JP2010264363A - Sludge dehydrating agent and sludge dehydration method - Google Patents

Sludge dehydrating agent and sludge dehydration method Download PDF

Info

Publication number
JP2010264363A
JP2010264363A JP2009116565A JP2009116565A JP2010264363A JP 2010264363 A JP2010264363 A JP 2010264363A JP 2009116565 A JP2009116565 A JP 2009116565A JP 2009116565 A JP2009116565 A JP 2009116565A JP 2010264363 A JP2010264363 A JP 2010264363A
Authority
JP
Japan
Prior art keywords
polymer
sludge
mass
structural unit
dehydrating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009116565A
Other languages
Japanese (ja)
Other versions
JP5427985B2 (en
Inventor
Nobutaka Kokubu
信孝 國分
Tsutomu Komori
努 小森
Takahiro Kashiwabara
孝博 柏原
Shigeru Tanabe
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2009116565A priority Critical patent/JP5427985B2/en
Publication of JP2010264363A publication Critical patent/JP2010264363A/en
Application granted granted Critical
Publication of JP5427985B2 publication Critical patent/JP5427985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge dehydrating agent that can stably form flocs having a large particle size and high strength in a dehydration process of sludge produced in waste water treatment facilities and that enables treated water with little SS quantity and dehydrated cakes with a low water content to be obtained, and to provide a sludge dehydration method using the sludge dehydrating agent. <P>SOLUTION: The sludge dehydrating agent contains; cationic polymer having 50 mol% or higher constituent units originating from benzyl chloride fourth class salt monomer of dialkylamino alkyl(meth)acrylate; amphoteric polymer: and nonion or anion polymer. Also, the sludge dehydration method uses this sludge dehydrating agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、汚泥脱水剤および汚泥脱水方法に関する。   The present invention relates to a sludge dewatering agent and a sludge dewatering method.

有機汚泥、特に下水処理場、し尿処理場、食品工業などの廃水処理施設などでは、沈降分離、生物処理などの方法により廃水の浄化を行っている。この処理の際に発生する汚泥は一般にスクリュウデカンター、ベルトプレス、スクリュープレスなどで脱水処理した後に、焼却処分している。
汚泥の脱水処理では、処理を効率的に行う目的で、汚泥に高分子凝集剤を添加して混合し、汚泥粒子をフロック化する方法が広く用いられている。この際、高分子凝集剤は水溶液の形態で使用するため、高分子凝集剤は水溶解性が高いことが必要である。
Organic sludge, particularly sewage treatment plants, human waste treatment plants, and wastewater treatment facilities such as the food industry, purify wastewater by methods such as sedimentation and biological treatment. The sludge generated during this treatment is generally dehydrated with a screw decanter, a belt press, a screw press or the like and then incinerated.
In the sludge dewatering treatment, for the purpose of efficiently performing the treatment, a method of adding a polymer flocculant to the sludge and mixing it to flocate the sludge particles is widely used. At this time, since the polymer flocculant is used in the form of an aqueous solution, the polymer flocculant needs to have high water solubility.

また、汚泥に対し良好で安定した脱水処理を行うためには、第一に大きなフロック(凝集フロック)を形成して、汚泥粒子と水が容易に分離できることが重要である。しかし、例えば下水処理場の場合、近年の水処理の高度化、汚泥の集中処理などによる腐敗、合流処理から分流式への変化により、汚泥に安定したフロックを形成させ、処理水のSS(浮遊固定物)濃度を低減させることが困難となっている。また、食品工業などの産業廃水の場合も、生産品目の変動に伴う汚泥の質の大きな変化により、汚泥に安定したフロックを形成させて処理水のSS濃度を低減することが困難となっている。   In addition, in order to perform a good and stable dehydration treatment on sludge, it is important to firstly form a large flock (aggregated floc) so that the sludge particles and water can be easily separated. However, for example, in the case of a sewage treatment plant, due to the recent advancement of water treatment, decay due to sludge concentration treatment, and the change from the combined treatment to the diversion type, a stable floc is formed in the sludge, and the treated water SS (floating Fixed object) It is difficult to reduce the concentration. In addition, in the case of industrial wastewater such as the food industry, it is difficult to reduce the SS concentration of treated water by forming a stable flock in the sludge due to a large change in the quality of the sludge accompanying the fluctuation of production items. .

かかる状況のなか、大きく、安定したフロックを形成させ、良好な脱水処理を実現する目的で様々な種類の高分子凝集剤が上市され、その数は数十品目以上に達している。例えば、高分子凝集剤の分子量を高くすることで、形成されるフロックを大きくするものがある。また、高分子凝集剤の組成あるいは構造を変えることにより、大きなフロックを形成させる試みがなされている。具体的には、以下に示す汚泥脱水方法が示されている。
(1)ジアルキルアミノエチルメタクリレートのベンジルクロライド4級塩を構成単位とするカチオン性ポリマーと、両性ポリマーの混合物からなる脱水剤を用いる汚泥脱水方法(特許文献1)。
(2)ノニオン性またはアニオン性高分子凝集剤と、両性高分子凝集剤の混合物からなる脱水剤を用いる汚泥脱水方法(特許文献2)。
Under such circumstances, various types of polymer flocculants have been put on the market for the purpose of forming large and stable flocs and realizing good dehydration treatment, and the number has reached several tens or more. For example, there is one that increases the floc formed by increasing the molecular weight of the polymer flocculant. Attempts have also been made to form large flocs by changing the composition or structure of the polymer flocculant. Specifically, the sludge dewatering method shown below is shown.
(1) A sludge dewatering method using a dehydrating agent comprising a mixture of a cationic polymer having a benzyl chloride quaternary salt of dialkylaminoethyl methacrylate as a structural unit and an amphoteric polymer (Patent Document 1).
(2) A sludge dewatering method using a dehydrating agent comprising a mixture of a nonionic or anionic polymer flocculant and an amphoteric polymer flocculant (Patent Document 2).

特開2004−121997号公報Japanese Patent Laid-Open No. 2004-121997 特開2004−344748号公報JP 2004-344748 A

しかし、(1)、(2)の方法では、ポリマー同士の混合比率および両性ポリマーのモノマー組成が共に限定されており、汎用性に乏しい。このような方法では、フロック粒径は小さく、フロック強度は弱く、処理水中のSS量は多く、脱水ケーキの含水率は高くなる傾向にあり、汚泥の脱水が充分に行なえないことがあった。   However, in the methods (1) and (2), the mixing ratio between the polymers and the monomer composition of the amphoteric polymer are both limited, and the versatility is poor. In such a method, the floc particle size is small, the floc strength is weak, the amount of SS in the treated water is large, the moisture content of the dewatered cake tends to be high, and the sludge cannot be sufficiently dewatered.

本発明は、廃水処理施設より生じる汚泥の脱水処理に対し、粒径が大きく強度の高いフロックを安定して形成させることができ、SS量が少ない処理水および含水率の低い脱水ケーキが得られる汚泥脱水剤、および該汚泥脱水剤を用いた汚泥脱水方法の提供を目的とする。   INDUSTRIAL APPLICABILITY According to the present invention, floc having a large particle size and high strength can be stably formed with respect to the dewatering treatment of sludge generated from a wastewater treatment facility, and a dewatered cake having a small amount of SS and a low water content can be obtained. An object is to provide a sludge dewatering agent and a sludge dewatering method using the sludge dewatering agent.

本発明の汚泥脱水剤は、ジアルキルアミノアルキル(メタ)アクリレートのベンジルクロライド4級塩モノマーに由来する構成単位を50モル%以上有するカチオン性ポリマーと、両性ポリマーと、ノニオン性またはアニオン性ポリマーと、を含有する。
また、本発明の汚泥脱水剤は、前記両性ポリマーが、カチオン性構成単位、アニオン性構成単位、ノニオン性構成単位からなり、前記カチオン性構成単位が前記アニオン構成単位の0.5モル倍以上であることが好ましい。
また、前記アニオン性ポリマー中のアニオン性構成単位が20モル%以下であることが好ましい。
また、前記カチオン性ポリマーが10〜70質量%、前記両性ポリマーが15〜50質量%、前記ノニオン性またはアニオン性ポリマーが10〜40質量%(ただし、各ポリマーの合計が100質量%である。)であることが好ましい。
The sludge dewatering agent of the present invention is a cationic polymer having 50 mol% or more of a structural unit derived from a benzyl chloride quaternary salt monomer of dialkylaminoalkyl (meth) acrylate, an amphoteric polymer, a nonionic or anionic polymer, Containing.
In the sludge dehydrating agent of the present invention, the amphoteric polymer is composed of a cationic structural unit, an anionic structural unit, and a nonionic structural unit, and the cationic structural unit is 0.5 mol times or more of the anionic structural unit. Preferably there is.
Moreover, it is preferable that the anionic structural unit in the anionic polymer is 20 mol% or less.
The cationic polymer is 10 to 70% by mass, the amphoteric polymer is 15 to 50% by mass, and the nonionic or anionic polymer is 10 to 40% by mass (however, the total of the respective polymers is 100% by mass). ) Is preferable.

また、本発明の脱水汚泥剤は、さらにアミジンポリマーを含有することが好ましい。
また、前記カチオン性ポリマーが10〜60質量%、前記両性ポリマーが15〜40質量%、前記ノニオン性またはアニオン性ポリマーが10〜30質量%、アミジンポリマーが15〜40質量%(ただし、各ポリマーの合計が100質量%である。)であることが好ましい。
The dewatered sludge agent of the present invention preferably further contains an amidine polymer.
The cationic polymer is 10 to 60% by mass, the amphoteric polymer is 15 to 40% by mass, the nonionic or anionic polymer is 10 to 30% by mass, and the amidine polymer is 15 to 40% by mass (however, each polymer Is 100% by mass.).

本発明の汚泥脱水方法は、前記いずれかの汚泥脱水剤を汚泥に添加混合し、脱水機を用いて脱水する方法である。
また、本発明の汚泥脱水方法は、前記脱水機が圧入式スクリュープレス型脱水機であることが好ましい。
The sludge dewatering method of the present invention is a method in which any one of the sludge dehydrating agents is added to and mixed with sludge and dehydrated using a dehydrator.
In the sludge dewatering method of the present invention, it is preferable that the dehydrator is a press-fit screw press dehydrator.

本発明の汚泥脱水剤は、廃水処理施設より生じる汚泥に添加混合することで、粒径が大きく強度の高いフロックを安定して形成させることができ、SS量が少ない処理水および含水率の低い脱水ケーキが得られる。
また、本発明の汚泥脱水方法によれば、粒径が大きく強度の高いフロックを安定して形成させることができ、SS量が少ない処理水および含水率の低い脱水ケーキが得られる。
The sludge dewatering agent of the present invention can stably form flocs having a large particle size and high strength by adding to and mixing with sludge generated from a wastewater treatment facility, and has a small amount of SS and a low water content. A dehydrated cake is obtained.
Moreover, according to the sludge dewatering method of the present invention, flocs having a large particle size and high strength can be stably formed, and treated water with a small amount of SS and a dehydrated cake with a low water content can be obtained.

以下、本発明を詳細に説明する。
<汚泥脱水剤>
本発明の汚泥脱水剤(以下、「本汚泥脱水剤」という。)は、ジアルキルアミノアルキル(メタ)アクリレートのベンジルクロライド4級塩モノマーに由来する構成単位を50モル%以上有するカチオン性ポリマー(以下、「ポリマー(C)」という。)と、両性ポリマー(以下、「ポリマー(R)」という。)と、ノニオン性またはアニオン性ポリマー(以下、「ポリマー(NA)」という。)とを含有する。
Hereinafter, the present invention will be described in detail.
<Sludge dewatering agent>
The sludge dewatering agent of the present invention (hereinafter referred to as “the present sludge dewatering agent”) is a cationic polymer (hereinafter referred to as 50 mol% or more) derived from a benzyl chloride quaternary salt monomer of dialkylaminoalkyl (meth) acrylate. , “Polymer (C)”), amphoteric polymer (hereinafter referred to as “polymer (R)”), and nonionic or anionic polymer (hereinafter referred to as “polymer (NA)”). .

ポリマー(C)は、カチオン性モノマーであるジアルキルアミノアルキル(メタ)アクリレートのベンジルクロライド4級塩(以下、「モノマー(c1)」という。)に由来するカチオン性構成単位(以下、「カチオン構成単位(c1)」という。)を有する。前記ジアルキルアミノアルキル(メタ)アクリレートは、特に制限はなく、各々のアルキル基の炭素数が1〜3のジアルキルアミノアルキル(メタ)アクリレートが好ましい。
各々のアルキル基の炭素数が1〜3のジアルキルアミノアルキル(メタ)アクリレートとしては、例えば、ジメチルアミノメチル(メタ)アクリレート、ジエチルアミノメチル(メタ)アクリレート、ジプロピルアミノメチル(メタ)アクリレート、ジイソプロピルアミノメチル(メタ)アクリレート、メチルエチルアミノメチル(メタ)アクリレート、メチルプロピルアミノメチル(メタ)アクリレート、エチルプロピルアミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジイソプロピルアミノエチル(メタ)アクリレート、メチルエチルアミノエチル(メタ)アクリレート、メチルプロピルアミノエチル(メタ)アクリレート、エチルプロピルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート、ジプロピルアミノプロピル(メタ)アクリレート、ジイソプロピルアミノプロピル(メタ)アクリレート、メチルエチルアミノプロピル(メタ)アクリレート、メチルプロピルアミノプロピル(メタ)アクリレート、エチルプロピルアミノプロピル(メタ)アクリレートが挙げられる。
モノマー(c1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
The polymer (C) is a cationic structural unit derived from a benzyl chloride quaternary salt of dialkylaminoalkyl (meth) acrylate (hereinafter referred to as “monomer (c1)”) which is a cationic monomer (hereinafter referred to as “cation structural unit”). (C1) "). The dialkylaminoalkyl (meth) acrylate is not particularly limited, and dialkylaminoalkyl (meth) acrylates in which each alkyl group has 1 to 3 carbon atoms are preferable.
Examples of the dialkylaminoalkyl (meth) acrylate having 1 to 3 carbon atoms in each alkyl group include dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, dipropylaminomethyl (meth) acrylate, and diisopropylamino. Methyl (meth) acrylate, methylethylaminomethyl (meth) acrylate, methylpropylaminomethyl (meth) acrylate, ethylpropylaminomethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropyl Aminoethyl (meth) acrylate, diisopropylaminoethyl (meth) acrylate, methylethylaminoethyl (meth) acrylate, methylpropylaminoethyl (meth ) Acrylate, ethylpropylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylate, dipropylaminopropyl (meth) acrylate, diisopropylaminopropyl (meth) acrylate, methylethylaminopropyl (meth) ) Acrylate, methylpropylaminopropyl (meth) acrylate, and ethylpropylaminopropyl (meth) acrylate.
A monomer (c1) may be used individually by 1 type, and may use 2 or more types together.

ポリマー(C)中のカチオン構成単位(c1)の含有量は、50モル%以上であり、70モル%以上が好ましく、90モル%以上がより好ましい。カチオン構成単位(c1)の含有量が50モル%以上であれば、粒径が大きく強度の高いフロックが得られ、SS量の少ない処理水が得られ、かつ脱水ケーキの含水率が低くなる。   The content of the cationic structural unit (c1) in the polymer (C) is 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol% or more. If the content of the cationic structural unit (c1) is 50 mol% or more, floc having a large particle size and high strength is obtained, treated water having a small amount of SS is obtained, and the water content of the dehydrated cake is lowered.

ポリマー(C)は、モノマー(c1)以外のモノマー(c2)に由来する構成単位を有していてもよい。
モノマー(c2)は、本汚泥脱水剤の効果を損なわないモノマーであれば特に制限はなく、例えば、以下のモノマーが挙げられる。
モノマー(c21):モノマー(c1)以外のカチオン性モノマー。
モノマー(c22):ノニオン性モノマー。
The polymer (C) may have a structural unit derived from the monomer (c2) other than the monomer (c1).
The monomer (c2) is not particularly limited as long as it does not impair the effect of the present sludge dehydrating agent, and examples thereof include the following monomers.
Monomer (c21): a cationic monomer other than the monomer (c1).
Monomer (c22): Nonionic monomer.

モノマー(c21)としては、例えば、ジアルキルアミノアルキル(メタ)アクリレートのアルキルクロライド4級塩、ジアルキルアミノアルキル(メタ)アクリレートのジメチル硫酸4級塩が挙げられる。
モノマー(c21)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the monomer (c21) include an alkyl chloride quaternary salt of dialkylaminoalkyl (meth) acrylate and a dimethyl sulfate quaternary salt of dialkylaminoalkyl (meth) acrylate.
A monomer (c21) may be used individually by 1 type, and may use 2 or more types together.

モノマー(c22)としては、例えば、アクリルアミドが挙げられる。
モノマー(c22)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the monomer (c22) include acrylamide.
A monomer (c22) may be used individually by 1 type, and may use 2 or more types together.

ポリマー(R)は、両性ポリマーであり、カチオン性構成単位、アニオン性構成単位、およびノニオン性構成単位からなる。以下、ポリマー(R)のカチオン性構成単位、アニオン性構成単位、ノニオン性構成単位を便宜的にそれぞれカチオン構成単位(r1)、アニオン構成単位(r2)、ノニオン構成単位(r3)という。
ポリマー(R)におけるカチオン構成単位(r1)の含有量は、アニオン構成単位(r2)の0.5モル倍以上が好ましく、1.0モル倍以上がより好ましく、2.0モル倍以上がさらに好ましい。また、カチオン構成単位(r1)の前記含有量は、アニオン構成単位(r2)の10.0モル倍以下が好ましく、5.0モル倍以下がより好ましく、3.0モル倍以下がさらに好ましい。カチオン構成単位(r1)の含有量がアニオン構成単位(r2)の0.5モル倍以上であれば、フロックの粒径が大きく、また強度が高くなりやすい。また、カチオン構成単位(r1)の含有量がアニオン構成単位(r2)の10.0モル倍以下であれば、大きなフロック粒径、強いフロック強度を保持しやすい。
The polymer (R) is an amphoteric polymer and comprises a cationic structural unit, an anionic structural unit, and a nonionic structural unit. Hereinafter, the cationic structural unit, the anionic structural unit, and the nonionic structural unit of the polymer (R) are referred to as a cationic structural unit (r1), an anionic structural unit (r2), and a nonionic structural unit (r3) for convenience.
The content of the cation structural unit (r1) in the polymer (R) is preferably 0.5 mol times or more, more preferably 1.0 mol times or more, and further preferably 2.0 mol times or more of the anion structural unit (r2). preferable. In addition, the content of the cation structural unit (r1) is preferably 10.0 mole times or less, more preferably 5.0 mole times or less, and even more preferably 3.0 mole times or less of the anion structural unit (r2). If the content of the cationic structural unit (r1) is 0.5 mol times or more of the anionic structural unit (r2), the floc particle size is large and the strength tends to be high. Moreover, if the content of the cation structural unit (r1) is 10.0 mole times or less of the anion structural unit (r2), it is easy to maintain a large floc particle size and strong floc strength.

カチオン構成単位(r1)を与えるモノマー(r1)は、カチオン性を有するモノマーであれば特に制限はなく、例えば、ジアルキルアミノアルキル(メタ)アクリレートのベンジルクロライド4級塩、ジアルキルアミノアルキル(メタ)アクリレートのアルキルクロライド4級塩、ジアルキルアミノアルキル(メタ)アクリレートのジメチル硫酸4級塩、ジアリルジアルキルアンモニウムクロライドが挙げられる。
モノマー(r1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
The monomer (r1) giving the cationic structural unit (r1) is not particularly limited as long as it is a monomer having cationic properties. For example, benzyl chloride quaternary salt of dialkylaminoalkyl (meth) acrylate, dialkylaminoalkyl (meth) acrylate Alkyl chloride quaternary salt, dimethyl sulfate quaternary salt of dialkylaminoalkyl (meth) acrylate, diallyldialkylammonium chloride.
A monomer (r1) may be used individually by 1 type, and may use 2 or more types together.

アニオン構成単位(r2)を与えるモノマー(r2)は、アニオン性を有するモノマーであれば特に制限はなく、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、2−アクリルアミド−2−メチルプロパンスルホン酸が挙げられる。
モノマー(r2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
The monomer (r2) giving the anionic structural unit (r2) is not particularly limited as long as it is an anionic monomer. For example, (meth) acrylic acid, itaconic acid, maleic acid, 2-acrylamido-2-methylpropanesulfone Examples include acids.
A monomer (r2) may be used individually by 1 type, and may use 2 or more types together.

ノニオン構成単位(r3)を与えるモノマー(r3)は、ノニオン性のモノマーであれば特に制限はなく、例えば、アクリルアミドが挙げられる。
モノマー(r3)は、1種を単独で用いてもよく、2種以上を併用してもよい。
The monomer (r3) giving the nonionic structural unit (r3) is not particularly limited as long as it is a nonionic monomer, and examples thereof include acrylamide.
A monomer (r3) may be used individually by 1 type, and may use 2 or more types together.

ポリマー(NA)は、ノニオン性ポリマー(以下、「ポリマー(N)」という。)またはアニオン性ポリマー(以下、「ポリマー(A)」という。)である。ポリマー(N)におけるノニオン性構成単位、およびポリマー(A)におけるアニオン性構成単位を便宜的にそれぞれノニオン構成単位(n1)、アニオン構成単位(a1)という。   The polymer (NA) is a nonionic polymer (hereinafter referred to as “polymer (N)”) or an anionic polymer (hereinafter referred to as “polymer (A)”). For convenience, the nonionic structural unit in the polymer (N) and the anionic structural unit in the polymer (A) are referred to as a nonionic structural unit (n1) and an anionic structural unit (a1), respectively.

ノニオン構成単位(n1)を与えるモノマー(n1)は、ノニオン性のモノマーであれば特に制限はなく、例えば、アクリルアミドが挙げられる。
モノマー(n1)は、1種を単独で使用してもよく、2種以上を併用してもよい。
The monomer (n1) giving the nonionic structural unit (n1) is not particularly limited as long as it is a nonionic monomer, and examples thereof include acrylamide.
A monomer (n1) may be used individually by 1 type, and may use 2 or more types together.

アニオン構成単位(a1)を与えるモノマー(a1)は、アニオン性を有するモノマーであれば特に制限はなく、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、2−アクリルアミド−2−メチルプロパンスルホン酸が挙げられる。
モノマー(a1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
The monomer (a1) that gives the anionic structural unit (a1) is not particularly limited as long as it is an anionic monomer. For example, (meth) acrylic acid, itaconic acid, maleic acid, 2-acrylamido-2-methylpropanesulfone Examples include acids.
A monomer (a1) may be used individually by 1 type, and may use 2 or more types together.

ポリマー(A)は、アニオン構成単位(a1)以外にノニオン構成単位(a2)を有していてもよい。ノニオン構成単位(a2)を与えるモノマー(a2)としては、モノマー(n1)と同じものが挙げられる。   The polymer (A) may have a nonionic structural unit (a2) in addition to the anionic structural unit (a1). Examples of the monomer (a2) that gives the nonionic structural unit (a2) include the same monomers as the monomer (n1).

ポリマー(A)におけるアニオン構成単位(a1)の含有量は、20モル%以下が好ましく、15モル%以下がより好ましく、10モル%以下がさらに好ましい。また、アニオン構成単位(a1)の前記含有量は、3.0モル%以上が好ましく、5.0モル%以上がより好ましく、7.0モル%以上がさらに好ましい。アニオン構成単位(a1)の含有量が20モル%以下であれば、フロックの粒径が大きくなりやすく、また強度が高くなりやすい。また、アニオン構成単位(a1)の含有量が3.0モル%以上であれば、大きなフロック粒径、強いフロック強度を保持しやすい。   The content of the anion structural unit (a1) in the polymer (A) is preferably 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less. Moreover, 3.0 mol% or more is preferable, as for the said content of an anion structural unit (a1), 5.0 mol% or more is more preferable, and 7.0 mol% or more is further more preferable. When the content of the anionic structural unit (a1) is 20 mol% or less, the particle size of the floc tends to increase and the strength tends to increase. Moreover, if content of an anion structural unit (a1) is 3.0 mol% or more, it will be easy to hold | maintain a big floc particle size and strong floc intensity | strength.

本汚泥脱水剤における各ポリマーの質量比は、粒径が大きく強度の高いフロックが得られやすく、また処理水中のSS量が少なく、脱水ケーキの含水率が低くなりやすい点から、ポリマー(C)10〜70質量%、ポリマー(R)15〜50質量%、ポリマー(NA)10〜40質量%(ただし、これら各ポリマーの合計が100質量%である。)であることが好ましい。また、各ポリマーの質量比は、ポリマー(C)30〜60質量%、ポリマー(R)20〜40質量%、ポリマー(NA)20〜30質量%であることがより好ましい。   The mass ratio of each polymer in the present sludge dehydrating agent is that the polymer (C) has a large particle size and a high strength floc is easily obtained, the SS amount in the treated water is small, and the moisture content of the dehydrated cake tends to be low. It is preferable that they are 10-70 mass%, polymer (R) 15-50 mass%, and polymer (NA) 10-40 mass% (however, the sum total of these each polymer is 100 mass%). Moreover, as for the mass ratio of each polymer, it is more preferable that they are polymer (C) 30-60 mass%, polymer (R) 20-40 mass%, and polymer (NA) 20-30 mass%.

本発明の汚泥脱水剤は、脱水ケーキの含水率をさらに低くするため、前記ポリマー(C)、ポリマー(R)、およびポリマー(NA)に加えてアミジンポリマーを含有することが好ましい。本発明に用いるアミジンポリマーは、下記式(1)で表されるアミジン単位および/または下記式(2)で表されるアミジン単位を含有する。   The sludge dehydrating agent of the present invention preferably contains an amidine polymer in addition to the polymer (C), the polymer (R), and the polymer (NA) in order to further reduce the water content of the dehydrated cake. The amidine polymer used in the present invention contains an amidine unit represented by the following formula (1) and / or an amidine unit represented by the following formula (2).

Figure 2010264363
Figure 2010264363

Figure 2010264363
Figure 2010264363

ただし、式(1)、(2)中、R、Rはそれぞれ独立に水素原子またはメチル基であり、Xは陰イオンである。
としては、例えば、塩化物イオン、臭化物イオン、硫酸イオン、酢酸イオン、水酸化物イオンが挙げられる。中でも塩化物イオンが好ましい。
However, in formula (1), (2), R < 1 >, R < 2 > is a hydrogen atom or a methyl group each independently, and X < - > is an anion.
Examples of X include chloride ion, bromide ion, sulfate ion, acetate ion, and hydroxide ion. Of these, chloride ions are preferred.

本汚泥脱水剤がアミジンポリマーを含有する場合、それら各ポリマーの質量比は、粒径が大きく強度の高いフロックが得られやすく、また処理水中のSS量が少なく、脱水ケーキの含水率が低くなりやすい点から、ポリマー(C)10〜60質量%、ポリマー(R)15〜40質量%、ポリマー(NA)10〜30質量%、アミジンポリマー15〜40質量%(ただし、これら4つのポリマーの合計が100質量%である。)であることが好ましい。また、前記各ポリマーの質量比は、ポリマー(C)30〜50質量%、ポリマー(R)20〜30質量%、ポリマー(NA)15〜25質量%、アミジンポリマー20〜30質量%であることがより好ましい。   When this sludge dehydrating agent contains an amidine polymer, the mass ratio of each polymer is such that a floc having a large particle size and high strength is easily obtained, the amount of SS in the treated water is small, and the moisture content of the dehydrated cake is low. From an easy point, polymer (C) 10-60 mass%, polymer (R) 15-40 mass%, polymer (NA) 10-30 mass%, amidine polymer 15-40 mass% (however, the sum total of these four polymers) Is 100 mass%). Moreover, the mass ratio of each said polymer is polymer (C) 30-50 mass%, polymer (R) 20-30 mass%, polymer (NA) 15-25 mass%, and amidine polymer 20-30 mass%. Is more preferable.

本汚泥脱水剤は、ポリマー(C)、ポリマー(R)およびポリマー(NA)、またはそれらとアミジンポリマーを含有する。これらポリマーの重合方法としては、例えば、下記の方法(i)、(ii)が挙げられる。
方法(i):各モノマーを水に溶解させたモノマー水溶液を、熱によりラジカルを発生する開始剤(レドックス開始剤、アゾ系開始剤など。)を用いて共重合させる水溶液断熱重合方法。
方法(ii):各モノマーを水に溶解させたモノマー水溶液を均一なシート状にし、光開始剤を用いて可視光または紫外光を照射して共重合させる水溶液光重合方法。
This sludge dehydrating agent contains a polymer (C), a polymer (R) and a polymer (NA), or an amidine polymer. Examples of the polymerization method of these polymers include the following methods (i) and (ii).
Method (i): An aqueous solution adiabatic polymerization method in which an aqueous monomer solution in which each monomer is dissolved in water is copolymerized using an initiator (such as a redox initiator or an azo-based initiator) that generates radicals by heat.
Method (ii): An aqueous solution photopolymerization method in which an aqueous monomer solution in which each monomer is dissolved in water is formed into a uniform sheet and copolymerized by irradiation with visible light or ultraviolet light using a photoinitiator.

方法(ii)では、通常、含水ゲル状のポリマー、すなわち、ポリマー(C)、ポリマー(R)、ポリマー(NA)、アミジンポリマーのそれぞれの含水物が得られる。得られたポリマー(C)、ポリマー(R)、ポリマー(NA)、アミジンポリマーの形態は、粉末が好ましい。ただし、これらポリマーの形態は粉末には限定されず、エマルジョンであってもよい。
本汚泥脱水剤は、アミジンポリマーを含有する場合とそうでない場合のいずれの場合も、各ポリマーを混合した1剤型薬剤とすることが好ましい。
In the method (ii), a water-containing gel-like polymer, that is, each water-containing material of polymer (C), polymer (R), polymer (NA), and amidine polymer is usually obtained. As for the form of the obtained polymer (C), polymer (R), polymer (NA), and amidine polymer, powder is preferable. However, the form of these polymers is not limited to powder, and may be an emulsion.
The sludge dehydrating agent is preferably a one-drug type agent in which each polymer is mixed, regardless of whether it contains an amidine polymer or not.

以上説明した本汚泥脱水剤は、有機汚泥、特に下水処理場あるいはし尿処理場、食品工場などの廃水処理施設より生じる汚泥の脱水処理において、長期間安定して充分な粒径と強度をもつフロックを形成させることができる。また、その後に含水率が充分に低い脱水ケーキが得られる。また、本汚泥脱水剤では、ポリマー(C)、ポリマー(R)およびポリマー(NA)に加えてさらにアミジンポリマーを含有させることで、長期間安定して充分な粒径と強度をもつフロックを形成する効果、および含水率の充分低い脱水ケーキを得る効果がさらに向上する。   The present sludge dehydrating agent described above is a floc having stable and sufficient particle size and strength for a long period of time in the dewatering treatment of organic sludge, particularly sludge generated from wastewater treatment facilities such as sewage treatment plants or human waste treatment plants and food factories. Can be formed. Further, a dehydrated cake having a sufficiently low moisture content can be obtained thereafter. In addition to polymer (C), polymer (R), and polymer (NA), this sludge dewatering agent contains amidine polymer to form flocs with sufficient particle size and strength stably for a long period of time. And the effect of obtaining a dehydrated cake having a sufficiently low water content is further improved.

<汚泥脱水方法>
本発明の汚泥脱水方法(以下、「本汚泥脱水方法」という。)は、前述した本汚泥脱水剤を用いて汚泥処理を行う方法である。本汚泥脱水方法が対象とする汚泥としては、有機汚泥、特に下水処理場あるいはし尿処理場、食品工場などの廃水処理施設より生じる汚泥が好適である。本汚泥脱水剤を前記汚泥に加えることで、フロック粒径、フロック強度、処理速度(ろ過速度)、処理水中のSS量、脱水ケーキ含水率のバランス性などが安定したフロックを形成できる。
<Sludge dewatering method>
The sludge dewatering method of the present invention (hereinafter referred to as “the present sludge dewatering method”) is a method for performing sludge treatment using the above-described sludge dewatering agent. As the sludge targeted by the present sludge dewatering method, organic sludge, particularly sludge generated from wastewater treatment facilities such as sewage treatment plants or human waste treatment plants and food factories is suitable. By adding the present sludge dewatering agent to the sludge, flocs having stable flock particle size, flock strength, treatment speed (filtration speed), SS amount in the treated water, balance of dehydrated cake moisture content, and the like can be formed.

本汚泥脱水剤の汚泥への添加方法およびフロックの形成方法としては、本汚泥脱水剤を用いる以外は公知の方法が適用できる。すなわち、本汚泥脱水剤を公知の方法で汚泥に添加することでフロックを形成させることができる。
本汚泥脱水剤の添加方法としては、汚泥脱水剤を水に溶解させた後、汚泥に添加する方法が好ましい。場合によっては、本汚泥脱水剤を粉末のまま汚泥に添加してもよい。また、本汚泥脱水剤は、アミジンポリマーを含有する場合とそうでない場合のいずれの場合も、ポリマー(C)、ポリマー(R)、ポリマー(NA)、および必要に応じてアミジンポリマーを混合した1剤型薬剤として添加することが好ましい。
また、本汚泥脱水剤に加えて、本汚泥脱水剤の水への溶解性を向上させるために酸性物質を添加してもよい。酸性物質としては、例えば、スルファミン酸が挙げられる。
As a method for adding the sludge dewatering agent to the sludge and a method for forming flocs, known methods can be applied except that the sludge dewatering agent is used. That is, a floc can be formed by adding this sludge dehydrating agent to sludge by a known method.
As a method for adding the present sludge dewatering agent, a method in which the sludge dewatering agent is dissolved in water and then added to the sludge is preferable. In some cases, the present sludge dehydrating agent may be added to the sludge as a powder. Further, this sludge dehydrating agent is a mixture of a polymer (C), a polymer (R), a polymer (NA), and, if necessary, an amidine polymer in both cases of containing and not containing an amidine polymer. It is preferable to add it as a dosage form drug.
In addition to the present sludge dewatering agent, an acidic substance may be added in order to improve the solubility of the present sludge dewatering agent in water. Examples of the acidic substance include sulfamic acid.

フロックを形成した後は、脱水装置を用いてフロックを脱水し、脱水ケーキを作製することにより汚泥処理を完了することができる。
脱水機としては、例えば、フィルタープレス型脱水機、スクリュープレス型脱水機、圧入式スクリュープレス型脱水機、真空脱水機、ベルトプレス型脱水機、遠心脱水機、多重円板型脱水機が挙げられる。本汚泥脱水方法では、安定してフロック粒径とフロック強度を保ちやすく、処理水中のSS量を少なくし、脱水ケーキの含水率を低くすることが容易である点から、圧入式スクリュープレス型脱水機が好ましい。
After the flocs are formed, the sludge treatment can be completed by dehydrating the flocs using a dewatering device and preparing a dewatered cake.
Examples of the dehydrator include a filter press dehydrator, a screw press dehydrator, a press-fit screw press dehydrator, a vacuum dehydrator, a belt press dehydrator, a centrifugal dehydrator, and a multiple disk dehydrator. . In this sludge dewatering method, it is easy to maintain the floc particle size and floc strength stably, reduce the amount of SS in the treated water, and easily reduce the moisture content of the dewatered cake. Machine is preferred.

本汚泥脱水剤の添加量は、汚泥の質、濃度などにより異なり一概には言えないが、大まかな目安として、汚泥の乾燥固形物100質量%に対して0.1〜3.0質量%が好ましく、0.5〜2.0質量%がより好ましい。本汚泥脱水剤の前記添加量が0.1質量%以上であれば、充分な粒径および強度を有するフロックが形成されやすい。また、本汚泥脱水剤の前記添加量が3.0質量%以下であれば、本汚泥脱水剤が過剰となることで形成されるフロックの粒径が小さくなったり、処理速度が遅くなったり、脱水ケーキの含水率が高くなったりすることを抑制しやすい。   The amount added of the present sludge dehydrating agent varies depending on the quality and concentration of the sludge and cannot be generally stated. However, as a rough guide, 0.1 to 3.0% by mass with respect to 100% by mass of dry sludge solids Preferably, 0.5 to 2.0 mass% is more preferable. If the added amount of the present sludge dehydrating agent is 0.1% by mass or more, flocs having a sufficient particle size and strength are easily formed. Further, if the added amount of the present sludge dewatering agent is 3.0% by mass or less, the particle size of floc formed by the present sludge dewatering agent becomes excessive, the processing speed is slowed down, It is easy to suppress the moisture content of the dehydrated cake from increasing.

また、本汚泥脱水方法においては、本汚泥脱水剤に加えて、無機凝結剤および/または有機凝結剤(以下、これらをまとめて単に「凝結剤」ということがある。)を併用してもよい。本汚泥脱水剤は、凝結剤と併用しても、汚泥に対する脱水効果を充分に発揮できる。
無機凝結剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、ポリ鉄(ポリ硫酸鉄、ポリ塩化鉄など)が挙げられる。
有機凝結剤としては、例えば、ポリアミン、ポリジアリルジメチルアンモニウムクロライド、カチオン性界面活性剤が挙げられる。
Further, in the present sludge dewatering method, in addition to the present sludge dewatering agent, an inorganic coagulant and / or an organic coagulant (hereinafter, these may be simply referred to as “coagulant”) may be used in combination. . Even if this sludge dehydrating agent is used in combination with a coagulant, it can sufficiently exert a dewatering effect on sludge.
Examples of the inorganic coagulant include sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate, ferric sulfate, and polyiron (polyiron sulfate, polyiron chloride, etc.).
Examples of the organic coagulant include polyamine, polydiallyldimethylammonium chloride, and a cationic surfactant.

凝結剤の添加量は、本汚泥脱水剤100質量部に対して、5〜3000質量部が好ましい。凝結剤の前記添加量が5質量部未満であると、凝結剤を併用した効果が得られにくく、汚泥によっては本汚泥脱水剤の性能が発揮されにくくなる。また、凝結剤の前記添加量が3000質量部を超えると、特に無機凝結剤では添加量の増加に伴って脱水ケーキの含水率が増加する傾向がある。   As for the addition amount of a coagulant, 5-3000 mass parts is preferable with respect to 100 mass parts of this sludge dehydrating agent. When the addition amount of the coagulant is less than 5 parts by mass, the effect of using the coagulant is difficult to obtain, and depending on the sludge, the performance of the present sludge dehydrating agent is difficult to be exhibited. Moreover, when the said addition amount of a coagulant exceeds 3000 mass parts, especially in an inorganic coagulant, there exists a tendency for the moisture content of a dewatering cake to increase with the increase in the addition amount.

以上説明した本汚泥脱水方法によれば、廃水処理施設より生じる汚泥などの脱水処理において、粒径が大きく強度の高いフロックを安定して形成させることができ、SS量が少ない処理水および含水率の低い脱水ケーキが得られる。   According to the present sludge dewatering method described above, in dewatering treatment of sludge and the like generated from a wastewater treatment facility, flocs having a large particle size and high strength can be stably formed, and treated water and water content with a small amount of SS. Low dehydrated cake.

以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。なお、本実施例における「%」は特に断りのない限り「質量%」を示す。
以下の製造例で得られた各ポリマーについては、下記に示す0.5%塩粘度、および0.5%不溶解分量の測定を行った。該測定には、粉末状の汚泥脱水剤を用いた。
[0.5%塩粘度の測定]
製造例で得られたポリマーの2.38gを4%NaCl水溶液に溶解し、0.5%ポリマー水溶液の500gを調製した。B型粘度計(東機産業社製)を用い、温度25℃、回転速度60rpmの条件で、前記0.5%ポリマー水溶液の攪拌を開始してから5分後の0.5%塩粘度を測定した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description. Note that “%” in this example represents “% by mass” unless otherwise specified.
About each polymer obtained by the following manufacture examples, the 0.5% salt viscosity shown below and the 0.5% insoluble content were measured. For the measurement, a powdery sludge dehydrating agent was used.
[Measurement of 0.5% salt viscosity]
2.38 g of the polymer obtained in the production example was dissolved in 4% NaCl aqueous solution to prepare 500 g of 0.5% polymer aqueous solution. Using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.), at a temperature of 25 ° C. and a rotational speed of 60 rpm, 0.5% salt viscosity after 5 minutes from the start of stirring of the 0.5% polymer aqueous solution It was measured.

[0.5%不溶解分量の測定]
前記0.5%ポリマー水溶液の全量(500g)を、直径20cm、80メッシュの篩でろ過し、篩上の残留物(不溶解分)の水分を拭き取り、その質量を測定した。
[Measurement of 0.5% insoluble content]
The total amount (500 g) of the 0.5% polymer aqueous solution was filtered through a sieve having a diameter of 20 cm and an 80 mesh, the moisture on the residue (insoluble matter) on the sieve was wiped off, and the mass was measured.

本実施例で用いた原料を以下に示す。
[モノマー]
カチオン性モノマー:
N,N−ジメチルアミノエチルメタクリレート塩化ベンジル4級塩(以下、「DML水溶液」という。)、三菱レイヨン社製、純度:60%。
N,N−ジメチルアミノエチルメタクリレート塩化メチル4級塩(以下、「DMC水溶液」という。)、大阪有機化学工業社製、純度:80%。
N,N−ジメチルアミノエチルアクリレート塩化メチル4級塩(以下、「DME水溶液」という。)、大阪有機化学工業社製、純度:80%。
アニオン性モノマー:
アクリル酸(以下、「AA液」という。)、三菱化学社製、純度:100%。
ノニオン性モノマー:
アクリルアミド(以下、「AAM水溶液」という。)、ダイヤニトリックス社製、純度:50%。
The raw materials used in this example are shown below.
[monomer]
Cationic monomer:
N, N-dimethylaminoethyl methacrylate benzyl quaternary salt (hereinafter referred to as “DML aqueous solution”), manufactured by Mitsubishi Rayon Co., Ltd., purity: 60%.
N, N-dimethylaminoethyl methacrylate methyl chloride quaternary salt (hereinafter referred to as “DMC aqueous solution”), manufactured by Osaka Organic Chemical Industry Co., Ltd., purity: 80%.
N, N-dimethylaminoethyl acrylate methyl chloride quaternary salt (hereinafter referred to as “DME aqueous solution”), manufactured by Osaka Organic Chemical Industry Co., Ltd., purity: 80%.
Anionic monomer:
Acrylic acid (hereinafter referred to as “AA liquid”), manufactured by Mitsubishi Chemical Corporation, purity: 100%.
Nonionic monomer:
Acrylamide (hereinafter referred to as “AAM aqueous solution”), manufactured by Daianitrix, purity: 50%.

[光開始剤]
DAROCUR 1173(以下、「D−1173」という。)、Ciba社製。
[Photoinitiator]
DAROCUR 1173 (hereinafter referred to as “D-1173”), manufactured by Ciba.

[連鎖移動剤]
次亜リン酸(以下、「HPA」という。)、関東化学社製。
[Chain transfer agent]
Hypophosphorous acid (hereinafter referred to as “HPA”), manufactured by Kanto Chemical Co., Inc.

[製造例1]
DML水溶液の960.0gを、2000mL褐色耐熱瓶に投入し、1mol/L硫酸により全モノマー濃度48%、pH4.5となるように調整し、総質量1200gになるように蒸留水を加え、モノマー水溶液(DML=100.0(モル%))を調製した。さらに、D−1173およびHPAを、前記モノマー水溶液の総質量に対して、それぞれ500ppmおよび15ppmとなるように投入し、これに窒素ガスを30分間吹き込みながら水溶液の温度を20℃に調節した。その後、モノマー水溶液をステンレス反応容器に移し、容器の下方から17℃の水を噴霧しながら、ケミカルランプを用いて、容器の上方から5W/mの照射強度で、表面温度計が40℃になるまで光を照射した。表面温度計が40℃に到達した後は、3W/mの照射強度で30分間光を照射した。さらにモノマーの残存量を低減させるために、照射強度を50W/mにして10分間光を照射した。これにより、含水ゲル状のポリマーを得た。
得られた含水ゲル状のポリマーを容器から取り出し、小型ミートチョッパーを用いて解砕した。これを温度60℃で16時間乾燥した後、粉砕して粉末状のカチオン性ポリマー(ポリマーC−1)を得た。
[Production Example 1]
Add 960.0 g of DML aqueous solution to a 2000 mL brown heat-resistant bottle, adjust the total monomer concentration to 48% and pH 4.5 with 1 mol / L sulfuric acid, add distilled water to a total mass of 1200 g, An aqueous solution (DML = 100.0 (mol%)) was prepared. Further, D-1173 and HPA were added so as to be 500 ppm and 15 ppm, respectively, with respect to the total mass of the monomer aqueous solution, and the temperature of the aqueous solution was adjusted to 20 ° C. while blowing nitrogen gas for 30 minutes. Thereafter, the aqueous monomer solution was transferred to a stainless steel reaction vessel, and sprayed with 17 ° C. water from the bottom of the vessel, using a chemical lamp, the surface thermometer was adjusted to 40 ° C. with an irradiation intensity of 5 W / m 2 from the top of the vessel. Light was irradiated until After the surface thermometer reached 40 ° C., light was irradiated for 30 minutes at an irradiation intensity of 3 W / m 2 . Further, in order to reduce the residual amount of monomer, irradiation was performed for 10 minutes with an irradiation intensity of 50 W / m 2 . Thereby, a hydrogel polymer was obtained.
The obtained hydrogel polymer was taken out of the container and crushed using a small meat chopper. This was dried at a temperature of 60 ° C. for 16 hours and then pulverized to obtain a powdered cationic polymer (polymer C-1).

[製造例2]
各モノマーの割合を表1に示すように変更した以外は、製造例1と同様の操作を行い、カチオン性ポリマー(ポリマーC−2)を得た。
[Production Example 2]
Except having changed the ratio of each monomer as shown in Table 1, operation similar to manufacture example 1 was performed and the cationic polymer (polymer C-2) was obtained.

[製造例3]
各モノマーの割合を表1に示すように変更した以外は、製造例1と同様の操作を行い、カチオン性ポリマー(ポリマーC’−1)を得た。
[Production Example 3]
Except having changed the ratio of each monomer as shown in Table 1, operation similar to manufacture example 1 was performed and the cationic polymer (polymer C'-1) was obtained.

[製造例4]
モノマー水溶液をDML水溶液からDMC水溶液に変更した以外は、製造例1と同様の操作を行い、カチオン性ポリマー(ポリマーC’−2)を得た。
[Production Example 4]
A cationic polymer (polymer C′-2) was obtained in the same manner as in Production Example 1 except that the monomer aqueous solution was changed from the DML aqueous solution to the DMC aqueous solution.

[製造例5]
DME水溶液の463.6g、AAM水溶液の272.2g、AA液の69.0gを、2000mL褐色耐熱瓶に投入し、1mol/L硫酸により全モノマー濃度48%、pH2.6となるように調整し、総質量1200gになるように蒸留水を加え、モノマー水溶液(DME:AAM:AA=40.0:40.0:20.0(モル%))を調製した。さらに、D−1173およびHPAを、前記モノマー水溶液の総質量に対して、それぞれ60ppmおよび50ppmとなるように投入した。以下、製造例1と同様の操作を行い、両性ポリマー(ポリマーR−1)を得た。
[Production Example 5]
463.6 g of DME aqueous solution, 272.2 g of AAM aqueous solution, and 69.0 g of AA solution were put into a 2000 mL brown heat-resistant bottle, and adjusted so that the total monomer concentration was 48% and pH 2.6 with 1 mol / L sulfuric acid. Distilled water was added to a total mass of 1200 g to prepare a monomer aqueous solution (DME: AAM: AA = 40.0: 40.0: 20.0 (mol%)). Further, D-1173 and HPA were added so as to be 60 ppm and 50 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an amphoteric polymer (polymer R-1).

[製造例6]
各モノマーの割合を変更した以外は、製造例1と同様の操作を行い、両性ポリマー(ポリマーR−2)を得た。
[Production Example 6]
Except having changed the ratio of each monomer, operation similar to manufacture example 1 was performed and the amphoteric polymer (polymer R-2) was obtained.

[製造例7]
DML水溶液の429.9g、DME水溶液の117.2g、AAM水溶液の224.1g、AA液の52.5gを、2000mL褐色耐熱瓶に投入し、1mol/L硫酸により全モノマー濃度48%、pH2.6となるように調整し、総質量1200gになるように蒸留水を加え、モノマー水溶液(DML:DME:AAM:AA=33.3:13.3:43.3:10.0(モル%))を調製した。さらに、D−1173およびHPAを、モノマー水溶液の総質量に対して、それぞれ60ppmおよび40ppmとなるように投入した。以下、製造例1と同様の操作を行い、両性ポリマー(ポリマーR−3)を得た。
[Production Example 7]
429.9 g of DML aqueous solution, 117.2 g of DME aqueous solution, 224.1 g of AAM aqueous solution, and 52.5 g of AA solution were put into a 2000 mL brown heat-resistant bottle, and the total monomer concentration was 48% with 1 mol / L sulfuric acid, pH 2. 6 and distilled water was added to a total mass of 1200 g, and an aqueous monomer solution (DML: DME: AAM: AA = 33.3: 13.3: 43.3: 10.0 (mol%) ) Was prepared. Furthermore, D-1173 and HPA were added so as to be 60 ppm and 40 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an amphoteric polymer (polymer R-3).

[製造例8]
AAM水溶液の1035.4g、AA液の58.3gを、2000mL褐色耐熱瓶に投入し、pH調整は行わずに全モノマー濃度48%、総質量1200gになるように蒸留水を加え、モノマー水溶液(AAM:AA=90.0:10.0(モル%))を調製した。さらに、D−1173およびHPAを、モノマー水溶液の総質量に対して、それぞれ60ppmおよび70ppmとなるように投入した。以下、製造例1と同様の操作を行い、アニオン性ポリマー(ポリマーA−1)を得た。
[Production Example 8]
Add 1035.4 g of AAM aqueous solution and 58.3 g of AA solution to a 2000 mL brown heat-resistant bottle, add distilled water so that the total monomer concentration is 48% and the total mass is 1200 g without adjusting the pH. AAM: AA = 90.0: 10.0 (mol%)) was prepared. Furthermore, D-1173 and HPA were added so as to be 60 ppm and 70 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an anionic polymer (Polymer A-1).

[製造例9]
各モノマーの割合を変更した以外は、製造例1と同様の操作を行い、アニオン性ポリマー(ポリマーA−2)を得た。
製造例1〜9で得られた各ポリマーにおける各々のモノマーに由来する構成単位の割合を、各モノマーの仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。その結果を表1に示す。
[Production Example 9]
Except having changed the ratio of each monomer, operation similar to manufacture example 1 was performed and the anionic polymer (polymer A-2) was obtained.
The ratio of the structural unit derived from each monomer in each polymer obtained in Production Examples 1 to 9 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

Figure 2010264363
Figure 2010264363

[アミジンポリマー]
KP−7000(アミジンポリマー)、ダイヤニトリックス社製。
[Amidine polymer]
KP-7000 (amidine polymer), manufactured by Diamond Nitrix.

以下、実施例および比較例について説明する。
[実施例1〜6]
下水処理場でのオキシデーションディッチの余剰汚泥を用い、次のように脱水試験を実施した。
500mLビーカーに前記汚泥の300mLを採取した。次いで、表1に記載のポリマーを表2に記載の各混合比率で0.3%に溶解して汚泥脱水剤水溶液を調製し、該汚泥脱水剤水溶液を表2に記載の濃度になるよう添加した後、スパチュラで30秒間攪拌混合してフロックを形成させ、汚泥の脱水処理を行った。
Hereinafter, examples and comparative examples will be described.
[Examples 1 to 6]
Using the excess sludge from the oxidation ditch at the sewage treatment plant, a dehydration test was conducted as follows.
300 mL of the sludge was collected in a 500 mL beaker. Next, a polymer shown in Table 1 was dissolved in 0.3% at each mixing ratio shown in Table 2 to prepare a sludge dewatering agent aqueous solution, and the sludge dewatering agent aqueous solution was added to a concentration shown in Table 2. Then, the mixture was stirred and mixed with a spatula for 30 seconds to form a floc, and the sludge was dehydrated.

[比較例1〜7]
用いたポリマーを表2に示す通りに変更した以外は、実施例1〜6と同様にしてフロックを形成させ、汚泥の脱水処理を行った。
[Comparative Examples 1 to 7]
A floc was formed in the same manner as in Examples 1 to 6 except that the polymer used was changed as shown in Table 2, and sludge was dehydrated.

[評価方法]
実施例および比較例における脱水処理の評価は、以下に示す通りに行った。
(フロック粒径、ろ過性能、ろ過水のSS量)
各例においてフロックを形成させた後に攪拌を止め、フロック粒径を目視により測定した。その後、予めろ布を敷いたヌッチェに凝集した汚泥を移し、ろ過性能(10秒間のろ過水量)を測定した。このとき、60秒間ろ過した後のろ過水のSS量を目視により以下の基準で評価した。
− :ろ過水がほとんど透き通っており、浮遊物はほぼ見られない(SS量目安:50ppm以下)。
+ :ろ過水に一部濁りが見られ、浮遊物がわずかに存在する(SS量目安:50〜100ppm)。
++ :ろ過水に部分的に濁りが見られ、浮遊物がところどころ存在する(SS量目安:100〜200ppm)。
+++ :ろ過水に多数の濁りが見られ、浮遊物が全体的に存在する(SS量目安:200〜500ppm)。
++++:ろ過水に全体的に多数の濁りが見られ、浮遊物が全体的に存在し、一部粗大な大きさで存在する(SS量目安:500〜1000ppm)。
× :ろ過水が完全に濁り、粗大な浮遊物が多数存在する(SS量目安:1000ppm以上)。
[Evaluation methods]
Evaluation of the dehydration treatment in the examples and comparative examples was performed as shown below.
(Flock particle size, filtration performance, SS amount of filtered water)
In each case, flocs were formed and stirring was stopped, and the floc particle size was measured visually. Then, the sludge which aggregated was transferred to Nutsche which spread the filter cloth beforehand, and filtration performance (the amount of filtration water for 10 seconds) was measured. At this time, the SS amount of filtrate after filtration for 60 seconds was visually evaluated according to the following criteria.
-: Filtrated water is almost transparent, and suspended matter is hardly seen (SS amount standard: 50 ppm or less).
+: Part of the filtered water is turbid, and there is a slight amount of suspended matter (SS amount standard: 50 to 100 ppm).
++: Turbidity is partially observed in the filtered water, and suspended matter is present in some places (SS amount guideline: 100 to 200 ppm).
++++ Many turbidity is seen in filtered water, and a suspended solid exists entirely (SS amount standard: 200-500 ppm).
++++: Many turbidity is seen in the filtered water as a whole, the suspended matter is present as a whole, and a part thereof is coarse (SS amount guideline: 500 to 1000 ppm).
X: The filtered water is completely turbid, and there are many coarse suspended matters (reference amount of SS: 1000 ppm or more).

(フロック強度、脱水ケーキの含水率)
さらに、ろ過濃縮した汚泥(フロック)をろ布上で50回転がし、フロックの強度(団粒性)を以下の基準で評価した。
◎:ろ布上で転がすことにより水が切れ、フロックが数個の団子状になる。
○:ろ布上で転がすことにより水が切れ、フロックが一塊状になる。
△:ろ布上で転がすことにより水が切れるが、フロックが崩れ塊状にならない。
×:ろ布上で転がすことにより、凝集汚泥が崩れて流れ、ドロドロになる。
その後、0.1MPaの圧力でプレス脱水し、脱水ケーキを得た。この脱水ケーキの含水率を、常法((財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297)により測定した。
実施例および比較例における各試験結果を表2に示す。
(Flock strength, moisture content of dehydrated cake)
Further, the filtered and concentrated sludge (floc) was rotated 50 times on the filter cloth, and the strength (aggregation property) of the floc was evaluated according to the following criteria.
A: Water is cut off by rolling on the filter cloth, and the floc becomes a dumpling.
○: Water is cut off by rolling on the filter cloth, and flocs are formed in a lump.
Δ: Water is cut by rolling on the filter cloth, but the floc is broken and does not form a lump.
X: By rolling on a filter cloth, the coagulated sludge flows and becomes muddy.
Thereafter, press dehydration was performed at a pressure of 0.1 MPa to obtain a dehydrated cake. The water content of the dehydrated cake was measured by a conventional method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 296-297”).
Table 2 shows the test results in Examples and Comparative Examples.

Figure 2010264363
Figure 2010264363

表2に示すように、本発明の汚泥脱水剤を用いた実施例1〜6では、粗大なフロックを生成させることができた。また、特に実施例1、6では、生成フロックの強度が非常に高く、ろ過性能も非常に優れており、得られた脱水ケーキの含水率が低かった。さらに、アミジンポリマーを含有し、4種ポリマーを混合した汚泥脱水剤を用いた実施例6は、脱水性能に特に優れ、脱水ケーキの含水率が非常に低かった。   As shown in Table 2, in Examples 1 to 6 using the sludge dewatering agent of the present invention, coarse flocs could be generated. Particularly in Examples 1 and 6, the strength of the generated floc was very high, the filtration performance was very excellent, and the moisture content of the obtained dehydrated cake was low. Furthermore, Example 6 containing an amidine polymer and using a sludge dehydrating agent in which four kinds of polymers were mixed was particularly excellent in dewatering performance, and the moisture content of the dewatered cake was very low.

一方、ポリマー(C)、ポリマー(R)およびポリマー(NA)のいずれか1つ以上を欠いた汚泥脱水剤を用いた比較例1〜7では、いずれも生成したフロックが小さく、生成フロックの強度が弱く、ろ過性能が低く、脱水ケーキの含水率が高かった。   On the other hand, in Comparative Examples 1 to 7 using the sludge dewatering agent lacking any one or more of the polymer (C), the polymer (R), and the polymer (NA), the generated flocs are all small, and the strength of the generated flocs However, the filtration performance was low, and the moisture content of the dehydrated cake was high.

本発明の汚泥脱水剤および該汚泥脱水剤を用いた汚泥脱水方法は、長期間安定して充分な粒径と強度をもつフロックを形成させることができ、SS量が少ない処理液および含水率の低い脱水ケーキが得られるため、有機汚泥、特に下水処理場あるいはし尿処理場、食品工場などの廃水処理施設より生じる汚泥の脱水処理に好適に使用できる。   The sludge dewatering agent of the present invention and the sludge dewatering method using the sludge dewatering agent can form a floc having a sufficient particle size and strength stably for a long period of time, a treatment liquid having a small amount of SS and a water content of Since a low dewatered cake can be obtained, it can be suitably used for dewatering organic sludge, particularly sludge generated from wastewater treatment facilities such as sewage treatment plants or human waste treatment plants and food factories.

Claims (8)

ジアルキルアミノアルキル(メタ)アクリレートのベンジルクロライド4級塩モノマーに由来する構成単位を50モル%以上有するカチオン性ポリマーと、両性ポリマーと、ノニオン性またはアニオン性ポリマーと、を含有することを特徴とする汚泥脱水剤。   It contains a cationic polymer having 50 mol% or more of a structural unit derived from a benzyl chloride quaternary salt monomer of dialkylaminoalkyl (meth) acrylate, an amphoteric polymer, and a nonionic or anionic polymer. Sludge dewatering agent. 前記両性ポリマーが、カチオン性構成単位、アニオン性構成単位、ノニオン性構成単位からなり、前記カチオン性構成単位が前記アニオン構成単位の0.5モル倍以上である請求項1に記載の汚泥脱水剤。   The sludge dehydrating agent according to claim 1, wherein the amphoteric polymer is composed of a cationic structural unit, an anionic structural unit, and a nonionic structural unit, and the cationic structural unit is 0.5 mol times or more of the anionic structural unit. . 前記アニオン性ポリマー中のアニオン性構成単位が20モル%以下である請求項1または2に記載の汚泥脱水剤。   The sludge dehydrating agent according to claim 1 or 2, wherein the anionic structural unit in the anionic polymer is 20 mol% or less. 前記カチオン性ポリマーが10〜70質量%、前記両性ポリマーが15〜50質量%、前記ノニオン性またはアニオン性ポリマーが10〜40質量%(ただし、各ポリマーの合計が100質量%である。)である請求項1〜3のいずれかに記載の汚泥脱水剤。   10 to 70% by mass of the cationic polymer, 15 to 50% by mass of the amphoteric polymer, and 10 to 40% by mass of the nonionic or anionic polymer (however, the total of each polymer is 100% by mass). The sludge dehydrating agent according to any one of claims 1 to 3. さらに、アミジンポリマーを含有する請求項1〜3のいずれかに記載の汚泥脱水剤。   Furthermore, the sludge dehydrating agent in any one of Claims 1-3 containing an amidine polymer. 前記カチオン性ポリマーが10〜60質量%、前記両性ポリマーが15〜40質量%、前記ノニオン性またはアニオン性ポリマーが10〜30質量%、アミジンポリマーが15〜40質量%(ただし、各ポリマーの合計が100質量%である。)である請求項5に記載の汚泥脱水剤。   10 to 60% by mass of the cationic polymer, 15 to 40% by mass of the amphoteric polymer, 10 to 30% by mass of the nonionic or anionic polymer, and 15 to 40% by mass of the amidine polymer (however, the total of each polymer) Is 100% by mass.) The sludge dehydrating agent according to claim 5. 請求項1〜6のいずれかに記載の汚泥脱水剤を汚泥に添加混合し、脱水機を用いて脱水する汚泥脱水方法。   A sludge dewatering method in which the sludge dewatering agent according to any one of claims 1 to 6 is added to and mixed with sludge and dewatered using a dehydrator. 前記脱水機が圧入式スクリュープレス型脱水機である請求項7に記載の汚泥脱水方法。   The sludge dewatering method according to claim 7, wherein the dehydrator is a press-fitting screw press type dehydrator.
JP2009116565A 2009-05-13 2009-05-13 Sludge dewatering agent and sludge dewatering method Active JP5427985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116565A JP5427985B2 (en) 2009-05-13 2009-05-13 Sludge dewatering agent and sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116565A JP5427985B2 (en) 2009-05-13 2009-05-13 Sludge dewatering agent and sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2010264363A true JP2010264363A (en) 2010-11-25
JP5427985B2 JP5427985B2 (en) 2014-02-26

Family

ID=43361843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116565A Active JP5427985B2 (en) 2009-05-13 2009-05-13 Sludge dewatering agent and sludge dewatering method

Country Status (1)

Country Link
JP (1) JP5427985B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224420A (en) * 2010-04-15 2011-11-10 Daiyanitorikkusu Kk Sludge dewatering agent and sludge dewatering treatment method
JP2012096199A (en) * 2010-11-05 2012-05-24 Kurita Water Ind Ltd Sludge dewatering agent and sludge dewatering method
JP2012206023A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent and sludge dehydration method using the same
JP2013255863A (en) * 2012-06-11 2013-12-26 Hymo Corp Flocculant and sludge dehydration method using the same
JP2014151240A (en) * 2013-02-05 2014-08-25 Mitsubishi Rayon Co Ltd Method for dehydrating organic sludge
JP2014155898A (en) * 2013-02-15 2014-08-28 Mitsubishi Rayon Co Ltd Sludge dehydration treatment method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198287A (en) * 1992-09-30 1994-07-19 Calgon Corp Method for disposal of ink-free waste by using melamine aldehyde polymer
JPH1147799A (en) * 1997-08-06 1999-02-23 Ebara Corp Dehydration of sludge
JPH11207105A (en) * 1998-01-21 1999-08-03 Hymo Corp Sludge dehydrating agent and its use
JP2000202500A (en) * 1999-01-19 2000-07-25 Sony Corp Method for dehydrating organic sludge
JP2000218297A (en) * 1999-01-29 2000-08-08 Mitsui Cytec Kk Sludge dehydrating agent
JP2001164488A (en) * 1999-12-09 2001-06-19 Hymo Corp Method for recovering material of worth in papermaking white water
JP2003117600A (en) * 2001-10-11 2003-04-22 Toagosei Co Ltd Dewatering method for sludge
JP2003181500A (en) * 2001-12-21 2003-07-02 Hymo Corp Method for dehydrating paper making sludge
JP2004089780A (en) * 2002-08-29 2004-03-25 Kanatsu Giken Kogyo Kk Dehydration method for sludge
JP2004121997A (en) * 2002-10-02 2004-04-22 Kurita Water Ind Ltd Sludge dehydrating agent and sludge dehydrating method
JP2004210986A (en) * 2003-01-06 2004-07-29 Toagosei Co Ltd Composition, polymer coagulant and method of sludge dewatering
JP2005013815A (en) * 2003-06-24 2005-01-20 Daiyanitorikkusu Kk Dehydration treatment method of sludge
JP2005296772A (en) * 2004-04-09 2005-10-27 Tomooka Kaken Kk Flocculant for digested sludge treatment
JP2008229497A (en) * 2007-03-20 2008-10-02 Daiyanitorikkusu Kk Dehydrator for treating civil engineering and construction sludge
JP2008259923A (en) * 2007-04-10 2008-10-30 Daiyanitorikkusu Kk Cation-type polymer flocculant and sludge treatment method using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198287A (en) * 1992-09-30 1994-07-19 Calgon Corp Method for disposal of ink-free waste by using melamine aldehyde polymer
JPH1147799A (en) * 1997-08-06 1999-02-23 Ebara Corp Dehydration of sludge
JPH11207105A (en) * 1998-01-21 1999-08-03 Hymo Corp Sludge dehydrating agent and its use
JP2000202500A (en) * 1999-01-19 2000-07-25 Sony Corp Method for dehydrating organic sludge
JP2000218297A (en) * 1999-01-29 2000-08-08 Mitsui Cytec Kk Sludge dehydrating agent
JP2001164488A (en) * 1999-12-09 2001-06-19 Hymo Corp Method for recovering material of worth in papermaking white water
JP2003117600A (en) * 2001-10-11 2003-04-22 Toagosei Co Ltd Dewatering method for sludge
JP2003181500A (en) * 2001-12-21 2003-07-02 Hymo Corp Method for dehydrating paper making sludge
JP2004089780A (en) * 2002-08-29 2004-03-25 Kanatsu Giken Kogyo Kk Dehydration method for sludge
JP2004121997A (en) * 2002-10-02 2004-04-22 Kurita Water Ind Ltd Sludge dehydrating agent and sludge dehydrating method
JP2004210986A (en) * 2003-01-06 2004-07-29 Toagosei Co Ltd Composition, polymer coagulant and method of sludge dewatering
JP2005013815A (en) * 2003-06-24 2005-01-20 Daiyanitorikkusu Kk Dehydration treatment method of sludge
JP2005296772A (en) * 2004-04-09 2005-10-27 Tomooka Kaken Kk Flocculant for digested sludge treatment
JP2008229497A (en) * 2007-03-20 2008-10-02 Daiyanitorikkusu Kk Dehydrator for treating civil engineering and construction sludge
JP2008259923A (en) * 2007-04-10 2008-10-30 Daiyanitorikkusu Kk Cation-type polymer flocculant and sludge treatment method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224420A (en) * 2010-04-15 2011-11-10 Daiyanitorikkusu Kk Sludge dewatering agent and sludge dewatering treatment method
JP2012096199A (en) * 2010-11-05 2012-05-24 Kurita Water Ind Ltd Sludge dewatering agent and sludge dewatering method
JP2012206023A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent and sludge dehydration method using the same
JP2013255863A (en) * 2012-06-11 2013-12-26 Hymo Corp Flocculant and sludge dehydration method using the same
JP2014151240A (en) * 2013-02-05 2014-08-25 Mitsubishi Rayon Co Ltd Method for dehydrating organic sludge
JP2014155898A (en) * 2013-02-15 2014-08-28 Mitsubishi Rayon Co Ltd Sludge dehydration treatment method

Also Published As

Publication number Publication date
JP5427985B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5427985B2 (en) Sludge dewatering agent and sludge dewatering method
JP6378342B2 (en) Organic wastewater treatment method
JP4857170B2 (en) Cationic polymer flocculant and sludge treatment method using the same
JP5700354B2 (en) Sludge dewatering agent and sludge dewatering treatment method
WO2014030588A1 (en) Polymer-coagulating agent and method for producing same, and method for dehydrating sludge using same
JP6131465B2 (en) Sludge dewatering method
JP5961934B2 (en) Sludge dewatering method
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP2009183888A (en) Sludge dehydration method
JP5906672B2 (en) Sludge dewatering agent and organic sludge dewatering method using the same
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP2016120464A (en) Sludge dewatering method
JP5501122B2 (en) Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP5709086B2 (en) Organic coagulant
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP6098239B2 (en) Sludge dewatering agent and sludge treatment method
JP2002045900A (en) Method for dewatering sludge
JP2014184406A (en) Powdery organic coagulant
JP6028598B2 (en) Method for dewatering organic sludge
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
JP2005013815A (en) Dehydration treatment method of sludge
JP5683219B2 (en) Sludge dewatering agent and method for producing the same
JP2002058909A (en) Amphoteric macromolecular flocculating agent and method for dehydrating sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250