JP3131085B2 - Fuel cell and method of manufacturing the same - Google Patents

Fuel cell and method of manufacturing the same

Info

Publication number
JP3131085B2
JP3131085B2 JP05282330A JP28233093A JP3131085B2 JP 3131085 B2 JP3131085 B2 JP 3131085B2 JP 05282330 A JP05282330 A JP 05282330A JP 28233093 A JP28233093 A JP 28233093A JP 3131085 B2 JP3131085 B2 JP 3131085B2
Authority
JP
Japan
Prior art keywords
air electrode
solid electrolyte
fuel cell
metal oxide
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05282330A
Other languages
Japanese (ja)
Other versions
JPH07134999A (en
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05282330A priority Critical patent/JP3131085B2/en
Publication of JPH07134999A publication Critical patent/JPH07134999A/en
Application granted granted Critical
Publication of JP3131085B2 publication Critical patent/JP3131085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気極としてランタン
マンガナイト系セラミックスを利用した燃料電池セルに
関し、固体電解質あるいはインターコネクタなどの集電
部材を気相法で形成する場合の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using a lanthanum manganite ceramic as an air electrode, and relates to an improvement in a case where a current collecting member such as a solid electrolyte or an interconnector is formed by a gas phase method.

【0002】[0002]

【従来技術】現在、固体電解質型燃料電池は第3世代の
燃料電池として、種々の機関において研究開発が精力的
に行われている。固体電解質型燃料電池セルには、円筒
型のものと平板型のもの等がある。そこで、図3に従来
の円筒型燃料電池セルの構造の斜視図を示した。図3に
よれば、円筒型の単セルは開気孔率40%程度のCaO
安定化ZrO2 を支持管1とし、その上にスラリ−ディ
ップ法により多孔質の空気極2としてLaMnO3 系材
料を塗布し、その表面に気相合成法(EVD)や、ある
いは溶射法により固体電解質3であるY2 3 安定化Z
rO2 膜を被覆し、さらにこの表面に多孔質のNi−ジ
ルコニア(Y2 3 含有)の燃料極4を設けられてい
る。燃料電池のモジュ−ルにおいては、各単セルは気相
合成法や、あるいは溶射法により作製したCa、Sr、
Mgを添加したLaCrO3 のインターコネクタと呼ば
れる集電部材5を介して接続される。発電は、支持管内
部に空気(酸素)を、外部に燃料(水素)を流し、10
00〜1050℃の温度で行われる。
2. Description of the Related Art At present, research and development of a solid oxide fuel cell as a third generation fuel cell are being vigorously carried out in various organizations. The solid oxide fuel cell includes a cylindrical type and a flat type. Therefore, FIG. 3 shows a perspective view of the structure of a conventional cylindrical fuel cell. According to FIG. 3, a cylindrical single cell is a CaO having an open porosity of about 40%.
Stabilized ZrO 2 is used as a support tube 1, and a LaMnO 3 material is applied thereon as a porous air electrode 2 by a slurry-dip method, and a solid is formed on the surface by a vapor phase synthesis method (EVD) or a thermal spray method. Electrolyte 3, Y 2 O 3 stabilized Z
An rO 2 film is coated, and a fuel electrode 4 made of porous Ni-zirconia (containing Y 2 O 3 ) is provided on the surface. In the fuel cell module, each single cell is composed of Ca, Sr,
The connection is made via a current collecting member 5 called an interconnector made of LaCrO 3 to which Mg is added. Power generation is performed by flowing air (oxygen) inside the support tube and fuel (hydrogen) outside,
It is performed at a temperature of 00 to 1050 ° C.

【0003】近年、このセルの作製工程においてプロセ
スを単純化するため、空気極材料であるLaMnO3
材料を直接多孔質の支持管として使用する試みもなされ
ている。空気極としての機能を合せ持つ支持管材料とし
ては、LaをCaで20%あるいはSrで10〜15%
置換したLaMnO3 固溶体材料が好適に用いられてい
る。
In recent years, attempts have been made to use a LaMnO 3 -based material, which is an air electrode material, directly as a porous support tube in order to simplify the process of fabricating the cell. As a support tube material having the function as an air electrode, La is 20% by Ca or 10 to 15% by Sr.
Substituted LaMnO 3 solid solution materials are preferably used.

【0004】[0004]

【発明が解決しようとする問題点】空気極である多孔質
のLaMnO3 固溶体表面に上述の気相合成法により固
体電解質3および集電部材5を作製する場合、固体電解
質ではY、Zrを含有するハロゲンガスが、また集電部
材ではLa、Cr、Mg含有のハロゲンガスが用いら
れ、これと酸素とを反応させることにより金属酸化物膜
が形成される。これらのハロゲンガスは膜の被覆工程の
初期において、空気極と直接接することになるが、この
時、このハロゲンガスは、空気極表面を腐食させ、被膜
の接着力を低下させるという問題があった。また、合わ
せて空気極材料中のMnが選択的にハロゲンガスとして
放出され空気極の表面組成が変化して空気極としての機
能を低下させる等の問題も生じていた。
When the solid electrolyte 3 and the current collecting member 5 are formed on the surface of a porous LaMnO 3 solid solution as an air electrode by the above-described vapor phase synthesis method, the solid electrolyte contains Y and Zr. A halogen gas containing La, Cr, and Mg is used for the current collector, and a metal oxide film is formed by reacting the gas with oxygen. These halogen gases come into direct contact with the air electrode in the initial stage of the film coating process. At this time, however, this halogen gas corrodes the air electrode surface and lowers the adhesive strength of the film. . In addition, Mn in the air electrode material is selectively emitted as a halogen gas, and the surface composition of the air electrode changes, thereby causing a problem that the function as the air electrode is lowered.

【0005】[0005]

【問題を解決するための手段】上記の問題を解決すべ
く、検討を重ねた結果、気相法により固体電解質やイン
ターコネクタが形成される空気極表面にハロゲンガスに
対する耐食性に優れた層を形成したのちに気相法により
各種の膜を形成することにより、上記問題点を解決し
た。
[Means for Solving the Problems] As a result of repeated studies to solve the above problems, a layer having excellent corrosion resistance to halogen gas is formed on the surface of the air electrode on which the solid electrolyte and the interconnector are formed by a gas phase method. After that, various problems were solved by forming various films by a vapor phase method.

【0006】即ち、本発明の燃料電池セルは、LaMn
3 系固溶体よりなる円筒状の多孔質空気極の表面に、
酸化物系固体電解質と、金属と金属酸化物とのサーメッ
トからなる多孔質の燃料極を順次積層するとともに、前
記空気極の一部に導電性金属酸化物からなる集電部材を
積層してなる燃料電池セルにおいて、前記空気極と前記
固体電解質との間、あるいは前記空気極と前記集電部材
との間に下記化1
That is, the fuel cell of the present invention has a LaMn
On the surface of a cylindrical porous air electrode made of an O 3 -based solid solution,
An oxide solid electrolyte and a porous fuel electrode composed of a cermet of a metal and a metal oxide are sequentially laminated, and a current collecting member composed of a conductive metal oxide is laminated on a part of the air electrode. In the fuel cell, between the air electrode and the solid electrolyte or between the air electrode and the current collecting member,

【0007】[0007]

【化1】 Embedded image

【0008】で表されるペロブスカイト複合酸化物から
なり、式中、Aは周期律表第3a族元素から選ばれる少
なくとも1種、Bはアルカリ土類元素から選ばれる少な
くとも1種、CはMn、Ni、Fe、Ce、Zrから選
ばれる少なくとも1種の元素からなり、式中のx、y、
zおよびpが 0 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.55 0.90 ≦ z ≦ 1.05 0.10 ≦ p ≦ 0.90 を満足する層を介在させたことを特徴とするものであ
る。
Wherein A is at least one element selected from Group 3a elements of the periodic table, B is at least one element selected from alkaline earth elements, C is Mn, It consists of at least one element selected from Ni, Fe, Ce, and Zr, and x, y,
A layer in which z and p satisfy 0 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.55 0.90 ≦ z ≦ 1.05 0.10 ≦ p ≦ 0.90 is interposed. Is what you do.

【0009】また、本発明の燃料電池セルの製造方法に
よれば、LaMnO3 系固溶体よりなる円筒状の多孔質
空気極の表面に前記化1のペロブスカイト複合酸化物か
らなる中間層を形成する工程と、金属ハロゲンガスおよ
び酸素含有ガスの気相反応により、金属酸化物からなる
固体電解質あるいは金属酸化物からなる集電部材を形成
する工程と、該固体電解質の表面に金属と金属酸化物と
の複合体からなる多孔質の燃料極を形成する工程とを具
備したことを特徴とするものである。
Further, according to the method of manufacturing a fuel cell of the present invention, a step of forming an intermediate layer made of the perovskite composite oxide of the above formula 1 on the surface of a cylindrical porous air electrode made of a LaMnO 3 -based solid solution. Forming a solid electrolyte made of a metal oxide or a current collecting member made of a metal oxide by a gas phase reaction between a metal halogen gas and an oxygen-containing gas; and forming a metal and a metal oxide on the surface of the solid electrolyte. Forming a porous fuel electrode made of a composite.

【0010】本発明の燃料電池セルの構造を図1に示し
た。図中、従来品である図3と実質的同一の部材には同
一の番号を付した。本発明によれば、図1に示されるよ
うに、空気極2と固体電解質3、あるいは空気極2とイ
ンターコネクタ(集電部材)5との間に中間層6が形成
されている点が最も重要である。この中間層6は、前記
化1で示されるようなペロブスカイト型結晶の複合酸化
物からなるものであるが、本発明において、化1中の
x、y、z、pを上記の比率に限定した理由について説
明すると、まず、Laに対する周期律表第3a族元素の
置換比率xが0.4より大きいと空気極との化学反応性
が低くなり、空気極への接着力が弱く、保護層の役目を
果たさない。またLaに対するアルカリ土類元素の置換
比率yが0.05より小さいと800℃付近の温度にお
ける相変態が抑制出来ず空気極から剥離し、yが0.5
5より大きいと空気極との化学反応性が小さくなり同様
に空気極との接着が弱い。AサイトとBサイトの原子比
率zが0.9より小さいとBサイト成分の金属酸化物が
析出し剥離が生じ、zが1.05を越えると、La2
3 が析出し、空気中の水分あるいは炭酸ガスと反応して
被覆層が短時間に分解する。Crに対するMn、Ni等
の置換比率pが0.10より小さいと電気伝導度が低下
し、また空気極への密着性が低下する。pが0.90よ
り大きいと空気極との接着性は良好なもののハロゲンガ
スへの耐食性が低下する。
FIG. 1 shows the structure of a fuel cell unit according to the present invention. In the drawing, the members substantially the same as those in FIG. 3 which is a conventional product are denoted by the same reference numerals. According to the present invention, as shown in FIG. 1, the most important point is that an intermediate layer 6 is formed between the air electrode 2 and the solid electrolyte 3 or between the air electrode 2 and the interconnector (current collecting member) 5. is important. The intermediate layer 6 is made of a complex oxide of a perovskite-type crystal as shown in Chemical Formula 1, but in the present invention, x, y, z, and p in Chemical Formula 1 are limited to the above ratios. Explaining the reason, first, when the substitution ratio x of the Group 3a element of the periodic table with La is larger than 0.4, the chemical reactivity with the air electrode becomes low, the adhesive force to the air electrode is weak, and the protective layer Does not play a role. On the other hand, if the substitution ratio y of the alkaline earth element with respect to La is smaller than 0.05, the phase transformation at a temperature around 800 ° C. cannot be suppressed, and peels off from the air electrode.
If it is larger than 5, the chemical reactivity with the air electrode becomes small, and the adhesion with the air electrode is similarly weak. When the atomic ratio z between the A site and the B site is smaller than 0.9, a metal oxide of the B site component is precipitated and peels off, and when z exceeds 1.05, La 2 O
3 precipitates and reacts with moisture or carbon dioxide gas in the air to decompose the coating layer in a short time. If the substitution ratio p of Mn, Ni, etc. to Cr is less than 0.10, the electrical conductivity decreases and the adhesion to the air electrode decreases. If p is greater than 0.90, the adhesion to the air electrode is good, but the corrosion resistance to halogen gas is reduced.

【0011】本発明における望ましい範囲は、 0 ≦ x ≦ 0.2 0.10 ≦ y ≦ 0.3 0.95 ≦ z ≦ 1.0 0.20 ≦ p ≦ 0.80 の範囲である。また、この中間層の厚みは5〜100μ
mが望ましい。
A desirable range in the present invention is a range of 0 ≦ x ≦ 0.20.10 ≦ y ≦ 0.30.95 ≦ z ≦ 1.00.20 ≦ p ≦ 0.80. The thickness of the intermediate layer is 5 to 100 μm.
m is desirable.

【0012】本発明において用いられる空気極は、La
MnO3 のLaをCa、Ba、Srなどのアルカリ土類
元素で10〜30%置換した材料、あるいはLaをY,
Yb等の周期律表第3a族元素でアルカリ土類と同時に
置換した材料が好ましい。この空気極は、支持管として
も機能させる場合には、1.5〜3mmの厚みで形成さ
れ、所定の支持管表面に形成される場合には1〜2mm
の厚みで形成される。
The air electrode used in the present invention is La
A material in which La of MnO 3 is substituted with 10 to 30% of an alkaline earth element such as Ca, Ba, or Sr, or La is Y,
A material which is simultaneously substituted with an alkaline earth by a Group 3a element of the periodic table such as Yb is preferable. The air electrode is formed to have a thickness of 1.5 to 3 mm when functioning also as a support tube, and is formed to be 1 to 2 mm when formed on a predetermined support tube surface.
It is formed with the thickness of.

【0013】一方、空気極の表面に前記の中間層を介し
て形成される固体電解質としては、ZrO2 あるいはC
eO2 にCaOを10〜15mol%あるいはY
2 3 ,Yb2 3 等の希土類酸化物を7〜15mol
%添加した酸化物が用いられ、この固体電解質は、5〜
200μmの厚みで形成される。
On the other hand, as a solid electrolyte formed on the surface of the air electrode via the intermediate layer, ZrO 2 or C
10 to 15 mol% of CaO in eO 2 or Y
7 to 15 mol of rare earth oxides such as 2 O 3 and Yb 2 O 3
% Of the solid oxide is used.
It is formed with a thickness of 200 μm.

【0014】燃料極としては、Ni,Coなどの金属
と、Y2 3 を含有するZrO2 などの金属酸化物との
複合体からなるサーメットが望ましい。また、インター
コネクタなどの集電部材としては、Laの10〜20原
子%をSr、Ca等で置換したLaCrO3 あるいはC
rの10〜15原子%をMgで置換したLaCrO3
溶体が好適に用いられる。
As the fuel electrode, a cermet made of a composite of a metal such as Ni or Co and a metal oxide such as ZrO 2 containing Y 2 O 3 is desirable. Further, as a current collecting member such as an interconnector, LaCrO 3 or C in which 10 to 20 atomic% of La is substituted with Sr, Ca or the like.
A LaCrO 3 solid solution in which 10 to 15 atomic% of r is substituted by Mg is preferably used.

【0015】次に、本発明に基づく燃料電池セルの製造
方法について説明する。ここでは空気極が支持管として
も機能する円筒状型燃料電池セルを例にして説明する。
まず、空気極として、前述したようなLaMnO3 系組
成からなる空気極組成物の粉末を用いて押出成形や射出
成形などにより円筒状に成形した後、焼成し円筒状の焼
結体を作製する。次に、この円筒状焼結体の表面に前述
した化1で示されるような組成からなる中間層を形成す
る。
Next, a method of manufacturing a fuel cell according to the present invention will be described. Here, a cylindrical fuel cell in which the air electrode also functions as a support tube will be described as an example.
First, as a cathode, a powder of the above-described LaMnO 3 -based composition is used to form a cylindrical sintered body by extrusion molding, injection molding, or the like, and then fired to produce a cylindrical sintered body. . Next, on the surface of the cylindrical sintered body, an intermediate layer having a composition as shown in Chemical Formula 1 is formed.

【0016】この中間層を形成する方法としては、例え
ば、化1で示される組成の金属酸化物の混合粉末を14
00〜1600℃の酸化性雰囲気中で仮焼し、粉砕して
固溶体化処理した後、この粉末を水溶液に分散する。そ
して、この分散液中に空気極の円筒状焼結体を浸漬する
か、あるいは分散液を焼結体表面に塗布し乾燥後、12
00〜1500℃で焼付け処理することにより形成する
ことができる。また、上記の他に溶射法やスパッタ法に
よっても作製することができる。このようにして得られ
る中間層はそれ自体多孔質であることも必要であり、2
5〜45%の開気孔率を有することは望ましい。
As a method of forming the intermediate layer, for example, a mixed powder of a metal oxide having the
After calcining in an oxidizing atmosphere at 00 to 1600 ° C, pulverizing and solid-solution-treating, the powder is dispersed in an aqueous solution. Then, the cylindrical sintered body of the air electrode is immersed in the dispersion, or the dispersion is applied to the surface of the sintered body and dried.
It can be formed by baking at 00 to 1500 ° C. Further, in addition to the above, it can be manufactured by a thermal spraying method or a sputtering method. The intermediate layer obtained in this way must itself be porous,
It is desirable to have an open porosity of 5-45%.

【0017】このようにして中間層を形成した後、これ
を気相合成装置の反応炉内に設置し、固体電解質あるい
は集電部材を形成する。例えば、固体電解質としてY2
3含有安定化ZrO2 を形成する場合にはYCl3
ZrCl4 などの金属ハロゲンガスとともに酸素ガスを
導入し、気相合成によりY2 3 −ZrO2 の固体電解
質膜を5〜200μmの厚みで形成する。一方、例えば
LaCrO3 系材料からなる集電部材を形成する場合に
は、LaCl3 、CrCl3 などの金属ハロゲンガスと
同時に酸素含有ガスを導入することにより、LaCrO
3 系材料からなる集電部材を形成することができる。
After the formation of the intermediate layer in this manner, the intermediate layer is placed in a reaction furnace of a gas phase synthesis apparatus to form a solid electrolyte or a current collecting member. For example, as a solid electrolyte, Y 2
When forming O 3 -containing stabilized ZrO 2 , YCl 3 ,
An oxygen gas is introduced together with a metal halogen gas such as ZrCl 4 and a solid electrolyte membrane of Y 2 O 3 —ZrO 2 is formed with a thickness of 5 to 200 μm by vapor phase synthesis. On the other hand, in the case of forming a current collecting member made of LaCrO 3 material, for example, an oxygen-containing gas is introduced simultaneously with a metal halogen gas such as LaCl 3 or CrCl 3 , whereby LaCrO 3 is introduced.
It is possible to form the current collecting member made of a 3 based material.

【0018】このようにして固体電解質および集電部材
を形成した後、燃料極を固体電解質膜の表面に形成す
る。その燃料極は、例えば、Niなどの金属粉末と、Y
2 3を含むジルコニアの粉末との混合粉末を溶媒中に
分散させ、固体電解質の任意の場所に塗布しこれを13
00〜1500℃で焼き付けることによりセルを作製す
ることができる。
After forming the solid electrolyte and the current collecting member in this manner, a fuel electrode is formed on the surface of the solid electrolyte membrane. The fuel electrode is made of, for example, a metal powder such as Ni and Y
A mixed powder with zirconia powder containing 2 O 3 is dispersed in a solvent, applied to an arbitrary place of a solid electrolyte, and
By baking at 00 to 1500 ° C., a cell can be manufactured.

【0019】なお、本発明によれば、空気極と固体電解
質、あるいは空気極と集電部材との間に前記化1で示さ
れた組成からなるLaCrO3 系複合酸化物を中間層と
して介在させるものであるが、この中間層は例えば、C
aO安定化ZrO2 を支持管としその上に空気極を被覆
し、その上に固体電解質、燃料極を形成したセル、ある
いは、空気極自体を支持管として固体電解質、燃料極を
形成したセルのいずれにも適用することができる。
According to the present invention, a LaCrO 3 -based composite oxide having the composition shown in Chemical Formula 1 is interposed between the air electrode and the solid electrolyte or between the air electrode and the current collecting member as an intermediate layer. The intermediate layer is, for example, C
aO-stabilized ZrO 2 as a support tube and a cathode coated thereon with an air electrode and a solid electrolyte and a fuel electrode formed thereon, or a cell where the air electrode itself is used as a support tube and a solid electrolyte and a fuel electrode are formed It can be applied to any of them.

【0020】さらに、上記説明では円筒状燃料電池セル
を例に説明したが、平板状燃料電池セルにおいても、空
気極と固体電解質との間、空気極と集電部材であるセパ
レータとの間に上述したような中間層を形成した場合で
も同様な効果が得られるものである。
In the above description, a cylindrical fuel cell has been described as an example. However, a flat fuel cell may also be provided between an air electrode and a solid electrolyte, or between an air electrode and a separator as a current collecting member. Similar effects can be obtained even when the intermediate layer as described above is formed.

【0021】[0021]

【作用】気相合成法によりY2 3 安定化ZrO2 から
成る固体電解質膜を被覆する場合、被成膜体を1050
〜1100℃の温度の加熱し、減圧下でYおよびZrを
含有するハロゲンガスと酸素を供給して下記化2
[Action] When coating the solid electrolyte film made of Y 2 O 3 stabilized ZrO 2 by a vapor phase synthesis method, the deposition target object 1050
Heating at a temperature of about 1100 ° C., and supplying a halogen gas containing Y and Zr and oxygen under reduced pressure to produce

【0022】[0022]

【化2】 Embedded image

【0023】の反応により合成する。The compound is synthesized by the following reaction.

【0024】この際、YCl3 やZrCl2 などのハロ
ゲンガスは空気極を腐食し、例えば、空気極が(La,
Ca)MnO3 からなる場合、LaCl3 、CaC
2 、MnCl4 が生成しこれらの成分が蒸発すること
となる。特に、LaMnO3 系固溶体においては、Mn
含有のハロゲンガスが生成しやすい。このため、空気極
の表面組成が変化し、固体電解質膜との付着力を低下さ
せたり、あるいは空気極として、酸素をイオン化すると
いう重要な触媒機能が損なわれる。また、La、Cr等
を含有したハロゲンガスを用いてインターコネクタ膜を
合成する場合は、被成膜体の保持温度が1300〜14
00℃と高いためにこのハロゲンガスによる空気極の腐
食がさらに大きくなる。
At this time, a halogen gas such as YCl 3 or ZrCl 2 corrodes the air electrode.
Ca) When composed of MnO 3 , LaCl 3 , CaC
l 2 and MnCl 4 are produced, and these components evaporate. In particular, in a LaMnO 3 -based solid solution, Mn
Contained halogen gas is easily generated. For this reason, the surface composition of the air electrode changes, and the adhesion to the solid electrolyte membrane is reduced, or the important catalytic function of ionizing oxygen as the air electrode is impaired. In the case where an interconnector film is synthesized using a halogen gas containing La, Cr, or the like, the holding temperature of the object to be formed is 1300 to 14
Since the temperature is as high as 00 ° C., the corrosion of the air electrode by the halogen gas is further increased.

【0025】本発明は、このようなハロゲンガスによる
腐食に対して、空気極の表面に前述したように化1で示
されるようなペロブスカイト型複合酸化物を形成させて
おくことにより、優れた耐腐食性を有すると同時に、高
い導電性を有するとともに空気極との密着性に優れると
いった性質を有するために、燃料電池セルとしての機能
を何ら損なうことなく、前述した問題点を解決すること
ができる。
According to the present invention, the perovskite-type composite oxide as shown in Chemical Formula 1 is formed on the surface of the air electrode as described above to prevent the corrosion by the halogen gas, thereby providing excellent resistance. At the same time as having corrosiveness, it has the property of having high conductivity and excellent adhesion to the air electrode, so that the above-mentioned problem can be solved without impairing the function as a fuel cell at all. .

【0026】これは、化1で表される化合物において、
Cr成分を含んだペロブスカイト酸化物がハロゲンガス
に対する耐蝕性が高いことと、空気極中に含まれるLa
と置換した元素と同族の元素を含む組成系が電気伝導度
が大きく、空気極との接着に優れることの相乗的作用に
よるものと推測される。
In the compound represented by the formula 1,
The perovskite oxide containing Cr component has high corrosion resistance to halogen gas and La contained in the air electrode.
It is presumed that the synergistic effect of a composition system containing an element of the same family as the element substituted with a high electric conductivity and excellent adhesion to the air electrode.

【0027】よって、本発明によれば、燃料電池セルの
作製においてハロゲンガスによる腐食を防止できること
によりセル製造時の歩留りを高めるとともに、セルの長
期にわたる安定性と信頼性を高めることができる。
Therefore, according to the present invention, it is possible to prevent the corrosion by the halogen gas in the production of the fuel cell, thereby improving the yield at the time of producing the cell and improving the long-term stability and reliability of the cell.

【0028】[0028]

【実施例】次に、本発明を実施例に基づき説明する。 実施例1(ハロゲンガスへの耐食性、電気伝導度測定) 市販の純度99.9%のLa2 3 、SrCO3 、Ca
CO3 、BaCO3 、Y2 3 、Yb2 3 、Sc2
3 、Er2 3 、Nd2 3 、Gd2 3 、Dy
2 3 、Sm2 3 、MnO2 、Cr2 3 、NiO、
Fe2 3 、CeO2、ZrO2 を出発原料とし、これ
を表1、表2の所定の組成になるように調合し、ジルコ
ニアボ−ルを用いて10時間混合した後、1500℃で
5時間固相反応させた。この粉末をジルコニアボ−ルを
用いて、さらに20〜25時間粉砕し、得られた平均粒
子径2〜4μmの粉末を得た。
Next, the present invention will be described based on embodiments. Example 1 (Measurement of corrosion resistance to halogen gas and electric conductivity) La 2 O 3 , SrCO 3 , and Ca having a purity of 99.9% commercially available
CO 3 , BaCO 3 , Y 2 O 3 , Yb 2 O 3 , Sc 2 O
3, Er 2 O 3, Nd 2 O 3, Gd 2 O 3, Dy
2 O 3 , Sm 2 O 3 , MnO 2 , Cr 2 O 3 , NiO,
Fe 2 O 3 , CeO 2 , and ZrO 2 were used as starting materials, and they were mixed so as to have the prescribed compositions shown in Tables 1 and 2, mixed with zirconia balls for 10 hours, and then mixed at 1500 ° C. for 5 hours. The solid phase reaction was carried out for a period of time. This powder was further pulverized with a zirconia ball for 20 to 25 hours to obtain a powder having an average particle diameter of 2 to 4 μm.

【0029】この粉末を用いてハロゲンガスへの耐食
性、電気伝導度の測定、空気極材料との密着性について
調査した。
Using this powder, the corrosion resistance to halogen gas, the measurement of electric conductivity, and the adhesion to the air electrode material were investigated.

【0030】(ハロゲンガスへの耐食性)この粉末を、
円板状に成形し1400〜1500℃にて焼成し、理論
密度比が72〜76%で、厚み約3mm、直径30mm
φの円板状焼結体を得、この焼結体を、1000℃で5
%HCl/95%Arの混合ガスを流しながら1時間焼
鈍して試料の重量減少を測定した。
(Corrosion resistance to halogen gas)
It is shaped into a disc and fired at 1400-1500 ° C., with a theoretical density ratio of 72-76%, a thickness of about 3 mm and a diameter of 30 mm.
φ disk-shaped sintered body was obtained, and this sintered body was
The sample was annealed for 1 hour while flowing a mixed gas of% HCl / 95% Ar to measure the weight loss of the sample.

【0031】(電気伝導度測定)上記のようにして得ら
れた円板状焼結体より長さ約2×2×20mmの角柱状
試料を切り出し4端子法により電気伝導度を測定し、結
果は表1、表2に示した。なお、各特性評価方法は下記
の通りである。
(Measurement of Electric Conductivity) A prismatic sample having a length of about 2 × 2 × 20 mm was cut out from the disk-shaped sintered body obtained as described above, and the electric conductivity was measured by a four-terminal method. Are shown in Tables 1 and 2. In addition, each characteristic evaluation method is as follows.

【0032】(空気極との密着性)上述の20〜25時
間粉砕した平均粒子径2〜4μmの粉末をエチレングリ
コ−ルと混合してペ−スト状にした。一方、市販の純度
99.9%のLa2 3 、SrCO3 ,CaCO3 、B
aCO3 、Y2 3 、MnO2 を出発原料として、これ
を(La0.8 Ca0.2 )MnO3 の組成となるように調
合し、ジルコニアボ−ルを用いて10時間混合した後、
1500℃で5時間固相反応させた。この粉末をジルコ
ニアボ−ルを用いて、さらに10〜16時間粉砕した。
この後、円板状に成形し1480〜1500℃にて焼成
し、理論密度比が70〜73%で、厚み約3mm、直径
30mmφの空気極に相当する焼結体を得た。
(Adhesion to Air Electrode) The powder having an average particle diameter of 2 to 4 μm ground for 20 to 25 hours was mixed with ethylene glycol to form a paste. On the other hand, commercially available La 2 O 3 , SrCO 3 , CaCO 3 , B 99.9% pure
Using aCO 3 , Y 2 O 3 , and MnO 2 as starting materials, they were mixed so as to have a composition of (La 0.8 Ca 0.2 ) MnO 3 , and mixed for 10 hours using a zirconia ball.
The solid phase reaction was performed at 1500 ° C. for 5 hours. This powder was further ground for 10 to 16 hours using a zirconia ball.
Then, it was shaped into a disk and fired at 1480 to 1500 ° C. to obtain a sintered body having a theoretical density ratio of 70 to 73% and corresponding to an air electrode having a thickness of about 3 mm and a diameter of 30 mmφ.

【0033】そして、先に調製したペ−ストをスクリ−
ン印刷にて約30μmの厚みに上記の円板状焼結体表面
に塗布し1300℃で4時間加熱して粉末を焼き付けた
後、剥離の有無を調べ、剥離が発生したものに×、剥離
が何ら見られないものに○を付した。
Then, the paste prepared above is screened.
After applying the powder on the surface of the disc-shaped sintered body to a thickness of about 30 μm by heating printing and heating at 1300 ° C. for 4 hours to burn the powder, the presence or absence of peeling is examined. A circle was given to a sample in which no sample was seen.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】表1、表2によれば、Bサイト中のCrに
対する他の金属の置換量が増加するに従い、電気伝導度
が高くなるとともに空気極との密着性が良好であるが、
ハロゲンガスによる耐食性が低下する傾向にあり、Cr
に対するMn等の置換比率pが0.1より小さい試料N
o.8、9、10、36、37では電気伝導度が低下する
とともに空気極との剥離が観察された。Crに対するM
n、Ni等の置換比率が0.9を越える試料No.1で
は、ハロゲンガスによる腐食性が大きかった。また、A
サイトとBサイトの原子の存在比率zに関して、zが
0.9より小さい試料No.11ではMn2 3 が析出
し、1.05を越える試料No.15ではLa23 が析
出し、いずれも接着力が小さい。さらに、Ca等による
Laの置換比率yが0.05より小さいか、あるいは
0.55より大きい試料No.16、22でも接着力が弱
い。また、Y等によるLaの置換比率xが0.4より大
きい試料No.26でも同様に接着力が小さかった。
According to Tables 1 and 2, as the substitution amount of Cr to other metals in the B site increases, the electric conductivity increases and the adhesion to the air electrode is good.
Corrosion resistance due to halogen gas tends to decrease.
N in which the substitution ratio p of Mn or the like with respect to
In o, 8, 9, 10, 36, and 37, the electrical conductivity was reduced and peeling from the air electrode was observed. M for Cr
In Sample No. 1 in which the substitution ratio of n, Ni, etc. exceeded 0.9, the corrosiveness by the halogen gas was large. Also, A
Regarding the abundance ratio z of the atom between the site and the B site, Mn 2 O 3 is precipitated in Sample No. 11 where z is smaller than 0.9, and La 2 O 3 is precipitated in Sample No. 15 in which z exceeds 1.05. All have low adhesive strength. Further, even in Samples Nos. 16 and 22 in which the substitution ratio y of La by Ca or the like is smaller than 0.05 or larger than 0.55, the adhesive strength is weak. Sample No. 26 in which the substitution ratio x of La by Y or the like was larger than 0.4 also had a small adhesive force.

【0037】これらの比較例に対して本発明品はいずれ
も電気伝導度が10s/cm以上と高く、ハロゲンガス
に対する腐食性も0.6%以下と低く、さらに空気極と
の密着性についても良好な特性を示した。
In contrast to these comparative examples, the products of the present invention all have a high electric conductivity of 10 s / cm or more, a low corrosivity to halogen gas of 0.6% or less, and a low adhesion to the air electrode. Good characteristics were shown.

【0038】実施例2 La0.8 Ca0.2 MnO3 組成の粉末を用いて、これを
1550℃で焼成して、密度が理論密度比70〜72%
で外径16mm、内径12mm、長さ200mmの一端
封じの中空円筒状焼結体を作製し空気極としての機能を
付与したセルの支持管とした。また、一方、実施例1の
表1、表2中No.4、23、34組成の粉末をPVA
を含んだ水溶液中に分散させ、この水溶液にLa0.8
0.2 MnO3 の円筒状支持管を浸漬して支持管表面に
粉末を塗布した後、1300℃で2時間焼き付け約20
μmの中間層を形成した。
Example 2 A powder having a composition of La 0.8 Ca 0.2 MnO 3 was fired at 1550 ° C., and the density was reduced to a theoretical density ratio of 70 to 72%.
In this manner, a hollow cylindrical sintered body having an outer diameter of 16 mm, an inner diameter of 12 mm, and a length of 200 mm sealed at one end was prepared and used as a support tube for a cell having a function as an air electrode. On the other hand, in Tables 1 and 2 in Example 1, No. 4, 23, 34 powder of PVA
And dispersed in an aqueous solution containing La 0.8 C.
a Dip a cylindrical support tube of 0.2 MnO 3 to apply powder on the surface of the support tube, and bake at 1300 ° C. for 2 hours for about 20 hours.
A μm intermediate layer was formed.

【0039】この後、それぞれ気相合成法により、11
00℃でこの円筒状焼結体の外周表面にYCl3 ,Zr
Cl4 を原料として固体電解質膜(10mol%Y2
3 −90mol%ZrO2 )を約50μmの厚みに被覆
し、さらにこの上に燃料極として、スラリ−ディップ法
により、約40μmの厚みに70重量%Ni−30重量
%ジルコニア(8mol%Y2 3 −92mol%Zr
2 )を被覆し単セルを作製した。このセルを1000
℃の電気炉中に保持し、セルの内側に酸素ガスを、また
外側に水素ガスを流しながら、発電特性を調べた。
Thereafter, 11
At 00 ° C., YCl 3 , Zr
Solid electrolyte membrane Cl 4 as a raw material (10mol% Y 2 O
3 -90 mol% ZrO 2) was coated to a thickness of about 50 [mu] m, further as the fuel electrode thereon, a slurry - by dipping, about 40μm thickness 70 wt% Ni-30 wt% zirconia (8 mol% Y 2 O 3 -92mol% Zr
O 2 ) to produce a single cell. 1000 cells
The temperature was maintained in an electric furnace at ℃, and the power generation characteristics were examined while flowing oxygen gas inside the cell and hydrogen gas outside.

【0040】結果を図2に示した。これより、保護層を
形成していない従来品はいずれも出力が低下しているの
に対して、本発明により保護層を形成したものはいずれ
も高い安定した出力を示すことが分かる。
FIG. 2 shows the results. From this, it can be seen that the output of any of the conventional products without the protective layer is reduced, while the output of the protective layer according to the present invention shows a high and stable output.

【0041】[0041]

【発明の効果】以上詳述したように、本発明によれば、
空気極材料の表面にハロゲンガスに対する耐蝕性に優れ
た中間層を設けることにより空気極の機能を損なうこと
なく固体電解質や集電部材を作製することが出来と同時
に性能の優れたセルを作製できる。この結果、本発明は
固体電解質型燃料電池セルに用いた場合、長期安定性の
あるセルを高い良品率で提供できる。
As described in detail above, according to the present invention,
By providing an intermediate layer having excellent corrosion resistance to halogen gas on the surface of the air electrode material, it is possible to manufacture a solid electrolyte or a current collecting member without impairing the function of the air electrode, and at the same time to manufacture a cell having excellent performance. . As a result, when the present invention is used for a solid oxide fuel cell, a cell having long-term stability can be provided at a high yield rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型燃料電池セルの構造を説明する
ための斜視図である。
FIG. 1 is a perspective view illustrating the structure of a cylindrical fuel cell according to the present invention.

【図2】実施例2における発電時間の出力密度との関係
を示す図である。
FIG. 2 is a diagram showing a relationship between power generation time and output density in Example 2.

【図3】従来の円筒型燃料電池セルの構造を説明するた
めの斜視図である。
FIG. 3 is a perspective view illustrating the structure of a conventional cylindrical fuel cell.

【符号の説明】[Explanation of symbols]

1 支持管 2 空気極 3 固体電解質 4 燃料極 5 集電部材 6 中間層 DESCRIPTION OF SYMBOLS 1 Support pipe 2 Air electrode 3 Solid electrolyte 4 Fuel electrode 5 Current collecting member 6 Intermediate layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 4/88 H01M 8/12 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/02 H01M 4/88 H01M 8/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LaMnO3 系固溶体よりなる円筒状の多
孔質空気極の表面に、金属酸化物系固体電解質と、金属
と金属酸化物との複合体からなる多孔質の燃料極を順次
積層するとともに、前記空気極の一部に導電性金属酸化
物からなる集電部材を積層してなる燃料電池セルにおい
て、前記空気極と前記固体電解質との間、あるいは前記
空気極と前記集電部材との間に下記化1 【化1】 で表されるペロブスカイト複合酸化物からなり、式中、
Aは周期律表第3a族元素から選ばれる少なくとも1
種、Bはアルカリ土類元素から選ばれる少なくとも1
種、CはMn、Ni、Fe、Ce、Zrから選ばれる少
なくとも1種の元素からなり、式中のx、y、zおよび
pが 0 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.55 0.90 ≦ z ≦ 1.05 0.10 ≦ p ≦ 0.90 を満足する中間層を介在させたことを特徴とする燃料電
池セル。
1. A metal oxide solid electrolyte and a porous fuel electrode made of a composite of a metal and a metal oxide are sequentially laminated on the surface of a cylindrical porous air electrode made of a LaMnO 3 -based solid solution. In addition, in a fuel cell obtained by laminating a current collecting member made of a conductive metal oxide on a part of the air electrode, between the air electrode and the solid electrolyte, or between the air electrode and the current collecting member During the following formula 1 Consisting of a perovskite composite oxide represented by the formula:
A is at least one selected from Group 3a elements of the periodic table
Species, B is at least one selected from alkaline earth elements
The species C is composed of at least one element selected from Mn, Ni, Fe, Ce, and Zr, where x, y, z and p in the formula are 0 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0. 55. A fuel cell comprising an intermediate layer that satisfies 55 0.90 ≤ z ≤ 1.05 0.10 ≤ p ≤ 0.90.
【請求項2】LaMnO3 系固溶体よりなる円筒状の多
孔質空気極の表面に下記化1 【化1】 で表されるペロブスカイト複合酸化物からなり、式中、
Aは周期律表第3a族元素から選ばれる少なくとも1
種、Bはアルカリ土類元素から選ばれる少なくとも1
種、CはMn、Ni、Fe、Ce、Zrから選ばれる少
なくとも1種の元素からなり、式中のx、y、zおよび
pが 0 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.55 0.90 ≦ z ≦ 1.05 0.10 ≦ p ≦ 0.90 を満足する中間層を形成する工程と、金属ハロゲンガス
および酸素含有ガスの気相反応により、金属酸化物から
なる固体電解質あるいは金属酸化物からなる集電部材を
形成する工程と、該固体電解質の表面に金属と金属酸化
物との複合体からなる多孔質の燃料極を形成する工程と
を具備したことを特徴とする燃料電池セルの製造方法。
2. The surface of a cylindrical porous air electrode made of a LaMnO 3 -based solid solution is represented by the following formula 1. Consisting of a perovskite composite oxide represented by the formula:
A is at least one selected from Group 3a elements of the periodic table
Species, B is at least one selected from alkaline earth elements
The species C is composed of at least one element selected from Mn, Ni, Fe, Ce, and Zr, where x, y, z and p in the formula are 0 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0. A solid electrolyte made of a metal oxide by a step of forming an intermediate layer satisfying 55 0.90 ≤ z ≤ 1.05 0.10 ≤ p ≤ 0.90 and a gas phase reaction of a metal halogen gas and an oxygen-containing gas. Alternatively, the method includes a step of forming a current collecting member made of a metal oxide, and a step of forming a porous fuel electrode made of a composite of a metal and a metal oxide on the surface of the solid electrolyte. A method for manufacturing a fuel cell.
JP05282330A 1993-11-11 1993-11-11 Fuel cell and method of manufacturing the same Expired - Fee Related JP3131085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05282330A JP3131085B2 (en) 1993-11-11 1993-11-11 Fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05282330A JP3131085B2 (en) 1993-11-11 1993-11-11 Fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07134999A JPH07134999A (en) 1995-05-23
JP3131085B2 true JP3131085B2 (en) 2001-01-31

Family

ID=17651019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05282330A Expired - Fee Related JP3131085B2 (en) 1993-11-11 1993-11-11 Fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3131085B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102877B2 (en) * 2003-08-28 2008-06-18 独立行政法人産業技術総合研究所 Method for producing hybrid molded porous tube
JP4093321B2 (en) * 2007-07-20 2008-06-04 独立行政法人産業技術総合研究所 Hybrid porous tube
JP5256897B2 (en) 2007-08-03 2013-08-07 三菱マテリアル株式会社 Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor

Also Published As

Publication number Publication date
JPH07134999A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US4562124A (en) Air electrode material for high temperature electrochemical cells
KR100352099B1 (en) Mixed ions containing conductor and device using the same
JP4608047B2 (en) Mixed ionic conductor and device using the same
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
US5281490A (en) Process for producing solid oxide fuel cells
US8337939B2 (en) Method of processing a ceramic layer and related articles
US4596750A (en) Support tube for high temperature solid electrolyte electrochemical cell
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
US5672437A (en) Solid electrolyte for a fuel cell
US20060057455A1 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
JPH1021931A (en) Solid electrolyte type fuel cell
JP5005431B2 (en) Solid oxide fuel cell
JP3131085B2 (en) Fuel cell and method of manufacturing the same
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3131086B2 (en) Fuel cell and method of manufacturing the same
JP3359413B2 (en) Solid oxide fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP3342541B2 (en) Solid oxide fuel cell
JP2870126B2 (en) Solid oxide fuel cell
JP3346668B2 (en) Solid oxide fuel cell
JP2005243473A (en) Cerium based solid electrolyte and its manufacturing method
JP3350137B2 (en) Solid oxide fuel cell material
JP3091064B2 (en) Method for producing conductive ceramics and method for producing solid oxide fuel cell
JP2003017073A (en) Cell for solid electrolyte fuel cell and its manufacturing method
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees