JP3339801B2 - Septic sludge treatment method - Google Patents

Septic sludge treatment method

Info

Publication number
JP3339801B2
JP3339801B2 JP19502397A JP19502397A JP3339801B2 JP 3339801 B2 JP3339801 B2 JP 3339801B2 JP 19502397 A JP19502397 A JP 19502397A JP 19502397 A JP19502397 A JP 19502397A JP 3339801 B2 JP3339801 B2 JP 3339801B2
Authority
JP
Japan
Prior art keywords
sludge
cationic polymer
volatile organic
water
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19502397A
Other languages
Japanese (ja)
Other versions
JPH1119408A (en
Inventor
幸三郎 赤松
勝利 田中
利徳 西園
康治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Sewerage Service Corp
Hymo Corp
Dia Nitrix Co Ltd
Original Assignee
Tokyo Metropolitan Sewerage Service Corp
Hymo Corp
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Sewerage Service Corp, Hymo Corp, Dia Nitrix Co Ltd filed Critical Tokyo Metropolitan Sewerage Service Corp
Priority to JP19502397A priority Critical patent/JP3339801B2/en
Publication of JPH1119408A publication Critical patent/JPH1119408A/en
Application granted granted Critical
Publication of JP3339801B2 publication Critical patent/JP3339801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腐敗汚泥の処理方
法に関し、詳しくは、腐敗が進行した難脱水汚泥に有効
な処理方法に関する。
[0001] The present invention relates to a method for treating putrefactive sludge, and more particularly, to a method effective for treating hardly dehydrated sludge in which putrefaction has progressed.

【0002】[0002]

【従来の技術】現在都市下水処理には、生物処理が普及
しており、その結果、生じる余剰または混合生汚泥は凝
集剤を使用して凝集処理が行なわれるのが一般的であ
る。一方、特に都心部では、下水処理場は広大な敷地を
必要とするため、汚泥を配管で輸送して処理する集中処
理方式が検討されている。しかしながら、汚泥の長時間
滞留および長距離輸送にともない汚泥の腐敗が進行し、
いわゆる難脱水汚泥となり、汚泥の脱水効率が低下する
等の問題が生じている。
2. Description of the Related Art At present, biological treatment is widespread in municipal sewage treatment, and as a result, the resulting excess or mixed sludge is generally subjected to flocculation treatment using a flocculant. On the other hand, especially in the city center, since the sewage treatment plant requires a vast site, a centralized treatment method for transporting and treating sludge by piping is being studied. However, with long-term sludge retention and long-distance transportation, decay of sludge progresses,
It becomes so-called hardly dewatered sludge, and there are problems such as a decrease in sludge dewatering efficiency.

【0003】上記問題の解決方法としては、凝集剤の使
用量を増加する方法で対応してはいるが費用がかさむ他
に、使用量が多すぎると再分散の可能性も高く効率的な
処理方法が求められている。斯かる問題点に対し、各種
の方法が検討されている。例えば、アミジン環構造を有
するカチオン性高分子凝集剤が腐敗が進行した汚泥に対
して有効であることも公知である。
As a method of solving the above problem, a method of increasing the amount of a coagulant is used. However, in addition to increasing the cost, if the amount is too large, there is a high possibility of redispersion and efficient treatment is performed. A method is needed. Various methods have been studied to solve such problems. For example, it is also known that a cationic polymer flocculant having an amidine ring structure is effective for sludge having advanced putrefaction.

【0004】しかしながら、上記の方法は、主としてア
ミジン環構造を有するカチオン性高分子凝集剤とベルト
プレス型脱水機とを組み合わせる方法であり、遠心脱水
機と組み合わせる方法ではない。ところで、遠心脱水機
は、比較的コンパクトで且つ汚泥の処理能力も高くその
使用が好ましいが、ベルトプレス型脱水機に比べ、凝集
した汚泥(フロック)に遠心力による強いGをかけるた
め、フロックが壊れた状態で固液分離を行うことがあ
り、強度の高いフロックを形成できる薬剤が必要とされ
ていた。
[0004] However, the above method is mainly a method of combining a cationic polymer flocculant having an amidine ring structure with a belt press type dehydrator, not a method of combining with a centrifugal dehydrator. By the way, the centrifugal dewatering machine is relatively compact and has a high sludge treatment capacity, and it is preferable to use the centrifugal dewatering machine. However, compared with the belt press type dewatering machine, a strong G is applied to the aggregated sludge (flock) by centrifugal force. Solid-liquid separation may be performed in a broken state, and there has been a need for an agent capable of forming a strong floc.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の実情
に鑑みなされたものであり、その目的は、汚泥の腐敗が
進行したいわゆる難脱水汚泥の処理方法であって、凝集
剤の使用量が少なく、費用がかさまず再分散せず且つ遠
心脱水機との組み合わせが可能であり、効率的な腐敗汚
泥の処理方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for treating a so-called hardly dewatered sludge in which sludge has been spoiled. It is an object of the present invention to provide an efficient method for treating putrefactive sludge, which is less expensive, does not redisperse costly and can be combined with a centrifugal dehydrator.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の要旨
は、100mg/l以上の揮発性有機酸を含有する腐敗
汚泥の凝集処理において、下記一般式(I)又は(II)
で表される構造単位を有するカチオン性高分子から成り
且つ脱塩水中0.2%濃度の水溶液の粘度が80センチ
ポアズ(B型粘度計により25℃で測定した値)以上で
ある凝集剤により前記腐敗汚泥を処理した後、遠心脱水
機により脱水することを特徴とする腐敗汚泥の処理方法
に存する。式中、R1及びR2は、それそれ独立に水素原
子またメチル基を表し、X-は陰イオンを表す。
That is, the gist of the present invention is to provide a method for coagulating septic sludge containing a volatile organic acid of 100 mg / l or more by the following general formula (I) or (II):
The viscosity of a 0.2% aqueous solution of a cationic polymer having a structural unit represented by the following formula: is not less than 80 centipoise (measured at 25 ° C. with a B-type viscometer) . The method for treating putrefactive sludge is characterized in that after treating the putrefaction sludge with a certain coagulant, it is dewatered with a centrifugal dehydrator. In the formula, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and X represents an anion.

【0007】[0007]

【化2】 Embedded image

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で使用する前記カチオン性高分子としては、一般
式(I)又は一般式(II)で表される構造単位を有する
カチオン性高分子であって、アミジン環の含有量は、通
常30〜95モル%、好ましくは35〜90モル%の範
囲とされる。この凝集剤中のアミジン環構造単位(I)
及び(II)の定量は、核磁気共鳴分光法や赤外分光法に
より(I)及び(II)の総量で測定される。アミジン環
構造単位アミジン環の含有量が30モル%未満では、p
Hが低い汚泥に関しては効果があるが、中〜弱アルカリ
域の汚泥に関しては、アミノ基よりもアミジン基の方が
解離度が高く、そのためアミジン化率が高い方が有効で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The cationic polymer used in the present invention is a cationic polymer having a structural unit represented by the general formula (I) or the general formula (II), and the content of the amidine ring is usually 30 to It is in the range of 95 mol%, preferably 35-90 mol%. Amidine ring structural unit (I) in this flocculant
The quantification of (II) and (II) is measured by the total amount of (I) and (II) by nuclear magnetic resonance spectroscopy or infrared spectroscopy. Amidine ring structural unit When the content of amidine ring is less than 30 mol%, p
Although the sludge having a low H is effective, the sludge in the medium to weak alkaline region has a higher degree of dissociation with an amidine group than an amino group, and therefore, a higher amidine conversion rate is more effective.

【0009】本発明で使用するカチオン性高分子の粘度
は、脱塩水中0.2%濃度の水溶液としてB型粘度計に
より25℃で測定した値が80センチポアズ以上である
ことが重要である。カチオン性高分子の粘度が80セン
チポアズ未満では、フロック強度の大きい凝集物が得ら
れない。
It is important that the viscosity of the cationic polymer used in the present invention is not less than 80 centipoise as measured at 25 ° C. using a B-type viscometer as a 0.2% aqueous solution in deionized water. If the viscosity of the cationic polymer is less than 80 centipoise, an aggregate having high floc strength cannot be obtained.

【0010】上記のカチオン性高分子は、通常、アクリ
ロニトリル又は(メタ)アクリロニトリルと重合後にビ
ニルアミン単位を生成する単量体とを共重合した後、得
られた共重合体中のビニルアミン単位を生成する単量体
の側鎖基を酸により化学変性して1級アミノ基とする。
次いで、加熱により、前記1級アミノ基とアクリロニト
リル又は(メタ)アクリロニトリルのニトリル基との反
応によりアミジン環を形成して得られる。
The above-mentioned cationic polymer usually copolymerizes acrylonitrile or (meth) acrylonitrile with a monomer which forms a vinylamine unit after polymerization, and then forms a vinylamine unit in the obtained copolymer. The side chain group of the monomer is chemically modified with an acid to form a primary amino group.
Subsequently, by heating, the primary amino group is reacted with acrylonitrile or the nitrile group of (meth) acrylonitrile to form an amidine ring.

【0011】重合後に変性によりビニルアミン単位を生
成する前記の単量体としては、N−ビニルホルムアミ
ド、N−ビニルアセトアミド、N−ビニルプロピオン酸
アミド、N−ビニルフタルイミド等が挙げられる。
The above-mentioned monomer which forms a vinylamine unit by modification after polymerization includes N-vinylformamide, N-vinylacetamide, N-vinylpropionamide, N-vinylphthalimide and the like.

【0012】重合後に変性によりビニルアミン単位を生
成する上記の単量体(A)とアクリロニトリル又は(メ
タ)アクリロニトリル(B)との含有モル比は、通常
(A):(B)が20:80〜95:5、好ましくは3
0:70〜90:10、更に好ましくは40:60〜8
0:20の範囲であるが、この範囲に限定されるもので
はない。
The molar ratio of the monomer (A), which forms a vinylamine unit by modification after polymerization, to acrylonitrile or (meth) acrylonitrile (B) is usually 20:80 to (A) :( B). 95: 5, preferably 3
0:70 to 90:10, more preferably 40:60 to 8
The range is 0:20, but is not limited to this range.

【0013】前記の共重合方法としては、通常、塊状重
合、溶液重合、沈殿重合、懸濁重合、逆相乳化重合の何
れの方法も使用できるが、重合発熱の制御や反応後の重
合液の移送などの取り扱いが容易な点などから水溶液沈
殿重合や懸濁重合が好適である。更に、目的とする重合
体の分子量や重合発熱を考慮して単量体の濃度や重合温
度、反応容器の種類などは適宜選択される。例えば、以
下の重合法が挙げられる。水を溶媒とし、単量体濃度が
5〜60重量%の条件で水溶液状で重合し、重合物を含
水ゲル状物または析出物の沈殿物として得る方法、単量
体濃度が20〜60重量%の水溶液を疎水性の溶媒と乳
化剤を使用して水中油または油中水の乳化状態で重合す
る方法、単量体濃度が20〜60重量%の水溶液を疎水
性の溶媒と分散安定剤を使用して油中水の分散状態で重
合し、重合体を得る方法などである。これらの共重合方
法の中で水中の沈殿重合法が好適である。この沈殿重合
の場合は、分散安定性、析出促進剤として無機、有機の
塩、界面活性剤、水溶性高分子などを使用することが好
適である。
As the above-mentioned copolymerization method, any method of bulk polymerization, solution polymerization, precipitation polymerization, suspension polymerization, and reversed-phase emulsion polymerization can be generally used. Aqueous solution precipitation polymerization or suspension polymerization is preferred from the viewpoint of easy handling such as transfer. Further, the concentration of the monomer, the polymerization temperature, the type of the reaction vessel, and the like are appropriately selected in consideration of the molecular weight of the target polymer and the heat generated by the polymerization. For example, the following polymerization method can be mentioned. A method in which water is used as a solvent and polymerization is carried out in the form of an aqueous solution at a monomer concentration of 5 to 60% by weight to obtain a polymer as a hydrogel or a precipitate of a precipitate. The monomer concentration is 20 to 60% by weight. % Aqueous solution is emulsified in oil-in-water or water-in-oil using a hydrophobic solvent and an emulsifier, and an aqueous solution having a monomer concentration of 20 to 60% by weight is mixed with a hydrophobic solvent and a dispersion stabilizer. Used in a water-in-oil dispersion state to obtain a polymer. Among these copolymerization methods, a precipitation polymerization method in water is preferred. In the case of this precipitation polymerization, it is preferable to use an inorganic or organic salt, a surfactant, a water-soluble polymer or the like as a dispersion stability and a precipitation accelerator.

【0014】前記の共重合方法において使用する重合開
始剤としては、一般的なラジカル重合開始剤が使用でき
るが、重合収率の点からアゾ化合物、特に水溶性アゾ化
合物が好ましい。その具体例としては、2,2′−アゾ
ビス−2−アミジノプロパンの塩酸塩および酢酸塩、
4,4′−アゾビス−4−シアノ吉草酸のナトリウム
塩、アゾビス−N,N′−ジメチレンイソブチルアミジ
ンの塩酸塩および硫酸塩などが挙げられる。重合開始剤
の使用割合は、単量体の重量に対し、通常0.01〜1
重量%、好ましくは0.02〜0.9重量%の範囲とさ
れる。重合反応温度は、通常20〜100℃、好ましく
は30〜90℃の範囲とされる。
As the polymerization initiator used in the above-mentioned copolymerization method, a general radical polymerization initiator can be used, but an azo compound, particularly a water-soluble azo compound is preferred from the viewpoint of polymerization yield. Specific examples thereof include hydrochloride and acetate of 2,2′-azobis-2-amidinopropane,
Sodium salt of 4,4'-azobis-4-cyanovaleric acid, hydrochloride and sulfate of azobis-N, N'-dimethyleneisobutylamidine and the like can be mentioned. The ratio of the polymerization initiator used is usually 0.01 to 1 based on the weight of the monomer.
% By weight, preferably in the range of 0.02 to 0.9% by weight. The polymerization reaction temperature is usually in the range of 20 to 100C, preferably 30 to 90C.

【0015】得られた共重合体は、溶液状、分散状、ま
たは粉末状とした後、酸性条件下で変性することによ
り、ビニルアミン単位含有の共重合体に変性する。変性
方法としては、酸性条件下、水中で加水分解する方法、
水を含有するアルコール等の親水性溶媒中で加水分解す
る方法などが挙げられる。
The obtained copolymer is converted into a solution, dispersion, or powder, and then modified under acidic conditions to be modified into a copolymer containing vinylamine units. As a denaturing method, a method of hydrolysis in water under acidic conditions,
Hydrolysis in a hydrophilic solvent such as an alcohol containing water may be mentioned.

【0016】上記の変性に使用する酸性変性剤として
は、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸、燐酸、
スルファミン酸、アルカンスルホン酸などが挙げられる
が、好ましくは塩酸である。前記酸性変性剤の使用割合
は、共重合体中のビニルアミン単位を生成する基に対
し、通常0.1〜2倍モル、好ましくは0.2〜1.5
倍モルの範囲とされる。変性反応は加圧条件下でもよ
く、反応温度は、通常30〜130℃、好ましくは40
〜110℃の範囲とされる。また、変性の際に、変性物
のゲル化(水不溶化)を防止するため、ヒドロキシアミ
ンを全共重合体量に対し、通常0.1〜20重量%、好
ましくは1〜10重量%の範囲で添加してもよい(特開
平5−86127号公報参照)。
As the acidic denaturing agent used for the above denaturation, hydrochloric acid, bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid,
Sulfamic acid, alkanesulfonic acid and the like can be mentioned, but hydrochloric acid is preferred. The proportion of the acidic modifier used is usually 0.1 to 2 moles, preferably 0.2 to 1.5 moles per mole of the group that forms vinylamine units in the copolymer.
The range is twice as large. The denaturation reaction may be performed under pressure, and the reaction temperature is usually 30 to 130 ° C, preferably 40 to 130 ° C.
To 110 ° C. In order to prevent gelation (water insolubilization) of the denatured product at the time of denaturation, the hydroxyamine is usually used in an amount of 0.1 to 20% by weight, preferably 1 to 10% by weight based on the total amount of the copolymer. (See JP-A-5-86127).

【0017】上記の変性された共重合体は、溶液状、分
散状または粉末状とした後、通常70〜130℃、好ま
しくは80〜110℃の温度範囲で更に加熱することに
より本発明で使用するカチオン性高分子(以下ポリアミ
ジン型凝集剤ともいう)を得る。
The above-mentioned modified copolymer is used in the present invention by making it into a solution, dispersion or powder, and further heating it at a temperature of usually 70 to 130 ° C., preferably 80 to 110 ° C. (Hereinafter also referred to as a polyamidine type flocculant).

【0018】本発明の方法は、腐敗が余り進行していな
い混合生汚泥や余剰汚泥にも有効であるが、配管、貯槽
などで長時間滞留し、難脱水汚泥となったものに対して
は他の凝集剤に比べて際だって優れている。例えば、濃
縮してから凝集処理の間に24時間以上放置されて腐敗
した汚泥である。汚泥の腐敗が進行し、菌が死滅するに
つれて菌体が崩壊し、主として蛋白質から成る水溶性高
分子となり、水中に溶解してくる。また、揮発性の有機
酸も生成してくる。
The method of the present invention is also effective for mixed raw sludge and excess sludge in which decay has not progressed very much. However, the method of the present invention is effective for sludge which remains in pipes and storage tanks for a long time and becomes hardly dewatered sludge. Significantly better than other flocculants. For example, sludge that has been left standing for 24 hours or more during the coagulation treatment after being concentrated is putrefactive. As the sludge decay progresses and the bacteria die, the cells are broken down, become water-soluble polymers mainly composed of proteins, and dissolve in water. In addition, volatile organic acids are also generated.

【0019】汚泥の腐敗状況は、上記の菌体などの微生
物由来の水溶性高分子成分の量および生成した揮発性有
機酸の量をその指針とすることが出来る。すなわち、水
溶性高分子成分の量は、汚泥を遠心沈降させ、その上澄
みに溶解している有機成分の量を目安にすることが出来
る。具体的には、3000rpmで10分間、前記汚泥
を遠心沈降して取り出した上澄み中の全有機炭素量(T
OC)を測定した場合、30℃で24時間放置の前後で
全有機炭素量は約2〜5倍量に増加することが判明して
おり、24時間以上放置した場合、汚泥の腐敗はかなり
進行している。この水溶性高分子は、中性付近では負に
帯電しており、汚泥の処理のために添加されたカチオン
凝集剤と高分子錯体を形成し、当該凝集剤を消費すると
共に、形成された錯体は吸水ゲル様となり、更に脱水も
困難になる。従って、腐敗が進行すると、汚泥の脱水が
困難になる。
The decay status of the sludge can be determined based on the amount of the water-soluble polymer component derived from microorganisms such as the above-mentioned microorganisms and the amount of the generated volatile organic acid. That is, the amount of the water-soluble polymer component can be determined by centrifugal sedimentation of the sludge and the amount of the organic component dissolved in the supernatant. Specifically, the total amount of organic carbon (T) in the supernatant obtained by centrifuging and removing the sludge at 3000 rpm for 10 minutes
When OC) was measured, it was found that the total amount of organic carbon increased to about 2 to 5 times before and after standing at 30 ° C. for 24 hours. are doing. This water-soluble polymer is negatively charged near neutrality, forms a polymer complex with the cationic flocculant added for sludge treatment, consumes the flocculant, and forms the complex formed. Becomes like a water-absorbing gel and dehydration becomes difficult. Therefore, as the decay progresses, it becomes difficult to dewater the sludge.

【0020】また、上記の揮発性有機酸は、新鮮な余剰
汚泥中には極めて少ないので初沈から酸の流入がなけれ
ば、腐敗によって生成したものと考えられるので、前記
揮発性有機酸を定量することにより、腐敗の目安とする
ことが出来る。腐敗の進行度は、季節、気温などによっ
て差があるが、通常100mg/l、好ましくは300
mg/lの揮発性有機酸量の上昇があれば、かなり汚泥
の腐敗が進行していると言える。
Since the volatile organic acid is extremely small in fresh surplus sludge, it is considered that the volatile organic acid was produced by putrefaction unless an acid flows in from the initial sedimentation. By doing so, it can be a measure of corruption. The degree of decay varies depending on the season, temperature, etc., but is usually 100 mg / l, preferably 300 mg / l.
If there is an increase in the amount of the volatile organic acid of mg / l, it can be said that sludge decay has considerably progressed.

【0021】本発明で使用するポリアミジン型凝集剤
は、従来から多用されている(メタ)アクリル酸系高分
子凝集剤と比較して高い電荷密度を有するため、前記の
菌体由来の水溶性高分子に多少消費されても十分なカチ
オン基を有し且つ電荷密度が高いため、形成される高分
子錯体は密にイオン架橋し、その結果、水で膨潤し難く
なり、凝集物の含水率は低下すると考えられる。
The polyamidine type flocculant used in the present invention has a higher charge density than the conventionally used (meth) acrylic acid type polymer flocculant, and thus has a high water solubility derived from the cells. Since the polymer complex has a sufficient cationic group and a high charge density even if consumed to a certain extent, the formed polymer complex is densely ion-crosslinked, and as a result, it is difficult to swell with water, and the water content of the aggregate is reduced. It is thought to decrease.

【0022】従来、ポリアミジン型凝集剤は、フロック
強度の点でポリアクリル酸エステル系の凝集剤に比較し
て劣り、ベルトプレス型脱水機との組み合わせでないと
その効果を十分発揮できないと考えられて来た。しかし
ながら、本願発明においては、特定粘度以上のポリアミ
ジン型凝集剤を使用することにより、ポリアミジン型凝
集剤でも強いフロック強度を有する凝集物が得られ、そ
の結果、遠心脱水機でも腐敗汚泥の処理が可能となり、
効果的な腐敗汚泥処理が可能となった。
Conventionally, polyamidine-type flocculants are inferior to polyacrylic acid ester-type flocculants in terms of floc strength, and it is thought that their effects cannot be sufficiently exhibited unless they are combined with a belt press type dehydrator. Came. However, in the present invention, by using a polyamidine-type flocculant having a specific viscosity or more, an aggregate having a strong floc strength is obtained even with a polyamidine-type flocculant, and as a result, septic sludge can be treated even with a centrifugal dehydrator. Becomes
Effective septic sludge treatment became possible.

【0023】本発明におけるポリアミジン型凝集剤は、
単独の使用で十分効果的であるがカチオン性、両性、ア
ニオン性、ノニオン性の水溶性高分子との併用、硫酸バ
ンド、塩化第二鉄、硫酸第二鉄、ポリ塩化アルミ等の無
機系凝集剤と併用してもよい。
The polyamidine type flocculant according to the present invention comprises:
It is effective enough when used alone, but used in combination with cationic, amphoteric, anionic, or nonionic water-soluble polymers, and inorganic coagulation such as sulfate band, ferric chloride, ferric sulfate, and polyaluminum chloride. You may use together with an agent.

【0024】本発明で処理する汚泥は、下水、特に移送
時間の長い都市下水の汚泥である。その具体例として
は、都市下水の処理場において下水から沈降させた初沈
生汚泥、活性汚泥槽からの流出水から沈降させた余剰汚
泥およびこれらの混合物である混合生汚泥などが挙げら
れる。本発明の方法は、前記の汚泥を通常、重力沈降濃
縮または機械的に濃縮した後の処理に適用される。
The sludge to be treated in the present invention is sewage, particularly municipal sewage having a long transfer time. Specific examples thereof include primary sludge sludge settled from sewage in an urban sewage treatment plant, surplus sludge settled from effluent from an activated sludge tank, and mixed raw sludge that is a mixture thereof. The method of the present invention is generally applied to the treatment after the above-mentioned sludge is concentrated by gravity sedimentation or mechanically concentrated.

【0025】本発明におけるアミジン型凝集剤の使用割
合は、汚泥の固型分当たり、通常、0.01〜3.0重
量%、好ましくは0.1〜1.0重量%の範囲とされ
る。
The proportion of the amidine-type coagulant used in the present invention is usually in the range of 0.01 to 3.0% by weight, preferably 0.1 to 1.0% by weight, based on the solid content of the sludge. .

【0026】[0026]

【実施例】以下、本発明を実施例によって更に詳細に説
明するが、本発明は、その要旨を超えない限り、以下の
実施例に限定されない。なお、以下の諸例において、各
物性の評価は次の方法に従って行なった。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. In the following examples, each physical property was evaluated according to the following methods.

【0027】<水溶液粘度の測定方法>水溶液粘度測定
は、脱塩水中0.2%濃度の水溶液としてB型粘度計N
O1ローターを使用して25℃で行い、測定結果をセン
チポアズで示した。
<Measurement Method of Aqueous Solution Viscosity> The aqueous solution viscosity was measured using a B-type viscometer N as an aqueous solution having a concentration of 0.2% in deionized water.
The measurement was performed at 25 ° C. using an O1 rotor, and the measurement results were shown in centipoise.

【0028】<揮発性有機酸の測定方法>試料中の揮発
性有機酸は、硫酸の存在下、水蒸気蒸留によって留出さ
せ、得られた留出液を水酸化ナトリウムの水溶液で滴定
し、低級脂肪酸の総量を当量の酢酸量(mg/l)とし
て表した。
<Measurement Method of Volatile Organic Acid> The volatile organic acid in the sample was distilled by steam distillation in the presence of sulfuric acid, and the obtained distillate was titrated with an aqueous solution of sodium hydroxide to obtain a low-grade organic acid. The total amount of fatty acids was expressed as the equivalent amount of acetic acid (mg / l).

【0029】<浮遊物質の測定方法>試料中の水中懸濁
物は、孔径1μのガラス繊維濾紙により濾過し、蒸発乾
燥して濾紙上の残留物の質量を計り、1リットル当たり
のmg数を求めて「浮遊物質」量「ss」とした。
<Measurement Method of Suspended Substances> The suspension in water in the sample was filtered through a glass fiber filter paper having a pore size of 1 μm, evaporated to dryness, the residue on the filter paper was weighed, and the number of mg per liter was determined. The “suspended matter” amount “ss” was obtained.

【0030】なお、以下の実施例においては、N−ビニ
ルホルムアミドとアクリロニトリルを共重合した後、加
水分解して得た、前記構造単位(I)、(II)の組成
(官能基組成)および脱塩水中0.2%濃度水溶液の粘
度が後記の表1に示す様なカチオン性高分子を各々使用
した。
In the following examples, N-vinylformamide and acrylonitrile were copolymerized and then hydrolyzed to obtain the composition (functional group composition) and elimination of the structural units (I) and (II). Cationic polymers having the viscosity of a 0.2% aqueous solution of salt water as shown in Table 1 below were used.

【0031】各カチオン性高分子の官能基組成は、核磁
気共鳴分光法および赤外分光法により、水溶液粘度はB
型粘度計により測定した。なお、アミジン基の組成は前
記構造単位(I)及び(II)の総量を表す。
The functional group composition of each cationic polymer was determined by nuclear magnetic resonance spectroscopy and infrared spectroscopy.
It was measured by a mold viscometer. The composition of the amidine group represents the total amount of the structural units (I) and (II).

【0032】[0032]

【表1】 [Table 1]

【0033】実施例1 下水処理場の汚泥貯留槽に36時間放置されてpHが
5.28であり、揮発性有機酸が320mg/lであり
且つ浮遊物質が11,000mg/lである腐敗混合生
汚泥と上記の表1に示す各試料のカチオン性高分子濃度
0.2%の水溶液をカチオン性高分子添加量1.0重量
%(対汚泥SS)の割合でデカンター(遠心分離機:巴
工業株式会社製)に断面がドーナツ状の二重配管によ
り、内面の管に汚泥を汚泥供給量が10m3/hrであ
る様に供給し、外側の管にカチオン性高分子の水溶液を
機内薬注して機内で混合凝集させた後、遠心力による重
力の加速度が2500Gの条件で12分間の滞留時間を
持つ遠心脱水機により脱水した。下水道試験法による浮
遊物質回収率および105℃2時間の乾燥条件にて、乾
燥減量および湿ケーキ重量よりケーキ含水率を測定し
た。その測定結果を表2に示す。
Example 1 Septic mixture having a pH of 5.28, a volatile organic acid of 320 mg / l and a suspended substance of 11,000 mg / l when left in a sludge storage tank of a sewage treatment plant for 36 hours. The raw sludge and the aqueous solution having a cationic polymer concentration of 0.2% of each sample shown in Table 1 above were decanted (centrifugal separator: Tomoe) at a ratio of 1.0% by weight of cationic polymer (to sludge SS). (Manufactured by Kogyo Co., Ltd.) with a donut-shaped cross section to supply sludge to the inner pipe at a sludge supply rate of 10 m 3 / hr, and an aqueous solution of a cationic polymer to the outer pipe. After the mixture was mixed and agglomerated in the apparatus, the mixture was dehydrated by a centrifugal dehydrator having a residence time of 12 minutes under the condition that the acceleration of gravity due to centrifugal force was 2500 G. The cake moisture content was measured from the loss on drying and the weight of the wet cake under the suspended solids recovery rate according to the sewer test method and drying conditions at 105 ° C. for 2 hours. Table 2 shows the measurement results.

【0034】実施例2 実施例1において、下水処理場の汚泥貯留槽に24時間
放置されてpHが6.57であり、揮発性有機酸が12
0mg/lであり且つ浮遊物質が11,500mg/l
である腐敗混合生汚泥を使用した以外は、実施例1と同
様にして表1に示すカチオン性高分子の腐敗混合生汚泥
に対する浮遊物質回収率およびケーキ含水率を求めた。
その測定結果を表3に示す。
Example 2 In Example 1, the pH was 6.57 and the volatile organic acid was 12 in a sludge storage tank at a sewage treatment plant for 24 hours.
0 mg / l and suspended matter is 11,500 mg / l
In the same manner as in Example 1, except for using the putrefaction mixed raw sludge, the suspended solids recovery rate and cake moisture content of the cationic polymer shown in Table 1 were determined.
Table 3 shows the measurement results.

【0035】実施例3 実施例1において、下水処理場の汚泥貯留槽に6時間放
置されてpHが6.57であり、揮発性有機酸が60m
g/lであり且つ浮遊物質が12,000mg/lであ
る腐敗混合生汚泥を使用した以外は、実施例1と同様に
して表1に示すカチオン性高分子の腐敗混合生汚泥に対
する浮遊物質回収率およびケーキ含水率を求めた。その
測定結果を表4に示す。
Example 3 In Example 1, the pH was 6.57 and the volatile organic acid was 60 m in a sludge storage tank at a sewage treatment plant for 6 hours.
g / l and the suspended solids of the cationic polymer shown in Table 1 shown in Table 1 were recovered in the same manner as in Example 1 except that the septic mixed raw sludge having a suspended substance of 12,000 mg / l was used. And the cake moisture content were determined. Table 4 shows the measurement results.

【0036】[0036]

【表2】 ポリマー:カチオン性高分子(以下同じ)[Table 2] Polymer: cationic polymer (the same applies hereinafter)

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【発明の効果】以上、説明した本発明の腐敗汚泥の処理
方法は、凝集剤の少量の添加で効果があり、処理能力の
高い遠心脱水機による処理が可能であり、腐敗の進んだ
汚泥に対して特に有用である。
As described above, the method for treating putrefactive sludge of the present invention described above is effective by adding a small amount of coagulant, and can be treated by a centrifugal dewatering machine having a high treating capacity. Especially useful for.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 勝利 東京都品川区西五反田2−20−1 ハイ モ株式会社内 (72)発明者 西園 利徳 福岡県北九州市八幡西区黒崎城石1番1 号 三菱化学株式会社黒崎事業所内 (72)発明者 森 康治 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (56)参考文献 特開 平8−299999(JP,A) 特開 平8−243600(JP,A) 特開 平8−229600(JP,A) 特開 平8−215700(JP,A) 特開 平8−188699(JP,A) 特開 平8−155500(JP,A) 特開 平7−223000(JP,A) 特開 平7−178399(JP,A) 特開 平7−100500(JP,A) 特開 平6−246300(JP,A) 特開 平6−238300(JP,A) 特開 平6−218400(JP,A) 特開 平6−218399(JP,A) 特開 平5−192513(JP,A) 特開 平8−19796(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 21/01 C02F 1/52 - 1/56 C02F 11/00 - 11/20 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Katsunori Tanaka 2-2-1-1, Nishigotanda, Shinagawa-ku, Tokyo Inside Hyomo Corporation (72) Inventor Toshinori Nishizono 1-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu, Fukuoka Mitsubishi Kurosaki Office, Chemical Co., Ltd. (72) Koji Mori, Inventor 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Co., Ltd. Yokohama Research Laboratory (56) References JP-A-8-299999 (JP, A) JP-A Heihei JP-A 8-243600 (JP, A) JP-A 8-229600 (JP, A) JP-A 8-215700 (JP, A) JP-A 8-188699 (JP, A) JP-A 8-155500 (JP, A) A) JP-A-7-223000 (JP, A) JP-A-7-178399 (JP, A) JP-A-7-100500 (JP, A) JP-A-6-246300 (JP, A) JP-A-6 -238300 (JP, A) JP-A-6-218400 (JP, A) JP-A-6-218399 (JP, A) JP-A-5-192513 (JP, A) JP-A-8-19796 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) B01D 21/01 C02F 1/52-1/56 C02F 11/00-11/20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 100mg/l以上の揮発性有機酸を含
有する腐敗汚泥の凝集処理において、下記一般式(I)
又は(II)で表される構造単位を有するカチオン性高分
子から成り且つ脱塩水中0.2%濃度の水溶液の粘度が
80センチポアズ(B型粘度計により25℃で測定した
値)以上である凝集剤により前記腐敗汚泥を処理した
後、遠心脱水機により脱水することを特徴とする腐敗汚
泥の処理方法。 【化1】 (式中、R1及びR2は、それそれ独立に水素原子またメ
チル基を表し、X-は陰イオンを表す。)
Claims: 1. A volatile organic acid containing at least 100 mg / l.
In the coagulation treatment of putrefaction sludge having the following general formula (I)
Alternatively, the viscosity of a 0.2% aqueous solution of a cationic polymer having a structural unit represented by (II) in deionized water is 80 centipoise (measured at 25 ° C. with a B-type viscometer).
The method for treating putrefactive sludge, comprising treating the putrefaction sludge with a coagulant having a value of not less than the above, and then dewatering with a centrifugal dehydrator. Embedded image (Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and X represents an anion.)
【請求項2】 カチオン性高分子が一般式(I)又は(I
I)で表される構造単位を35〜90モル%含有する請
求項1記載の処理方法。
2. The method according to claim 1, wherein the cationic polymer is represented by the general formula (I) or (I)
The processing method according to claim 1, which comprises 35 to 90 mol% of the structural unit represented by I).
【請求項3】 腐敗汚泥が濃縮槽を出てから凝集剤を混
和するまでの平均滞留時間が24時間以上である請求項
1又は2記載の処理方法。
3. The treatment method according to claim 1, wherein the average residence time from the time when the septic sludge leaves the concentration tank to the time when the coagulant is mixed is 24 hours or more.
【請求項4】 腐敗汚泥が300mg/l以上の揮発性
有機酸を含有する請求項1〜の何れかに記載の処理方
法。
4. A method according to any one of claims 1 to 3, rotting sludge contains volatile organic acid or 300 mg / l.
【請求項5】 汚泥が下水の混合生汚泥または余剰汚泥
である請求項1〜の何れかに記載の処理方法。
5. A method according to any one of claims 1-4 sludge is mixed raw sludge or excess sludge of the sewage.
JP19502397A 1997-07-04 1997-07-04 Septic sludge treatment method Expired - Lifetime JP3339801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19502397A JP3339801B2 (en) 1997-07-04 1997-07-04 Septic sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19502397A JP3339801B2 (en) 1997-07-04 1997-07-04 Septic sludge treatment method

Publications (2)

Publication Number Publication Date
JPH1119408A JPH1119408A (en) 1999-01-26
JP3339801B2 true JP3339801B2 (en) 2002-10-28

Family

ID=16334259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19502397A Expired - Lifetime JP3339801B2 (en) 1997-07-04 1997-07-04 Septic sludge treatment method

Country Status (1)

Country Link
JP (1) JP3339801B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687866B2 (en) * 2004-06-17 2011-05-25 巴工業株式会社 Sludge dewatering agent for rotary compression filter and sludge dewatering method using the same
JP4854432B2 (en) * 2006-09-04 2012-01-18 ダイヤニトリックス株式会社 Sludge dewatering method
JP5239167B2 (en) * 2007-01-30 2013-07-17 ダイヤニトリックス株式会社 Concentration method of sludge
JP5729717B2 (en) * 2010-11-30 2015-06-03 ハイモ株式会社 Concentration method of sludge
JP5865629B2 (en) * 2011-08-18 2016-02-17 ハイモ株式会社 Method for suppressing foaming of detachment liquid
JP5929073B2 (en) * 2011-09-28 2016-06-01 三菱レイヨン株式会社 Treatment method of organic sludge

Also Published As

Publication number Publication date
JPH1119408A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
WO2016190388A1 (en) Wastewater treatment method
EP1236748A1 (en) Polymer flocculents and preparation thereof
JP2002523533A (en) Inorganic flocculant-containing hydrophilic polymer dispersion composition used for wastewater treatment and method for producing the same
JP3339801B2 (en) Septic sludge treatment method
JP2009214069A (en) Treatment method for sewage sludge
JP2009039653A (en) Sludge dewatering method
JP2009072754A (en) Method for dehydrating sludge
JPH10249400A (en) Method for dehydrating sludge
JP2004089780A (en) Dehydration method for sludge
JP2002540941A (en) More active dispersing polymer to aid purification, dewatering and retention and drainage
EP0649390A1 (en) Process for purifying sludge containing mainly water
JPH10235399A (en) Sludge dehydration
JP3064878B2 (en) Organic sludge treatment
JP3305688B2 (en) Polymer flocculant, method for producing the same, and method for dehydrating organic sludge
JPH10230299A (en) Dehydrating method of sludge
JP3281891B2 (en) Sludge dewatering agent and its use
JPH09225499A (en) Organic sludge dehydrator, treatment of organic and production of organic sludge dehydrator
JP4098415B2 (en) How to use anionic polymer flocculant
JP2000225400A (en) Method for flocculating/separating suspended particle
JPH10249399A (en) Method for dehydrating sludge
JP3714283B2 (en) Sludge dewatering method
JPS601071B2 (en) Solid-liquid separation method for slurry waste liquid
JP2004121997A (en) Sludge dehydrating agent and sludge dehydrating method
JP2005007246A (en) Treatment method for organic waste water
JP2500354B2 (en) Flocculant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020715

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term