電
池の内部構造を示した横断面図である。
FIG. 2 is a cross-sectional view showing the internal structure of each of the non-aqueous electrolyte secondary batteries of Examples 1 to 6 of the present invention.

【図3】この発明の実施例1〜6及び比較例1〜6の各
非水電解質二次電池についてそれぞれ充放電を繰り返し
て行なった場合における、サイクル数と放電容量との関
係を示した図である。
FIG. 3 is a diagram showing the relationship between the number of cycles and the discharge capacity when charge and discharge are repeatedly performed for each of the nonaqueous electrolyte secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 6 of the present invention. It is.

【図4】この発明の実施例7〜11の各非水電解質二次
電池の内部構造を示した横断面図である。
FIG. 4 is a cross-sectional view showing the internal structure of each of the non-aqueous electrolyte secondary batteries of Examples 7 to 11 of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 4 電池缶 9 リチウムイオンの吸蔵,放出が可能な材料を含む層 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 4 Battery can 9 Layer containing material which can occlude and release lithium ions

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平5−182647(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 2/02 H01M 4/64 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Inside Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (56) References JP-A-5-182647 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 2/02 H01M 4 / 64

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムイオンの吸蔵,放出が可能な正
極及び負極と、非水電解質とを備え、上記の正極と負極
とを巻いた状態で電池缶内に収容させた非水電解質二次
電池において、電極缶に負極が接続される場合には該電
池缶の内面にリチウムイオンの吸蔵,放出が可能な負極
材料を含む層、または、電池缶に正極が接続される場合
には電池缶の内面にリチウムイオンの吸蔵,放出が可能
な正極材料を含む層を設けたことを特徴とする非水電解
質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode are wound and accommodated in a battery can. When the negative electrode is connected to the electrode can,
A negative electrode that can store and release lithium ions on the inner surface of a pond can
When the positive electrode is connected to a layer containing materials or a battery can
Can store and release lithium ions inside the battery can
A non-aqueous electrolyte secondary battery provided with a layer containing a positive electrode material .
【請求項2】 請求項1に記載した非水電解質二次電池
において、上記負極が接続される電池缶の内面に銅のメ
ッキ層を設け、この銅のメッキ層上に上記のリチウムイ
オンの吸蔵,放出が可能な負極材料を含む層を設けたこ
とを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the inner surface of the battery can to which the negative electrode is connected is made of copper.
A copper layer is provided, and the above-described lithium ion
A layer containing a negative electrode material capable of occluding and releasing ON is provided.
The non-aqueous electrolyte secondary battery according to claim 1, wherein
JP00554597A 1997-01-16 1997-01-16 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3349379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00554597A JP3349379B2 (en) 1997-01-16 1997-01-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00554597A JP3349379B2 (en) 1997-01-16 1997-01-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10199573A JPH10199573A (en) 1998-07-31
JP3349379B2 true JP3349379B2 (en) 2002-11-25

Family

ID=11614171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00554597A Expired - Fee Related JP3349379B2 (en) 1997-01-16 1997-01-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3349379B2 (en)

Also Published As

Publication number Publication date
JPH10199573A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US6528212B1 (en) Lithium battery
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP3173225B2 (en) Non-aqueous electrolyte secondary battery
JP5734708B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JPH09147913A (en) Nonaqueous electrolyte battery
JP3140977B2 (en) Lithium secondary battery
JP5312751B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3172445B2 (en) Non-aqueous electrolyte battery
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JPH10255762A (en) Lithium battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP3769377B2 (en) Cylindrical lithium secondary battery
JP3349379B2 (en) Non-aqueous electrolyte secondary battery
JP3691714B2 (en) Lithium secondary battery
JP3239068B2 (en) Non-aqueous electrolyte battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP3469752B2 (en) Non-aqueous electrolyte battery
JP7209196B2 (en) Cylindrical secondary battery
JP3663127B2 (en) Non-aqueous electrolyte battery
JP3239050B2 (en) Non-aqueous secondary battery
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH10241684A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees