JP2011096520A - Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate - Google Patents
Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate Download PDFInfo
- Publication number
- JP2011096520A JP2011096520A JP2009249546A JP2009249546A JP2011096520A JP 2011096520 A JP2011096520 A JP 2011096520A JP 2009249546 A JP2009249546 A JP 2009249546A JP 2009249546 A JP2009249546 A JP 2009249546A JP 2011096520 A JP2011096520 A JP 2011096520A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrolyte secondary
- secondary battery
- electrode plate
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池に関し、特にカルボキシル基がフッ素を含有する官能基により修飾されているポリアクリル酸を結着材(バインダ)として用いた、結着材の膨潤性が小さく、しかも、サイクル特性が良好な非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池に関する。 The present invention relates to a negative electrode plate for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the negative electrode plate, and in particular, binds polyacrylic acid in which a carboxyl group is modified with a functional group containing fluorine. The present invention relates to a negative electrode plate for a non-aqueous electrolyte secondary battery having a low swelling property and good cycle characteristics, and a non-aqueous electrolyte secondary battery using the negative electrode plate, used as a binder (binder). .
今日の携帯電話機、携帯型パーソナルコンピューター、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、更には、ハイブリッド電気自動車(HEV)や電気自動車(EV)用の電源として、高エネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。これらの非水電解質二次電池の負極活物質としては、リチウムの析出(デンドライトの生成)が少ないことから炭素材料やケイ素が一般的に使われており、中でも黒鉛粒子を用いた非水電解質二次電池は、安全性が高く、かつ、高容量であるために広く用いられている。これらの負極活物質は、単独では薄膜状に形成できないため、粉末状の負極活物質に対して結着材を添加して負極芯体の表面に付着させることが行われている。 It has high energy density as a driving power source for portable electronic devices such as today's mobile phones, portable personal computers, portable music players, and also as a power source for hybrid electric vehicles (HEV) and electric vehicles (EV). However, non-aqueous electrolyte secondary batteries represented by high-capacity lithium ion secondary batteries are widely used. As the negative electrode active material of these non-aqueous electrolyte secondary batteries, carbon materials and silicon are generally used because of the low precipitation of lithium (generation of dendrite), and among them, non-aqueous electrolytes using graphite particles are particularly used. Secondary batteries are widely used because of their high safety and high capacity. Since these negative electrode active materials cannot be formed into a thin film by themselves, a binder is added to the powdered negative electrode active material and adhered to the surface of the negative electrode core.
すなわち、非水電解質二次電池用の負極極板は、負極活物質と、結着材と、必要に応じて使用される増粘剤を含む負極合材スラリーを、例えば銅箔からなる負極芯体の表面に塗布し、乾燥した後にローラーで圧縮して所定の充填密度となるようにして作製されている。このうち、結着材としては、電解液に対する膨潤性が高いものを用いると、負極活物質と負極活物質との間、或いは、負極活物質と負極芯体との間の密着性が低下するため、充放電サイクルを繰り返すと電池膨れや容量維持率が低下する。 That is, a negative electrode plate for a non-aqueous electrolyte secondary battery comprises a negative electrode active material, a binder, and a negative electrode mixture slurry containing a thickener used as necessary, for example, a negative electrode core made of copper foil. It is applied to the surface of the body, dried, and then compressed by a roller so as to obtain a predetermined filling density. Among these, if a binder having high swellability with respect to the electrolytic solution is used, the adhesion between the negative electrode active material and the negative electrode active material or between the negative electrode active material and the negative electrode core decreases. Therefore, when the charge / discharge cycle is repeated, the battery swell and the capacity retention rate decrease.
一方、下記特許文献1には結着材としてポリアクリル酸とスチレン・ブタジエン・ゴムとを用いて作製された負極極板を用いた非水溶媒二次電池の発明が開示されている。また、下記特許文献2には、電解液に対する膨潤度が低く、密着性及び可撓性に優れた非水電解質二次電池用の結着材として、ニトリル基含有単量体由来の繰り返し単位とアクリル酸由来の繰り返し単位とを含む共重合体を含むものを用いたリチウム電池電極用結着材樹脂組成物の発明が開示されている。
上記特許文献1に開示されている非水溶媒二次電池の発明によれば、結着材としてポリテトラフルオロエチレンを用いた場合よりも、充放電サイクルの進行に伴うリチウムと結着材との反応・分解が減少するために、容量維持率の向上と長寿命化を図ることができるという効果を奏するものである。また、上記特許文献2に開示されているリチウム電池電極用結着剤樹脂組成物の発明によれば、結着材としてポリフッ化ビニリデンを使用した場合よりも、充放電サイクルを経ても負極合剤が負極芯体より剥離し難く、一応、良好な容量維持率を達成することができるというものである。 According to the invention of the non-aqueous solvent secondary battery disclosed in Patent Document 1 above, lithium and the binder accompanying the progress of the charge / discharge cycle are more than when polytetrafluoroethylene is used as the binder. Since the reaction and decomposition are reduced, the capacity retention rate can be improved and the life can be extended. In addition, according to the invention of the binder resin composition for lithium battery electrodes disclosed in Patent Document 2, the negative electrode mixture can be subjected to a charge / discharge cycle as compared with the case where polyvinylidene fluoride is used as the binder. Is difficult to peel from the negative electrode core, and a good capacity retention rate can be achieved.
このように、上記特許文献1及び2には、結着剤としてポリアクリル酸を使用すると、膨潤性が小さいために、容量維持率の向上が図れることが示唆されている。しかしながら、発明者等が更に検討した結果によると、結着材としてポリアクリル酸を用いたことによって従来例よりも膨潤性が小さくなり、従来例に比して充放電サイクルの向上が認められるが、更なる充放電サイクルの進行に伴ってカルボキシル基が反応し、サイクル特性が低下していくことが認められた。 As described above, Patent Documents 1 and 2 suggest that when polyacrylic acid is used as the binder, the capacity retention rate can be improved because the swelling property is small. However, according to the results of further studies by the inventors, the use of polyacrylic acid as a binder makes the swelling property smaller than that of the conventional example, and an improvement in the charge / discharge cycle is recognized as compared with the conventional example. It was confirmed that as the charge / discharge cycle further progressed, the carboxyl group reacted and the cycle characteristics deteriorated.
発明者等は、このような従来技術の問題点を解決すべく種々検討を重ねた結果、ポリアクリル酸のカルボキシル基を修飾することによってカルボキシル基の分解を抑制すると、充放電サイクルの進行に伴う結着材の膨潤を抑制することができるだけでなく、よりサイクル特性の低下を抑制し得ることを見出し、本発明を完成するに至ったのである。 As a result of various studies to solve the problems of the prior art as described above, the inventors have suppressed the decomposition of the carboxyl group by modifying the carboxyl group of polyacrylic acid, which is accompanied by the progress of the charge / discharge cycle. The present inventors have found that not only the swelling of the binder can be suppressed but also the deterioration of the cycle characteristics can be further suppressed, and the present invention has been completed.
すなわち、本発明は、結着材としてポリアクリル酸のカルボキシル基を修飾することにより、従来例の場合に比して充放電サイクルの進行に伴う結着材の膨潤を抑制することができるだけでなく、よりサイクル特性の低下を抑制し得る非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池を提供することを目的とする。 That is, the present invention not only can suppress the swelling of the binder accompanying the progress of the charge / discharge cycle as compared with the conventional example by modifying the carboxyl group of polyacrylic acid as the binder. An object of the present invention is to provide a negative electrode plate for a non-aqueous electrolyte secondary battery that can further suppress deterioration of cycle characteristics, and a non-aqueous electrolyte secondary battery using the negative electrode plate.
本発明の上記目的は以下の構成により達成し得る。すなわち、本発明の非水電解質二次電池用負極極板は、負極活物質と、結着材とを含む負極合剤が負極芯体の表面に設けられた非水電解質二次電池用負極極板において、前記結着剤は、カルボキシル基がフッ素を含有する官能基により修飾されているポリアクリル酸からなることを特徴とする。 The above object of the present invention can be achieved by the following configurations. That is, the negative electrode plate for a nonaqueous electrolyte secondary battery according to the present invention is a negative electrode for a nonaqueous electrolyte secondary battery in which a negative electrode mixture containing a negative electrode active material and a binder is provided on the surface of the negative electrode core. In the board, the binder is made of polyacrylic acid in which a carboxyl group is modified with a functional group containing fluorine.
フッ素を含有する官能基は、化学的に安定で、反応し難い性質を有している。ポリアクリル酸のカルボキシル基がフッ素を含有する官能基により修飾されていると、充放電サイクルの進行によってもポリアクリル酸そのもののカルボキシル基よりも酸化ないし還元を受け難く、分解し難くなる。そのため、従来例の場合に比して充放電サイクルの進行に伴う結着材の膨潤を抑制することができるだけでなく、よりサイクル特性の低下を抑制し得る非水電解質二次電池用負極極板が得られる。 The functional group containing fluorine is chemically stable and hardly reacts. If the carboxyl group of the polyacrylic acid is modified with a functional group containing fluorine, it is less susceptible to oxidation or reduction than the carboxyl group of the polyacrylic acid itself due to the progress of the charge / discharge cycle, and it is difficult to decompose. Therefore, as compared with the case of the conventional example, not only can the swelling of the binder accompanying the progress of the charge / discharge cycle be suppressed, but also the negative electrode plate for a non-aqueous electrolyte secondary battery that can further suppress the deterioration of cycle characteristics. Is obtained.
また、本発明の非水電解質二次電池用負極極板においては、前記フッ素を含有する官能基は、フッ素含有アルキル基及びフッ素含有アルキレン基から選択された少なくとも1種であることが好ましい。 In the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the functional group containing fluorine is preferably at least one selected from a fluorine-containing alkyl group and a fluorine-containing alkylene group.
フッ素含有アルキル基及びフッ素含有アルキレン基は、ポリアクリル酸のカルボキシル基と反応してエステル基として存在し得る。このエステル基は、ポリアクリル酸とフッ素含有アルキルアルコールないしフッ素含有アルキレンアルコールとを反応させることにより容易に合成できる。そのため、本発明の非水電解質二次電池用負極極板によれば、容易に従来例の場合に比して充放電サイクルの進行に伴う結着材の膨潤を抑制することができるだけでなく、よりサイクル特性の低下を抑制し得る非水電解質二次電池用負極極板が得られる。 The fluorine-containing alkyl group and the fluorine-containing alkylene group may exist as ester groups by reacting with the carboxyl group of polyacrylic acid. This ester group can be easily synthesized by reacting polyacrylic acid with a fluorine-containing alkyl alcohol or a fluorine-containing alkylene alcohol. Therefore, according to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, not only can the swelling of the binder accompanying the progress of the charge / discharge cycle be easily suppressed as compared with the conventional example, A negative electrode plate for a non-aqueous electrolyte secondary battery that can further suppress the deterioration of cycle characteristics is obtained.
また、本発明の非水電解質二次電池用負極極板においては、前記フッ素を含有する官能基は、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基及びジフルオロメチレン基から選択された少なくとも1種であることが好ましい。 In the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the functional group containing fluorine is a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, 2,2,2-trifluoroethyl. It is preferably at least one selected from a group and a difluoromethylene group.
ポリアクリル酸のカルボキシル基を修飾するモノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基及びジフルオロメチレン基の形成材料であるモノフルオロメチルアルコール、ジフルオロメチルアルコール、トリフルオロメチルアルコール、2,2,2−トリフルオロエチルアルコール及びジフルオロメチレンアルコールは、合成が容易である。しかも、ポリアクリル酸に結合したモノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基及びジフルオロメチレン基は、充放電サイクルの進行が進んでも酸化ないし還元され難いという性質を有している。そのため、本発明の非水電解質二次電池用負極極板によれば、容易に従来例の場合に比して充放電サイクルの進行に伴う結着材の膨潤を抑制することができるだけでなく、よりサイクル特性の低下を抑制し得る非水電解質二次電池用負極極板が得られる。 Monofluoromethyl alcohol, difluoromethyl alcohol which is a material for forming monofluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group and difluoromethylene group to modify carboxyl group of polyacrylic acid , Trifluoromethyl alcohol, 2,2,2-trifluoroethyl alcohol and difluoromethylene alcohol are easy to synthesize. Moreover, the monofluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group and difluoromethylene group bonded to polyacrylic acid are oxidized or reduced even if the charge / discharge cycle progresses. It has the property of being difficult. Therefore, according to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, not only can the swelling of the binder accompanying the progress of the charge / discharge cycle be easily suppressed as compared with the conventional example, A negative electrode plate for a non-aqueous electrolyte secondary battery that can further suppress the deterioration of cycle characteristics is obtained.
また、本発明の非水電解質二次電池用負極極板においては、前記負極活物質は黒鉛又はケイ素からなることが好ましい。 In the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the negative electrode active material is preferably made of graphite or silicon.
本発明の非水電解質二次電池用負極極板によれば、負極活物質粒子としては黒鉛又はケイ素を用いたので、単位体積当たりの容量が大きな非水電解質二次電池用負極極板が得られる。また、負極活物質としての黒鉛、ケイ素は、リチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好となる。なお、黒鉛としては、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体の一種あるいは複数種混合したもの等を使用し得る。 According to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, graphite or silicon is used as the negative electrode active material particles, so that a negative electrode plate for a non-aqueous electrolyte secondary battery having a large capacity per unit volume is obtained. It is done. In addition, graphite and silicon as the negative electrode active material have a discharge potential comparable to that of lithium metal or lithium alloy, but have high safety because dendrites do not grow, and further have excellent initial efficiency and potential flatness. The property is also good. In addition, as graphite, natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or one or a mixture of these fired bodies can be used.
更に、上記目的を達成するため、本発明の非水電解質二次電池は、上記いずれかの非水電解質二次電池用負極極板と、正極極板とがセパレータを介して互いに巻回又は積層されて、非水電解質と共に電池外装体内に配置されていることを特徴とする。 Furthermore, in order to achieve the above object, the non-aqueous electrolyte secondary battery of the present invention includes any one of the above-described negative electrode plate for a non-aqueous electrolyte secondary battery and a positive electrode plate that are wound or laminated with a separator interposed therebetween. And being disposed in the battery exterior together with the non-aqueous electrolyte.
本発明の非水電解質二次電池によれば、従来例の場合に比して充放電サイクルの進行に伴う結着材の膨潤を抑制することができるだけでなく、よりサイクル特性の低下を抑制し得る非水電解質二次電池が得られる。 According to the non-aqueous electrolyte secondary battery of the present invention, it is possible not only to suppress the swelling of the binder accompanying the progress of the charge / discharge cycle, but also to suppress the deterioration of the cycle characteristics as compared with the conventional example. A nonaqueous electrolyte secondary battery is obtained.
なお、本発明の非水電解質二次電池の正極極板の正極活物質としては、従来から普通に使用されているリチウムイオンを可逆的に吸蔵・放出することが可能なリチウム遷移金属複合酸化物、すなわち、LiCoO2、LiNiO2、LiNixCo1−xO2(x=0.01〜0.99)、LiMnO2、LiMn2O4、LiCoxMnyNizO2(x+y+z=1)又はLiFePO4などを一種単独もしくは複数種を混合して用いることができる。 In addition, as a positive electrode active material of the positive electrode plate of the nonaqueous electrolyte secondary battery of the present invention, a lithium transition metal composite oxide that can reversibly occlude and release lithium ions that have been conventionally used is used. That is, LiCoO 2 , LiNiO 2 , LiNixCo 1-x O 2 (x = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1) or LiFePO 4 or the like can be used singly or in combination.
また、本発明の非水電解質二次電池の非水溶媒系電解質を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類が好ましい。 Further, as the non-aqueous solvent (organic solvent) constituting the non-aqueous solvent-based electrolyte of the non-aqueous electrolyte secondary battery of the present invention, carbonates, lactones, ethers, esters and the like can be used. Two or more types of solvents can be mixed and used. Of these, carbonates are preferred.
具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。 Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned.
また、本発明の非水電解質二次電池で使用する非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiAsF6、LiClO4、Li2B10Cl10、Li2B12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF6(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 Moreover, as a solute of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention, a lithium salt generally used as a solute in the nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.
以下、本発明を実施するための形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。 Hereinafter, the form for implementing this invention is demonstrated in detail using an Example and a comparative example. However, the following examples illustrate non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.
[正極極板の作製]
実施例及び各比較例に共通する正極極板は次のようにして作製した。正極活物質としてのコバルト酸リチウム(LiCoO2)は、出発原料としてリチウム源には炭酸リチウム(Li2CO3)を用い、コバルト源には四酸化三コバルト(Co3O4)を用い、これらを所定量秤量して混合した後、空気雰囲気下において850℃で24時間焼成し、コバルト酸リチウムを得た。これを乳鉢で平均粒径14μmまで粉砕し、正極活物質とした。このようにして作製された正極活物質90質量部と、導電剤としての黒鉛粉末5質量部と、結着剤としてのポリフッ化ビニリデンPVdF粉末5質量部とを、N−メチル−ピロリドンNMP溶液中に分散させて正極活物質スラリーを調製した。次に、この正極活物質スラリーを厚さ15μmのアルミニウム箔からなる正極芯体の両面にドクターブレード法により塗布し、次いで、乾燥機内に通してスラリー調製時に必要であったNMPを除去した後、ロールプレス機を用いて厚みが125μmとなるように圧延して正極極板を作製した。
[Preparation of positive electrode plate]
The positive electrode plate common to the examples and the comparative examples was produced as follows. Lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material uses lithium carbonate (Li 2 CO 3 ) as a lithium source as a starting material, and tricobalt tetroxide (Co 3 O 4 ) as a cobalt source. Were weighed and mixed in a predetermined amount, and then calcined at 850 ° C. for 24 hours in an air atmosphere to obtain lithium cobalt oxide. This was ground to an average particle size of 14 μm with a mortar to obtain a positive electrode active material. In the N-methyl-pyrrolidone NMP solution, 90 parts by mass of the positive electrode active material thus produced, 5 parts by mass of graphite powder as a conductive agent, and 5 parts by mass of polyvinylidene fluoride PVdF powder as a binder were used. To prepare a positive electrode active material slurry. Next, this positive electrode active material slurry was applied to both surfaces of a positive electrode core body made of an aluminum foil having a thickness of 15 μm by a doctor blade method, and then passed through a dryer to remove NMP necessary for slurry preparation. A positive electrode plate was produced by rolling to a thickness of 125 μm using a roll press.
[負極極板の作製]
比較例1の負極極板では、結着材として下記化学式(1)で表されるポリアクリル酸を使用した。
In the negative electrode plate of Comparative Example 1, polyacrylic acid represented by the following chemical formula (1) was used as a binder.
更に、実施例の負極極板では、結着材として下記化学式(2)で表されるトリフルオロエタノールでカルボン酸を修飾したポリアクリル酸を使用した。この化合物は、上記化学式(1)で表されるポリアクリル酸とトリフルオロエチルアルコールとを反応させて得た、ポリアクリル酸トリフルオロエチルからなるものである。
そして、実施例及び比較例1、2の負極極板は次のようにして作製した。負極活物質としての黒鉛粉末95質量部と、増粘剤としてのカルボキシメチルセルロースCMC3質量部と、上記の結着材2質量部とを水に分散させてスラリーを調製した。このスラリーを厚さ10μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布し、次いで、乾燥機内に通してスラリー調製時に必要であった水分を除去した後、ロールプレス機を用いて厚みが125μmとなるように圧延して負極極板を作製した。なお、正極極板及び負極極板のそれぞれの活物質塗布量は、設計基準となる充電電圧において、正極極板と負極極板とが対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。 And the negative electrode plate of an Example and Comparative Examples 1 and 2 was produced as follows. A slurry was prepared by dispersing 95 parts by mass of graphite powder as a negative electrode active material, 3 parts by mass of carboxymethyl cellulose CMC as a thickener, and 2 parts by mass of the above binder. This slurry was applied to both sides of a negative electrode core made of a copper foil having a thickness of 10 μm by a doctor blade method, and then passed through a dryer to remove water necessary for preparing the slurry, and then using a roll press. A negative electrode plate was produced by rolling to a thickness of 125 μm. The amount of active material applied to each of the positive electrode plate and the negative electrode plate is determined by the charge capacity ratio (negative electrode charge capacity / positive electrode charge) at the portion where the positive electrode plate and the negative electrode plate face each other at the charging voltage as the design standard. (Capacity) was adjusted to 1.1.
[非水電解液の調製]
ECとPCとEMCとを体積比10:10:80の割合(1気圧、25℃換算)で混合した非水溶媒に、電解質塩としてのLiPF6を1.0mol/Lの割合で溶解したものを非水電解液とした。
[Preparation of non-aqueous electrolyte]
A solution in which LiPF 6 as an electrolyte salt is dissolved at a rate of 1.0 mol / L in a non-aqueous solvent in which EC, PC, and EMC are mixed at a volume ratio of 10:10:80 (1 atm, converted to 25 ° C.) Was used as a non-aqueous electrolyte.
[電池の作製]
上述のようにして作製した正極極板、負極極板及び非水電解液を用い、セパレータとしてポリエチレン製微多孔膜を使用して、図1に示したような構成の実施例及び比較例1、2に共通する角形非水電解質二次電池10を作製した。なお、この角形非水電解質二次電池10の設計容量は900mAhである。
[Production of battery]
Using the positive electrode plate, the negative electrode plate and the non-aqueous electrolyte prepared as described above, using a polyethylene microporous membrane as a separator, the Example and Comparative Example 1 having the configuration shown in FIG. A square nonaqueous electrolyte
なお、図1に示した角形の非水電解質二次電池10の具体的な構成は以下のとおりである。この非水電解質二次電池10は、正極板11と負極板12とがセパレータ13を介して巻回された偏平状の巻回電極体14を、角形の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。巻回電極体14は、正極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板12は、封口板16の中央に形成され、絶縁体17を介して取り付けられた負極端子18に対して集電体19を介して電気的に接続されている。
The specific configuration of the rectangular nonaqueous electrolyte
そして、電池外装缶15は、正極板11と電気的に接続されているので、負極板12と電池外装缶15との短絡を防止するために、巻回電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極板12と電池外装缶15とを電気的に絶縁状態にしている。この角形の非水電解質二次電池は、巻回電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注液孔21から非水電解液を注液して、この電解液注液孔21を密閉することにより作製される。
Since the battery outer can 15 is electrically connected to the
[サイクル特性の測定]
以上のようにして作製された実施例及び比較例1、2の3種類の電池について、以下のようにしてサイクル特性を測定した。まず、25℃において1It=900mAの定電流で電池電圧が4.2Vとなるまで充電し、その後4.2Vの定電圧で電流が1/50It=18mAとなるまで充電し、次いで、25℃で1Itの定電流で電池電圧が2.75Vとなるまで放電した。このときの放電容量を1サイクル目の放電容量として求めた。次いで、上述のような充放電サイクルを300回繰り返し、300回目の放電容量を300サイクル目の放電容量として求めた。そして、以下の計算式によりサイクル特性値を求めた。結果を表1にまとめて示した。
サイクル特性値(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of cycle characteristics]
The cycle characteristics of the three types of batteries of Examples and Comparative Examples 1 and 2 manufactured as described above were measured as follows. First, the battery is charged at a constant current of 1 It = 900 mA at 25 ° C. until the battery voltage becomes 4.2 V, then charged at a constant voltage of 4.2 V until the current becomes 1/50 It = 18 mA, and then at 25 ° C. The battery was discharged at a constant current of 1 It until the battery voltage reached 2.75V. The discharge capacity at this time was determined as the discharge capacity of the first cycle. Next, the above charge / discharge cycle was repeated 300 times, and the discharge capacity at the 300th time was determined as the discharge capacity at the 300th cycle. And the cycle characteristic value was calculated | required with the following formulas. The results are summarized in Table 1.
Cycle characteristic value (%)
= (Discharge capacity at 300th cycle / Discharge capacity at 1st cycle) × 100
[膨れ率の測定]
また、膨れ率の測定は、上記のサイクル特性の測定前及び測定後にそれぞれ電池の厚みの差をノギスで測定し、以下の計算式によって膨れ率(%)を測定した。結果を纏めて表1に示した。
膨れ率(%)=(電池の厚みの差/サイクル特性の測定前の厚み)×100
[Measurement of swelling rate]
In addition, the swelling rate was measured by measuring the difference in battery thickness with a caliper before and after measuring the above-mentioned cycle characteristics, and measuring the swelling rate (%) by the following calculation formula. The results are summarized in Table 1.
Expansion rate (%) = (difference in battery thickness / thickness before measurement of cycle characteristics) × 100
表1に示した結果から、以下のことが分かる。すなわち、比較例1の電池の測定結果と比較例2の電池の測定結果とを対比すると、結着剤としてのポリアクリル酸はスチレン・ブタジエン・ゴムを用いた場合よりもサイクル特性に優れ、また、電池の膨れ率も小さかった。しかしながら、負極極板の結着材としてポリアクリル酸トリフルオロエチルを用いた実施例の電池は、結着材としてポリアクリル酸を用いた比較例1の電池よりも更にサイクル特性に優れ、また、電池の膨れ率も小さかった。 From the results shown in Table 1, the following can be understood. That is, when the measurement result of the battery of Comparative Example 1 is compared with the measurement result of the battery of Comparative Example 2, the polyacrylic acid as the binder has better cycle characteristics than the case of using styrene-butadiene rubber, The swelling rate of the battery was also small. However, the battery of the example using polytrifluoroethyl acrylate as the binder of the negative electrode plate is more excellent in cycle characteristics than the battery of Comparative Example 1 using polyacrylic acid as the binder, The expansion rate of the battery was also small.
このことは、結着剤としてポリアクリル酸をトリフルオロエタノールで修飾したポリアクリル酸トリフルオロエチルを使用したものは、電解液による膨潤が抑制されたことによって、負極活物質−負極活物質間及び負極活物質−負極芯体間での導電率が確保され、サイクル特性が向上したものと思われる。このように、ポリアクリル酸のカルボキシル基を修飾することにより、負極活物質や非水電解液との間の反応性が抑制され、結着剤としてより良好な性質を備えるに至ったことが確認された。 This is because the use of poly (trifluoroethyl acrylate) obtained by modifying poly (acrylic acid) with trifluoroethanol as a binder suppresses the swelling caused by the electrolyte solution, and thus, between the negative electrode active material and the negative electrode active material and It is considered that the conductivity between the negative electrode active material and the negative electrode core was ensured, and the cycle characteristics were improved. Thus, by modifying the carboxyl group of polyacrylic acid, the reactivity between the negative electrode active material and the non-aqueous electrolyte was suppressed, and it was confirmed that it had better properties as a binder. It was done.
なお、上記実施例では、ポリアクリル酸をトリフルオロエタノールで修飾したポリアクリル酸トリフルオロエチルを用いた例を示したが、モノフルオロメチルアルコール、ジフルオロメチルアルコール、トリフルオロメチルアルコール、2,2,2−トリフルオロエチルアルコール、ジフルオロメチレンアルコール等で修飾したものも使用し得る。ただし、化学的安定性及び合成のし易さを考慮すると、トリフルオロエタノール又はトリメチルアルコールで修飾したものが好ましい。また、上記実施例では角形の非水電解質二次電池を示したが、円筒形又は楕円筒形のものであっても適用可能である。 In the above examples, polyacrylic acid trifluoroethyl acrylate modified with trifluoroethanol was used, but monofluoromethyl alcohol, difluoromethyl alcohol, trifluoromethyl alcohol, 2, 2, Those modified with 2-trifluoroethyl alcohol, difluoromethylene alcohol or the like can also be used. However, in view of chemical stability and ease of synthesis, those modified with trifluoroethanol or trimethyl alcohol are preferred. Moreover, although the square nonaqueous electrolyte secondary battery was shown in the said Example, even if it is a cylindrical shape or an elliptical cylinder shape, it is applicable.
10…非水電解質二次電池 11…正極板 12…負極板 13…セパレータ 14…偏平状の巻回電極体 15…角形の電池外装缶 16…封口板 17…絶縁体 18…負極端子 19…集電体 20…絶縁スペーサ 21…電解液注液孔
DESCRIPTION OF
Claims (5)
前記結着材は、カルボキシル基がフッ素を含有する官能基により修飾されているポリアクリル酸からなることを特徴とする、非水電解質二次電池用負極。 In the negative electrode plate for a non-aqueous electrolyte secondary battery in which a negative electrode mixture containing a negative electrode active material and a binder is provided on the surface of the negative electrode core,
The negative electrode for a non-aqueous electrolyte secondary battery, wherein the binder is made of polyacrylic acid in which a carboxyl group is modified with a functional group containing fluorine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009249546A JP2011096520A (en) | 2009-10-29 | 2009-10-29 | Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009249546A JP2011096520A (en) | 2009-10-29 | 2009-10-29 | Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011096520A true JP2011096520A (en) | 2011-05-12 |
Family
ID=44113231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009249546A Pending JP2011096520A (en) | 2009-10-29 | 2009-10-29 | Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011096520A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160077057A (en) | 2013-10-28 | 2016-07-01 | 제온 코포레이션 | Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
JP2019175629A (en) * | 2018-03-28 | 2019-10-10 | Tdk株式会社 | Negative electrode binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery |
CN113024748A (en) * | 2021-03-04 | 2021-06-25 | 浙江大学衢州研究院 | Preparation method of fluorine-containing water-based electrode binder |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042819A (en) * | 2000-07-31 | 2002-02-08 | Nippon Zeon Co Ltd | Binder for secondary battery electrode, secondary battery electrode and secondary battery |
-
2009
- 2009-10-29 JP JP2009249546A patent/JP2011096520A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042819A (en) * | 2000-07-31 | 2002-02-08 | Nippon Zeon Co Ltd | Binder for secondary battery electrode, secondary battery electrode and secondary battery |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160077057A (en) | 2013-10-28 | 2016-07-01 | 제온 코포레이션 | Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
JP2019175629A (en) * | 2018-03-28 | 2019-10-10 | Tdk株式会社 | Negative electrode binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery |
JP7098999B2 (en) | 2018-03-28 | 2022-07-12 | Tdk株式会社 | Negative electrode binder for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using this, and lithium ion secondary batteries |
CN113024748A (en) * | 2021-03-04 | 2021-06-25 | 浙江大学衢州研究院 | Preparation method of fluorine-containing water-based electrode binder |
CN113024748B (en) * | 2021-03-04 | 2023-10-20 | 浙江大学衢州研究院 | Preparation method of fluorine-containing water-based electrode binder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780833B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP5910627B2 (en) | Secondary battery | |
JP5582587B2 (en) | Lithium ion secondary battery | |
JP5247196B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4853608B2 (en) | Lithium secondary battery | |
US20080206652A1 (en) | Nonaqueous electrolyte secondary battery | |
WO2006082719A1 (en) | Positive electrode and nonaqueous electrolyte secondary battery | |
JP2010528431A (en) | Non-aqueous electrolytic solution and electrochemical device including the same | |
JP6394611B2 (en) | Manufacturing method of secondary battery | |
JP4149815B2 (en) | Nonionic surfactant-containing electrolyte and lithium ion battery using the same | |
JP2009129721A (en) | Non-aqueous secondary battery | |
JP5561803B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4489207B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
KR20080080444A (en) | Non-aqueous electrolyte secondary battery | |
JP5026629B2 (en) | Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery | |
JP2009110886A (en) | Method of manufacturing nonaqueous electrolyte secondary battery | |
JP2011192561A (en) | Manufacturing method for nonaqueous electrolyte secondary battery | |
JP2013122901A (en) | Electrolyte solution for nonaqueous secondary battery, and secondary battery | |
JP2009081067A (en) | Non-aqueous secondary battery | |
JP5312751B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2010140737A (en) | Nonaqueous electrolyte secondary battery | |
JP2001222995A (en) | Lithium ion secondary battery | |
JP2009176528A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing same | |
JP3650548B2 (en) | Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material | |
JP2011096520A (en) | Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121024 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140326 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140401 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140407 |