JP2004121997A - Sludge dehydrating agent and sludge dehydrating method - Google Patents
Sludge dehydrating agent and sludge dehydrating method Download PDFInfo
- Publication number
- JP2004121997A JP2004121997A JP2002290327A JP2002290327A JP2004121997A JP 2004121997 A JP2004121997 A JP 2004121997A JP 2002290327 A JP2002290327 A JP 2002290327A JP 2002290327 A JP2002290327 A JP 2002290327A JP 2004121997 A JP2004121997 A JP 2004121997A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- cationic
- mol
- polymer
- constitutional unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、汚泥脱水剤及び汚泥脱水方法に関する。さらに詳しくは、本発明は、脱水性が良好であり、遠心脱水機、スクリュープレス脱水機などの剪断力が強くかかる脱水機を用いる脱水においても、脱水性が良好で、汚泥処理量が多く、含水率の低い脱水ケーキを得ることができる汚泥脱水剤及び汚泥脱水方法に関する。
【0002】
【従来の技術】
各種の工場排水や、都市下水を処理すると、汚泥が発生する。汚泥は、含水率が高い上に、有機分も多く含まれることから、凝集剤を添加して懸濁物質を凝集させ、脱水機を用いて脱水することにより、固液分離し、減容することが行われている。また、脱水処理のために、さまざまな高分子凝集剤が検討されている。
例えば、下水、し尿処理場、有機性産業排水などより生じる有機質汚泥を効率的に処理する汚泥の脱水方法として、pH値が5〜8である有機質汚泥に対してカルボキシル基若しくはその塩を含む両性高分子凝集剤と、アクリレート系カチオン性高分子凝集剤とを添加して脱水する汚泥の脱水方法が提案されている(特許文献1)。また、難脱水汚泥や難脱水条件においても、凝集能力が優れ、汚泥処理量が大きく、含水率の低下する性能が優れた汚泥脱水剤として、特定の溶液粘度のカチオン性高分子と、一部がアルカリにより中和されてなるアニオン性単量体を含む単量体を重合して得られる両性高分子、及び/又は、多官能性単量体を含む単量体を重合して得られる両性高分子の混合物からなる汚泥脱水剤が提案されている(特許文献2)。
しかし、これらの汚泥脱水方法又は汚泥脱水剤は、フィルタープレス、ベルトプレスなどの一定方向に圧搾圧力がかかる脱水機に対しては有効であるが、遠心脱水機、スクリュープレス脱水機などの多方向から剪断力が加わりながら脱水される機構を有する脱水機の場合には、十分に脱水される前に凝集フロックが破壊され、汚泥処理量、ケーキ含水率がともに不十分な結果となる。したがって、これらの剪断力が強くかかる脱水機においても、脱水効率を向上することができる脱水剤及び脱水方法の開発が望まれていた。
【特許文献1】
特開平2−31899号公報
【特許文献2】
特開2000−218297号公報
【0003】
【発明が解決しようとする課題】
本発明は、脱水性が良好であり、遠心脱水機、スクリュープレス脱水機などの剪断力が強くかかる脱水機を用いる脱水においても、脱水性が良好で、汚泥処理量が多く、含水率の低い脱水ケーキを得ることができる汚泥脱水剤及び汚泥脱水方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、高分子凝集剤として、ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩単位を50モル%以上有するカチオン性ポリマーと、カチオン性単位20〜30モル%、アニオン性単位30〜45モル%及びびノニオン性単位25〜50モル%を有し、かつ、カチオン性単位をアニオン性単位の0.5〜1モル倍有する両性ポリマーを併用することにより、強い剪断力のかかる脱水機を用いても、良好な脱水性が発現することを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩をカチオン性構成単位として50モル%以上有するカチオン性ポリマーと、カチオン性構成単位20〜30モル%、アニオン性構成単位30〜45モル%及びノニオン性構成単位25〜50モル%を有し、かつ、カチオン性構成単位をアニオン性構成単位の0.5〜1モル倍有する両性ポリマーとを含有し、カチオン性ポリマーと両性ポリマーの重量比が30/70〜70/30であることを特徴とする汚泥脱水剤、及び、
(2)ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩をカチオン性構成単位として50モル%以上有するカチオン性ポリマーと、カチオン性構成単位を20〜30モル%、アニオン性構成単位を30〜45モル%及びノニオン性構成単位を25〜50モル%を有し、かつ、カチオン性構成単位をアニオン性構成単位の0.5〜1モル倍有する両性ポリマーとを、カチオン性ポリマーと両性ポリマーの重量比が30/70〜70/30となるように汚泥に添加して混合し、脱水機を用いて脱水することを特徴とする汚泥脱水方法、
を提供するものである。
さらに、本発明の好ましい態様として、
(3)脱水機が、遠心脱水機又はスクリュープレス脱水機である第2項記載の汚泥脱水方法、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明の汚泥脱水剤は、ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩をカチオン性構成単位として50モル%以上有するカチオン性ポリマーと、カチオン性構成単位20〜30モル%、アニオン性構成単位30〜45モル%及びノニオン性構成単位25〜50モル%を有し、かつ、カチオン性構成単位をアニオン性構成単位の0.5〜1モル倍有する両性ポリマーとを含有し、カチオン性ポリマーと両性ポリマーの重量比が30/70〜70/30である汚泥脱水剤である。
本発明の汚泥脱水方法においては、ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩をカチオン性構成単位として50モル%以上有するカチオン性ポリマーと、カチオン性構成単位20〜30モル%、アニオン性構成単位30〜45モル%及びノニオン性構成単位25〜50モル%を有し、かつ、カチオン性構成単位をアニオン性構成単位の0.5〜1モル倍有する両性ポリマーとを、カチオン性ポリマーと両性ポリマーの重量比が30/70〜70/30となるように汚泥に添加して混合し、脱水機を用いて脱水する。
本発明に用いるジアルキルアミノエチルメタクリレートに特に制限はないが、アルキル基の炭素数が1〜3のジアルキルアミノエチルメタクリレートを好適に用いることができる。アルキル基の炭素数が1〜3のジアルキルアミノエチルメタクリレートとしては、例えば、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジプロピルアミノエチルメタクリレート、ジイソプロピルアミノエチルメタクリレート、メチルエチルアミノエチルメタクリレート、メチルプロピルアミノエチルメタクリレート、エチルプロピルアミノエチルメタクリレートなどを挙げることができる。
【0006】
本発明に用いるカチオン性ポリマーは、ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩をカチオン性構成単位として、50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上有する。ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩の構成単位が50モル%未満であると、カチオン性ポリマーの疎水性が弱く、凝集フロックの強度が小さくなるおそれがある。本発明に用いるカチオン性ポリマーのジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩以外の構成単位に特に制限はなく、例えば、他のカチオン性構成単位及びノニオン性構成単位を挙げることができる。他のカチオン性構成単位としては、例えば、ジアルキルアミノエチル(メタ)アクリレートのアルキルクロライド四級塩、ジアルキルアミノエチル(メタ)アクリレートのジメチル硫酸四級塩などを挙げることができる。ノニオン性構成単位としては、例えば、アクリルアミドなどを挙げることができる。
本発明に用いる両性ポリマーは、カチオン性構成単位20〜30モル%、より好ましくは25〜30モル%、アニオン性構成単位30〜45モル%、より好ましくは32〜40モル%、ノニオン性構成単位25〜50モル%、より好ましくは30〜40モル%を有し、かつ、カチオン性構成単位をアニオン性構成単位の0.5〜1モル倍、より好ましくは0.7〜0.9モル倍有する。各構成単位の割合と、カチオン性構成単位とアニオン性構成単位との割合が、上記の範囲から外れると、いずれの場合も、凝集フロックの強度が小さくなるおそれがある。
本発明に用いる両性ポリマーのカチオン性構成単位に特に制限はなく、例えば、ジアルキルアミノエチル(メタ)アクリレートのベンジルクロライド四級塩、ジアルキルアミノエチル(メタ)アクリレートのアルキルクロライド四級塩、ジアルキルアミノエチル(メタ)アクリレートのジメチル硫酸四級塩、ジアリルジアルキルアンモニウムクロライドなどを挙げることができる。アニオン性構成単位に特に制限はなく、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、2−アクリルアミド−2−メチルプロパンスルホン酸などを挙げることができる。ノニオン性構成単位に特に制限はなく、例えば、アクリルアミドなどを挙げることができる。
【0007】
本発明においては、カチオン性ポリマーと両性ポリマーの重量比が30/70〜70/30であることが好ましく、40/60〜70/30であることがより好ましい。カチオン性ポリマーと両性ポリマーの重量比が30/70未満であると、懸濁物質粒子の微小フロックが十分に形成されない状態で両性ポリマーが作用し、ゲル化が生じて粗大化した良好な凝集フロックが形成されなくなるおそれがある。カチオン性ポリマーと両性ポリマーの重量比が70/30を超えると、微小フロックの凝集、粗大化が不十分となるおそれがある。
カチオン性ポリマーと両性ポリマーは、汚泥の性状、例えば、有機物量などに応じて最適の割合があるので、あらかじめ処理すべき汚泥について予備試験を行い、重量比30/70〜70/30の範囲の中で最適の割合を求めることが好ましい。カチオン性ポリマーと両性ポリマーの混合物を添加した汚泥に、強い撹拌を与えることにより、懸濁物質粒子の荷電の中和を迅速に行って微小フロックを形成し、両性ポリマーによる微小フロックの凝集による粗大化を効果的に進めることができる。あるいは、汚泥にカチオン性ポリマーを添加して懸濁物質粒子の荷電を中和して微小フロックを形成したのち、両性ポリマーを添加することもできる。
本発明方法において、カチオン性ポリマーと両性ポリマーの添加方法に特に制限はなく、例えば、カチオン性ポリマーと両性ポリマーを混合した1剤型薬剤として添加することができ、あるいは、カチオン性ポリマーと両性ポリマーを別々に2剤型薬剤として添加することもできる。いずれの型の薬剤を使用するかは、上記の条件を考慮して、適宜選択することができる。
本発明方法においては、必要に応じて、無機凝集剤を併用することができる。併用する無機凝集剤に特に制限はなく、例えば、ポリ硫酸第二鉄、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄などを挙げることができる。無機凝集剤を併用する場合は、汚泥に無機凝集剤を添加して撹拌したのち、カチオン性ポリマーと両性ポリマーを添加することが好ましい。
【0008】
本発明方法において、凝集反応槽を用いる場合は、強い撹拌を与える凝集反応槽であることが好ましい。強い撹拌条件下で処理することにより、本発明方法の効果が十分に発揮される。強い撹拌の条件としては、例えば、回転数100〜500rpm、周速2〜10m/secの条件が好ましい。本発明方法に用いる汚泥脱水機は、強い剪断力がはたらく脱水機であることが好ましい。強い剪断力がはたらく脱水機としては、例えば、遠心脱水機、スクリュープレス脱水機などを挙げることができる。
本発明においては、カチオン性ポリマーの構成単位の50モル%以上がジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩なので、負に帯電している懸濁物質粒子にカチオン性ポリマーが引き寄せられると、粒子の荷電が中和されるとともに、ジアルキルアミノエチルメタクリレートのベンジルクロライド四級塩の高い疎水性のために、生成する微小フロックの疎水性も高くなる。また、両性ポリマーとしてアニオン性構成単位の多いポリマーを用いることにより、微小フロックを橋かけ凝集してフロックを粗大化するときに、両性ポリマーのカチオン基とアニオン基が反応してポリイオンコンプレックスを生成し、繊維分としてはたらくために、凝集フロックの強度が増大し、凝集フロックから水分が抜ける通路が形成される。このために、汚泥の処理量を増加することができ、含水率の低い脱水ケーキを得ることができる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において使用したポリマーの略号及び構成単位は下記のとおりである。
(1)カチオン性ポリマー
DAMBE:ジメチルアミノエチルメタクリレートのベンジルクロライド四級化物のホモポリマー
DAABE:ジメチルアミノエチルアクリレートのベンジルクロライド四級化物80モル%とアクリルアミド20モル%のコポリマー
DAMME:ジメチルアミノエチルメタクリレートのメチルクロライド四級化物のホモポリマー
DAAME:ジメチルアミノエチルアクリレートのメチルクロライド四級化物80モル%とアクリルアミド20モル%のコポリマー
PVA:N−ビニルホルムアミド50モル%とアクリロニトリル50モル%のコポリマーを加水分解し、環状アミジン構造を形成したポリマー
(2)両性ポリマー
DAAA:ジメチルアミノエチルアクリレートのメチルクロライド四級化物29モル%、ジメチルアミノエチルメタクリレートのメチルクロライド四級化物1モル%、アクリルアミド35モル%及びアクリル酸35モル%のコポリマー
DAAC:ジメチルアミノエチルアクリレートのメチルクロライド四級化物10モル%、ジメチルアミノエチルメタクリレートのメチルクロライド四級化物20モル%、アクリルアミド60モル%及びアクリル酸10モル%のコポリマー
実施例1
化学工場余剰汚泥の机上脱水試験を行った。この汚泥の性状は、懸濁物質(SS)1.2重量%、VSS/SS68.5重量%であった。
容量300mLのポリビーカーに汚泥200mLを採取し、DAMBE/DAAAの40/60(重量比)混合物の0.4重量%水溶液8.4mLをシリンジを用いて添加した。ポリマーの添加量は、汚泥中の懸濁物質100重量部に対して1.4重量部である。撹拌速度500rpmで20秒間撹拌したのち、60メッシュのナイロンろ布を敷いた内径90mmのブフナーロートに注いでろ過した。10秒後のろ液量は、140mLであった。ろ過終了後、ブフナーロート内のケーキを圧力98kPaで60秒間圧搾した。得られた脱水ケーキの含水率は、78.5重量%であった。
実施例2〜4
第1表に示すポリマーを第1表に示す量添加した以外は、実施例1と同様にして、脱水試験を行った。
比較例1
ポリマーとしてDAABE/DAAAの60/40(重量比)混合物を用いた以外は、実施例1と同様にして、脱水試験を行った。10秒後のろ液量は174mLであり、脱水ケーキの含水率は78.6重量%であった。
比較例2〜5
第1表に示すポリマーを第1表に示す量添加した以外は、比較例1と同様にして、脱水試験を行った。
比較例6
容量300mLのポリビーカーに実施例1と同じ汚泥200mLを採取し、ポリ硫酸第二鉄の20重量%水溶液2.4mLをシリンジを用いて添加した。ポリ硫酸第二鉄の添加量は、汚泥中の懸濁物質100重量部に対して20重量部である。撹拌速度300rpmで20秒間撹拌したのち、DAAME/DAACの60/40(重量比)混合物の0.4重量%水溶液7.2mLをシリンジを用いて添加した。ポリマーの添加量は、汚泥中の懸濁物質100重量部に対して1.2重量部である。撹拌速度500rpmで20秒間撹拌したのち、60メッシュのナイロンろ布を敷いた内径90mmのブフナーロートに注いでろ過した。10秒後のろ液量は、136mLであった。ろ過終了後、ブフナーロート内のケーキを圧力98kPaで60秒間圧搾した。得られた脱水ケーキの含水率は、79.1重量%であった。
比較例7
第1表に示すポリマーを第1表に示す量添加した以外は、比較例6と同様にして、脱水試験を行った。
実施例1〜4及び比較例1〜7の結果を、第1表に示す。
【0010】
【表1】
【0011】
第1表に見られるように、本発明の汚泥脱水剤を用いた実施例1〜4では、ろ液量が多く、ろ過性が良好であり、得られた脱水ケーキの含水率もすべて79重量%以下である。これに対して、カチオン性ポリマーをジメチルアミノエチルアクリレートのベンジルクロライド四級化物のホモポリマーに変えた比較例1では、同じ重量比の実施例3と比べると、脱水ケーキの含水率が高くなる。また、アニオン性構成単位が少ない両性ポリマーを用いた比較例2では、ろ過性は比較的良好であるが、脱水ケーキの含水率が高い。カチオン性ポリマーとして、ジメチルアミノエチルアクリレート又はジメチルアミノエチルメタクリレートのメチルクロライド四級化物のポリマーを用いた比較例3〜4では、ろ過性が悪く、脱水ケーキの含水率が高い。カチオン性ポリマーとして、ジメチルアミノエチルメタクリレートのメチルクロライド四級化物のポリマーを用い、アニオン性構成単位が少ない両性ポリマーを用いた比較例5では、ろ過性が非常に悪く、脱水ケーキの含水率が高い。比較例6〜7のように、ジメチルアミノエチルアクリレートのメチルクロライド四級化物のポリマーと、アニオン性構成単位の少ない両性ポリマーを用いると、ポリ硫酸第二鉄を併用することにより、脱水ケーキの含水率は低くなるが、ろ過性は依然としてよくない。
実施例5
下水処理場のオキシデーションディッチ汚泥を、スクリュープレス脱水機を用いて脱水した。この汚泥の性状は、蒸発残留物(TS)1.6重量%、VTS/TS74.0重量%、繊維分3.5重量%であった。
汚泥貯槽に導入される汚泥1m3あたり、DAMBE/DAAAの40/60(重量比)の混合物を256g添加した。ポリマーの添加量は、汚泥中の蒸発残留物(TS)100重量部に対して1.6重量部である。この汚泥を、スクリュー径400mmのスクリュープレス脱水機を用いて、処理量3m3/hで処理した。得られた脱水ケーキの含水率は、85重量%であった。
実施例6〜8
第2表に示すポリマーを第2表に示す量添加し、第2表に示す処理量で処理した以外は、実施例5と同様にして、スクリュープレス脱水機による脱水試験を行った。
比較例8
汚泥貯槽に導入される汚泥1m3に対して、PVA/DAAAの60/40(重量比)の混合物240gを添加し、処理量4m3/hで処理した以外は、実施例5と同様にして、スクリュープレス脱水機による脱水試験を行った。脱水ケーキの含水率は、84重量%であった。
比較例9
第2表に示すポリマーを第2表に示す量添加し、第2表に示す処理量で処理した以外は、比較例8と同様にして、スクリュープレス脱水機による脱水試験を行った。
実施例5〜8及び比較例8〜9の結果を、第2表に示す。
【0012】
【表2】
【0013】
第2表に見られるように、カチオン性ポリマーと両性ポリマーの重量比が60/40である実施例7と比較例8〜9を比較すると、実施例7の方がポリマーの添加量が20%少ないにもかかわらず、処理量はほぼ2倍近く、得られる脱水ケーキの含水率もほぼ3重量%低い。
【0014】
【発明の効果】
本発明の汚泥脱水剤及び及び脱水方法によれば、懸濁物質の荷電中和が十分に行われ、疎水性が強く、強度が大きい凝集フロックが形成されるので、ろ過性が良好であり、含水率の低い脱水ケーキが得られ、汚泥の処理量を増大することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sludge dewatering agent and a sludge dewatering method. More specifically, the present invention has a good dewatering property, a centrifugal dehydrator, even in dehydration using a dehydrator that exerts a strong shear force such as a screw press dehydrator, has a good dehydration property, and has a large sludge treatment amount. The present invention relates to a sludge dewatering agent and a sludge dewatering method capable of obtaining a dewatered cake having a low water content.
[0002]
[Prior art]
Sludge is generated when various types of industrial wastewater and municipal wastewater are treated. Sludge has a high water content and also contains a large amount of organic components. Therefore, a flocculant is added to coagulate suspended substances, and dewatering is performed using a dehydrator, whereby solid-liquid separation and volume reduction are performed. That is being done. Also, various polymer flocculants have been studied for dehydration treatment.
For example, as a method of dewatering sludge that efficiently treats organic sludge generated from sewage, human waste treatment plants, organic industrial wastewater, and the like, amphoteric containing a carboxyl group or a salt thereof with respect to organic sludge having a pH value of 5 to 8 is used. A sludge dewatering method has been proposed in which a polymer flocculant and an acrylate-based cationic polymer flocculant are added and dewatered (Patent Document 1). In addition, even in hardly dewatered sludge and hardly dewatering conditions, as a sludge dewatering agent with excellent coagulation ability, large sludge treatment amount, and excellent performance of lowering the water content, a cationic polymer having a specific solution viscosity, Is an amphoteric polymer obtained by polymerizing a monomer containing an anionic monomer neutralized with an alkali, and / or an amphoteric polymer obtained by polymerizing a monomer containing a polyfunctional monomer. A sludge dewatering agent comprising a mixture of polymers has been proposed (Patent Document 2).
However, these sludge dewatering methods or sludge dewatering agents are effective for dehydrators in which squeezing pressure is applied in a certain direction, such as filter presses and belt presses. In the case of a dewatering machine having a mechanism of dewatering while applying a shearing force from the above, the flocculated floc is destroyed before being sufficiently dewatered, resulting in insufficient sludge treatment amount and cake moisture content. Therefore, there has been a demand for the development of a dehydrating agent and a dehydrating method capable of improving the dehydrating efficiency even in a dehydrator to which these shearing forces are strongly applied.
[Patent Document 1]
JP-A-2-31899 [Patent Document 2]
JP 2000-218297 A
[Problems to be solved by the invention]
The present invention has a good dewatering property, and also has a good dewatering property, a large amount of sludge treatment, and a low moisture content even in dehydration using a dehydrator having a strong shearing force such as a centrifugal dehydrator and a screw press dehydrator. The purpose of the present invention is to provide a sludge dewatering agent and a sludge dewatering method capable of obtaining a dewatered cake.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, as a polymer coagulant, a cationic polymer having a benzyl chloride quaternary salt unit of dialkylaminoethyl methacrylate of 50 mol% or more, An amphoteric polymer having units of 20 to 30 mol%, anionic units of 30 to 45 mol%, and nonionic units of 25 to 50 mol%, and having a cationic unit of 0.5 to 1 mol times of the anionic unit. By using them together, it has been found that good dewatering properties can be obtained even when a dehydrator with a strong shearing force is used, and the present invention has been completed based on this finding.
That is, the present invention
(1) A cationic polymer having a benzyl chloride quaternary salt of dialkylaminoethyl methacrylate as a cationic constitutional unit in an amount of 50 mol% or more, a cationic constitutional unit of 20 to 30 mol%, an anionic constitutional unit of 30 to 45 mol% and a nonion An amphoteric polymer having from 25 to 50 mol% of a cationic constitutional unit and having a cationic constitutional unit in an amount of from 0.5 to 1 mol times the anionic constitutional unit, wherein the weight ratio of the cationic polymer to the amphoteric polymer is 30 / 70 to 70/30, and a sludge dewatering agent, and
(2) A cationic polymer having 50% by mole or more of a benzyl chloride quaternary salt of dialkylaminoethyl methacrylate as a cationic constituent unit, 20 to 30% by mole of a cationic constituent unit, and 30 to 45% by mole of an anionic constituent unit. And an amphoteric polymer having a nonionic constitutional unit in an amount of from 25 to 50 mol% and a cationic constitutional unit in an amount of from 0.5 to 1 mol times the anionic constitutional unit, the weight ratio of the cationic polymer and the amphoteric polymer being A sludge dewatering method, characterized in that the sludge is added to and mixed with sludge so as to be 30/70 to 70/30, and dewatered using a dehydrator;
Is provided.
Further, as a preferred embodiment of the present invention,
(3) The sludge dewatering method according to item 2, wherein the dewatering machine is a centrifugal dewatering machine or a screw press dewatering machine.
Can be mentioned.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The sludge dewatering agent of the present invention comprises a cationic polymer having a benzyl chloride quaternary salt of dialkylaminoethyl methacrylate as a cationic constituent unit of 50 mol% or more, a cationic constituent unit of 20 to 30 mol%, and an anionic constituent unit of 30 to 30 mol%. An amphoteric polymer having 45 mol% and a nonionic constitutional unit of 25 to 50 mol%, and having a cationic constitutional unit in an amount of 0.5 to 1 mol times the anionic constitutional unit; Is a sludge dewatering agent having a weight ratio of 30/70 to 70/30.
In the sludge dewatering method of the present invention, a cationic polymer having a benzyl chloride quaternary salt of dialkylaminoethyl methacrylate as a cationic constituent unit of 50 mol% or more, a cationic constituent unit of 20 to 30 mol%, and an anionic constituent unit 30 And an amphoteric polymer having a nonionic constitutional unit in an amount of from 0.5 to 1 mol times the anionic constitutional unit in an amount of from 0.5 to 1 mol% of the anionic constitutional unit. The sludge is added to and mixed with the sludge so that the weight ratio becomes 30/70 to 70/30, and dewatered using a dehydrator.
The dialkylaminoethyl methacrylate used in the present invention is not particularly limited, but a dialkylaminoethyl methacrylate having an alkyl group having 1 to 3 carbon atoms can be suitably used. Examples of the dialkylaminoethyl methacrylate having an alkyl group having 1 to 3 carbon atoms include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dipropylaminoethyl methacrylate, diisopropylaminoethyl methacrylate, methylethylaminoethyl methacrylate, and methylpropylaminoethyl methacrylate. And ethylpropylaminoethyl methacrylate.
[0006]
The cationic polymer used in the present invention has benzyl chloride quaternary salt of dialkylaminoethyl methacrylate as a cationic constitutional unit in an amount of 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. When the constituent unit of the benzyl chloride quaternary salt of dialkylaminoethyl methacrylate is less than 50 mol%, the hydrophobicity of the cationic polymer is weak, and the strength of the aggregated floc may be reduced. The structural units other than the benzyl chloride quaternary salt of the cationic polymer dialkylaminoethyl methacrylate used in the present invention are not particularly limited, and examples thereof include other cationic structural units and nonionic structural units. Examples of other cationic constituent units include quaternary salts of alkyl chlorides of dialkylaminoethyl (meth) acrylate and quaternary salts of dimethyl sulfate of dialkylaminoethyl (meth) acrylate. Examples of the nonionic structural unit include acrylamide and the like.
The amphoteric polymer used in the present invention contains 20 to 30 mol% of a cationic constitutional unit, more preferably 25 to 30 mol%, 30 to 45 mol% of an anionic constitutional unit, and more preferably 32 to 40 mol%, and a nonionic constitutional unit. 25 to 50 mol%, more preferably 30 to 40 mol%, and the cationic constituent unit is 0.5 to 1 mole times, more preferably 0.7 to 0.9 mole times the anionic constituent unit. Have. When the ratio of each constituent unit and the ratio of the cationic constituent unit and the anionic constituent unit are out of the above ranges, the strength of the aggregated floc may be reduced in any case.
The cationic constitutional unit of the amphoteric polymer used in the present invention is not particularly limited. For example, benzyl chloride quaternary salt of dialkylaminoethyl (meth) acrylate, alkyl chloride quaternary salt of dialkylaminoethyl (meth) acrylate, dialkylaminoethyl Examples thereof include quaternary dimethyl sulfate of (meth) acrylate and diallyldialkylammonium chloride. The anionic structural unit is not particularly limited, and examples thereof include (meth) acrylic acid, itaconic acid, maleic acid, 2-acrylamido-2-methylpropanesulfonic acid, and the like. The nonionic structural unit is not particularly limited, and examples thereof include acrylamide.
[0007]
In the present invention, the weight ratio of the cationic polymer to the amphoteric polymer is preferably from 30/70 to 70/30, and more preferably from 40/60 to 70/30. If the weight ratio between the cationic polymer and the amphoteric polymer is less than 30/70, the amphoteric polymer acts in a state where the fine flocs of the suspended substance particles are not sufficiently formed, and gelation occurs to form a good flocculated floc. May not be formed. If the weight ratio between the cationic polymer and the amphoteric polymer exceeds 70/30, the aggregation and coarsening of the fine flocs may be insufficient.
Since the cationic polymer and the amphoteric polymer have an optimum ratio depending on the properties of the sludge, for example, the amount of organic matter, a preliminary test is performed on the sludge to be treated in advance, and the weight ratio is in the range of 30/70 to 70/30. It is preferable to find the optimum ratio among them. By applying strong agitation to sludge to which a mixture of a cationic polymer and an amphoteric polymer has been added, the charge of the suspended substance particles is quickly neutralized to form fine flocs, and coarse flocs are formed by agglomeration of the fine flocs by the amphoteric polymer. Can be effectively promoted. Alternatively, the cationic polymer may be added to the sludge to neutralize the charge of the suspended substance particles to form fine flocs, and then the amphoteric polymer may be added.
In the method of the present invention, there is no particular limitation on the method of adding the cationic polymer and the amphoteric polymer. For example, the cationic polymer and the amphoteric polymer can be added as a single-drug mixture, or the cationic polymer and the amphoteric polymer can be added. Can be separately added as a two-part drug. Which type of drug to use can be appropriately selected in consideration of the above conditions.
In the method of the present invention, an inorganic coagulant can be used in combination, if necessary. The inorganic coagulant used in combination is not particularly limited, and examples thereof include ferric polysulfate, aluminum sulfate, polyaluminum chloride, ferric chloride, and ferrous sulfate. When an inorganic coagulant is used in combination, it is preferable to add the cationic coagulant and the amphoteric polymer after adding the inorganic coagulant to the sludge and stirring.
[0008]
In the method of the present invention, when an agglutination reaction tank is used, it is preferably an agglutination reaction tank that provides strong stirring. By treating under strong stirring conditions, the effects of the method of the present invention are sufficiently exhibited. As a condition of strong stirring, for example, a condition of a rotation speed of 100 to 500 rpm and a peripheral speed of 2 to 10 m / sec is preferable. The sludge dehydrator used in the method of the present invention is preferably a dehydrator that exerts a strong shearing force. Examples of the dehydrator that exerts a strong shear force include a centrifugal dehydrator and a screw press dehydrator.
In the present invention, 50% by mole or more of the structural units of the cationic polymer is a benzyl chloride quaternary salt of dialkylaminoethyl methacrylate. Therefore, when the cationic polymer is attracted to the negatively charged suspended substance particles, As the charge is neutralized, the resulting microflocs become more hydrophobic due to the high hydrophobicity of the benzyl chloride quaternary salt of dialkylaminoethyl methacrylate. In addition, by using a polymer with many anionic constituent units as the amphoteric polymer, the cationic group and anionic group of the amphoteric polymer react to form a polyion complex when the floc is coarsened by bridging and flocculating fine flocs. In order to work as a fiber component, the strength of the flocculated floc is increased, and a passage through which moisture escapes from the flocculated floc is formed. For this reason, the sludge treatment amount can be increased, and a dewatered cake having a low moisture content can be obtained.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The abbreviations and structural units of the polymers used in Examples and Comparative Examples are as follows.
(1) Cationic polymer DAMBE: Homopolymer of benzyl chloride quaternized dimethylaminoethyl methacrylate DAABE: Copolymer of benzyl chloride quaternized dimethylaminoethyl acrylate 80 mol% and acrylamide 20 mol% DAMME: dimethyl amino ethyl methacrylate Methyl chloride quaternized homopolymer DAAME: copolymer of 80 mol% of methyl chloride quaternized dimethylaminoethyl acrylate and 20 mol% of acrylamide PVA: copolymer of 50 mol% of N-vinylformamide and 50 mol% of acrylonitrile , A polymer having a cyclic amidine structure (2) Amphoteric polymer DAAA: dimethylaminoethyl acrylate methyl chloride quaternary compound (29 mol%) Copolymer of 1 mol% of methyl chloride quaternary compound of ethylaminoethyl methacrylate, 35 mol% of acrylamide and 35 mol% of acrylic acid DAAC: 10 mol% of methyl quaternary compound of dimethylaminoethyl acrylate, 10 mol% of dimethylaminoethyl methacrylate Copolymer of Grade 20 mol%, Acrylamide 60 mol% and Acrylic Acid 10 mol%
A desktop dewatering test of excess sludge in a chemical factory was performed. The properties of this sludge were 1.2% by weight of suspended solids (SS) and 68.5% by weight of VSS / SS.
200 mL of sludge was collected in a polybeaker having a capacity of 300 mL, and 8.4 mL of a 0.4% by weight aqueous solution of a 40/60 (weight ratio) mixture of DAMBE / DAAA was added using a syringe. The amount of the polymer added is 1.4 parts by weight based on 100 parts by weight of the suspended solids in the sludge. After stirring at a stirring speed of 500 rpm for 20 seconds, the mixture was poured into a 90 mm inner diameter Buchner funnel covered with a 60-mesh nylon filter cloth and filtered. The filtrate volume after 10 seconds was 140 mL. After the filtration, the cake in the Buchner funnel was squeezed at a pressure of 98 kPa for 60 seconds. The water content of the obtained dehydrated cake was 78.5% by weight.
Examples 2 to 4
A dehydration test was performed in the same manner as in Example 1 except that the polymers shown in Table 1 were added in the amounts shown in Table 1.
Comparative Example 1
A dehydration test was performed in the same manner as in Example 1 except that a 60/40 (weight ratio) mixture of DAABE / DAAA was used as the polymer. The filtrate volume after 10 seconds was 174 mL, and the water content of the dehydrated cake was 78.6% by weight.
Comparative Examples 2 to 5
A dehydration test was performed in the same manner as in Comparative Example 1 except that the polymers shown in Table 1 were added in the amounts shown in Table 1.
Comparative Example 6
200 mL of the same sludge as in Example 1 was collected in a polybeaker having a capacity of 300 mL, and 2.4 mL of a 20% by weight aqueous solution of ferric polysulfate was added using a syringe. The addition amount of the ferric polysulfate is 20 parts by weight based on 100 parts by weight of the suspended solids in the sludge. After stirring at a stirring speed of 300 rpm for 20 seconds, 7.2 mL of a 0.4% by weight aqueous solution of a 60/40 (weight ratio) mixture of DAAME / DAAC was added using a syringe. The amount of the polymer added is 1.2 parts by weight based on 100 parts by weight of the suspended solids in the sludge. After stirring at a stirring speed of 500 rpm for 20 seconds, the mixture was poured into a Buchner funnel having an inner diameter of 90 mm covered with a 60-mesh nylon filter cloth and filtered. The filtrate volume after 10 seconds was 136 mL. After the filtration, the cake in the Buchner funnel was squeezed at a pressure of 98 kPa for 60 seconds. The water content of the obtained dehydrated cake was 79.1% by weight.
Comparative Example 7
A dehydration test was performed in the same manner as in Comparative Example 6, except that the polymers shown in Table 1 were added in the amounts shown in Table 1.
Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 7.
[0010]
[Table 1]
[0011]
As can be seen from Table 1, in Examples 1 to 4 using the sludge dewatering agent of the present invention, the filtrate amount was large, the filterability was good, and the water content of the obtained dewatered cake was all 79% by weight. % Or less. On the other hand, in Comparative Example 1 in which the cationic polymer was changed to a homopolymer of benzyl chloride quaternized dimethylaminoethyl acrylate, the water content of the dehydrated cake was higher than that in Example 3 having the same weight ratio. In Comparative Example 2 using an amphoteric polymer having a small number of anionic constituent units, the filterability was relatively good, but the water content of the dehydrated cake was high. In Comparative Examples 3 and 4 using dimethylaminoethyl acrylate or a methyl chloride quaternary polymer of dimethylaminoethyl methacrylate as the cationic polymer, the filterability is poor and the water content of the dehydrated cake is high. In Comparative Example 5 in which a polymer of methyl chloride quaternary compound of dimethylaminoethyl methacrylate was used as the cationic polymer and an amphoteric polymer having a small number of anionic constituent units was used, the filterability was very poor and the water content of the dehydrated cake was high. . As in Comparative Examples 6 and 7, when a polymer of methyl chloride quaternary compound of dimethylaminoethyl acrylate and an amphoteric polymer having a small anionic constitutional unit are used, by using ferric polysulfate in combination, the water content of the dehydrated cake is increased. Although the rate is low, the filterability is still poor.
Example 5
The oxidation ditch sludge at the sewage treatment plant was dewatered using a screw press dewatering machine. The properties of this sludge were 1.6% by weight of evaporation residue (TS), 74.0% by weight of VTS / TS, and 3.5% by weight of fiber.
Per sludge 1 m 3 to be introduced into the sludge storage tank, a mixture of 40/60 (weight ratio) of DAMBE / DAAA was added 256 g. The amount of the polymer added is 1.6 parts by weight based on 100 parts by weight of the evaporation residue (TS) in the sludge. This sludge was treated at a throughput of 3 m 3 / h using a screw press dehydrator with a screw diameter of 400 mm. The water content of the obtained dehydrated cake was 85% by weight.
Examples 6 to 8
A dehydration test using a screw press dehydrator was performed in the same manner as in Example 5 except that the polymers shown in Table 2 were added in the amounts shown in Table 2 and treated at the treatment amounts shown in Table 2.
Comparative Example 8
In the same manner as in Example 5 except that 240 g of a 60/40 (weight ratio) mixture of PVA / DAAA was added to 1 m 3 of the sludge introduced into the sludge storage tank, and the mixture was treated at a processing amount of 4 m 3 / h. A dehydration test using a screw press dehydrator was performed. The water content of the dehydrated cake was 84% by weight.
Comparative Example 9
A dehydration test using a screw press dehydrator was performed in the same manner as in Comparative Example 8 except that the polymers shown in Table 2 were added in the amounts shown in Table 2 and treated at the treatment amounts shown in Table 2.
Table 2 shows the results of Examples 5 to 8 and Comparative Examples 8 and 9.
[0012]
[Table 2]
[0013]
As can be seen in Table 2, comparing Example 7 in which the weight ratio between the cationic polymer and the amphoteric polymer is 60/40 and Comparative Examples 8 to 9, the amount of the polymer added in Example 7 was 20%. Despite being small, the throughput is nearly double and the moisture content of the resulting dewatered cake is also almost 3% by weight.
[0014]
【The invention's effect】
According to the sludge dewatering agent and the dewatering method of the present invention, the charge neutralization of the suspended substance is sufficiently performed, the hydrophobicity is strong, and a strong flocculated floc is formed. A dewatered cake having a low moisture content is obtained, and the sludge throughput can be increased.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002290327A JP4029021B2 (en) | 2002-10-02 | 2002-10-02 | Sludge dewatering agent and sludge dewatering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002290327A JP4029021B2 (en) | 2002-10-02 | 2002-10-02 | Sludge dewatering agent and sludge dewatering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004121997A true JP2004121997A (en) | 2004-04-22 |
JP4029021B2 JP4029021B2 (en) | 2008-01-09 |
Family
ID=32282241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002290327A Expired - Fee Related JP4029021B2 (en) | 2002-10-02 | 2002-10-02 | Sludge dewatering agent and sludge dewatering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4029021B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007268414A (en) * | 2006-03-31 | 2007-10-18 | Kurita Water Ind Ltd | Dehydration method of organic sludge |
JP2009039650A (en) * | 2007-08-09 | 2009-02-26 | Hymo Corp | Sludge dewatering agent and method |
JP2010264363A (en) * | 2009-05-13 | 2010-11-25 | Daiyanitorikkusu Kk | Sludge dehydrating agent and sludge dehydration method |
JP2012096199A (en) * | 2010-11-05 | 2012-05-24 | Kurita Water Ind Ltd | Sludge dewatering agent and sludge dewatering method |
JP2012115790A (en) * | 2010-12-02 | 2012-06-21 | Daiyanitorikkusu Kk | Wastewater treatment agent |
CN105217924A (en) * | 2014-09-18 | 2016-01-06 | 江苏宝进生化有限公司 | A kind of low temperature pyrolyzer domestic sludge dewatering agent and using method thereof |
-
2002
- 2002-10-02 JP JP2002290327A patent/JP4029021B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007268414A (en) * | 2006-03-31 | 2007-10-18 | Kurita Water Ind Ltd | Dehydration method of organic sludge |
JP2009039650A (en) * | 2007-08-09 | 2009-02-26 | Hymo Corp | Sludge dewatering agent and method |
JP2010264363A (en) * | 2009-05-13 | 2010-11-25 | Daiyanitorikkusu Kk | Sludge dehydrating agent and sludge dehydration method |
JP2012096199A (en) * | 2010-11-05 | 2012-05-24 | Kurita Water Ind Ltd | Sludge dewatering agent and sludge dewatering method |
JP2012115790A (en) * | 2010-12-02 | 2012-06-21 | Daiyanitorikkusu Kk | Wastewater treatment agent |
CN105217924A (en) * | 2014-09-18 | 2016-01-06 | 江苏宝进生化有限公司 | A kind of low temperature pyrolyzer domestic sludge dewatering agent and using method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4029021B2 (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008194550A (en) | Method for dewatering organic sludge | |
JPH10249398A (en) | Method for dehydrating sludge | |
JP2007268414A (en) | Dehydration method of organic sludge | |
JP4029021B2 (en) | Sludge dewatering agent and sludge dewatering method | |
JPH10249400A (en) | Method for dehydrating sludge | |
JP2000218297A (en) | Sludge dehydrating agent | |
JP2000015300A (en) | Dehydration of sludge | |
JP5038587B2 (en) | Dewatering method for sewage digested sludge | |
JP4816374B2 (en) | Coagulation method of high water content sludge | |
JPH10235399A (en) | Sludge dehydration | |
JP3064878B2 (en) | Organic sludge treatment | |
JP2004089780A (en) | Dehydration method for sludge | |
JP3591077B2 (en) | Sludge dewatering method | |
JP3222247B2 (en) | Sludge dewatering method | |
JPH10230299A (en) | Dehydrating method of sludge | |
JP3401881B2 (en) | Method for washing and concentration of digested sludge and washing concentrate | |
JPH10249399A (en) | Method for dehydrating sludge | |
JP3281891B2 (en) | Sludge dewatering agent and its use | |
JP3714283B2 (en) | Sludge dewatering method | |
JP4098415B2 (en) | How to use anionic polymer flocculant | |
JPH0118800B2 (en) | ||
JP3141766B2 (en) | Sludge dewatering method | |
JP3520784B2 (en) | Sludge coagulation treatment method | |
JP2004195370A (en) | Method for dehydrating digested sludge | |
JP3113172B2 (en) | Sludge dewatering agent and sludge dewatering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4029021 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |