JP3340526B2 - Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same - Google Patents

Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same

Info

Publication number
JP3340526B2
JP3340526B2 JP23090693A JP23090693A JP3340526B2 JP 3340526 B2 JP3340526 B2 JP 3340526B2 JP 23090693 A JP23090693 A JP 23090693A JP 23090693 A JP23090693 A JP 23090693A JP 3340526 B2 JP3340526 B2 JP 3340526B2
Authority
JP
Japan
Prior art keywords
barium
cerium
solid electrolyte
electrode
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23090693A
Other languages
Japanese (ja)
Other versions
JPH0765839A (en
Inventor
昇 谷口
孝治 蒲生
聡 倉中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23090693A priority Critical patent/JP3340526B2/en
Publication of JPH0765839A publication Critical patent/JPH0765839A/en
Application granted granted Critical
Publication of JP3340526B2 publication Critical patent/JP3340526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、バリウムセリウム系酸
化物固体電解質を用いる燃料電池などの電気化学デバイ
スあるいはセンサーに用いられる還元極およびその製造
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reducing electrode used for an electrochemical device or sensor such as a fuel cell using a barium-cerium-based oxide solid electrolyte and a method for producing the same.

【0002】[0002]

【従来の技術】バリウムセリウム系酸化物固体電解質
は、高温で高いイオン伝導性を有するペロブスカイト型
酸化物であり、還元および酸化雰囲気中において安定に
存在する。現在、この系の酸化物を固体電解質に用いた
各種電気化学デバイスの応用が検討されており、特にセ
ンサーや燃料電池への応用は従来のジルコニア系固体電
解質に取って代わるものとして期待されている。しかし
ながら、この系の固体電解質は、最近注目され始めたと
ころであり、この系に最適の電極材料およびその製造法
などは確立されていない。現在のところ、標準的な高温
における還元・酸化雰囲気中で安定な白金や銀が電極と
して使用されている。
2. Description of the Related Art A barium-cerium-based oxide solid electrolyte is a perovskite oxide having high ionic conductivity at a high temperature, and is stably present in a reducing and oxidizing atmosphere. Currently, applications of various electrochemical devices using this type of oxide as a solid electrolyte are being studied, and applications to sensors and fuel cells in particular are expected to replace conventional zirconia-based solid electrolytes. . However, the solid electrolyte of this system has just begun to attract attention recently, and an optimum electrode material for this system and a production method thereof have not been established. At present, platinum and silver which are stable in a standard high temperature reducing / oxidizing atmosphere are used as electrodes.

【0003】一方、ジルコニア型燃料電池の還元極とし
て、ニッケルを主体とした材料等が用いられているが、
ニッケルの過焼結を抑えるためジルコニア粉末を混合し
たサーメットなどが用いられており、酸化物を混合した
分、電子伝導性が劣ったり、電解質との反応性が問題と
なったりしている。また、溶融炭酸塩型燃料電池の還元
極においてもニッケルを主体とした材料が用いられてい
るが、過焼結などの問題が残っている。
On the other hand, as a reducing electrode of a zirconia fuel cell, a material mainly composed of nickel is used.
Cermet or the like mixed with zirconia powder is used in order to suppress oversintering of nickel, and the amount of mixed oxide causes poor electron conductivity or a problem with reactivity with an electrolyte. Further, a material mainly composed of nickel is used also in the reduction electrode of the molten carbonate fuel cell, but problems such as oversintering remain.

【0004】[0004]

【発明が解決しようとする課題】前記したようにバリウ
ムセリウム系酸化物固体電解質に最適の還元極は見いだ
されておらず、白金や銀の電極はコスト高になり実用化
には適さない。バリウムセリウム系酸化物固体電解質と
反応せず、かつ電解質の性能を最大限に引き出せる高電
子伝導性の電極材料の開発が望まれている。また高温
中、長時間の使用に耐えうる還元極が望まれている。
As described above, no optimum reducing electrode has been found for a barium-cerium-based oxide solid electrolyte, and platinum and silver electrodes are costly and not suitable for practical use. It is desired to develop a highly electron conductive electrode material that does not react with a barium-cerium-based oxide solid electrolyte and can maximize the performance of the electrolyte. Also, a reduction electrode that can withstand long-time use at high temperatures is desired.

【0005】[0005]

【課題を解決するための手段】本発明のバリウムセリウ
ム系酸化物固体電解質用の還元極は、Mn、Fe、C
o、カルボニルニッケルおよびCuよりなる群から選択
される少なくとも一種と、BaCe 0.8 Dy 0.2 3-x
たはBaCe 0.8 Gd 0.2 3-x を含むことを特徴とす
る。
The reduction electrode for the barium-cerium-based oxide solid electrolyte of the present invention comprises Mn, Fe, C
at least one selected from the group consisting of o, carbonyl nickel and Cu , and BaCe 0.8 Dy 0.2 O 3-x or
Other is characterized in that it comprises a BaCe 0.8 Gd 0.2 O 3-x .

【0006】また、本発明のバリウムセリウム系酸化物
固体電解質用の還元極の製造法は、バリウムセリウム系
酸化物固体電解質の表面に、Mn、Fe、Co、カルボ
ニルニッケルおよびCuよりなる群から選択される少な
くとも一種と、BaCe 0.8 Dy 0.2 3-x またはBaC
0.8 Gd 0.2 3-x を含む層を形成する工程、前記の
層を空気中で加熱して焼き付ける工程、および還元雰囲
気中で加熱して還元する工程を有する。
Further, the barium-cerium oxide solid electrolyte process for the preparation of the reduction electrode for the present invention, the surface of the barium-cerium oxide solid electrolyte, Mn, Fe, Co, carbo
At least one selected from the group consisting of nilnickel and Cu , and BaCe 0.8 Dy 0.2 O 3-x or BaC
a step of forming a layer containing e 0.8 Gd 0.2 O 3-x , a step of heating and baking the layer in air, and a step of heating and reducing in a reducing atmosphere.

【0007】ここで、還元極を製造するための前記金属
およびセリアまたはバリウムセリウム系酸化物を含む層
は、プラズマ溶射やスパッタ法などPVD法、CVD法
により固体電解質の表面に形成することができるが、前
記金属の粉末とセリアまたはバリウムセリウム系酸化物
の粉末との混合物を適当な結合剤を用いて固体電解質の
表面に塗布するのが最も簡便であり、その場合、これら
粉末の粒径は、5ミクロン以下であることが好ましい。
また、焼付け工程は、800〜1000℃において少な
くとも1時間、還元工程は水素雰囲気中において800
〜1000℃で少なくとも1時間かけるのが好ましい。
Here, the layer containing the metal and ceria or barium-cerium-based oxide for producing the reduction electrode can be formed on the surface of the solid electrolyte by a PVD method such as plasma spraying or a sputtering method, or a CVD method. However, it is most convenient to apply a mixture of the metal powder and the ceria or barium-cerium-based oxide powder to the surface of the solid electrolyte using a suitable binder, in which case the particle size of these powders is , Preferably less than 5 microns.
The baking step is performed at 800 to 1000 ° C. for at least 1 hour, and the reducing step is performed at 800 ° C. in a hydrogen atmosphere.
It is preferred to take at least 1 hour at ~ 1000 ° C.

【0008】[0008]

【作用】本発明の電極において、セリアまたはバリウム
セリウム系酸化物は、電極作動中にMn、Feなどの金
属の過焼結を防止するもので、少ないとその機能を発揮
できず、また多すぎると電極性能を損なう。用いる金属
によっても異なるが、酸化物の適当な範囲は、金属と酸
化物の混合物の5〜75重量%である。
In the electrode of the present invention, ceria or barium-cerium oxide prevents oversintering of metals such as Mn and Fe during operation of the electrode. And impair the electrode performance. Depending on the metal used, a suitable range for the oxide is 5 to 75% by weight of the mixture of metal and oxide.

【0009】本発明により、低コストでバリウムセリウ
ム系酸化物固体電解質と反応せず、かつ電解質の性能を
最大限に引き出すことができ、更に、高温で長時間の使
用に耐えうる長寿命の還元極を得ることができる。ま
た、上記製造法により、簡便な工程で、安価に電極を得
ることができる。
According to the present invention, it is possible to maximize the performance of an electrolyte without reacting with a barium-cerium-based oxide solid electrolyte at a low cost, and furthermore, a long-life reduction capable of withstanding long-term use at a high temperature. You can get poles. Further, by the above manufacturing method, an electrode can be obtained in a simple process at low cost.

【0010】[0010]

【実施例】以下、本発明を実施例により説明する。 [実施例1]本実施例は、電極材料をバリウムセリウム系
酸化物固体電解質に塗布し、これを焼き付け、還元処理
の後、電極性能をインピーダンス解析により調べたもの
である。バリウムセリウム系酸化物固体電解質としてB
aCe0.8Dy0.23-xを用い、この酸化物焼結体を直
径13mm、厚さ0.50mmの円板に切断し、研磨加
工した後、一方の面に大きさ0.50cm2となるよう
に白金粉末を塗布、焼き付けて酸化極を形成し、もう一
方の面に同様に還元極材料のペーストを大きさ0.50
cm2となるよう塗布する。
The present invention will be described below with reference to examples. [Embodiment 1] In this embodiment, an electrode material is applied to a barium-cerium-based oxide solid electrolyte, which is baked and reduced, and the electrode performance is examined by impedance analysis. B as a barium-cerium oxide solid electrolyte
Using aCe 0.8 Dy 0.2 O 3-x , this oxide sintered body was cut into a disc having a diameter of 13 mm and a thickness of 0.50 mm, and after being polished, the size became 0.50 cm 2 on one surface. A platinum powder is applied and baked to form an oxidized electrode, and a paste of a reduced electrode material having a size of 0.50
Apply to make cm 2 .

【0011】ペーストは、粉末の原材料に結着材として
4重量%相当のポリビニルブチラールを加え、エタノー
ルとトルエンの混合溶媒中で混合することにより調製す
る。電極材料としては、Mn、Fe、Co、Niまたは
Cu95重量%と、上記固体電解質と同じ酸化物5重量
%の混合物を用いる。これら材料の粒径は、2〜3ミク
ロン、約5ミクロン、約10ミクロン、20〜30ミク
ロンの4種類調製する。焼き付けは、空気雰囲気中にお
いて1000℃で3時間行い、その後水素雰囲気中にお
いて1000℃で3時間還元処理をする。なお、比較例
としてPt電極を用いる。
The paste is prepared by adding 4% by weight of polyvinyl butyral as a binder to the raw material of the powder and mixing them in a mixed solvent of ethanol and toluene. A mixture of 95% by weight of Mn, Fe, Co, Ni or Cu and 5% by weight of the same oxide as the solid electrolyte is used as an electrode material. The particle sizes of these materials are prepared in four types: 2-3 microns, about 5 microns, about 10 microns, and 20 to 30 microns. The baking is performed in an air atmosphere at 1000 ° C. for 3 hours, and then a reduction treatment is performed in a hydrogen atmosphere at 1000 ° C. for 3 hours. Note that a Pt electrode is used as a comparative example.

【0012】上記のようにして得た各還元極について、
600℃、800℃および1000℃において、印加電
圧0.05V、周波数1Hz−1MHzで測定したイン
ピーダンスを表1に示す。ただし、測定値は、コールコ
ールプロットで表したときの実軸との交点の値(バルク
抵抗値)で、2m弱のリード線(白金)の分を除いてい
る。
For each of the reducing electrodes obtained as described above,
Table 1 shows the impedance measured at 600 ° C., 800 ° C., and 1000 ° C. at an applied voltage of 0.05 V and a frequency of 1 Hz to 1 MHz. However, the measured value is the value at the intersection (bulk resistance value) with the real axis as represented by the Cole-Cole plot, excluding the portion of the lead wire (platinum) of less than 2 m.

【0013】[0013]

【表1】 [Table 1]

【0014】表からわかるように、Mn、Fe、Co、
Ni、Cuの特に5μm以下の粒径の粉末材料を用いて
製造した還元極は、従来の白金電極と同様に充分電解質
の性能を引き出している。また、これらの材料と電解質
の直接的な反応はみられず、従って長期に渡り電極材料
として使用できることを示唆している。
As can be seen from the table, Mn, Fe, Co,
The reduction electrode manufactured by using a powder material of Ni and Cu, particularly having a particle diameter of 5 μm or less, sufficiently brings out the performance of the electrolyte similarly to the conventional platinum electrode. Also, no direct reaction between these materials and the electrolyte was observed, suggesting that they can be used as electrode materials for a long time.

【0015】[実施例2]バリウムセリウム系酸化物固体
電解質として厚さ0.50mmの酸化物焼結体BaCe
0.8Gd0.23-xを用い、その一方の面に酸化極として
白金電極を焼き付け、もう一方の面に還元極材料のペー
ストを大きさ0.50cm2となるように塗布する。こ
のペーストは、粒径2〜3μmのカルボニルニッケル粉
末75重量%とセリアまたは上記固体電解質と同じバリ
ウムセリウムガドリニウム酸化物粉末25重量%の混合
物に、結着材として4重量%相当のポリビニルブチラー
ルを加え、エタノールとトルエンの混合溶媒中で混合す
ることにより調製したものである。実施例1と同様の条
件で焼き付けと還元処理をして還元極を製造する。
Example 2 A 0.50 mm thick oxide sintered body BaCe was used as a barium-cerium-based oxide solid electrolyte.
Using 0.8 Gd 0.2 O 3-x , a platinum electrode is baked on one surface as an oxidation electrode, and a paste of a reduction electrode material is applied to the other surface so as to have a size of 0.50 cm 2 . This paste is obtained by adding 4% by weight of polyvinyl butyral as a binder to a mixture of 75% by weight of carbonyl nickel powder having a particle size of 2 to 3 μm and 25% by weight of ceria or the same barium cerium gadolinium oxide powder as the solid electrolyte. , Prepared by mixing in a mixed solvent of ethanol and toluene. Under the same conditions as in Example 1, baking and reduction treatment are performed to produce a reduction electrode.

【0016】上記のようにして得た燃料電池素子を80
0℃において酸化極に200ml/分の空気を、還元極
に200ml/分の加湿水素をそれぞれ供給して、10
0mA/cm2で連続放電させた時の電圧変化を図1に
示す。aはカルボニルニッケルとバリウムセリウムカド
リニウム酸化物との混合物を原料とする還元極を用いた
電池、bはカルボニルニッケルとセリアとの混合物を原
料とする還元極を用いた電池、cは白金を還元極に用い
た電池の特性を示す。
The fuel cell device obtained as described above is
At 0 ° C., 200 ml / min air and 200 ml / min humidified hydrogen were supplied to the oxidation electrode and the reduction electrode, respectively.
FIG. 1 shows a voltage change when a continuous discharge is performed at 0 mA / cm 2 . a is a battery using a reduction electrode made from a mixture of carbonyl nickel and barium-cerium-cadolinium oxide as a raw material; b is a battery using a reduction electrode made from a mixture of carbonyl nickel and ceria as a raw material; This shows the characteristics of the battery used for the pole.

【0017】電圧変化のほとんどが電極性能によるもの
と考えられるが、本発明による還元極を用いた電池a、
bは、従来の白金電極を用いた電池cと比較して性能的
にほぼ同等で、いずれの電極を用いた場合でも劣化率が
従来の6%/1000hから2%〜3%/1000hに
低減している。明らかに長期に渡って電極性能が維持さ
れていることがわかる。本発明の材料を用いることによ
り、従来の電極より低コストで長寿命な電極を得ること
ができる。
Although it is considered that most of the voltage change is due to the electrode performance, the battery a using the reduction electrode according to the present invention,
b is substantially equal in performance to the battery c using the conventional platinum electrode, and the deterioration rate is reduced from the conventional 6% / 1000h to 2% to 3% / 1000h when any of the electrodes is used. are doing. It is clear that the electrode performance is clearly maintained over a long period of time. By using the material of the present invention, it is possible to obtain an electrode having lower cost and longer life than conventional electrodes.

【0018】なお、本実施例では、Niとセリアあるい
はバリウムセリウム系酸化物の混合物を用いたが、セリ
アあるいはバリウムセリウム系酸化物と混合するのはN
iに限らず、例えばNi70重量%、Co10重量%、
セリア10重量%、バリウムセリウムガドリニウム酸化
物10重量%のような混合物でもよく、Mn、Fe、C
o、Cuの1以上を混合すればどのような混合物でもよ
い。もちろん、材料の調製法、合成法は、金属状態で混
合しても、酸化物状態で混合してもよいし、また合金や
複合酸化物の合成法もどのような方法であってもよい。
In this embodiment, a mixture of Ni and ceria or barium-cerium-based oxide is used.
Not limited to i, for example, Ni 70% by weight, Co 10% by weight,
A mixture such as 10% by weight of ceria and 10% by weight of barium cerium gadolinium oxide may be used, and Mn, Fe, C
Any mixture may be used as long as at least one of o and Cu is mixed. Needless to say, the method of preparing and synthesizing the material may be mixing in a metal state or mixing in an oxide state, and any method of synthesizing an alloy or a composite oxide may be used.

【0019】[0019]

【発明の効果】以上のように本発明によれば、低コスト
でバリウムセリウム系酸化物固体電解質と反応せず、か
つ電解質の性能を最大限に引き出せる高性能、長寿命の
還元極を得ることができる。
As described above, according to the present invention, it is possible to obtain a high-performance, long-life reducing electrode which does not react with a barium-cerium-based oxide solid electrolyte at low cost and can maximize the performance of the electrolyte. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各種還元極を用いた燃料電池の連続放電特性を
比較した図である。
FIG. 1 is a diagram comparing continuous discharge characteristics of fuel cells using various types of reduction electrodes.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−1453(JP,A) 特開 平2−262260(JP,A) 特開 平4−169067(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 H01M 4/88 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-1453 (JP, A) JP-A-2-262260 (JP, A) JP-A 4-169067 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/86 H01M 4/88

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mn、Fe、Co、カルボニルニッケル
およびCuよりなる群から選択される少なくとも一種
と、BaCe 0.8 Dy 0.2 3-x またはBaCe 0.8 Gd
0.2 3-x を含むことを特徴とするバリウムセリウム系
酸化物固体電解質用の還元極。
1. at least one selected from the group consisting of Mn, Fe, Co, carbonyl nickel, and Cu
And BaCe 0.8 Dy 0.2 O 3-x or BaCe 0.8 Gd
0.2 O 3-x and the reduction electrode for a barium-cerium oxide solid electrolyte, which comprises a.
【請求項2】 バリウムセリウム系酸化物固体電解質の
表面に、Mn、Fe、Co、カルボニルニッケルおよび
Cuよりなる群から選択される少なくとも一種と、Ba
Ce 0.8 Dy 0.2 3-x またはBaCe 0.8 Gd 0.2 3-x
を含む層を形成する工程、前記の層を空気中で加熱して
焼き付ける工程、および還元雰囲気中で加熱して還元す
る工程を有することを特徴とするバリウムセリウム系酸
化物固体電解質用の還元極の製造法。
2. A barium-cerium-based oxide solid electrolyte having at least one selected from the group consisting of Mn, Fe, Co, carbonyl nickel, and Cu , and Ba
Ce 0.8 Dy 0.2 O 3-x or BaCe 0.8 Gd 0.2 O 3-x and forming a layer containing a <br/>, the layer of heated in step, and in a reducing atmosphere baked by heating in air A method for producing a reduction electrode for a barium-cerium-based oxide solid electrolyte, comprising:
【請求項3】 前記の層がMn、Fe、Co、カルボニ
ルニッケルおよびCuよりなる群から選択される少なく
とも一種の粉末と、BaCe 0.8 Dy 0.2 3-x またはB
aCe 0.8 Gd 0.2 3-x の粉末の混合物を含み、これ
ら粉末の粒径が5ミクロン以下である請求項記載のバ
リウムセリウム系酸化物固体電解質用の還元極の製造
法。
3. The method according to claim 1, wherein the layer is Mn, Fe, Co, carbon
Selected from the group consisting of nickel and Cu
And one kind of powder , BaCe 0.8 Dy 0.2 O 3-x or B
3. The method for producing a reduced electrode for a barium-cerium-based oxide solid electrolyte according to claim 2 , comprising a mixture with aCe 0.8 Gd 0.2 O 3-x powder , wherein the powder has a particle size of 5 μm or less.
JP23090693A 1993-08-23 1993-08-23 Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same Expired - Lifetime JP3340526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23090693A JP3340526B2 (en) 1993-08-23 1993-08-23 Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23090693A JP3340526B2 (en) 1993-08-23 1993-08-23 Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0765839A JPH0765839A (en) 1995-03-10
JP3340526B2 true JP3340526B2 (en) 2002-11-05

Family

ID=16915151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23090693A Expired - Lifetime JP3340526B2 (en) 1993-08-23 1993-08-23 Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3340526B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69505784T2 (en) * 1995-02-09 1999-05-06 Tokyo Yogyo Kk Solid electrolyte for a fuel cell and its manufacturing process
KR0165651B1 (en) * 1995-09-28 1999-03-30 모리시타 요이치 Electrochemical device
JP4608047B2 (en) * 1999-02-17 2011-01-05 パナソニック株式会社 Mixed ionic conductor and device using the same
CA2298850A1 (en) 1999-02-17 2000-08-17 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
JP4608506B2 (en) * 1999-02-17 2011-01-12 パナソニック株式会社 Mixed ionic conductor and device using the same
JP5116221B2 (en) * 2005-08-03 2013-01-09 関西電力株式会社 Electrode material containing copper oxide particles and method for producing fuel electrode of solid oxide fuel cell using the same

Also Published As

Publication number Publication date
JPH0765839A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JP5072169B2 (en) Improvements in fuel cells and related equipment
EP1839351B1 (en) Manufacturing method and current collector
JP4608047B2 (en) Mixed ionic conductor and device using the same
JPS61216258A (en) Support tube for electrochemical battery
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
JP3340526B2 (en) Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
JP4479039B2 (en) Electrochemical devices
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JPH0668881A (en) Fused carbonate fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP3667297B2 (en) Solid oxide fuel cell and method for producing the same
JPH09295866A (en) Mixed ion connector
JP4712970B2 (en) Transition metal based ceramic materials and electrodes fabricated therefrom
JP2592067B2 (en) Oxygen electrode of solid oxide fuel cell
JP2002097021A (en) High temperature conductive oxide, electrode for fuel cell and fuel cell using the same
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JP3131085B2 (en) Fuel cell and method of manufacturing the same
JPH06124734A (en) Oxygen catalytic electrode and air cell using the electrode
JP3220330B2 (en) Power generation method in solid oxide fuel cell
JPH10321239A (en) Electrode of fuel cell
JP3346663B2 (en) Fuel cell
JPH05190183A (en) Solid electrolyte type fuel cell
JP3131086B2 (en) Fuel cell and method of manufacturing the same
JP2004273143A (en) Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

EXPY Cancellation because of completion of term