JP5312751B2 - Method for producing non-aqueous electrolyte secondary battery - Google Patents

Method for producing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5312751B2
JP5312751B2 JP2007085499A JP2007085499A JP5312751B2 JP 5312751 B2 JP5312751 B2 JP 5312751B2 JP 2007085499 A JP2007085499 A JP 2007085499A JP 2007085499 A JP2007085499 A JP 2007085499A JP 5312751 B2 JP5312751 B2 JP 5312751B2
Authority
JP
Japan
Prior art keywords
separator
electrode
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007085499A
Other languages
Japanese (ja)
Other versions
JP2008243718A5 (en
JP2008243718A (en
Inventor
崇 竹内
靖幸 柴野
雅憲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007085499A priority Critical patent/JP5312751B2/en
Publication of JP2008243718A publication Critical patent/JP2008243718A/en
Publication of JP2008243718A5 publication Critical patent/JP2008243718A5/ja
Application granted granted Critical
Publication of JP5312751B2 publication Critical patent/JP5312751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve adhesiveness of an electrode and a separator of a nonaqueous electrolyte secondary battery with the electrode and separator adhered by using the separator carrying a reactive polymer. <P>SOLUTION: The method of manufacturing the nonaqueous electrolyte secondary battery includes a process A for housing an electrode group, which includes a positive electrode and negative electrode capable of reversibly storing and emitting lithium, and a separator sandwiched by the positive electrode and negative electrode and carrying the reactive polymer on both surfaces, in a battery case together with nonaqueous electrolyte, a process B for charging the electrode group filled with the nonaqueous electrolyte after the process A, a process C for adhering the positive electrode and the separator, and the negative electrode and the separator respectively by polymerizing at least a part of the reactive polymer after the process B. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、非水電解液二次電池の製造方法に関し、特に、反応性ポリマーを担持したセパレータを用いて、電極とセパレータ間を接着した非水電解液二次電池の製造方法に関するものである。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a non-aqueous electrolyte secondary battery in which a separator carrying a reactive polymer is used to adhere an electrode and a separator. .

近年、携帯電話、携帯パソコン、携帯ビデオカメラといった民生用電子機器のポータブル化およびコードレス化が急速に進んでいる。このため、これらの電子機器の駆動電源として、小型・軽量で、高エネルギー密度を有する二次電池への要望が高まっている。   In recent years, consumer electronic devices such as cellular phones, portable personal computers, and portable video cameras are rapidly becoming portable and cordless. For this reason, as a drive power source for these electronic devices, there is an increasing demand for a secondary battery that is small and light and has a high energy density.

こうした特徴をもつ二次電池として、リチウムイオン二次電池が広く用いられている。リチウムイオン二次電池は、一般的に、シート状の正極、負極をポリオレフィンからなる微多孔膜のセパレータを介して捲回または、積層することにより電極群を構成し、構成した電極群を外装缶である金属ケースに収納した後、電解液を注入し、封口することにより製造される。   Lithium ion secondary batteries are widely used as secondary batteries having such characteristics. Lithium ion secondary batteries generally consist of a sheet-like positive electrode and negative electrode wound or laminated via a microporous membrane separator made of polyolefin to form an electrode group. It is manufactured by injecting and sealing an electrolytic solution after being housed in a metal case.

しかし、近年、携帯機器の軽量薄型化がすすみ、リチウムイオン二次電池についても、電源として、より一層の軽量、薄型化が求められている。そのため、重量の重い金属ケースに代え、軽量なラミネートフィルムを外装ケースとして用いるリチウムイオン二次電池も広まりつつある。   However, in recent years, portable devices have been made lighter and thinner, and lithium ion secondary batteries are also required to be lighter and thinner as a power source. For this reason, lithium ion secondary batteries using a lightweight laminate film as an outer case instead of a heavy metal case are becoming widespread.

このようなラミネートフィルムを外装ケースとして用いる場合、金属ケースを用いる場合と比べて、電極群に対して十分な面圧を加えることが難しい。このため、充放電時の電極の膨張収縮により、電極面内において電極間距離にばらつきが生じ、充放電反応の均一性が失われ、サイクル特性が低下するという問題が発生する。   When such a laminate film is used as an exterior case, it is difficult to apply a sufficient surface pressure to the electrode group as compared with a case where a metal case is used. For this reason, due to the expansion and contraction of the electrodes during charging / discharging, the distance between the electrodes varies within the electrode surface, the uniformity of the charging / discharging reaction is lost, and the cycle characteristics deteriorate.

このような問題を解決するための一手段として、セパレータと電極の間に接着層を配し、セパレータと電極を接着、一体化することが提案されている。例えば、セパレータと電極の間に、ポリフッ化ビニリデン樹脂を主成分とする接着層を設けることが提案されている(特許文献1〜5)。しかしながら、このような方法では、セパレータと電極との間に十分な接着力を得るために接着層を厚くする必要があるだけでなく、前記接着層に含有させることのできる電解液の量が制限されるため、電池の内部抵抗が高くなり、結果として高負荷放電特性が低下するという問題が生じる。   As one means for solving such a problem, it has been proposed to provide an adhesive layer between the separator and the electrode, and to bond and integrate the separator and the electrode. For example, it has been proposed to provide an adhesive layer mainly composed of polyvinylidene fluoride resin between the separator and the electrode (Patent Documents 1 to 5). However, in such a method, in order to obtain a sufficient adhesive force between the separator and the electrode, it is necessary not only to increase the thickness of the adhesive layer, but also to limit the amount of electrolyte that can be contained in the adhesive layer. Therefore, the internal resistance of the battery is increased, resulting in a problem that the high-load discharge characteristics are deteriorated.

一方、ポリマーゲルを生成可能な前駆体をあらかじめ電解液中に配合し、ケース内に電解液を注入後、熱重合等の手法により電解液を含有したポリマーゲルを生成することによりセパレータと電極を接着することが提案されている(特許文献6)。しかしながら、このような方法では、注入した電解液すべてをゲル化してしまうため、電解液のイオン電導度が低下し、電池の内部抵抗が高くなり、結果として高負荷放電特性が低下するという問題が生じる。   On the other hand, a precursor capable of generating a polymer gel is blended in advance in the electrolytic solution, and after injecting the electrolytic solution into the case, a polymer gel containing the electrolytic solution is generated by a technique such as thermal polymerization, thereby separating the separator and the electrode. Adhesion has been proposed (Patent Document 6). However, in such a method, since all of the injected electrolyte solution is gelled, the ionic conductivity of the electrolyte solution is lowered, the internal resistance of the battery is increased, and as a result, the high load discharge characteristics are lowered. Arise.

セパレータと電極を接着することにより生ずる電池の内部抵抗の増加を抑制する方法として、反応性ポリマーをセパレータに担持させ、正極、負極と共に電極群を構成し、電解液を含浸後、反応性ポリマーを架橋、硬化させることにより、一部の電解液をゲル化し、セパレータと電極を接着することが提案されている(特許文献7〜9)。
特開平10−255849号公報 特開2003−77545号公報 特開平10−177865号公報 特開平10−189054号公報 特開平10−172606号公報 特開2006−32237号公報 特開2004−241172号公報 特開2004−335210号公報 特開2006−131808号公報
As a method of suppressing an increase in the internal resistance of the battery caused by bonding the separator and the electrode, a reactive polymer is supported on the separator, an electrode group is formed with the positive electrode and the negative electrode, and after impregnating the electrolytic solution, the reactive polymer is added. It has been proposed that a part of the electrolytic solution is gelled by crosslinking and curing, and the separator and the electrode are bonded (Patent Documents 7 to 9).
Japanese Patent Laid-Open No. 10-255849 Japanese Patent Laid-Open No. 2003-77545 JP-A-10-177865 Japanese Patent Laid-Open No. 10-189054 JP-A-10-172606 JP 2006-32237 A JP 2004-241172 A JP 2004-335210 A JP 2006-131808 A

携帯機器が消費する電流量は、機器の高機能化により増大する傾向にある。このため、リチウム二次電池を設計する上で、電池の高負荷放電特性を犠牲にすることは好ましくない。従来提案されているセパレータと電極との間をポリフッ化ビニリデン樹脂を用いて接着する方法やポリマーゲルを生成可能な前駆体を用いて電解液をゲル化し、セパレータと電極との間を接着する方法では、セパレータと電極間とを強固に接着することが可能であるものの、高負荷放電特性が低下するという課題が発生する。したがって、これらの方法は、セパレータと電極とを一体化する手法としては適当なものではなかった。   The amount of current consumed by a portable device tends to increase as the functionality of the device increases. For this reason, in designing a lithium secondary battery, it is not preferable to sacrifice the high-load discharge characteristics of the battery. A conventionally proposed method of bonding between a separator and an electrode using a polyvinylidene fluoride resin, or a method of gelling an electrolyte solution using a precursor capable of generating a polymer gel and bonding between the separator and the electrode Then, although it is possible to adhere | attach firmly between a separator and an electrode, the subject that a high load discharge characteristic falls will generate | occur | produce. Therefore, these methods are not suitable as a method for integrating the separator and the electrode.

一方、従来提案されている反応性ポリマーを用いてセパレータと電極とを接着する製造方法によれば、セパレータと電極との界面、および、その近傍の電解液のみがゲル化されるため、電解液全体としてイオン電導度を考えた場合、そのイオン電導度の低下を最小限にすることができる。その結果、セパレータと電極を接着することに起因する内部抵抗成分の増加を低く抑えることが可能となり、優れた高負荷放電特性を発現することができる。しかしながら、セパレータと電極の接着をごく少量の電解液のゲル化により行うため、セパレータと電極とが十分な強度で接着されない場合があった。   On the other hand, according to the manufacturing method in which the separator and the electrode are bonded using the conventionally proposed reactive polymer, only the electrolyte solution in the vicinity of the interface between the separator and the electrode is gelled. When the ionic conductivity is considered as a whole, a decrease in the ionic conductivity can be minimized. As a result, it is possible to suppress an increase in the internal resistance component caused by bonding the separator and the electrode, and to exhibit excellent high load discharge characteristics. However, since the separator and the electrode are bonded by gelation of a very small amount of the electrolyte, the separator and the electrode may not be bonded with sufficient strength.

特に、本願発明者による検討の結果、正極とセパレータとは十分な接着強度を示すものの、負極とセパレータとの接着強度は著しく低く、不十分なものであることがわかった。セパレータと電極とを一体化した電極群を用いた電池の場合、正極とセパレータ、および、負極とセパレータのいずれもが十分に接着されてはじめて、充放電時の反応の均一性が得られる。いずれか片方でも接着状態が不十分であれば、充放電時の反応の均一性が得られず優れたサイクル特性を発現することは難しい。これまでのところ、この原因に言及した公開情報はなく、改善提案もなされていない。   In particular, as a result of examination by the inventors of the present application, it has been found that although the positive electrode and the separator exhibit a sufficient adhesive strength, the adhesive strength between the negative electrode and the separator is extremely low, which is insufficient. In the case of a battery using an electrode group in which a separator and an electrode are integrated, the reaction uniformity during charging and discharging can be obtained only when both the positive electrode and the separator and the negative electrode and the separator are sufficiently bonded. If the adhesion state is insufficient in any one of them, it is difficult to obtain excellent cycle characteristics because the uniformity of the reaction during charge / discharge cannot be obtained. So far, there is no public information referring to this cause, and no improvement proposal has been made.

本発明は、上記問題を鑑み、セパレータと正負の電極間に十分な接着性を有すると共に高負荷放電特性に優れた非水電解液二次電池を製造するための製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a manufacturing method for manufacturing a non-aqueous electrolyte secondary battery having sufficient adhesion between a separator and positive and negative electrodes and excellent in high-load discharge characteristics. And

本発明の非水電解液二次電池の製造方法は、リチウムを可逆的に吸蔵放出可能な正極および負極と、前記正極および負極に挟まれており、両面にカチオン重合性の反応性ポリマーを担持したセパレータとを含む電極群を、ヘキサフルオロリン酸リチウムおよびテトラフルオロホウ酸リチウムからなる群から選ばれる少なくとも1種を含む非水電解液とともに電池ケースに収納する工程(A)と、前記工程(A)の後に、前記非水電解液で満たされた電極群を充電する工程(B)と、前記工程(B)の後に、前記反応性ポリマーの少なくとも一部を重合させることにより、前記正極と前記セパレータ、および、前記負極と前記セパレータとをそれぞれ接着する工程(C)とを包含する。 The method for producing a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode and a negative electrode capable of reversibly occluding and releasing lithium, and sandwiched between the positive electrode and the negative electrode, and carrying a cationically polymerizable reactive polymer on both sides A step (A) of storing the electrode group including the separator in a battery case together with a non-aqueous electrolyte containing at least one selected from the group consisting of lithium hexafluorophosphate and lithium tetrafluoroborate; After (A), charging the electrode group filled with the non-aqueous electrolyte (B), and after the step (B), polymerizing at least a part of the reactive polymer, A step (C) of bonding the separator and the negative electrode and the separator, respectively.

ある好ましい実施形態において、前記工程(B)において、電池電圧を3.5V以上で所定の時間維持する。   In a preferred embodiment, in the step (B), the battery voltage is maintained at 3.5 V or higher for a predetermined time.

ある好ましい実施形態において、前記工程(B)において、51分以上336分以下の時間、前記電池電圧を3.5V以上に維持し、かつ、充電終了時の開回路電圧が4.3V以下となるように、充電電圧、充電電流および維持時間を決定する。   In a preferred embodiment, in the step (B), the battery voltage is maintained at 3.5 V or more for a time of 51 minutes or more and 336 minutes or less, and the open circuit voltage at the end of charging is 4.3 V or less. Thus, the charging voltage, the charging current and the sustain time are determined.

ある好ましい実施形態において、前記非水電解液は、エチレンカーボネート、プロピレンカーボネートからなる群から選ばれる少なくとも1種の溶媒を含んでいる。   In a preferred embodiment, the nonaqueous electrolytic solution contains at least one solvent selected from the group consisting of ethylene carbonate and propylene carbonate.

ある好ましい実施形態において、前記電極群は、前記正極および前記負極の少なくとも一方と前記セパレータとをそれぞれ複数含み、前記正極および前記負極の少なくとも一方は前記セパレータを介して積層されている。   In a preferred embodiment, the electrode group includes a plurality of at least one of the positive electrode and the negative electrode and the separator, and at least one of the positive electrode and the negative electrode is laminated via the separator.

ある好ましい実施形態において、前記工程(C)において、前記反応性ポリマーの少なくとも一部と前記非水電解液とを重合させ前記非水電解液をゲル化させることにより前記正極と前記セパレータ、および、前記負極と前記セパレータとを前記ゲルによってそれぞれ接着する。   In a preferred embodiment, in the step (C), at least a part of the reactive polymer and the non-aqueous electrolyte are polymerized to gel the non-aqueous electrolyte, and the positive electrode and the separator, and The negative electrode and the separator are bonded together by the gel.

ある好ましい実施形態において、非水電解液二次電池の製造方法は、前記工程(B)と前記工程(C)との間に、前記電極群に対し加圧プレス処理を行う工程をさらに包含する。   In a preferred embodiment, the method for producing a non-aqueous electrolyte secondary battery further includes a step of performing a pressure press treatment on the electrode group between the step (B) and the step (C). .

ある好ましい実施形態において、非水電解液二次電池の製造方法は、前記工程(B)と前記工程(C)との間に、前記電池ケース内を減圧にする工程をさらに包含する。   In a preferred embodiment, the method for producing a non-aqueous electrolyte secondary battery further includes a step of reducing the pressure inside the battery case between the step (B) and the step (C).

本発明の非水電解液二次電池の製造方法によれば、電極とセパレータとを接着させる前に充電を行うことにより、固体−電解質界面反応に伴うガスや、非水電解液中に不純物として含まれていた水の分解に伴うガスを発生させる。こうしたガスは、主として最初の充電の際にのみ発生するため、その後、反応性ポリマーを反応させ、正極とセパレータおよび負極とセパレータをそれぞれ接合することによって、正極とセパレータおよび負極とセパレータの接合部分は、ガス発生の影響を受けず、強固な接着を維持することができる。   According to the method for producing a non-aqueous electrolyte secondary battery of the present invention, by performing charging before bonding the electrode and the separator, the gas accompanying the solid-electrolyte interface reaction or impurities in the non-aqueous electrolyte can be obtained. Generates gas from decomposition of water contained. Since these gases are mainly generated only at the time of the first charge, the reactive polymer is then reacted to join the positive electrode and the separator, and the negative electrode and the separator, respectively. It is possible to maintain strong adhesion without being affected by gas generation.

したがって、負極とセパレータ間の接着強度を改善し、充放電を繰り返した場合でも、高い反応均一性を維持することができると共に、落下・衝撃に対しても電極の電極群内でのズレを抑制することができ、優れたサイクル特性と信頼性を有する非水電解液二次電池を提供することができる。   Therefore, the adhesive strength between the negative electrode and the separator is improved, and even when charging and discharging are repeated, high reaction uniformity can be maintained, and displacement of the electrode within the electrode group can be suppressed against dropping and impact. And a non-aqueous electrolyte secondary battery having excellent cycle characteristics and reliability can be provided.

本願発明者は、反応性ポリマーを用いてセパレータと電極を接着する製造方法を用いた場合に負極とセパレータとの接着強度が低下する原因およびその対策について鋭意研究を重ね、以下の知見を得た。   The inventor of the present application has earnestly studied the cause of the decrease in the adhesive strength between the negative electrode and the separator when using the production method in which the separator and the electrode are bonded using a reactive polymer, and the following knowledge. .

具体的には、従来の製造方法によれば、反応性ポリマーを重合させ、電解液の一部をゲル化した時点では、セパレータと負極とは十分な強度で互いに接着しているが、この電極とセパレータが一体化された電極群を充電する際、セパレータと負極との界面で剥離が生じることが分かった。また、この剥離は、初充電時に電解液と負極活物質との表面で起こるSEI(Solid−Electrolyte−Interface、固体−電解質界面)形成反応で発生するガスや、電池系内に不純物として混入する水分の電気分解により発生するガスにより、負極合剤層中の内圧が上昇し、セパレータと負極との接着界面が破壊されることが原因であることが分かった。   Specifically, according to the conventional manufacturing method, when the reactive polymer is polymerized and a part of the electrolytic solution is gelled, the separator and the negative electrode are bonded to each other with sufficient strength. It was found that peeling occurs at the interface between the separator and the negative electrode when charging the electrode group integrated with the separator. In addition, this peeling is caused by gas generated by SEI (Solid-Electrolyte-Interface) formation reaction that occurs on the surface of the electrolytic solution and the negative electrode active material at the time of initial charge, and moisture mixed as impurities in the battery system. It was found that the internal pressure in the negative electrode mixture layer was increased by the gas generated by the electrolysis of the electrode and the adhesive interface between the separator and the negative electrode was destroyed.

本発明による非水電解質二次電池の製造方法は、これらの知見に基づき、電極とセパレータとの接着を行う工程の前に初充電を行う。初充電によってSEI形成反応および水分の電気分解が生じ、負極活物質表面で発生したガスは、負極合剤層中の内圧を上昇させることなく、すみやかに負極と反応性ポリマーを担持したセパレータのわずかな隙間を通じて電極群外へ導かれる。その後、負極とセパレータを接着することによって、負極とセパレータとは十分な強度を持って接着される。SEI形成反応および水分の電気分解は、初充電時に特有の現象であるため、その後、充放電を繰り返してもガスの発生はほとんどないため、負極とセパレータとの間の接着強度の劣化が抑制される。   Based on these findings, the method for manufacturing a nonaqueous electrolyte secondary battery according to the present invention performs initial charging before the step of bonding the electrode and the separator. The initial charge causes SEI formation reaction and water electrolysis, and the gas generated on the surface of the negative electrode active material does not increase the internal pressure in the negative electrode mixture layer, and promptly increases the amount of the separator carrying the negative electrode and the reactive polymer. It is guided out of the electrode group through a gap. Then, the negative electrode and the separator are bonded with sufficient strength by bonding the negative electrode and the separator. Since the SEI formation reaction and water electrolysis are unique phenomena at the time of initial charge, there is almost no gas generation even after repeated charge and discharge, so that deterioration of the adhesive strength between the negative electrode and the separator is suppressed. The

以下、図面を参照しながら本発明による非水電解質二次電池の製造方法の実施形態を説明する。   Hereinafter, embodiments of a method for manufacturing a nonaqueous electrolyte secondary battery according to the present invention will be described with reference to the drawings.

図1は本実施形態による非水電解質二次電池の製造方法の手順を示すフローチャートである。図1に示すように、まず、電極群を作製する(ステップ101)。次に、作製した電極群を電池ケースへ収納し(ステップ102)、非水電解質を注入した後(ステップ103)、電池ケースを封止する(ステップ104)。その後、初充電を行い(ステップ105)、電極とセパレータとを接着することによって(ステップ105)非水電解質二次電池が完成する。以下、各工程を詳細に説明する。   FIG. 1 is a flowchart showing a procedure of a method for manufacturing a nonaqueous electrolyte secondary battery according to the present embodiment. As shown in FIG. 1, first, an electrode group is produced (step 101). Next, the produced electrode group is accommodated in a battery case (step 102), a nonaqueous electrolyte is injected (step 103), and then the battery case is sealed (step 104). Thereafter, initial charging is performed (step 105), and the electrode and the separator are bonded (step 105) to complete the nonaqueous electrolyte secondary battery. Hereinafter, each process will be described in detail.

(電極群の作製)
まず正極、負極およびセパレータを含む電極群を作製する。図2は、電極群13の断面を模式的に拡大して示している。電極群13は、正極1と負極2とセパレータ3とを含む。正極1および負極2は、それぞれリチウムを可逆的に吸蔵および放出することができる。
(Production of electrode group)
First, an electrode group including a positive electrode, a negative electrode, and a separator is prepared. FIG. 2 schematically shows an enlarged cross section of the electrode group 13. The electrode group 13 includes a positive electrode 1, a negative electrode 2, and a separator 3. The positive electrode 1 and the negative electrode 2 can occlude and release lithium reversibly, respectively.

正極1は、正極集電体1aと正極集電体1aの片面に担持させた正極合剤1bを含んでいる。正極集電体1aには、アルミニウム、ニッケルおよびニッケル系合金(主要な添加元素はアルミニウム、ケイ素、炭素など)など、リチウム二次電池用正極の集電体として公知の材料を用いることができる。正極合剤1bは正極活物質を含み、必要に応じてアセチレンブラックなどの導電材料、ポリフッ化ビニリデンなどの結着剤と共にペースト化され、正極集電体1aに塗布、乾燥されることによって、正極集電体1aの片面に担持される。   The positive electrode 1 includes a positive electrode current collector 1a and a positive electrode mixture 1b supported on one surface of the positive electrode current collector 1a. As the positive electrode current collector 1a, a material known as a positive electrode current collector for a lithium secondary battery, such as aluminum, nickel, and a nickel-based alloy (main additive elements such as aluminum, silicon, and carbon) can be used. The positive electrode mixture 1b contains a positive electrode active material, and is formed into a paste together with a conductive material such as acetylene black and a binder such as polyvinylidene fluoride, if necessary, and is applied to the positive electrode current collector 1a and dried. It is carried on one side of the current collector 1a.

正極活物質には、リチウムを吸蔵および放出する公知の正極活物質が用いられる。例えば、従来から正極活物質に用いられているLixCoO2(0.95≦x≦1.05)、LixNiO2(0.95≦x≦1.05)、LixMnO2(0.9≦x≦1.05)、LixCoyNi(1-y)2(0.95≦x≦1.05、0<y≦0.80)、LixNiyMnzCo(1-y-z)2(0.95≦x≦1.05、0<y≦0.80、0<z≦0.50)といった層状のリチウム含有複合酸化物やこれらの金属元素の一部を他元素で置換したもの、また、LixMn24(0.90≦x≦1.20)といったスピネル型のリチウム含有複合酸化物やMnの一部を他元素で置換したものなどが挙げられる。 As the positive electrode active material, a known positive electrode active material that occludes and releases lithium is used. For example, Li x CoO 2 (0.95 ≦ x ≦ 1.05), Li x NiO 2 (0.95 ≦ x ≦ 1.05), Li x MnO 2 (0) conventionally used for positive electrode active materials. .9 ≦ x ≦ 1.05), Li x Co y Ni (1-y) O 2 (0.95 ≦ x ≦ 1.05, 0 <y ≦ 0.80), Li x Ni y Mn z Co ( 1-yz) Layered lithium-containing composite oxides such as O 2 (0.95 ≦ x ≦ 1.05, 0 <y ≦ 0.80, 0 <z ≦ 0.50) and some of these metal elements Examples include those substituted with other elements, spinel-type lithium-containing composite oxides such as Li x Mn 2 O 4 (0.90 ≦ x ≦ 1.20), and those obtained by substituting part of Mn with other elements. It is done.

負極2は、負極集電体2aと、負極集電体2aの片面に担持させた負極合剤2bを含んでいる。負極集電体2aには、銅、ニッケル、ステンレスなど、リチウム二次電池用負極の集電体として公知の材料を用いることができる。負極合剤2bは、負極活物質を含み、必要に応じて、アセチレンブラック、黒鉛粉末、繊維状炭素材料などの導電材料、スチレンブタジエンゴム、ポリフッ化ビニリデンなどの結着剤、カルボキシメチルセルロースなどの増粘剤と共にペースト化され、負極集電体2aに塗布、乾燥されることによって、負極集電体2aの片面に担持される。負極活物質をホイル状の負極集電体2a上に、負極活物質を含む負極合剤2bを蒸着やスパッタリングにより形成してもよい。   The negative electrode 2 includes a negative electrode current collector 2a and a negative electrode mixture 2b supported on one surface of the negative electrode current collector 2a. As the negative electrode current collector 2a, a material known as a current collector of a negative electrode for a lithium secondary battery, such as copper, nickel, and stainless steel, can be used. The negative electrode mixture 2b contains a negative electrode active material, and if necessary, conductive materials such as acetylene black, graphite powder and fibrous carbon material, binders such as styrene butadiene rubber and polyvinylidene fluoride, and carboxymethyl cellulose and the like. It is pasted together with the adhesive, applied to the negative electrode current collector 2a, and dried to be carried on one side of the negative electrode current collector 2a. The negative electrode mixture 2b containing the negative electrode active material may be formed on the foil-like negative electrode current collector 2a by vapor deposition or sputtering.

負極活物質には、リチウムを吸蔵および放出する公知の負極活物質が用いられる。特に、初充電時に負極活物質が電解液と反応しSEIを形成すると共に電解液の分解物がガス化する場合に本発明による効果が大きい。このような負極活物質としては例えば、従来から非水電解液に用いられている天然黒鉛や人造黒鉛などの黒鉛材料、非晶質炭素材料、また、Liと合金化することが知られているAl、Sn、Siなどの化合物、酸化物などが挙げられる。   A known negative electrode active material that absorbs and releases lithium is used as the negative electrode active material. In particular, the effect of the present invention is great when the negative electrode active material reacts with the electrolytic solution during initial charging to form SEI and the decomposition product of the electrolytic solution is gasified. As such a negative electrode active material, for example, graphite materials such as natural graphite and artificial graphite conventionally used for non-aqueous electrolytes, amorphous carbon materials, and alloying with Li are known. Examples include compounds such as Al, Sn, and Si, and oxides.

セパレータ3は、微多孔膜3aと、微多孔膜3aの両面に担持された反応性ポリマー3bとを含む。微多孔膜3aとして、大きなイオン透過度を持ち、所定の機械的強度および絶縁性を備えた膜が用いられる。好ましくは、100℃以上200℃以下の温度で孔を閉塞し、イオン透過度の抵抗が高くなる機能を備える。耐有機溶剤性および疎水性にすぐれるという観点から、ポリプロピレン、ポリエチレンなどを単独または組み合わせたポリオレフィン樹脂が好ましい。微多孔膜3aの孔径は、正極合剤1bおよび負極合剤2bから脱離した活物質、結着剤、導電剤が透過しない範囲であることが好ましく、例えば、0.01〜1μmであることが好ましい。微多孔膜3aの厚みは、一般的には、5〜100μmの範囲で選択される。また、空孔率は、電子やイオンの透過性と素材や膜圧に応じて決定されるが、一般的には30〜80%であることが好ましい。微多孔膜3aは、組成の異なる微多孔膜を積層したものを用いてもよい。例えば、耐熱性と孔閉塞性の観点から、ポリプロピレンとポリエチレンの多層膜を用いてもよい。   The separator 3 includes a microporous membrane 3a and a reactive polymer 3b supported on both sides of the microporous membrane 3a. As the microporous membrane 3a, a membrane having a large ion permeability and having a predetermined mechanical strength and insulating property is used. Preferably, the pores are closed at a temperature of 100 ° C. or higher and 200 ° C. or lower, and a function of increasing the resistance of ion permeability is provided. From the viewpoint of excellent organic solvent resistance and hydrophobicity, a polyolefin resin in which polypropylene, polyethylene or the like is used alone or in combination is preferable. The pore diameter of the microporous membrane 3a is preferably in a range in which the active material, binder, and conductive agent detached from the positive electrode mixture 1b and the negative electrode mixture 2b do not permeate, for example, 0.01 to 1 μm. Is preferred. The thickness of the microporous membrane 3a is generally selected in the range of 5 to 100 μm. The porosity is determined according to the permeability of the electrons and ions, the material, and the film pressure, but is generally preferably 30 to 80%. As the microporous membrane 3a, a laminate of microporous membranes having different compositions may be used. For example, a multilayer film of polypropylene and polyethylene may be used from the viewpoints of heat resistance and pore blocking properties.

セパレータ3に担持させる反応性ポリマー3bは、その反応性基の重合反応によって、少なくともセパレータ3と電極との界面近傍の電解液をゲル化し、セパレータと電極を接着するように機能するものであればよい。重合反応は、ラジカル重合反応およびカチオン重合反応のいずれでもよい。しかし、ラジカル重合反応の場合、反応性の高いラジカル重合開始剤を添加する必要があり、電解液との副反応が生じることも考えられるため、カチオン重合によって重合する反応性ポリマー3bを用いることが好ましい。   The reactive polymer 3b to be carried on the separator 3 can be any polymer that functions to gel at least the electrolyte near the interface between the separator 3 and the electrode by the polymerization reaction of the reactive group and to adhere the separator and the electrode. Good. The polymerization reaction may be a radical polymerization reaction or a cationic polymerization reaction. However, in the case of radical polymerization reaction, it is necessary to add a highly reactive radical polymerization initiator and a side reaction with the electrolytic solution may occur. Therefore, the reactive polymer 3b that is polymerized by cationic polymerization may be used. preferable.

このような反応性ポリマーとしては、特許文献8に開示されているようなイソシアネート基に対して反応し得る反応性基とカチオン重合性官能基とを分子中にそれぞれ複数有する架橋性ポリマーを多官能イソシアネートと反応させることにより、部分的に架橋構造を備えた反応性ポリマーや特許文献9に開示されているように、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する架橋性ポリマーを酸無水物と反応させることにより、部分的に架橋構造を有する反応性ポリマーなどが挙げられる。   As such a reactive polymer, a polyfunctional crosslinking polymer having a plurality of reactive groups capable of reacting with an isocyanate group and a cationic polymerizable functional group in the molecule as disclosed in Patent Document 8 is used. At least one kind of reactivity selected from a 3-oxetanyl group and an epoxy group in the molecule as disclosed in Patent Document 9 or a reactive polymer partially having a crosslinked structure by reacting with isocyanate. By reacting a crosslinkable polymer having a group with an acid anhydride, a reactive polymer having a partially cross-linked structure may be mentioned.

正極1および負極2では、正極合剤1bおよび負極合剤2bが反応性ポリマー3bと接触するようにセパレータ3を挟持することにより、電極群13が構成されている。   In the positive electrode 1 and the negative electrode 2, the electrode group 13 is configured by sandwiching the separator 3 so that the positive electrode mixture 1b and the negative electrode mixture 2b are in contact with the reactive polymer 3b.

(電池ケースへの収納)
次に電極群13を電池ケース収納する。図3(a)および(b)は電池ケース14に収納された電極群13を示す斜視図および断面図である。電池ケース14としては、AlやFe等の金属性の電池缶や金属箔の両面に樹脂フィルムをラミネートしたラミネートフィルムを袋状にしたものを用いることができる。軽量で薄型の二次電池を実現するためには、ラミネートフィルム製の電池ケースを用いることが好ましい。正極1の正極集電体1aおよび負極2の負極集電体2aには、それぞれ、外部接続用のアルミ製リード11およびニッケル製リード12が取り付けられている。
(Storage in battery case)
Next, the electrode group 13 is housed in a battery case. FIGS. 3A and 3B are a perspective view and a sectional view showing the electrode group 13 housed in the battery case 14. As the battery case 14, a metallic battery can such as Al or Fe or a laminate film obtained by laminating a resin film on both surfaces of a metal foil can be used. In order to realize a lightweight and thin secondary battery, it is preferable to use a battery case made of a laminate film. An aluminum lead 11 and a nickel lead 12 for external connection are attached to the positive electrode current collector 1a of the positive electrode 1 and the negative electrode current collector 2a of the negative electrode 2, respectively.

(非水電解液の注入)
続いて、電池ケース14内に非水電解液を注入する。非水電解液の注入は、通常、常温、常圧下で行う。しかし、非水電解液の粘度が高い場合などには、加温や加圧をした状態で注入してもよい。また、非水電解液を注入した後、電池ケース内を減圧状態にすることにより脱気し、その後、常圧に戻すことにより電極群内への非水電解液の含浸を促進することが好ましい。注入した非水電解液は、正極合剤1b、負極合剤2bおよび微多孔膜3aの空隙に充填され、電極群13が非水電解液で満たされる。
(Non-aqueous electrolyte injection)
Subsequently, a nonaqueous electrolytic solution is injected into the battery case 14. The nonaqueous electrolyte is usually injected at room temperature and normal pressure. However, when the viscosity of the non-aqueous electrolyte is high, it may be injected in a heated or pressurized state. Further, after injecting the non-aqueous electrolyte, it is preferable to deaerate the inside of the battery case by reducing the pressure, and then to promote the impregnation of the non-aqueous electrolyte into the electrode group by returning to normal pressure. . The injected nonaqueous electrolytic solution is filled in the gaps of the positive electrode mixture 1b, the negative electrode mixture 2b, and the microporous membrane 3a, and the electrode group 13 is filled with the nonaqueous electrolytic solution.

非水電解液は、非水溶媒と、非水溶媒に溶解するリチウム塩とから構成され。非水溶媒としては、公知のものを特に制限なく用いることができる。例えば、エチレンカーボネ−ト(EC)、プロピレンカ−ボネ−ト(PC)、ブチレンカーボネート(BC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の非環状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、N−メチルピロリドンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。   The non-aqueous electrolyte is composed of a non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent. As the non-aqueous solvent, known ones can be used without particular limitation. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2- Acyclic ethers such as dimethoxyethane (DME), 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane , Formamide, Acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl Examples include aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, and N-methylpyrrolidone. Use a mixture of seeds or more.

特に、非水溶媒が初充電時に負極活物質と反応し、SEIと呼ばれる還元被膜を形成すると共に分解物がガス化する場合に本発明による製造方法は好適に用いられる。このため、負極活物質とSEI形成反応を起こすことが知られているEC、PC、DMC、DEC、EMCを含む非水溶媒を用いた場合に本発明の効果は顕著に現れる。また、優れた高負荷放電特性を得るためには、比誘電率の大きいECおよびPCの少なくとも一方を非水溶媒中に含むことが好ましい。   In particular, when the non-aqueous solvent reacts with the negative electrode active material during the initial charge to form a reduced coating called SEI and the decomposition product is gasified, the production method according to the present invention is suitably used. For this reason, the effect of the present invention remarkably appears when a non-aqueous solvent containing EC, PC, DMC, DEC, and EMC, which is known to cause SEI formation reaction with the negative electrode active material, is used. In order to obtain excellent high-load discharge characteristics, it is preferable that at least one of EC and PC having a large relative dielectric constant is contained in the non-aqueous solvent.

非水溶媒に溶解するリチウム塩としては、公知のものを特に制限なく用いることができる。例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム等を挙げることができ、これらを使用する非水溶媒に一種又は二種以上を組み合わせて溶解させ用いることができる。 Any known lithium salt that can be dissolved in the non-aqueous solvent can be used without particular limitation. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, lithium tetraphenylborate and the like, and a nonaqueous solvent using these may be used alone or in combination of two or more It can be dissolved and used.

上述したリチウム塩のなかでも、特に、LiBF4(ヘキサフルオロホウ酸リチウム)およびLiPF6(ヘキサフルオロリン酸リチウム)は、それ自体、カチオン重合触媒として有効に機能するので、LiBF4およびLiPF6の少なくとも一方を電解液中に含むことが好ましい。電解液中に含むリチウム塩としてLiBF4やLiPF6を用いない場合には、別途、セパレータに担持される反応性ポリマーのカチオン重合反応を促進させる触媒を電解液中に添加することが好ましい。このようなカチオン重合触媒としては、オニウム塩が好ましい。 Among the lithium salts mentioned above, in particular, LiBF 4 (lithium hexafluoroborate) and LiPF 6 (lithium hexafluorophosphate) themselves effectively function as a cationic polymerization catalyst, so that LiBF 4 and LiPF 6 It is preferable to include at least one in the electrolytic solution. When LiBF 4 or LiPF 6 is not used as the lithium salt contained in the electrolytic solution, it is preferable to separately add a catalyst for promoting the cationic polymerization reaction of the reactive polymer supported on the separator to the electrolytic solution. As such a cationic polymerization catalyst, an onium salt is preferable.

(電池ケースの封止)
非水電解液を注入した後、電池ケースの開口部を封止することにより、電池内部を密封する。この際、ラミネートフィルム製の電池ケース14を用いた場合には、開口部を熱溶着して封止することが好ましい。また、電池ケースの開口部を封止する際、電池ケース内部を減圧状態にすることもできる。
(Battery case sealing)
After injecting the non-aqueous electrolyte, the inside of the battery is sealed by sealing the opening of the battery case. At this time, when the battery case 14 made of a laminate film is used, it is preferable to seal the opening by heat welding. Moreover, when sealing the opening part of a battery case, the inside of a battery case can also be made into a pressure reduction state.

なお、組み立て工程での電極群13の取り扱いをより簡便にし、生産性を向上させることを目的として、積層した電極群13を加圧プレスすることにより、電極と反応性ポリマーを担持したセパレータ3を仮圧着することもできる。この際の加圧力は、セパレータ3の微細孔をつぶさない範囲にする必要があり、加圧力としては、5N/cm2以下とすることが好ましい。 For the purpose of simplifying the handling of the electrode group 13 in the assembly process and improving productivity, the separator 3 carrying the electrode and the reactive polymer is pressed by pressing the stacked electrode group 13. Temporary pressure bonding can also be performed. At this time, the applied pressure needs to be within a range that does not crush the fine holes of the separator 3, and the applied pressure is preferably 5 N / cm 2 or less.

(初充電)
このようにして作製した非水電解液二次電池に対し、反応性ポリマーを担持したセパレータ3と正極1および負極2とを接着する工程の前に、初充電を行う。初充電では、負極活物質と電解液が反応し、SEIを形成すると共に電解液の分解によるガス発生が起きる電圧以上に電池を保持することが好ましい。このため、電池電圧として正極1と負極2との間に3.5V以上の電圧を印加することが好ましい。一方、正極1および負極2間の電圧が4.3Vより高いと非水電解液二次電池の電池特性が劣化してしまうため好ましくない。上述したSEI反応および電解液の分解によるガスの発生をほぼ完全に完了するように、電池電圧を3.5V以上にし、一定時間保持しておくことがより好ましい。
(First charge)
The non-aqueous electrolyte secondary battery thus manufactured is first charged before the step of bonding the separator 3 supporting the reactive polymer to the positive electrode 1 and the negative electrode 2. In the initial charge, the negative electrode active material and the electrolytic solution react to form SEI, and it is preferable to hold the battery above the voltage at which gas generation occurs due to decomposition of the electrolytic solution. For this reason, it is preferable to apply a voltage of 3.5 V or more between the positive electrode 1 and the negative electrode 2 as the battery voltage. On the other hand, when the voltage between the positive electrode 1 and the negative electrode 2 is higher than 4.3 V, the battery characteristics of the nonaqueous electrolyte secondary battery are deteriorated, which is not preferable. More preferably, the battery voltage is set to 3.5 V or higher and held for a certain period of time so that the generation of gas due to the SEI reaction and the decomposition of the electrolyte solution described above is almost completely completed.

充電により負極電位が所定の値よりも低くなると、図4に示すように、負極合剤2bの空隙に保持された非水電解液15中のECやPC等の溶媒が分解され、負極合剤2b中の負極活物質表面にSEIが形成される。このとき、溶媒分子の一部位が切れ、副反応としてガス16が発生する。例えば、ECを含む溶媒では、CH4、CO、CO2等が発生することが知られている。SEIは溶媒の還元分解の進行と共に徐々に成長し安定化する。このため、SEIの形成反応が終了するまで、ガスの発生は持続し、ガスの発生が収束するまでには、一定時間が必要になる。詳細な実験の結果、電池電圧を3.5V以上に保持する時間は51分以上であることが好ましいことが分かった。 When the negative electrode potential becomes lower than a predetermined value due to charging, as shown in FIG. 4, the solvent such as EC or PC in the non-aqueous electrolyte 15 held in the gap of the negative electrode mixture 2b is decomposed, and the negative electrode mixture SEI is formed on the surface of the negative electrode active material in 2b. At this time, one part of the solvent molecule is cut, and gas 16 is generated as a side reaction. For example, it is known that CH 4 , CO, CO 2 and the like are generated in a solvent containing EC. SEI gradually grows and stabilizes as the reductive decomposition of the solvent proceeds. For this reason, gas generation continues until the SEI formation reaction is completed, and a certain time is required until gas generation converges. As a result of detailed experiments, it was found that the time for maintaining the battery voltage at 3.5 V or higher is preferably 51 minutes or longer.

電池電圧を3.5V以上に保持する時間の上限に特に制限はない。しかし、充電時間が長くなると生産性が低下するため、電池電圧を3.5V以上に保持する時間はあまり長くないほうが好ましい。具体的には336分程度より短いほうが好ましい。電池電圧を3.5V以上に保持する時間が51分以上であれば、ガス発生反応は終止していると考えられるため、生産性を考慮すると、より好ましくは51分により近い時間である。   There is no particular limitation on the upper limit of the time for holding the battery voltage at 3.5 V or higher. However, since the productivity decreases as the charging time becomes longer, it is preferable that the time for holding the battery voltage at 3.5 V or higher is not so long. Specifically, shorter than about 336 minutes is preferable. If the time for maintaining the battery voltage at 3.5 V or higher is 51 minutes or longer, the gas generation reaction is considered to have ended. Therefore, considering productivity, the time is more preferably closer to 51 minutes.

初充電の際、反応性ポリマー3bの重合反応の進行を抑制するため、二次電池を30℃以下の温度で保持することが好ましい。初充電時の充電電流値は、大電流で充電した場合には、負極上に金属リチウムが電析し、電池容量が減少することがあるので、1時間充放電率電流値(1C)以下とすることが好ましい。   In the initial charge, it is preferable to hold the secondary battery at a temperature of 30 ° C. or lower in order to suppress the progress of the polymerization reaction of the reactive polymer 3b. When charging with a large current, the charging current value at the time of initial charging is such that metal lithium is electrodeposited on the negative electrode and the battery capacity may decrease, so that the charge / discharge rate current value (1C) or less is 1 hour or less. It is preferable to do.

図4において矢印で示すように、初充電で発生したガスは、負極合剤層中の内圧を上昇させることなく、すみやかに負極合剤2bと反応性ポリマー3bを担持したセパレータ3のわずかな隙間を通じて電極群13外へ導かれる。より迅速に、かつ、完全に反応性ポリマーを担持したセパレータ3と負極2間に存在するガスを電極群外へ導くためには、初充電後に二次電池を加圧プレスすることが好ましい。加圧の圧力は、0.5N/cm2以上5N/cm2以下が好ましい。圧力が、0.5N/cm2未満である場合、ガスを電極群から押し出す効果が小さい。また、5N/cm2以上ではセパレータの微細孔を押しつぶしてしまう可能性がある。また、同様の効果をえるために、二次電池を加圧または拘束した状態で初充電を行ってもよい。 As shown by the arrows in FIG. 4, the gas generated by the initial charge is a slight gap between the separator 3 carrying the negative electrode mixture 2b and the reactive polymer 3b immediately without increasing the internal pressure in the negative electrode mixture layer. Through the electrode group 13 is guided. In order to introduce the gas existing between the separator 3 and the negative electrode 2 carrying the reactive polymer completely and more quickly, the secondary battery is preferably pressure-pressed after the initial charge. The pressing pressure is preferably 0.5 N / cm 2 or more and 5 N / cm 2 or less. When the pressure is less than 0.5 N / cm 2 , the effect of pushing out the gas from the electrode group is small. Further, if it is 5 N / cm 2 or more, there is a possibility of crushing the fine pores of the separator. Moreover, in order to obtain the same effect, initial charging may be performed in a state where the secondary battery is pressurized or restrained.

また、初充電で発生したガス自体を、電池ケース14の外へ排出することも好ましい。この場合、初充電工程の後、電池ケース14の一端を開封し、減圧環境下で脱気する。ラミネートフィルム製の電池ケース14を用いた場合には、開封部を熱溶着することによって電池ケース14を再び封止することができる。   It is also preferable to discharge the gas generated by the initial charge to the outside of the battery case 14. In this case, after the initial charging step, one end of the battery case 14 is opened and deaerated under a reduced pressure environment. When the battery case 14 made of a laminate film is used, the battery case 14 can be sealed again by thermally welding the opening portion.

(電極とセパレータとの接着)
初充電後、反応性ポリマー3bの少なくとも一部を重合させることにより、正極1とセパレータ3、および、負極2とセパレータ3とをそれぞれ接着する。反応性ポリマー3bとしてカチオン重合性ポリマーを用いる場合には、二次電池を加温された環境下に保持する。これにより、反応性ポリマー3bのカチオン重合反応が開始し、反応性ポリマー3b同士、または、反応性ポリマー分子内で架橋反応が起きる。このとき、溶媒が重合した反応性ポリマー3bに抱き込まれ、ゲル化する。図5に示すように、正極合剤1bと微多孔膜3aとの界面近傍、および、負極合剤2bと微多孔膜3aとの界面近傍の電解液がゲル化し、ゲル15’が生成する。その結果、正極1とセパレータ3、および負極2とセパレータ3とがゲル15’により強固に接着された非水電解液二次電池を得ることができる。電極とセパレータとの接着の均一性を高めるために、二次電池を加圧または拘束状態で接着、つまり反応性ポリマー3bの重合を行うことが好ましい。
(Adhesion between electrode and separator)
After the initial charge, at least a part of the reactive polymer 3b is polymerized to bond the positive electrode 1 and the separator 3, and the negative electrode 2 and the separator 3, respectively. When a cationic polymerizable polymer is used as the reactive polymer 3b, the secondary battery is held in a heated environment. Thereby, the cationic polymerization reaction of the reactive polymers 3b starts, and a crosslinking reaction occurs between the reactive polymers 3b or in the reactive polymer molecules. At this time, the solvent is embraced by the polymerized reactive polymer 3b and gels. As shown in FIG. 5, the electrolyte solution in the vicinity of the interface between the positive electrode mixture 1b and the microporous film 3a and in the vicinity of the interface between the negative electrode mixture 2b and the microporous film 3a gels to generate a gel 15 '. As a result, it is possible to obtain a non-aqueous electrolyte secondary battery in which the positive electrode 1 and the separator 3 and the negative electrode 2 and the separator 3 are firmly bonded by the gel 15 ′. In order to improve the uniformity of the adhesion between the electrode and the separator, it is preferable to bond the secondary battery in a pressurized or constrained state, that is, to polymerize the reactive polymer 3b.

反応性ポリマー3bの重合反応を行うための二次電池を保持する温度は、40℃以上80℃以下であることが好ましい。40℃より低いと、重合が実用的な反応速度で起こらず、生産性が低くなる。一方、温度が高いほど反応は促進されるが、80℃よりも温度が高いと、電池特性の劣化やセパレータの収縮等の問題が発生する。   The temperature at which the secondary battery for carrying out the polymerization reaction of the reactive polymer 3b is preferably 40 ° C. or higher and 80 ° C. or lower. When the temperature is lower than 40 ° C., polymerization does not occur at a practical reaction rate, resulting in low productivity. On the other hand, the higher the temperature, the more the reaction is promoted. However, when the temperature is higher than 80 ° C., problems such as deterioration of battery characteristics and separator shrinkage occur.

また、反応のための加温時間は、短すぎると、反応性ポリマーと非水電解液のゲル化が十分進行せず、電極とセパレータの接着強度が十分なものとならない。一方、長すぎると電池特性が劣化する場合がある。このため、加温時間は、12時間以上48時間以下とすることが好ましい。   On the other hand, if the heating time for the reaction is too short, gelation of the reactive polymer and the non-aqueous electrolyte does not proceed sufficiently, and the adhesive strength between the electrode and the separator is not sufficient. On the other hand, if the length is too long, battery characteristics may deteriorate. For this reason, it is preferable that heating time shall be 12 hours or more and 48 hours or less.

加温環境に保管されるときの電池電圧は、低すぎると、加温保管時の自己放電で過放電状態となり電池特性が劣化する。一方、電池電圧が高すぎると、加温保存劣化が起き電池特性が劣化する。したがって、加温環境に保管される間、電池電圧を3.7V以上4.0V以下に保つことが好ましい。   If the battery voltage when stored in a warm environment is too low, the battery characteristics are deteriorated due to overdischarge due to self-discharge during warm storage. On the other hand, when the battery voltage is too high, warming storage deterioration occurs and battery characteristics deteriorate. Therefore, it is preferable to keep the battery voltage at 3.7V or higher and 4.0V or lower while being stored in a warm environment.

(非水電解液二次電池の完成)
上記工程により、非水電解液二次電池が完成する。本発明の非水電解液二次電池の製造方法によれば、電極とセパレータとを接着させる前に、充電を行ってSEIを負極活物質の表面に形成させる。これにより、SEI反応に伴うガスや、非水電解液中に不純物として含まれていた水の分解に伴うガスを発生させ、初充電の際にのみ生じるこうしたガスを負極合剤から排除することができる。こうしたガスは、それ以降、充電を繰り返してもほとんど発生しない。このため、初充電後に反応性ポリマーを反応させ、正極とセパレータおよび負極とセパレータをそれぞれ接合することによって、充放電を繰り返しても、電極とセパレータとの強固な接着を維持することのできる非水電解質二次電池を得ることができる。
(Completion of non-aqueous electrolyte secondary battery)
A nonaqueous electrolyte secondary battery is completed through the above steps. According to the method for producing a non-aqueous electrolyte secondary battery of the present invention, charging is performed to form SEI on the surface of the negative electrode active material before bonding the electrode and the separator. As a result, the gas accompanying the SEI reaction and the gas accompanying the decomposition of the water contained as impurities in the non-aqueous electrolyte can be generated, and such a gas generated only at the first charge can be excluded from the negative electrode mixture. it can. Since then, such gas is hardly generated even after repeated charging. For this reason, after the initial charge, the reactive polymer is reacted, and the positive electrode and the separator and the negative electrode and the separator are bonded to each other, so that the non-water that can maintain the strong adhesion between the electrode and the separator even when charging and discharging are repeated. An electrolyte secondary battery can be obtained.

これにより、充放電を繰り返しても、電極とセパレータとの接合状態が変化したり、電極とセパレータとの間に隙間が生じることが抑制されるため、充放電を繰り返しても高い反応均一性を維持し、電池特性の変化が抑制される。また、電極とセパレータとが強い強度で接着され、その接合強度が維持されるため、落下や衝撃を受けても正極や負極が電極群内でずれることがなく、優れたサイクル特性と信頼性を得ることができる。   As a result, even if charging / discharging is repeated, the bonding state between the electrode and the separator is prevented from changing or a gap is prevented between the electrode and the separator. The change in battery characteristics is suppressed. In addition, since the electrode and separator are bonded with high strength and the bonding strength is maintained, the positive electrode and the negative electrode do not shift within the electrode group even when subjected to dropping or impact, and excellent cycle characteristics and reliability are achieved. Can be obtained.

なお、上述した実施形態では、各集電体の片面に活物質を含む合剤を形成した正極および負極を備えた非水電解質二次電池を例にあげて、非水電解質二次電池製造方法を説明したが、本発明は上記実施形態で説明した非水電解質二次電池の構造に限られない。たとえば、集電体の両面に活物質を含む合剤を形成した正極および負極と反応性ポリマーを担持したセパレータを交互に積み重ね、積層数を増やした電極群を用いた非水電解液二次電池の製造にも本発明を適用することができる。また、正極と負極とを反応性ポリマーを担持したセパレータを介して巻き取った捲回型の電極群を用いた非水電解液二次電池にも同様に適用可能である。さらに、電池の形状は、特に限定されるものではなく、円筒形、扁平形および角形のいずれでもよい。   In the above-described embodiment, a non-aqueous electrolyte secondary battery manufacturing method is exemplified by using a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode in which a mixture containing an active material is formed on one side of each current collector. However, the present invention is not limited to the structure of the nonaqueous electrolyte secondary battery described in the above embodiment. For example, a non-aqueous electrolyte secondary battery using an electrode group in which a positive electrode and a negative electrode in which a mixture containing an active material is formed on both sides of a current collector and a separator supporting a reactive polymer are alternately stacked to increase the number of layers The present invention can also be applied to the manufacture of Further, the present invention can be similarly applied to a non-aqueous electrolyte secondary battery using a wound electrode group in which a positive electrode and a negative electrode are wound through a separator carrying a reactive polymer. Furthermore, the shape of the battery is not particularly limited, and may be any of a cylindrical shape, a flat shape, and a square shape.

以下、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

<実施例1>
(反応性ポリマーを担持したセパレータの作製)
図2に示すように、 微多孔膜3aとして、ポリエチレンからなり、厚さ20μmの微多孔膜3aを用意した。微多孔膜3aの平均孔径は、0.1μmであり、空孔率は、41%である。
<Example 1>
(Preparation of a separator carrying a reactive polymer)
As shown in FIG. 2, a microporous membrane 3a made of polyethylene and having a thickness of 20 μm was prepared as the microporous membrane 3a. The average pore diameter of the microporous membrane 3a is 0.1 μm, and the porosity is 41%.

反応性ポリマーとして、特許文献9の実施例に開示されている方法より作製された物質を用いた。具体的には、まず、還流冷却管を取り付けた500ml容量の三つ口フラスコにメチルメタクリレート60.0g 、3−エチル−3−オキセタニルメチルメタクリレート16.0g、3,4−エポキシシクロヘキシルメチルアクリレート4.0g、炭酸エチレン226.6gおよびN,N’−アゾビスイソブチロニトリル0.15gを投入し、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル重合を8時間行った。この後、得られた反応混合物を40℃まで冷却した。この反応混合物に炭酸ジエチル226.6gとN,N’−アゾビスイソブチロニトリル0.15gを加え、再度、70℃ に加熱して、ラジカル重合を更に8時間行った。この後、得られた反応混合物を40℃ まで冷却して、架橋性ポリマーの炭酸エチレン/炭酸ジエチル混合溶媒溶液(濃度15重量%)を得た。   As the reactive polymer, a substance prepared by the method disclosed in the example of Patent Document 9 was used. Specifically, first, 60.0 g of methyl methacrylate, 16.0 g of 3-ethyl-3-oxetanylmethyl methacrylate, and 3,4-epoxycyclohexylmethyl acrylate were added to a 500 ml three-necked flask equipped with a reflux condenser. 0 g, 226.6 g of ethylene carbonate and 0.15 g of N, N′-azobisisobutyronitrile were added, mixed with stirring for 30 minutes while introducing nitrogen gas, and then heated to 70 ° C. to perform radical polymerization. I went for 8 hours. After this, the resulting reaction mixture was cooled to 40 ° C. To this reaction mixture, 226.6 g of diethyl carbonate and 0.15 g of N, N′-azobisisobutyronitrile were added, and the mixture was heated again to 70 ° C., and radical polymerization was further performed for 8 hours. Thereafter, the resulting reaction mixture was cooled to 40 ° C. to obtain an ethylene carbonate / diethyl carbonate mixed solvent solution (concentration: 15% by weight) of the crosslinkable polymer.

次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、600mlのメタノール中に投入して、ポリマーを沈殿させた。このポリマーを濾別し、メタノールにて数回洗浄した後、乾燥管に入れ、これに液体窒素を気化させた乾燥窒素ガス(露点温度−70℃ 以下)を流通させて乾燥した後、更に、デシケータ中で6時間真空乾燥して、架橋性ポリマーを得た。   Next, 100 g of this polymer solution was added to 600 ml of methanol while stirring with a high-speed mixer to precipitate the polymer. The polymer was filtered off, washed several times with methanol, placed in a drying tube, dried by circulating dry nitrogen gas (dew point temperature −70 ° C. or lower) in which liquid nitrogen was vaporized, A crosslinkable polymer was obtained by vacuum drying in a desiccator for 6 hours.

架橋性ポリマーを酢酸エチルに室温で溶解させて、10重量%濃度の架橋性ポリマー溶液を得た。別に、5重量%濃度の無水フタル酸の酢酸エチル溶液を調製した。架橋性ポリマー溶液を攪拌しながら、これに前記無水フタル酸溶液をゆっくり滴下して、前記架橋性ポリマーと無水フタル酸との混合溶液を調製した。架橋性ポリマーの有する反応性基のモル数に対する無水フタル酸の酸無水物のモル数の比率は0.025とした。   The crosslinkable polymer was dissolved in ethyl acetate at room temperature to obtain a 10 wt% crosslinkable polymer solution. Separately, an ethyl acetate solution of phthalic anhydride having a concentration of 5% by weight was prepared. While stirring the crosslinkable polymer solution, the phthalic anhydride solution was slowly added dropwise thereto to prepare a mixed solution of the crosslinkable polymer and phthalic anhydride. The ratio of the number of moles of acid anhydride of phthalic anhydride to the number of moles of reactive groups possessed by the crosslinkable polymer was 0.025.

この架橋性ポリマー3bと無水フタル酸との混合溶液を微多孔膜3aの片面に塗着した後、50℃に加熱して、酢酸エチルを揮散させ、その後、別の片面に同様にして塗布し、酢酸エチルを揮散させた。これにより、片面当たりの塗布密度2.5g/m2で架橋性ポリマーを両面に担持させたセパレータ3を得た。次いで、この架橋性ポリマーを担持したセパレータを50℃の恒温器に60時間投入して、セパレータに担持させた前記架橋性ポリマーと無水フタル酸とを反応させ、架橋性ポリマーを一部、架橋させて、両面に反応性ポリマー3bを担持したセパレータ3を得た。 After this mixed solution of the crosslinkable polymer 3b and phthalic anhydride is applied to one side of the microporous membrane 3a, it is heated to 50 ° C. to volatilize ethyl acetate, and then applied to the other side in the same manner. The ethyl acetate was stripped. As a result, a separator 3 having a crosslinkable polymer supported on both sides at a coating density of 2.5 g / m 2 per side was obtained. Next, the separator carrying the crosslinkable polymer is put in a thermostat at 50 ° C. for 60 hours, and the crosslinkable polymer carried on the separator is reacted with phthalic anhydride to partially crosslink the crosslinkable polymer. Thus, the separator 3 carrying the reactive polymer 3b on both sides was obtained.

(正極の作製)
正極活物質としてLiCoO2(平均粒径8μm、BET法による比表面積4.2m2/g)を用い、この活物質100重量部に、導電剤であるアセチレンブラックを3重量部、結着剤であるポリフッ化ビニリデンを4重量部、および適量のN−メチル−2−ピロリドンを加え、攪拌・混合して、スラリー状の正極合剤1bを得た。なお、ポリフッ化ビニリデンは、あらかじめN−メチル−2−ピロリドンに溶解した状態で用いた。
(Preparation of positive electrode)
LiCoO 2 (average particle size: 8 μm, specific surface area by BET method: 4.2 m 2 / g) is used as the positive electrode active material, 3 parts by weight of acetylene black as a conductive agent is added to 100 parts by weight of this active material as a binder. 4 parts by weight of a certain polyvinylidene fluoride and an appropriate amount of N-methyl-2-pyrrolidone were added and stirred and mixed to obtain a slurry-like positive electrode mixture 1b. Polyvinylidene fluoride was used in a state of being previously dissolved in N-methyl-2-pyrrolidone.

次に、厚さ20μmのアルミニウム箔からなる集電体1aの片面に、前記スラリー状正極合剤1bを塗布し、塗膜を乾燥し、ローラーで圧延した。得られた極板を、図6に示す寸法に打ち抜いて、リード取り付け部であるタブの部分の正極合剤1bを剥離し正極1を得た。正極合剤1bが塗布された正極集電体1aは1辺が20mmの長さを有する正方形状を有する。   Next, the slurry-like positive electrode mixture 1b was applied to one side of a current collector 1a made of an aluminum foil having a thickness of 20 μm, the coating film was dried, and rolled with a roller. The obtained electrode plate was punched out to the dimensions shown in FIG. 6, and the positive electrode mixture 1 b at the tab portion as the lead attachment portion was peeled off to obtain the positive electrode 1. The positive electrode current collector 1a to which the positive electrode mixture 1b is applied has a square shape with one side having a length of 20 mm.

正極活物質として用いたLiCoO2の調製法は以下の通りである。 The method for preparing LiCoO 2 used as the positive electrode active material is as follows.

まず、硫酸コバルトを溶解させた金属塩水溶液を調製した。この金属塩水溶液を攪拌しながら50℃に維持し、その水溶液中に、水酸化ナトリウムを30重量%含む水溶液を滴下し、中和することにより、水酸化コバルトの沈殿を生成させた。この水酸化コバルトの沈殿を濾過し、水洗し、空気中で乾燥させ、次いで400℃で5時間焼成して、酸化コバルトを得た。得られた酸化コバルトは、粉末X線回折により、単一相であることを確認した。   First, an aqueous metal salt solution in which cobalt sulfate was dissolved was prepared. The aqueous metal salt solution was maintained at 50 ° C. with stirring, and an aqueous solution containing 30% by weight of sodium hydroxide was dropped into the aqueous solution and neutralized to generate a cobalt hydroxide precipitate. The cobalt hydroxide precipitate was filtered, washed with water, dried in air, and then calcined at 400 ° C. for 5 hours to obtain cobalt oxide. The obtained cobalt oxide was confirmed to be a single phase by powder X-ray diffraction.

次に、得られた酸化コバルトと炭酸リチウムとをCoの原子数とLiの原子数の比が1:1になるように混合した。この混合物を950℃で10時間焼成した。この後、その焼成物を、粉砕してレーザー回折法で得られる累積50%粒径が8μmの粉末とすることにより、目的とするLiCoO2を得た。得られたLiCoO2は、粉末X線回折により単一相の六方晶構造であることを確認した。 Next, the obtained cobalt oxide and lithium carbonate were mixed so that the ratio of the number of Co atoms to the number of Li atoms was 1: 1. This mixture was calcined at 950 ° C. for 10 hours. Thereafter, the fired product was pulverized to obtain a powder having a cumulative 50% particle size of 8 μm obtained by a laser diffraction method, thereby obtaining the target LiCoO 2 . The obtained LiCoO 2 was confirmed to have a single-phase hexagonal crystal structure by powder X-ray diffraction.

(負極の作製)
100重量部も天然黒鉛(平均粒径18μm、BET法による比表面積3.2m2/g)に、結着剤であるポリフッ化ビニリデンを6重量部、および適量のN−メチル−2−ピロリドンを加え、攪拌・混合して、スラリー状の負極合剤を得た。なお、ポリフッ化ビニリデンは、あらかじめN−メチル−2−ピロリドンに溶解した状態で用いた。
(Preparation of negative electrode)
100 parts by weight of natural graphite (average particle size: 18 μm, specific surface area by BET method: 3.2 m 2 / g), 6 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone In addition, stirring and mixing were performed to obtain a slurry-like negative electrode mixture. Polyvinylidene fluoride was used in a state of being previously dissolved in N-methyl-2-pyrrolidone.

次に、厚さ15μmの銅箔からなる集電体2aの片面に、前記スラリー状負極合剤を塗布し、塗膜を乾燥し、ローラーで圧延した。なお、負極合剤層中の活物質も充填密度は、1.4g/cm3であった。得られた極板を、図6に示す寸法に打ち抜いて負極を得た。 Next, the slurry-like negative electrode mixture was applied to one side of a current collector 2a made of a copper foil having a thickness of 15 μm, and the coating film was dried and rolled with a roller. The packing density of the active material in the negative electrode mixture layer was 1.4 g / cm 3 . The obtained electrode plate was punched into the dimensions shown in FIG. 6 to obtain a negative electrode.

(組み立て)
得られた正極1および負極3とセパレータ3とを用いて、図3に示すような薄型非水電解液二次電池(厚さ0.5mm、幅40mm、高さ50mm、設計容量14mAh)を組み立てた。まず、正極1と負極2とを、反応性ポリマーを担持したセパレータ3を介して積層し、電極群13を作製した。正極1および負極2には、それぞれアルミニウム製正極リード11およびニッケル製負極リード12を溶接した。前記電極群を肉厚0.12mmの3方向が開口しているアルミラミネートフィルム製電池ケース14の内部に収容し、PP製のテープでアルミラミネートフィルムの内面に固定した。正極リード11および負極リード12が出ている開口部を含む2開口部を熱溶着しアルミラミネートフィルム製電池ケース14を袋状とした。そして、所定量の非水電解液を開口部から注入し、減圧、脱気後、減圧状態で開口部を熱溶着することにより、電池内部を密封した。なお、非水電解液には、エチレンカーボネートとエチルメチルカーボネートとの体積比30:70の混合溶媒に、1.0mol/Lの濃度になるようにLiPF6を溶解したものを用いた。
(assembly)
Using the obtained positive electrode 1 and negative electrode 3 and separator 3, a thin nonaqueous electrolyte secondary battery (thickness 0.5 mm, width 40 mm, height 50 mm, design capacity 14 mAh) as shown in FIG. 3 is assembled. It was. First, the positive electrode 1 and the negative electrode 2 were laminated | stacked through the separator 3 which carry | supported the reactive polymer, and the electrode group 13 was produced. An aluminum positive electrode lead 11 and a nickel negative electrode lead 12 were welded to the positive electrode 1 and the negative electrode 2, respectively. The electrode group was accommodated in a battery case 14 made of aluminum laminate film having a wall thickness of 0.12 mm and opened in three directions, and fixed to the inner surface of the aluminum laminate film with PP tape. The two openings including the opening from which the positive electrode lead 11 and the negative electrode lead 12 protrude are thermally welded to form a battery case 14 made of an aluminum laminate film into a bag shape. Then, a predetermined amount of non-aqueous electrolyte was injected from the opening, and after decompression and deaeration, the opening was thermally welded under reduced pressure to seal the inside of the battery. As the non-aqueous electrolyte, a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 30:70 so as to have a concentration of 1.0 mol / L was used.

(初充電)
密封した二次電池を厚さ3mmの2枚のガラス板で挟み、クリップで固定することにより、電池内の電極群を均一に加圧状態にした後、20℃の環境下、電流値1.4mAで120分の定電流充電を行った。充電終了後の開回路電圧(OCV)は、3.75Vであり、電池電圧が3.5V以上に保持された時間は101分であった。
(First charge)
The sealed secondary battery is sandwiched between two glass plates with a thickness of 3 mm and fixed with clips, so that the electrode group in the battery is uniformly pressurized, and then the current value is 1. Constant current charging was performed at 4 mA for 120 minutes. The open circuit voltage (OCV) after completion of charging was 3.75 V, and the time during which the battery voltage was maintained at 3.5 V or higher was 101 minutes.

(正極および負極とセパレータとの接着)
クリップで加圧状態にした電池を20℃の環境下、1.4mAの電流値で3.7Vまで定電流放電を行った後、60℃の環境下に24時間保管した。
(Adhesion of positive electrode and negative electrode to separator)
The battery pressed with the clip was subjected to constant current discharge to 3.7 V at a current value of 1.4 mA in an environment of 20 ° C., and then stored in an environment of 60 ° C. for 24 hours.

<実施例2>
初充電工程において、電流値2.8mAで30分間、定電流充電を行い、正極および負極とセパレータとの接着工程において、放電を行わなかった以外は、実施例1と同様にして電池を作製した。初充電ガス発生工程における充電終了後のOCVは、3.66Vであり、電池電圧が3.5V以上に保持された時間は21分であった。
<Example 2>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 30 minutes at a current value of 2.8 mA in the initial charging step, and discharging was not performed in the bonding step of the positive electrode, the negative electrode, and the separator. . The OCV after the completion of charging in the initial charge gas generation step was 3.66 V, and the battery voltage was maintained at 3.5 V or higher for 21 minutes.

<実施例3>
初充電工程において、電流値2.8mAで60分間、定電流充電を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、3.75Vであり、電池電圧が3.5V以上に保持された時間は51分であった。
<Example 3>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 60 minutes at a current value of 2.8 mA in the initial charging step. The OCV after the completion of charging was 3.75V, and the time during which the battery voltage was maintained at 3.5V or higher was 51 minutes.

<実施例4>
初充電工程において、電流値2.8mAで300分間、定電流充電を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、4.14Vであり、電池電圧が3.5V以上に保持された時間は291分であった。
<Example 4>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 300 minutes at a current value of 2.8 mA in the initial charging step. The OCV after the end of charging was 4.14V, and the time during which the battery voltage was maintained at 3.5V or higher was 291 minutes.

<実施例5>
初充電工程において、電流値2.8mAで345分間、定電流充電を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、4.30Vであり、電池電圧が3.5V以上に保持された時間は336分であった。
<Example 5>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 345 minutes at a current value of 2.8 mA in the initial charging step. The OCV after the completion of charging was 4.30 V, and the time during which the battery voltage was maintained at 3.5 V or higher was 336 minutes.

<実施例6>
初充電ガス発生工程において、充電条件を電流値2.8mAで380分の定電流値とした以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、4.42Vであり、電池電圧が3.5V以上に保持された時間は371分であった。
<Example 6>
A battery was fabricated in the same manner as in Example 1 except that in the initial charging gas generation step, the charging condition was a constant current value of 380 minutes at a current value of 2.8 mA. The OCV after the completion of charging was 4.42 V, and the time during which the battery voltage was maintained at 3.5 V or higher was 371 minutes.

<実施例7>
初充電工程において、電流値7.0mAで24分間、定電流充電を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、3.75Vであり、電池電圧が3.5V以上に保持された時間は20分であった。
<Example 7>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 24 minutes at a current value of 7.0 mA in the initial charging step. The OCV after the completion of charging was 3.75V, and the battery voltage was maintained at 3.5V or higher for 20 minutes.

<実施例8>
初充電工程において、電流値14.0mAで12分間、定電流充電を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、3.75Vであり、電池電圧が3.5V以上に保持された時間は10分であった。
<Example 8>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 12 minutes at a current value of 14.0 mA in the initial charging step. The OCV after the completion of charging was 3.75 V, and the time during which the battery voltage was maintained at 3.5 V or higher was 10 minutes.

<実施例9>
初充電工程において、電流値2.8mAで60分間、定電流充電を行い、充電終了後にガラス板とクリップを外し、25℃の環境下、6N、1分の加圧を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、3.75Vであり、電池電圧が3.5V以上に保持された時間は51分であった。
<Example 9>
In the initial charging process, constant current charging was performed for 60 minutes at a current value of 2.8 mA, the glass plate and the clip were removed after the charging was completed, and 6N for 1 minute was performed in a 25 ° C environment. A battery was produced in the same manner as in Example 1. The OCV after the completion of charging was 3.75V, and the time during which the battery voltage was maintained at 3.5V or higher was 51 minutes.

<実施例10>
初充電工程において、電流値2.8mAで60分間、定電充電を行い、充電終了後に減圧、脱気を行った以外は、実施例1と同様にして電池を作製した。充電終了後のOCVは、3.75Vであり、電池電圧が3.5V以上に保持された時間は51分であった。
<Example 10>
A battery was fabricated in the same manner as in Example 1 except that constant current charging was performed for 60 minutes at a current value of 2.8 mA in the initial charging step, and decompression and deaeration were performed after the completion of charging. The OCV after the completion of charging was 3.75V, and the time during which the battery voltage was maintained at 3.5V or higher was 51 minutes.

充電終了後にガラス板とクリップを外し、アルミラミネート製ケースの封止部の一端を切断し開放状態とした後、電池全体を減圧環境下に放置し、電池内に存在するガスを脱気し、減圧状態のまま、開放部を再度、熱溶着し電池内部を密封した。   After charging, remove the glass plate and clip, cut one end of the sealing part of the aluminum laminate case and leave it open, leave the entire battery in a reduced pressure environment, degas the gas present in the battery, While the pressure was reduced, the open part was heat welded again to seal the inside of the battery.

<比較例1>
初充電工程を行わず、正極とセパレータ、および、負極とセパレータを接着する工程において、放電を行わなかった以外は、実施例1と同様にして電池を作製した。電池密封後のOCVは、0.21Vであった。
<Comparative Example 1>
A battery was fabricated in the same manner as in Example 1 except that the discharge was not performed in the step of bonding the positive electrode and the separator and the negative electrode and the separator without performing the initial charging step. The OCV after sealing the battery was 0.21V.

<電池評価>
(セパレータと電極の接着強度の評価)
作製した実施例1〜10の電池と比較例1の電池を各1個ずつ用意し、25℃の環境下、電流値1.4mAで3.0Vまで定電流放電した後、25℃の環境下、電流値2.8mAで4.2Vまで定電流充電した。その後、電池を分解し、電池内に収納されている電極群を取り出し、正極とセパレータ、および、負極とセパレータの接着性を評価した。この際、いずれの実施例、および、比較例の電池においても、正極とセパレータ、および、負極とセパレータの界面の電解液はゲル化していることが目視により確認できた。
<Battery evaluation>
(Evaluation of adhesive strength between separator and electrode)
The prepared batteries of Examples 1 to 10 and Comparative Example 1 were prepared one by one, discharged at a constant current of 1.4 mA at a current value of 1.4 mA in a 25 ° C. environment, and then in a 25 ° C. environment. The battery was charged with a constant current up to 4.2 V at a current value of 2.8 mA. Thereafter, the battery was disassembled, the electrode group housed in the battery was taken out, and the adhesion between the positive electrode and the separator and the negative electrode and the separator was evaluated. At this time, in any of the batteries of Examples and Comparative Examples, it was visually confirmed that the electrolyte solution at the interface between the positive electrode and the separator and the negative electrode and the separator was gelled.

電極とセパレータとが、全く接着していない場合を×、極板面積の60%未満が接着されている場合を△、60%以上が接着されている場合を○と判定した。   The case where the electrode and the separator were not adhered at all was judged as x, the case where less than 60% of the electrode plate area was adhered was judged as Δ, and the case where 60% or more was adhered was judged as ○.

(電池の容量評価)
作製した実施例1〜10の電池と比較例1の電池を各1個づつ用意し、25℃の環境下、電流値1.4mAで3.0Vまで定電流放電した後、25℃の環境下、電流値2.8mAで4.2Vまで定電流充電し、さらに、電流値が0.7mAに減衰するまで4.2Vで定電圧充電を行い、充電終了とした。その後、各電池を25℃の環境下、電流値1.4mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を初期放電容量として計測した。
(Evaluation of battery capacity)
Prepare the batteries of Examples 1 to 10 and Comparative Example 1 one by one, discharge at a constant current of 3.0 mA at a current value of 1.4 mA in an environment of 25 ° C., and then in an environment of 25 ° C. The battery was charged at a constant current of 4.2 V at a current value of 2.8 mA, and further charged at a constant voltage of 4.2 V until the current value was attenuated to 0.7 mA. Thereafter, each battery was subjected to constant current discharge to 3.0 V at a current value of 1.4 mA in an environment of 25 ° C., and the discharge capacity obtained at this time was measured as the initial discharge capacity.

表1に、実施例1〜10と比較例1の評価結果を作製条件とともに表示する。   In Table 1, the evaluation results of Examples 1 to 10 and Comparative Example 1 are displayed together with the production conditions.

Figure 0005312751
Figure 0005312751

(表1)より、初充電工程を行ったものは、いずれの実施例の電池においても、負極とセパレータが接着されていた。一方、初充電工程を行わなかった比較例1の電池では、負極とセパレータが接着されていなかった。これらの結果から、本発明の製造方法を用いることにより、従来の反応性ポリマーを担持したセパレータを用いて製造された非水電解液二次電池では困難であった負極とセパレータとの接着が可能になったことが分かる。   From (Table 1), the negative electrode and the separator were adhered in the batteries of any of the examples in which the initial charging step was performed. On the other hand, in the battery of Comparative Example 1 in which the initial charging process was not performed, the negative electrode and the separator were not adhered. From these results, by using the production method of the present invention, it is possible to bond the negative electrode to the separator, which was difficult with a non-aqueous electrolyte secondary battery produced using a separator carrying a conventional reactive polymer. It turns out that it became.

また、実施例3〜6から分かるように、初充電工程の電流値が一定であり、充電時間を変化させた場合、充電時間を60分以上、つまり、電池電圧が3.5V以上に保持された時間が51分以上であれば、より確実に負極とセパレータとが接着する。実施例2から分かるように、3.5V以上に保持された時間が21分しかないと、負極とセパレータとの接着は実施例3〜6に比べ少し悪くなる。   Further, as can be seen from Examples 3 to 6, when the current value of the initial charging process is constant and the charging time is changed, the charging time is maintained for 60 minutes or more, that is, the battery voltage is maintained at 3.5 V or more. If the elapsed time is 51 minutes or more, the negative electrode and the separator are more reliably bonded. As can be seen from Example 2, if the time kept at 3.5 V or more is only 21 minutes, the adhesion between the negative electrode and the separator is slightly worse than in Examples 3-6.

また、実施例1、3、7、8では、いずれも充電終了時のOCVが3.75Vとなるように充電の電流値と充電時間を変化させている。電池電圧が3.5V以上に保持された時間が51分以上である実施例1、および、実施例3の電池は、電池電圧が3.5V以上に保持された時間が51分未満である実施例7および実施例8の電池と比較して、負極とセパレータとが接着している面積は大きくなっている。一方で、電池電圧が3.5V以上に保持された時間が371分である実施例6の電池は、セパレータと負極との接着性は確保されているものの、初期放電容量が他の実施例と比べ、幾分、小さい。これは、充電時間が長くなったため、充電電圧が高くなり、高電位に充電された正極活物質が劣化しその結果、初期充電容量が低下したと考えられる。このことは実施例6の電池の初充電終了時のOCVが4.42Vと一般的なリチウムイオン二次電池の充電電圧4.2Vと比べ著しく高くなっていることから分かる。   In each of Examples 1, 3, 7, and 8, the charging current value and the charging time are changed so that the OCV at the end of charging is 3.75V. The battery of Example 1 and Example 3 in which the battery voltage was maintained at 3.5 V or higher was 51 minutes or longer, and the battery voltage was held in the battery voltage of 3.5 V or higher was less than 51 minutes. Compared with the batteries of Example 7 and Example 8, the area where the negative electrode and the separator are bonded is larger. On the other hand, the battery of Example 6 in which the battery voltage was maintained at 3.5 V or higher was 371 minutes, while the adhesion between the separator and the negative electrode was ensured, but the initial discharge capacity was different from that of the other examples. Somewhat smaller. This is probably because the charging time is increased because the charging time is increased, the positive electrode active material charged at a high potential is deteriorated, and as a result, the initial charging capacity is decreased. This can be seen from the fact that the OCV at the end of the initial charging of the battery of Example 6 is 4.42 V, which is significantly higher than the charging voltage of 4.2 V for a general lithium ion secondary battery.

以上の結果から、初充電工程における充電条件としては、電池電圧が3.5V以上に保持されている時間が51分以上336分以下であり、充電終了時のOCVは4.3V以下であることが好ましい。   From the above results, the charging condition in the initial charging step is that the battery voltage is maintained at 3.5 V or higher for 51 minutes or more and 336 minutes or less, and the OCV at the end of charging is 4.3 V or less. Is preferred.

さらに、実施例9の電池は初充電終了に加圧プレス処理を施し、実施例10の電池は初充電終了後に減圧脱気処理を施している。これらの電池は、初充電終了にこれらの処理を施さないことを除いて同様の条件で作製した実施例3の電池と比べ、セパレータと負極との接着面積が大きく、ほぼ100%接着していることが確認できた。   Furthermore, the battery of Example 9 is subjected to a pressure press process at the end of the initial charge, and the battery of Example 10 is subjected to a vacuum degassing process after the end of the initial charge. These batteries have a larger adhesion area between the separator and the negative electrode than those of Example 3 manufactured under the same conditions except that these treatments are not performed at the end of the initial charge, and are almost 100% adhered. I was able to confirm.

これらの結果から、初充電工程後に、加圧プレス処理や減圧脱気処理を行うことは、セパレータと負極との接着強度を増加させる手段として有効であることがわかる。   From these results, it can be seen that after the initial charging step, the pressure press treatment or the vacuum degassing treatment is effective as a means for increasing the adhesive strength between the separator and the negative electrode.

本発明の非水電解質二次電池の製造方法によれば、セパレータと正極、および、セパレータと負極が強固に接着することができるため、優れたサイクル特性と耐落下・衝撃信頼性を有する非水電解液二次電池を得ることができる。したがって、本発明は、例えば、高い信頼性が必要とされる携帯型電子機器用の電源として用いることができる非水電解液二次電池や、電気自動車や電力貯蔵用に用いられる大型電池等の製造に好適に用いられる。   According to the method for producing a non-aqueous electrolyte secondary battery of the present invention, since the separator and the positive electrode and the separator and the negative electrode can be firmly bonded, the non-water having excellent cycle characteristics and drop resistance / impact reliability. An electrolyte secondary battery can be obtained. Therefore, the present invention provides, for example, a non-aqueous electrolyte secondary battery that can be used as a power source for portable electronic devices that require high reliability, a large battery used for electric vehicles and power storage, etc. It is suitably used for production.

本発明による非水電解液二次電池の製造方法の一実施形態の手順を示すフローチャートである。It is a flowchart which shows the procedure of one Embodiment of the manufacturing method of the nonaqueous electrolyte secondary battery by this invention. 本実施形態により製造される非水電解液二次電池の電極群の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the electrode group of the nonaqueous electrolyte secondary battery manufactured by this embodiment. (a)および(b)は、図2に示す電極群を電池ケースに挿入後の形態を示す斜視図および断面図である。(A) And (b) is the perspective view and sectional drawing which show the form after inserting the electrode group shown in FIG. 2 in a battery case. 初充電工程で発生するガスを説明する模式的な断面図である。It is typical sectional drawing explaining the gas which generate | occur | produces at an initial charging process. 接着工程後の電極群の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the electrode group after an adhesion process. 電極の大きさを説明する図である。It is a figure explaining the magnitude | size of an electrode.

符号の説明Explanation of symbols

1 正極
1a 正極集電体
1b 正極合剤
2 負極
2a 負極集電体
2b 負極合剤
3 セパレータ
3a 微多孔膜
3b 反応性ポリマー
11 正極リード
12 負極リード
13 電池ケース
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode mixture 2 Negative electrode 2a Negative electrode collector 2b Negative electrode mixture 3 Separator 3a Microporous film 3b Reactive polymer 11 Positive electrode lead 12 Negative electrode lead 13 Battery case

Claims (6)

リチウムを可逆的に吸蔵放出可能な正極および負極と、前記正極および負極に挟まれており、両面にカチオン重合性の反応性ポリマーを担持したセパレータとを含む電極群を、ヘキサフルオロリン酸リチウムおよびテトラフルオロホウ酸リチウムからなる群から選ばれる少なくとも1種を含む非水電解液とともに電池ケースに収納する工程(A)と、
前記工程(A)の後に、前記非水電解液で満たされた電極群を30℃以下に保持しながら充電する工程(B)と、
前記工程(B)の後に、前記反応性ポリマーの少なくとも一部を40℃以上80℃以下に保持しながら重合させることにより、前記正極と前記セパレータ、および、前記負極と前記セパレータとをそれぞれ接着する工程(C)と、
を包含し、
前記工程(B)において、51分以上336分以下の時間、前記電池電圧を3.5V以上に維持し、かつ、充電終了時の開回路電圧が4.3V以下となるように、充電電圧、充電電流および維持時間を決定する非水電解液二次電池の製造方法。
An electrode group including a positive electrode and a negative electrode capable of reversibly occluding and releasing lithium, and a separator sandwiched between the positive electrode and the negative electrode and carrying a cationic polymerizable reactive polymer on both sides, is formed of lithium hexafluorophosphate and Storing in a battery case with a non-aqueous electrolyte containing at least one selected from the group consisting of lithium tetrafluoroborate;
After the step (A), the step of charging the electrode group filled with the non-aqueous electrolyte while maintaining the electrode group at 30 ° C. or lower (B),
After the step (B), the positive electrode and the separator, and the negative electrode and the separator are bonded to each other by polymerizing at least a part of the reactive polymer at 40 ° C. or higher and 80 ° C. or lower. Step (C),
It encompasses,
In the step (B), the battery voltage is maintained at 3.5 V or more for a time of 51 minutes or more and 336 minutes or less, and the open circuit voltage at the end of charging is 4.3 V or less. A method for producing a non-aqueous electrolyte secondary battery that determines a charging current and a maintenance time .
前記非水電解液は、エチレンカーボネート、プロピレンカーボネートからなる群から選ばれる少なくとも1種の溶媒を含んでいる請求項1に記載の非水電解液二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains at least one solvent selected from the group consisting of ethylene carbonate and propylene carbonate. 前記電極群は、前記正極および前記負極の少なくとも一方と前記セパレータとをそれぞれ複数含み、前記正極および前記負極の少なくとも一方は前記セパレータを介して積層されている請求項1に記載の非水電解液二次電池の製造方法。   2. The nonaqueous electrolytic solution according to claim 1, wherein the electrode group includes a plurality of at least one of the positive electrode and the negative electrode and the separator, and at least one of the positive electrode and the negative electrode is laminated via the separator. A method for manufacturing a secondary battery. 前記工程(C)において、前記反応性ポリマーの少なくとも一部と前記非水電解液とを重合させ前記非水電解液をゲル化させることにより前記正極と前記セパレータ、および、前記負極と前記セパレータとを前記ゲルによってそれぞれ接着する請求項1に記載の非水電解液二次電池の製造方法。   In the step (C), the positive electrode and the separator, and the negative electrode and the separator are obtained by polymerizing at least a part of the reactive polymer and the nonaqueous electrolytic solution to gel the nonaqueous electrolytic solution. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the gel is adhered by the gel. 前記工程(B)と前記工程(C)との間に、前記電極群に対し加圧プレス処理を行う工程をさらに包含する請求項1に記載の非水電解液二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 1, further comprising a step of performing a pressure press treatment on the electrode group between the step (B) and the step (C). 前記工程(B)と前記工程(C)との間に、前記電池ケース内を減圧にする工程をさらに包含する請求項1に記載の非水電解液二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, further comprising a step of reducing the pressure in the battery case between the step (B) and the step (C).
JP2007085499A 2007-03-28 2007-03-28 Method for producing non-aqueous electrolyte secondary battery Active JP5312751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085499A JP5312751B2 (en) 2007-03-28 2007-03-28 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085499A JP5312751B2 (en) 2007-03-28 2007-03-28 Method for producing non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2008243718A JP2008243718A (en) 2008-10-09
JP2008243718A5 JP2008243718A5 (en) 2010-05-13
JP5312751B2 true JP5312751B2 (en) 2013-10-09

Family

ID=39914785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085499A Active JP5312751B2 (en) 2007-03-28 2007-03-28 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5312751B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2625271A1 (en) * 2008-03-11 2009-09-11 Hydro-Quebec Method for preparing an electrochemical cell having a gel electrolyte
WO2013065187A1 (en) 2011-11-04 2013-05-10 トヨタ自動車株式会社 Hermetic lithium secondary battery and method for manufacturing same
JP6306918B2 (en) * 2013-11-22 2018-04-04 積水化学工業株式会社 Manufacturing method of secondary battery
JP6772896B2 (en) * 2017-02-28 2020-10-21 トヨタ自動車株式会社 How to manufacture a secondary battery
JP7238372B2 (en) * 2018-12-07 2023-03-14 トヨタ紡織株式会社 Method for manufacturing secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123844A (en) * 2001-10-09 2003-04-25 Mitsubishi Cable Ind Ltd Manufacturing method of sheet-shaped cell
JP4207439B2 (en) * 2002-03-07 2009-01-14 パナソニック株式会社 Manufacturing method of lithium ion secondary battery
JP4526352B2 (en) * 2004-11-08 2010-08-18 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4984448B2 (en) * 2005-07-12 2012-07-25 日産自動車株式会社 Manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP2008243718A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
KR102473873B1 (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5077131B2 (en) Positive electrode active material, positive electrode using the same, and nonaqueous electrolyte secondary battery
KR101397022B1 (en) Positive active material for lithium secondary battery, preparing method thereof and lithium secondary battery using the same
CN105576279B (en) Lithium secondary battery
EP3193396A1 (en) Non-aqueous electrolyte battery, method for manufacturing same, and non-aqueous electrolyte battery system
JP6052179B2 (en) Lithium ion secondary battery
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
WO2015087580A1 (en) Production method for secondary battery
WO2017154592A1 (en) Nonaqueous electrolyte battery
JP6607188B2 (en) Positive electrode and secondary battery using the same
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5312751B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2008282735A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5793411B2 (en) Lithium secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6744216B2 (en) Method for manufacturing negative electrode of lithium-ion battery, and method for manufacturing lithium-ion battery
JP7003775B2 (en) Lithium ion secondary battery
JP2006120460A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2011096520A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150