JP3469752B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP3469752B2
JP3469752B2 JP25331697A JP25331697A JP3469752B2 JP 3469752 B2 JP3469752 B2 JP 3469752B2 JP 25331697 A JP25331697 A JP 25331697A JP 25331697 A JP25331697 A JP 25331697A JP 3469752 B2 JP3469752 B2 JP 3469752B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
aqueous electrolyte
electrode material
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25331697A
Other languages
Japanese (ja)
Other versions
JPH1197013A (en
Inventor
健一 中田
正久 藤本
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25331697A priority Critical patent/JP3469752B2/en
Publication of JPH1197013A publication Critical patent/JPH1197013A/en
Application granted granted Critical
Publication of JP3469752B2 publication Critical patent/JP3469752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、正極と負極と非
水電解液とを備えた非水電解質電池に係り、正極や負極
を改良して、高電流密度での放電特性を改善させた非水
電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte solution, and improving the positive electrode and the negative electrode to improve the discharge characteristics at high current density. The present invention relates to a water electrolyte battery.

【0002】[0002]

【従来の技術】近年、高出力、高エネルギー密度の新型
電池の1つとして、有機溶媒等に電解質を溶解させた非
水電解液を用い、リチウムの酸化、還元を利用した高起
電力の非水電解質電池が利用されるようになった。
2. Description of the Related Art Recently, as one of new type batteries with high output and high energy density, a non-aqueous electrolyte solution in which an electrolyte is dissolved in an organic solvent is used, and a high electromotive force of non-electromotive force utilizing oxidation and reduction of lithium is used. Water electrolyte batteries have come into use.

【0003】ここで、このような非水電解質電池におい
ては、一般に、その正極として、LiCoO2 ,LiN
iO2 ,LiMn2 4 等リチウムイオンの吸蔵,放出
が可能な正極材料をアルミニウム箔等からなる正極集電
体に取り付けたものを用いる一方、その負極における負
極材料としては、リチウムイオンを吸蔵,放出が可能な
炭素材料等で構成されたものを用いるようにしていた。
そして、上記の正極材料としては、特に容量の高さと安
全性の高さからリチウムコバルト酸化物が、また負極材
料としては、特に容量の高さと初期充放電効率の高さか
ら黒鉛系材料が広く使用されていた。
In such a non-aqueous electrolyte battery, LiCoO 2 , LiN is generally used as the positive electrode.
A positive electrode material capable of occluding and releasing lithium ions such as iO 2 and LiMn 2 O 4 attached to a positive electrode current collector made of aluminum foil or the like is used, while a negative electrode material for the negative electrode occludes lithium ions, A carbon material which can be released was used.
As the above positive electrode material, lithium cobalt oxide is widely used because of its high capacity and safety, and as the negative electrode material, graphite-based material is widely used because of its high capacity and high initial charge / discharge efficiency. Had been used.

【0004】しかし、上記のような正極材料と負極材料
とを用いた非水電解質電池においても、3C(時間率)
以上の高電流密度で放電を行なうと、正極や負極におけ
るリチウムイオンの拡散速度が電子の拡散速度に比べて
著しく小さくなり、その放電容量や電圧が著しく低下す
るという問題があった。
However, even in the non-aqueous electrolyte battery using the positive electrode material and the negative electrode material as described above, 3 C (hour rate)
When discharging at the above high current density, the diffusion rate of lithium ions in the positive electrode and the negative electrode becomes remarkably smaller than the diffusion rate of electrons, and there is a problem that the discharge capacity and voltage thereof remarkably decrease.

【0005】このため、従来においては、上記の負極材
料に導電性に優れたカーボンブラックを用いることも提
案されたが、このような負極材料を用いても、高電流密
度で放電を行なった場合における、放電容量や電圧の低
下を十分に抑制することはできなかった。
Therefore, conventionally, it has been proposed to use carbon black having excellent conductivity as the above-mentioned negative electrode material. However, even when such negative electrode material is used, when discharging is performed at a high current density. It was not possible to sufficiently suppress the decrease in discharge capacity and voltage.

【0006】[0006]

【発明が解決しようとする課題】この発明は、正極と負
極と非水電解液とを備えた非水電解質電池における上記
のような問題を解決することを課題とするものであり、
高電流密度で放電を行なった場合においても、その放電
容量や電圧が低下するのを抑制し、高電流密度での放電
特性に優れた非水電解質電池を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems in a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode and a non-aqueous electrolyte solution.
It is an object of the present invention to provide a non-aqueous electrolyte battery having excellent discharge characteristics at a high current density by suppressing a decrease in discharge capacity and voltage even when discharging is performed at a high current density.

【0007】この発明の請求項1における非水電解質電
池においては、上記のような課題を解決するため、正極
と、負極と、非水電解液とを備えた非水電解質電池にお
いて、少なくとも上記の負極における負極材料中に、比
表面積が500m/g以上の炭素を1〜20重量%の
範囲で含有させるようにしたのである。
In the non-aqueous electrolyte battery according to claim 1 of the present invention, in order to solve the above problems, at least the above-mentioned non-aqueous electrolyte battery including a positive electrode, a negative electrode and a non-aqueous electrolyte solution is provided. Carbon having a specific surface area of 500 m 2 / g or more is contained in the negative electrode material of the negative electrode in an amount of 1 to 20% by weight.
It was made to contain in the range .

【0008】そして、この請求項1における非水電解質
電池のように、少なくとも負極における負極材料中に、
比表面積が500m2 /g以上の炭素を含有させると、
このように含有させた炭素に多くのリチウムイオンが蓄
えられて、負極が大きな二重層容量をもつようになり、
高電流密度で放電を行なった初期において瞬間的に大電
流が流れ、放電初期における電圧の低下が抑制されると
共に、放電容量の低下も抑制されて、高電流密度での放
電特性が改善される。
Then, as in the non-aqueous electrolyte battery according to claim 1, at least in the negative electrode material in the negative electrode,
When carbon having a specific surface area of 500 m 2 / g or more is contained,
Many lithium ions are stored in the carbon thus contained, and the negative electrode has a large double layer capacity.
A large current momentarily flows in the early stage of discharging at a high current density, which suppresses a drop in voltage at the initial stage of discharge and also suppresses a drop in discharge capacity, improving discharge characteristics at a high current density. .

【0009】また、上記のように負極における負極材料
中に比表面積が500m/g以上の炭素を含有させる
にあたり、この炭素の量が少ないと、蓄えられるリチウ
ムイオンの量が少なくなって、高電流密度での放電特性
を十分に改善することができなくなる一方、この炭素の
量が多くなり過ぎると、放電容量の高い本来の負極材料
の量が低下して、放電容量が低下するため、請求項1
示すように、上記の炭素を負極材料中に1〜20重量%
の範囲で含有させることが好ましい
In addition, when carbon having a specific surface area of 500 m 2 / g or more is contained in the negative electrode material of the negative electrode as described above, if the amount of this carbon is small, the amount of lithium ions that can be stored will be small, resulting in high while it is impossible to sufficiently improve the discharge characteristics at current density, the amount of the carbon is too large, the amount of high discharge capacity inherent negative electrode material is decreased, the discharge capacity is reduced, wherein As described in Item 1 , 1 to 20% by weight of the above carbon is contained in the negative electrode material.
It is preferable to contain in the range of.

【0010】また、請求項2に示すように、上記の請求
項1における非水電解質電池において、その正極におけ
る正極材料中にも比表面積が500m/g以上の炭素
を含有させると、このように含有させた炭素に多くのリ
チウムイオンが蓄えられて、正極が大きな二重層容量を
もつようになり、非水電解質電池における高電流密度で
の放電特性がさらに改善されるようになる。
Further, as described in claim 2 , in the non-aqueous electrolyte battery according to claim 1, when the positive electrode material of the positive electrode also contains carbon having a specific surface area of 500 m 2 / g or more, A large amount of lithium ions are stored in the carbon contained in the positive electrode so that the positive electrode has a large double layer capacity, and the discharge characteristics at high current density in the non-aqueous electrolyte battery are further improved.

【0011】そして、このように正極における正極材料
中に比表面積が500m/g以上の炭素を含有させる
にあたっても、この炭素の量が少ないと、蓄えられるリ
チウムイオンの量が少なくなって、高電流密度での放電
特性を十分に改善することができなくなる一方、この炭
素の量が多くなり過ぎると、放電容量の高い本来の正極
材料の量が低下して、放電容量が低下するため、請求項
に示すように、上記の炭素を正極材料中に1〜25重
量%の範囲で含有させることが好ましい
Even when carbon having a specific surface area of 500 m 2 / g or more is contained in the positive electrode material of the positive electrode as described above, if the amount of this carbon is small, the amount of lithium ions that can be stored will be small, and the amount will be high. while it is impossible to sufficiently improve the discharge characteristics at current density, the amount of the carbon is too large, the amount of high discharge capacity original positive electrode material is lowered, the discharge capacity is reduced, wherein Term
As shown in 2 , it is preferable that the above-mentioned carbon be contained in the positive electrode material in the range of 1 to 25% by weight.

【0012】ここで、この発明における非水電解質電池
において、その正極に使用する正極材料としては、従来
より使用されている公知の正極材料を用いることがで
き、リチウムイオンの吸蔵,放出が可能な金属化合物、
例えば、マンガン、コバルト、ニッケル、鉄、バナジウ
ム、ニオブ等を少なくとも一種含むリチウム遷移金属複
合酸化物等を使用することができる。
Here, in the non-aqueous electrolyte battery according to the present invention, as the positive electrode material used for the positive electrode, a known positive electrode material that has been conventionally used can be used, and lithium ions can be occluded and released. Metal compounds,
For example, a lithium-transition metal composite oxide containing at least one of manganese, cobalt, nickel, iron, vanadium, niobium and the like can be used.

【0013】また、この発明における非水電解質電池に
おいて、その負極に用いる負極材料としても、従来より
使用されている公知の負極材料を用いることができ、例
えばリチウムイオンの吸蔵,放出が可能な黒鉛,コーク
ス,有機物焼成体等の炭素材料等を用いることができ
る。
Further, in the non-aqueous electrolyte battery according to the present invention, a known negative electrode material which has been conventionally used can be used as a negative electrode material for the negative electrode, and for example, graphite capable of inserting and extracting lithium ions. , Carbon materials such as coke and organic burned material can be used.

【0014】また、この発明の非水電解質電池におい
て、上記の非水電解液としても、従来より使用されてい
る公知の非水電解液を用いることができ、この非水電解
液における溶媒としては、例えば、プロピレンカーボネ
ート、エチレンカーボネート、γ−ブチロラクトン、ブ
チレンカーボネート、1,2−ジメトキシエタン、ジメ
チルカーボネート、ジエチルカーボネート等の有機溶媒
を1種又は2種以上組み合わせて使用することができ、
また溶質としては、例えば、ヘキサフルオロリン酸リチ
ウムLiPF6 、過塩素酸リチウムLiClO4 、テト
ラフルオロホウ酸リチウムLiBF4 、トリフルオロメ
タンスルホン酸リチウムLiCF3 SO3、トリフルオ
ロメタンスルホン酸イミドリチウムLiN(CF3 SO
2 2 等のリチウム化合物を用いることができる。
Further, in the non-aqueous electrolyte battery of the present invention, a known non-aqueous electrolytic solution which has been conventionally used can be used as the above-mentioned non-aqueous electrolytic solution, and a solvent in this non-aqueous electrolytic solution is used. , Organic solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, butylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate and diethyl carbonate can be used alone or in combination of two or more,
Examples of solutes include lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , lithium tetrafluoroborate LiBF 4 , lithium trifluoromethanesulfonate LiCF 3 SO 3 , and lithium trifluoromethanesulfonate LiN (CF 3 SO
2 ) Lithium compounds such as 2 can be used.

【0015】[0015]

【実施例】以下、この発明に係る非水電解質電池につい
て実施例を挙げて具体的に説明すると共に、この実施例
における非水電解質電池においては高電流密度での放電
特性が改善されることを、比較例を挙げて明らかにす
る。なお、この発明における非水電解質電池は、下記の
実施例に示したものに限定されるものではなく、その要
旨を変更しない範囲において適宜変更して実施できるも
のである。
EXAMPLES Hereinafter, the non-aqueous electrolyte battery according to the present invention will be specifically described with reference to examples, and it is shown that the discharge characteristics at high current density are improved in the non-aqueous electrolyte battery in this example. , A comparative example will be made clear. The non-aqueous electrolyte battery according to the present invention is not limited to the ones shown in the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.

【0016】(実施例1〜4及び比較例1〜3)これら
の実施例1〜4及び比較例1〜3における非水電解質電
池においては、正極と負極を下記のようにして作製する
と共に、非水電解液を下記のようにして調製し、図1に
示すような円筒型の非水電解質二次電池を作製した。
(Examples 1 to 4 and Comparative Examples 1 to 3) In the nonaqueous electrolyte batteries of Examples 1 to 4 and Comparative Examples 1 to 3, the positive electrode and the negative electrode were prepared as follows, A non-aqueous electrolyte solution was prepared in the following manner to prepare a cylindrical non-aqueous electrolyte secondary battery as shown in FIG.

【0017】[正極の作製]正極を作製するにあたって
は、コバルト酸リチウムLiCoO2 粉末と導電剤であ
る人造黒鉛粉末とを18:1の重量比で混合させた正極
材料を用い、この正極材料95重量部に対してポリフッ
化ビニリデンが5重量部の割合になるようにして、ポリ
フッ化ビニリデンのN−メチル−2−ピロリドン溶液を
上記の正極材料に加え、これらを混合してスラリーを調
製し、このスラリーをアルミニウム箔からなる正極集電
体の両面にドクターブレード法により塗布し、これを1
50℃で2時間真空乾燥させて正極を作製した。
[Production of Positive Electrode] In producing a positive electrode, a positive electrode material prepared by mixing lithium cobalt oxide LiCoO 2 powder and artificial graphite powder as a conductive agent in a weight ratio of 18: 1 was used. Polyvinylidene fluoride in a ratio of 5 parts by weight relative to parts by weight, N-methyl-2-pyrrolidone solution of polyvinylidene fluoride is added to the above positive electrode material, these are mixed to prepare a slurry, This slurry was applied to both sides of a positive electrode current collector made of aluminum foil by the doctor blade method,
It vacuum-dried at 50 degreeC for 2 hours, and produced the positive electrode.

【0018】[負極の作製]負極を作製するにあたって
は、平均粒径が10μm,比表面積が6m2 /gの天然
黒鉛粉末(d002 =3.356Å、Lc>1000Å)
に対して、下記の表1に示すように、実施例1〜4にお
いては、平均比表面積が500〜2000m 2 /gの各
炭素粒子を90:10の重量比で混合させる一方、比較
例1においては炭素を加えないようにし、また比較例
2,3においては、平均比表面積が500m2 /g未満
の100m2 /g,400m2 /gの炭素粒子を90:
10の重量比で混合させて各負極材料を得た。なお、上
記の各炭素粒子としては、400メッシュのふるいを通
過した粒子を用いた。
[Preparation of Negative Electrode] In preparing negative electrode
Has an average particle size of 10 μm and a specific surface area of 6 m2/ G of natural
Graphite powder (d002= 3.356Å, Lc> 1000Å)
In contrast, as shown in Table 1 below, in Examples 1 to 4,
The average specific surface area is 500 to 2000 m 2/ G each
Carbon particles were mixed in a weight ratio of 90:10, while comparing
In Example 1, no carbon was added, and in Comparative Example
In 2 and 3, the average specific surface area is 500 m2</ G
100m2/ G, 400m290 g / g of carbon particles:
Each negative electrode material was obtained by mixing in a weight ratio of 10. In addition, above
Each of the carbon particles mentioned above was passed through a 400 mesh sieve.
The passed particles were used.

【0019】そして、これらの各負極材料90重量部に
対してそれぞれポリフッ化ビニリデンが10重量部の割
合になるようにして、ポリフッ化ビニリデンのN−メチ
ル−2−ピロリドン溶液を加え、これらを混合して各ス
ラリーを調製し、この各スラリーをそれぞれ銅箔からな
る負極集電体の両面にドクターブレード法により塗布
し、これらを150℃で2時間真空乾燥させて各負極を
作製した。
Then, a solution of polyvinylidene fluoride in N-methyl-2-pyrrolidone was added to 90 parts by weight of each of the negative electrode materials in an amount of 10 parts by weight of polyvinylidene fluoride, and these were mixed. Then, each slurry was prepared, and each slurry was applied on both surfaces of a negative electrode current collector made of copper foil by a doctor blade method, and these were vacuum dried at 150 ° C. for 2 hours to produce each negative electrode.

【0020】[非水電解液の調製]非水電解液を調製す
るにあたっては、エチレンカーボネートとジエチルカー
ボネートとを1:1の体積比で混合させた混合溶媒に、
溶質としてヘキサフルオロリン酸リチウムLiPF6
1mol/lの割合で溶解させて非水電解液を調製し
た。
[Preparation of Non-Aqueous Electrolyte Solution] In preparing the non-aqueous electrolyte solution, a mixed solvent prepared by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used.
Lithium hexafluorophosphate LiPF 6 was dissolved as a solute at a rate of 1 mol / l to prepare a non-aqueous electrolytic solution.

【0021】[電池の作製]電池を作製するにあたって
は、図1に示すように、上記のようにして作製した正極
1と各負極2との間に、それぞれセパレータ3としてポ
リプロピレン製の微多孔膜を介在させ、これらをスパイ
ラル状に巻いて各電池缶4内に収容させた後、この各電
池缶4内に上記のようにして調製した各非水電解液を注
液して封口し、正極1を正極リード5を介して正極外部
端子6に接続させると共に、負極2を負極リード7を介
して電池缶4に接続させ、正極外部端子6と電池缶4と
を絶縁パッキン8により電気的に分離させて、外径14
mm、高さ50mmの円筒状になった各非水電解質電池
を作製した。
[Production of Battery] When producing a battery, as shown in FIG. 1, a microporous film made of polypropylene as a separator 3 is provided between the positive electrode 1 and each negative electrode 2 produced as described above. And wrap them in a spiral shape to be housed in each battery can 4, and then inject the nonaqueous electrolytic solution prepared as described above into each battery can 4 to seal the positive electrode. 1 is connected to the positive electrode external terminal 6 via the positive electrode lead 5, the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and the positive electrode external terminal 6 and the battery can 4 are electrically connected by the insulating packing 8. Separated, outer diameter 14
Each non-aqueous electrolyte battery in the form of a cylinder having a size of 50 mm and a height of 50 mm was produced.

【0022】そして、上記の実施例1〜4及び比較例1
〜3の各非水電解質電池について、それぞれ室温におい
て0.4Cで4.1Vまで充電させた後、4Cの高電流
密度で2.75Vまで放電を行ない、各非水電解質電池
における高電流密度での放電容量を求め、その結果を下
記の表1に示した。
Then, the above-mentioned Examples 1 to 4 and Comparative Example 1
For each of the non-aqueous electrolyte batteries No. 3 to No. 3, each was charged to 0.4 V at 0.4 C at room temperature and then discharged to 2.75 V at a high current density of 4 C to obtain a high current density in each non-aqueous electrolyte battery. The discharge capacity was calculated and the results are shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から明らかなように、負極材料中
に平均比表面積が500m2 /g以上の炭素粒子を含有
させた負極を使用した実施例1〜4の各非水電解質電池
は、このような炭素粒子を含有させない負極材料を用い
た比較例1の非水電解質電池や、負極材料中に平均比表
面積500m2 /g未満の炭素粒子を含有させた負極を
使用した比較例2,3の各非水電解質電池に比べて、高
電流密度での放電容量が高くなっていた。
As is clear from these results, each of the non-aqueous electrolyte batteries of Examples 1 to 4 using the negative electrode in which the negative electrode material contains carbon particles having an average specific surface area of 500 m 2 / g or more is as follows. Of the non-aqueous electrolyte battery of Comparative Example 1 using a negative electrode material that does not contain various carbon particles, and the negative electrodes of a negative electrode in which the negative electrode material contains carbon particles having an average specific surface area of less than 500 m 2 / g. The discharge capacity at high current density was higher than that of each non-aqueous electrolyte battery.

【0025】(実施例5〜10)これらの実施例5〜1
0においては、負極を作製するにあたり、上記の実施例
2の場合と同様に、平均比表面積が1000m2 /gに
なった炭素粒子を用い、この炭素粒子と天然黒鉛粉末と
が10:90の重量比になるように混合させた負極材料
を用いて負極を作製した。
(Examples 5 to 10) These Examples 5 to 1
In the case of 0, when producing the negative electrode, carbon particles having an average specific surface area of 1000 m 2 / g were used in the same manner as in the case of Example 2 described above, and the carbon particles and the natural graphite powder had a ratio of 10:90. A negative electrode was produced using the negative electrode materials mixed in a weight ratio.

【0026】一方、この実施例5〜10においては、正
極を作製するにあたり、前記のようにコバルト酸リチウ
ムLiCoO2 粉末と導電剤である人造黒鉛粉末とを1
8:1の重量比で混合させた混合物90重量部に対し
て、下記の表2に示すように、平均比表面積が100〜
2000m2 /gの各炭素粒子をそれぞれ10重量部の
割合で添加させた正極材料を用い、それ以外は、上記の
実施例2の場合と同様にして正極を作製すると共に、各
非水電解質電池を作製した。
On the other hand, in Examples 5 to 10, the lithium cobalt oxide LiCoO 2 powder and the artificial graphite powder, which is a conductive agent, were mixed together in 1 to prepare the positive electrode.
As shown in Table 2 below, an average specific surface area of 100 to 100 parts by weight with respect to 90 parts by weight of the mixture mixed at a weight ratio of 8: 1.
A positive electrode material was prepared by adding 2000 m 2 / g of each carbon particle in an amount of 10 parts by weight, and a positive electrode was prepared in the same manner as in Example 2 except that each nonaqueous electrolyte battery was used. Was produced.

【0027】そして、このように作製した実施例5〜1
0の各非水電解質電池についても、上記の場合と同様に
して、それぞれ4Cの高電流密度での放電容量を求め、
その結果を、上記の実施例2の結果と合わせて下記の表
2に示した。
Then, Examples 5 to 1 thus produced
For each non-aqueous electrolyte battery of 0, the discharge capacity at a high current density of 4 C was obtained in the same manner as in the above case,
The results are shown in Table 2 below together with the results of Example 2 above.

【0028】[0028]

【表2】 [Table 2]

【0029】この結果から明らかなように、負極材料中
に平均比表面積が1000m2 /gの炭素粒子を含有さ
せた負極を使用すると共に、正極材料中に平均比表面積
が100〜2000m2 /gの各炭素粒子を含有させた
正極を使用した実施例5〜10の各非水電解質電池にお
いては、高電流密度での放電容量が実施例2の非水電解
質電池よりも高くなっており、特に、正極材料中に平均
比表面積が500m2/g以上の炭素粒子を含有させた
正極を使用した実施例7〜10の各非水電解質電池にお
いては、高電流密度での放電容量がさらに高くなってい
た。
As is clear from these results, a negative electrode was used in which the negative electrode material contained carbon particles having an average specific surface area of 1000 m 2 / g, and the positive electrode material had an average specific surface area of 100 to 2000 m 2 / g. In each of the nonaqueous electrolyte batteries of Examples 5 to 10 using the positive electrode containing each carbon particle, the discharge capacity at high current density is higher than that of the nonaqueous electrolyte battery of Example 2, and In each of the nonaqueous electrolyte batteries of Examples 7 to 10 using the positive electrode in which the positive electrode material contained carbon particles having an average specific surface area of 500 m 2 / g or more, the discharge capacity at high current density was further increased. Was there.

【0030】(実験例1〜14)これらの実験例1〜1
4においては、前記の場合と同じ正極材料や負極材料を
用いると共に、平均比表面積が1000m2 /gの炭素
粒子を用いるようにし、下記の表3に示すように、この
炭素粒子を前記の正極材料中に含有させる割合を0重量
%と10重量%にする一方、前記の負極材料中に含有さ
せる上記の炭素粒子の割合を変更させ、それ以外につい
ては、前記の場合と同様にして各非水電解質電池を作製
した。
(Experimental Examples 1 to 14) These Experimental Examples 1 to 1
In No. 4, the same positive electrode material and negative electrode material as those used in the above case were used, and carbon particles having an average specific surface area of 1000 m 2 / g were used. The proportion of the carbon particles contained in the negative electrode material was changed while the proportions of the carbon particles contained in the material were adjusted to 0% by weight and 10% by weight. A water electrolyte battery was produced.

【0031】そして、これらの各非水電解質電池につい
ても、前記の場合と同様にして、4Cの高電流密度での
放電容量を求め、その結果を表3に合わせて示した。
With respect to each of these non-aqueous electrolyte batteries, the discharge capacity at a high current density of 4 C was determined in the same manner as described above, and the results are shown in Table 3 together.

【0032】[0032]

【表3】 [Table 3]

【0033】この結果から明らかなように、正極材料中
に含有させる炭素粒子の割合を0重量%と10重量%の
何れにした場合においても、負極材料中に含有させる上
記の炭素粒子の割合を1〜20重量%の範囲にした非水
電解質電池において、高電流密度での放電容量が高くな
っていた。
As is clear from these results, when the proportion of carbon particles contained in the positive electrode material is 0% by weight or 10% by weight, the proportion of carbon particles contained in the negative electrode material is In the nonaqueous electrolyte battery in the range of 1 to 20% by weight, the discharge capacity at high current density was high.

【0034】(実験例15〜21)これらの実験例15
〜21においても、前記の場合と同じ正極材料や負極材
料を用いると共に、平均比表面積が1000m2 /gの
炭素粒子を用い、下記の表4に示すように、この炭素粒
子を前記の負極材料中に10重量%含有させる一方、前
記の正極材料中に含有させる上記の炭素粒子の割合を変
更させ、それ以外については、前記の場合と同様にして
各非水電解質電池を作製した。
(Experimental Examples 15 to 21) These Experimental Examples 15
In Nos. 21 to 21, the same positive electrode material and negative electrode material as those described above were used, and carbon particles having an average specific surface area of 1000 m 2 / g were used. Each nonaqueous electrolyte battery was manufactured in the same manner as in the above case except that the content of the carbon particles contained in the positive electrode material was changed while the content of 10% by weight was changed.

【0035】そして、これらの各非水電解質電池につい
ても、前記の場合と同様にして、4Cの高電流密度での
放電容量を求め、その結果を表4に合わせて示した。
With respect to each of these non-aqueous electrolyte batteries, the discharge capacity at a high current density of 4 C was obtained in the same manner as in the above case, and the results are also shown in Table 4.

【0036】[0036]

【表4】 [Table 4]

【0037】この結果から明らかなように、上記の負極
材料中に上記の炭素粒子を10重量%含有させた場合に
おいて、上記の正極材料中に含有させる上記の炭素粒子
の割合を1〜25重量%の範囲にした非水電解質電池に
おいて、高電流密度での放電容量が高くなっていた。
As is clear from these results, when 10% by weight of the above-mentioned carbon particles are contained in the above-mentioned negative electrode material, the proportion of the above-mentioned carbon particles contained in the above-mentioned positive electrode material is 1 to 25% by weight. In the non-aqueous electrolyte battery in the range of%, the discharge capacity at high current density was high.

【0038】[0038]

【発明の効果】以上詳述したように、この発明の請求項
1における非水電解質電池のように、少なくとも負極に
おける負極材料中に比表面積が500m/g以上の炭
素を1〜20重量%の範囲で含有させると、このように
負極材料中に含有させた炭素に多くのリチウムイオンが
蓄えられて、負極が大きな二重層容量をもつようにな
り、高電流密度で放電を行なった初期において瞬間的に
大電流が流れ、放電初期における電圧の低下が抑制され
ると共に放電容量の低下も抑制され、高電流密度での放
電特性に優れた非水電解質電池が得られた。
As described in detail above, as in the nonaqueous electrolyte battery according to claim 1 of the present invention, 1 to 20% by weight of carbon having a specific surface area of at least 500 m 2 / g is contained in at least the negative electrode material of the negative electrode. When it is contained in the range of, the amount of lithium ions stored in the carbon contained in the negative electrode material becomes large, and the negative electrode has a large double layer capacity. A large current instantaneously flows, a decrease in voltage at the initial stage of discharge is suppressed, a decrease in discharge capacity is suppressed, and a nonaqueous electrolyte battery excellent in discharge characteristics at high current density was obtained.

【0039】[0039]

【0040】また、この発明の請求項2に示すように、
請求項1における非水電解質電池において、その正極に
おける正極材料中にも比表面積が500m/g以上の
炭素を1〜25重量%の範囲で含有させると、このよう
に正極材料中に含有させた炭素にも多くのリチウムイオ
ンが蓄えられて、正極も大きな二重層容量をもつように
なり、非水電解質電池における高電流密度での放電特性
がさらに改善された。
As described in claim 2 of the present invention,
In the non-aqueous electrolyte battery according to claim 1, when carbon having a specific surface area of 500 m 2 / g or more is contained in the positive electrode material of the positive electrode in the range of 1 to 25% by weight, it is contained in the positive electrode material as described above. Also, a large amount of lithium ions are stored in carbon, and the positive electrode also has a large double-layer capacity, further improving the discharge characteristics at high current density in the non-aqueous electrolyte battery.

【0041】[0041]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例及び比較例において作製した
非水電解質電池の内部構造を示した断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing the internal structure of a non-aqueous electrolyte battery produced in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平9−134720(JP,A) 特開 平9−92265(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/36 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-9-134720 (JP, A) JP Flat 9-92265 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/02 H01M 4/36-4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、負極と、非水電解液とを備えた非
水電解質電池において、少なくとも上記の負極における
負極材料中に、比表面積が500m/g以上の炭素が
1〜20重量%の範囲で含有されてなることを特徴とす
る非水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution, wherein carbon having a specific surface area of 500 m 2 / g or more is contained in at least the negative electrode material of the negative electrode.
A non-aqueous electrolyte battery, characterized by being contained in a range of 1 to 20% by weight .
【請求項2】請求項1に記載した非水電解質電池におい
て、前記の正極材料中に前記の炭素が1〜25重量%の
範囲で含有されてなることを特徴とする非水電解質電
2. The nonaqueous electrolyte battery according to claim 1.
In the positive electrode material, the carbon content is 1 to 25% by weight.
Non-aqueous electrolyte electrolyte characterized by containing in a range
Pond .
JP25331697A 1997-09-18 1997-09-18 Non-aqueous electrolyte battery Expired - Fee Related JP3469752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25331697A JP3469752B2 (en) 1997-09-18 1997-09-18 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25331697A JP3469752B2 (en) 1997-09-18 1997-09-18 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH1197013A JPH1197013A (en) 1999-04-09
JP3469752B2 true JP3469752B2 (en) 2003-11-25

Family

ID=17249614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25331697A Expired - Fee Related JP3469752B2 (en) 1997-09-18 1997-09-18 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3469752B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197073A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Positive electrode for lithium secondary battery
JP4857608B2 (en) * 2005-05-27 2012-01-18 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JP5708964B2 (en) * 2009-02-17 2015-04-30 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH1197013A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2007035434A (en) Nonaqueous electrolyte battery
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JPH0864237A (en) Nonaqueous electrolyte battery
JP3244389B2 (en) Lithium secondary battery
JP3691987B2 (en) Lithium secondary battery
JPH10199510A (en) Negative electrode for lithium battery and lithium battery
JP2000077100A (en) Nonaqueous electrolyte secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JP2000260475A (en) Lithium secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3469752B2 (en) Non-aqueous electrolyte battery
JP2002025626A (en) Aging method for lithium secondary battery
JP3732063B2 (en) Lithium polymer secondary battery
JP3825571B2 (en) Non-aqueous electrolyte battery
JP2003331922A (en) Cell
JPH09320596A (en) Nonaqueous electrolytic battery
JP3426900B2 (en) Non-aqueous electrolyte battery
JP3691714B2 (en) Lithium secondary battery
JPH09237624A (en) Lithium battery
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JP3443290B2 (en) Non-aqueous electrolyte battery
JP3663127B2 (en) Non-aqueous electrolyte battery
JP2002110160A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees