JP2014155898A - Sludge dehydration treatment method - Google Patents

Sludge dehydration treatment method Download PDF

Info

Publication number
JP2014155898A
JP2014155898A JP2013027599A JP2013027599A JP2014155898A JP 2014155898 A JP2014155898 A JP 2014155898A JP 2013027599 A JP2013027599 A JP 2013027599A JP 2013027599 A JP2013027599 A JP 2013027599A JP 2014155898 A JP2014155898 A JP 2014155898A
Authority
JP
Japan
Prior art keywords
sludge
polymer
amidine
structural unit
cationic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013027599A
Other languages
Japanese (ja)
Other versions
JP6131465B2 (en
Inventor
Hisanori Goto
久典 後藤
Takayuki Kobayashi
孝行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013027599A priority Critical patent/JP6131465B2/en
Publication of JP2014155898A publication Critical patent/JP2014155898A/en
Application granted granted Critical
Publication of JP6131465B2 publication Critical patent/JP6131465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sludge dehydration treatment method which targets sludge having an electric conductivity of 0.5 to 50 mS/cm, a fiber content of 0.5 to 10%/TS and a volatile total solid (VTS) in the range of 5 to 65%/TS, and enables a flocculated flock to be formed, the flocculated flock having enough particle diameter and strength stably for a long period of time and therefore having excellent draining and dewaterability, consequently can provide separated liquid having fully little SS amount and a dewatered cake having low water content.SOLUTION: There is provided the sludge dehydration treatment method using a sludge dewatering agent which is composed of a mixture of a specific amidine-based cationic polymer (A), an amphoteric polymer (B) and a non-amidine-based cationic polymer (C), and which has the percentage of the amidine-based cationic polymer (A) of 10 to 50 mass%, the percentage of the amphoteric polymer of 10 to 40 mass% and the percentage of the non-amidine-based cationic polymer (C) of 10 to 80 mass% based on the total mass amount of each polymer.

Description

本発明は、汚泥脱水処理方法に関し、詳しくは、従来の汚泥脱水剤では凝集フロックが成長せず微細な凝集フロックしか形成できない特定性状の汚泥を対象とした汚泥脱水処理方法に関する。   The present invention relates to a sludge dewatering treatment method, and more particularly to a sludge dewatering treatment method for sludge having a specific property in which agglomerated flocs do not grow and only fine agglomerated flocs can be formed with conventional sludge dewatering agents.

従来より、下水処理場、し尿処理場および各種産業廃水処理施設から発生する汚泥は、そのままでは脱水できないため、通常は高分子凝集剤を添加してスクリュープレス、スクリューデカンタ、ベルトプレスなどの脱水装置で機械脱水処理されている。一般に高分子凝集剤を用いた汚泥の脱水方法としては、(1)ジメチルアミノエチル(メタ)アクリレート四級塩のようなカチオン性高分子凝集剤を単独で用いる方法、(2)前記のようなカチオン性高分子凝集剤とアニオン性高分子凝集剤とを併用する方法、(3)無機凝結剤と両性高分子凝集剤とを併用する方法などがある。   Conventionally, sludge generated from sewage treatment plants, human waste treatment plants, and various industrial wastewater treatment facilities cannot be dehydrated as it is, so usually a dehydrator such as a screw press, screw decanter or belt press with a polymer flocculant added. The machine is dehydrated. In general, the sludge dewatering method using a polymer flocculant includes (1) a method using a cationic polymer flocculant alone such as dimethylaminoethyl (meth) acrylate quaternary salt, and (2) as described above. There are a method in which a cationic polymer flocculant and an anionic polymer flocculant are used in combination, and (3) a method in which an inorganic flocculant and an amphoteric polymer flocculant are used in combination.

しかし近年、水処理の高度化、水処理対象廃水の性状の変化、多様化などにより汚泥が脱水し難いものになっている。例えば樹脂・繊維工業、染色工業、食品工業のような産業工場廃水処理施設から発生する汚泥(余剰・凝集沈殿・浮上スカム等)には無機塩や油分、そして界面活性剤などが多量に混在する。また、廃水処理の対象物の多様化や廃水処理の環境の変化によって、汚泥の性状は常に変動する。産業廃水処理施設から発生する汚泥では、生物処理で生じる余剰汚泥が特に多く、余剰汚泥の主成分は微生物体の細胞であり、細胞内に含まれる水分は圧搾などの機械的な方法では脱水できないため、その汚泥性状は一般的に難脱水性である。そのため前記に挙げたような凝集剤を用いた従来の脱水方法では、得られる凝集フロックの強度や水切れが不十分であり、汚泥の脱水処理を行う際に汚泥処理量の低下や脱水ケーキ含水率の上昇などの問題があった。   However, in recent years, sludge has become difficult to dehydrate due to advanced water treatment, changes in the properties of wastewater to be treated, and diversification. For example, sludge (surplus, coagulation sedimentation, floating scum, etc.) generated from wastewater treatment facilities such as the resin / textile industry, dyeing industry, and food industry contains a large amount of inorganic salts, oils, and surfactants. . In addition, due to diversification of wastewater treatment targets and changes in the wastewater treatment environment, the properties of sludge constantly change. In sludge generated from industrial wastewater treatment facilities, surplus sludge generated by biological treatment is particularly large, and the main component of surplus sludge is microbial cells, and moisture contained in the cells cannot be dehydrated by mechanical methods such as pressing. Therefore, the sludge properties are generally difficult to dehydrate. Therefore, in the conventional dewatering method using the flocculant as mentioned above, the strength and water drainage of the obtained flocs are insufficient, and when the sludge is dewatered, the sludge treatment amount is reduced and the water content of the dehydrated cake is reduced. There were problems such as rising.

一方で、ポリアミジン構成単位を含むアミジン系カチオン性ポリマーはカチオン密度が高いため、産業廃水処理施設から発生する汚泥(余剰・凝集沈殿・浮上スカム等)に対して、特に優れた凝集性・脱水性を発揮することが知られている。一般的に、産業廃水処理の余剰汚泥では、繊維分を含む有機物は微生物により分解されるため、汚泥の繊維分は低く、難脱水の性状になる。このような難脱水性の汚泥に対して、アミジン系カチオン性ポリマーと種々の薬剤との配合凝集剤が提案されている。例えば、アミジン系カチオン性ポリマーと特定の両性ポリマー及びメタクリレート系カチオン性ポリマーを組み合わせて使用する汚泥脱水方法(特許文献1)や、アミジン系カチオン性ポリマーと2種以上の特定の両性ポリマーを組み合わせて使用する汚泥脱水方法(特許文献2)が提案されている。しかし、これらは繊維分の低い難脱水性の汚泥の処理を意図したものではあるが、汚泥の状態によっては効果が不十分であり、工業の工場廃水処理の生物学的処理施設から発生する余剰汚泥の脱水ケーキ含水率低下の要求を満たすに至っていない。   On the other hand, amidine-based cationic polymers containing polyamidine structural units have a high cation density, so they are particularly excellent in coagulation and dehydration against sludge generated from industrial wastewater treatment facilities (excess, coagulation sedimentation, floating scum, etc.). It is known to exert. In general, surplus sludge from industrial wastewater treatment is degraded by microorganisms, and therefore the sludge has a low fiber content and hardly dehydrates. For such a hardly dewatering sludge, a blended flocculant of an amidine-based cationic polymer and various drugs has been proposed. For example, a sludge dewatering method using a combination of an amidine-based cationic polymer, a specific amphoteric polymer and a methacrylate-based cationic polymer (Patent Document 1), or a combination of an amidine-based cationic polymer and two or more specific amphoteric polymers. A sludge dewatering method to be used (Patent Document 2) has been proposed. However, these are intended for the treatment of sludge with low fiber content and hardly dewatering, but depending on the state of the sludge, the effect is insufficient, and surplus generated from the biological treatment facility of industrial factory wastewater treatment. The demand for reducing the moisture content of dewatered cake of sludge has not been met.

産業廃水処理の余剰汚泥では、生物処理を行う環境や運転条件によって、無機塩や汚泥有機物の含有量は常に変化する。特に、嫌気性処理や汚泥腐敗進行により生成された無機塩や腐敗性有機物を多量に含むような汚泥に対しては、アミジン系水溶性ポリマーの単独使用では粒径の小さい凝集フロックしか形成せず、アミジン系カチオン性ポリマーの特徴である高い脱水性が見られない傾向がある。無機成分を多量に含む汚泥に対して、アミジン系カチオン性ポリマーと特定のアニオン性ポリマーを組み合わせて使用することで凝集性を改善させる汚泥脱水方法(特許文献3)が提案されている。しかし、ここでの無機成分は浮遊物として汚泥中に分散しているものであり、凝集性への影響は小さいため、前記のような無機塩や腐敗性有機物を多量に含むような汚泥に対しては、フロックの成長が見られず、凝集性の改善効果が不十分である。   In surplus sludge for industrial wastewater treatment, the content of inorganic salts and sludge organic matter always changes depending on the environment and operating conditions for biological treatment. In particular, for sludge containing a large amount of inorganic salt and septic organic matter produced by anaerobic treatment or sludge rot, the use of amidine-based water-soluble polymer alone forms only aggregate flocs with a small particle size. The high dehydration characteristic of amidine-based cationic polymers tends not to be observed. A sludge dewatering method (Patent Document 3) has been proposed that improves coagulation by using a combination of an amidine-based cationic polymer and a specific anionic polymer for sludge containing a large amount of inorganic components. However, the inorganic components here are dispersed in the sludge as suspended matter and have little influence on the cohesiveness. Therefore, the sludge contains a large amount of inorganic salts and septic organic substances as described above. As a result, no floc growth is observed, and the effect of improving the cohesiveness is insufficient.

特開2002−177709号公報JP 2002-177709 A 特開2004−209413号公報JP 2004-209413 A 特開2000−176499号公報JP 2000-176499 A

アミジン系カチオン性ポリマーの効果が小さい汚泥の特徴を、汚泥の分析値から見ると汚泥の電気伝導度が0.5〜50mS/cmであり、繊維分が0.5〜10%/TSで且つ強熱減量物(以下、VTSという。)が5〜65%/TSであるということである。この様な汚泥種に対してはアミジン系カチオン性ポリマー単独では極めて小さな凝集フロックしか形成できず、特にスクリュープレス等の脱水機では目漏れが多く良好な脱水が望めない。本発明の目的は、前記のような特徴を有する汚泥の脱水処理方法として、長期間安定して十分な粒径と強度を持ち、従って、水切れが良好で脱水性の高い凝集フロックを形成させることができるため、SS量が少ない分離液及び含水率の低い脱水ケーキが得られる汚泥脱水処理方法を提供することにある。   The characteristics of sludge with a small effect of the amidine-based cationic polymer can be seen from the analysis value of the sludge. The electrical conductivity of the sludge is 0.5 to 50 mS / cm, the fiber content is 0.5 to 10% / TS, and The ignition loss (hereinafter referred to as VTS) is 5 to 65% / TS. For such sludge species, the amidine-based cationic polymer alone can form only extremely small flocs, and particularly with a dehydrator such as a screw press, there is a lot of leakage and good dehydration cannot be expected. An object of the present invention is to form a coagulated floc having a sufficient particle size and strength stably for a long period of time as a sludge dewatering method having the above-described characteristics, and thus having good water drainage and high dewaterability. Therefore, an object of the present invention is to provide a sludge dewatering treatment method in which a separated liquid with a small amount of SS and a dehydrated cake with a low water content can be obtained.

本発明者らは、前記実情に鑑みて、鋭意探索の結果、次のような知見を得た。即ち、前記の性状の汚泥に関しては、アミジン系カチオン性ポリマーは汚泥中の懸濁物等のアニオン−両性の有機高分子成分に対して効率よく吸着はするものの、更にそれが両性ポリマーとコンプレックスを形成して凝集フロックに成長する過程の反応性については、両性ポリマーの粘度により左右される。両性ポリマーを0.1g/dl含む1規定塩化ナトリウム水溶液の25℃における還元粘度(以下、還元粘度という。)が、10.0dl/gを超える高粘度両性ポリマーとアミジン系カチオン性ポリマーを併用する場合、凝集フロックに成長する段階において、アミジン系カチオン性ポリマーのカチオン性を示す官能基の一部と、高粘度両性ポリマーのアニオン性を示す官能基の一部が反応した後で直ちに自己架橋し不溶化するため、反応が抑制される。一方で、還元粘度が10.0dl/g以下である低粘度両性ポリマーをアミジン系カチオン性ポリマーを併用する場合は、凝集フロックの成長過程において自己架橋による不溶化が少なく、反応が効率よく進み、凝集フロックが水分を包含することなく、強度に優れた凝集フロックが形成され、汚泥の脱水処理における汚泥脱水剤の脱水性能が改善される。   In view of the above circumstances, the present inventors have obtained the following knowledge as a result of earnest search. That is, regarding the sludge having the above-mentioned properties, the amidine-based cationic polymer efficiently adsorbs to the anionic-amphoteric organic polymer component such as a suspension in the sludge, but it further binds the amphoteric polymer and the complex. The reactivity of the process of forming and growing into agglomerated flocs depends on the viscosity of the amphoteric polymer. A 1 V sodium chloride aqueous solution containing 0.1 g / dl of an amphoteric polymer is used in combination with a high-viscosity amphoteric polymer and amidine-based cationic polymer whose reduced viscosity at 25 ° C. (hereinafter referred to as reduced viscosity) exceeds 10.0 dl / g. In some cases, in the stage of growing into an aggregated floc, self-crosslinking immediately after a part of the functional group showing the cationic property of the amidine-based cationic polymer and a part of the functional group showing the anionic property of the high-viscosity amphoteric polymer reacts. Since it is insolubilized, the reaction is suppressed. On the other hand, when a low-viscosity amphoteric polymer having a reduced viscosity of 10.0 dl / g or less is used in combination with an amidine-based cationic polymer, insolubility due to self-crosslinking is small in the process of agglomeration floc growth, and the reaction proceeds efficiently. The floc does not contain moisture, and a floc floc having excellent strength is formed, and the dewatering performance of the sludge dewatering agent in the sludge dewatering treatment is improved.

本発明は、前記の知見に基づき達成されたものであり、その要旨は、電気伝導度が0.5〜50mS/cmであり、繊維分が0.5〜10%/TSで且つVTSが5〜65%/TSの範囲の汚泥に、汚泥脱水剤を添加した後に脱水処理する汚泥脱水処理方法において、以下に記載のアミジン系カチオン性ポリマー(A)と両性ポリマー(B)と非アミジン系カチオン性ポリマー(C)の混合物から成り、各ポリマーの合計質量に対するアミジン系カチオン性ポリマー(A)の割合が10〜50質量%、両性ポリマー(B)の割合が10〜40質量%、非アミジン系カチオン性ポリマー(C)の割合が10〜80質量%である汚泥脱水剤を用いることを特徴とする汚泥脱水処理方法に存する。   The present invention has been achieved based on the above findings, and the gist thereof is that the electrical conductivity is 0.5 to 50 mS / cm, the fiber content is 0.5 to 10% / TS, and the VTS is 5 In the sludge dewatering method of adding a sludge dehydrating agent to sludge in the range of ~ 65% / TS, the amidine cationic polymer (A), the amphoteric polymer (B) and the non-amidine cation described below The ratio of the amidine-based cationic polymer (A) to the total mass of each polymer is 10 to 50% by mass, the ratio of the amphoteric polymer (B) is 10 to 40% by mass, the non-amidine type The present invention resides in a sludge dewatering treatment method using a sludge dewatering agent having a cationic polymer (C) ratio of 10 to 80% by mass.

[アミジン系カチオン性ポリマー(A)]
下記一般式(1)及び/又は下記一般式(2)で表されるアミジン構成単位を含有するアミジン系カチオン性ポリマー。

Figure 2014155898

Figure 2014155898
(ただし、一般式(1)、(2)中、R、Rはそれぞれ独立に水素原子又はメチル基であり、Xは陰イオンである。) [Amidine-based cationic polymer (A)]
An amidine-based cationic polymer containing an amidine structural unit represented by the following general formula (1) and / or the following general formula (2).

Figure 2014155898

Figure 2014155898
(However, in general formula (1), (2), R < 1 >, R < 2 > is a hydrogen atom or a methyl group each independently, and X < - > is an anion.)

[両性ポリマー(B)]
下記一般式(3)で表されるカチオン性構成単位と、アニオン性構成単位と非イオン性構成単位を含有する少なくとも一種の両性ポリマーで、且つ、当該両性ポリマーを0.1g/dl含む1規定塩化ナトリウム水溶液の25℃における還元粘度が0.1〜10.0dl/gである両性ポリマー。

Figure 2014155898
(式中、Rは、水素原子又はメチル基であり、R及びRは、水素原子又は炭素数が1〜4のアルキル基であり、Rは、炭素数が1〜4のアルキル基又はベンジル基であり、Yは、酸素原子又はNHであり、Zは、Cl、Br、又は1/2SO 2−であり、nは1〜3の整数である。) [Amphoteric polymer (B)]
1 standard including a cationic structural unit represented by the following general formula (3), at least one amphoteric polymer containing an anionic structural unit and a nonionic structural unit, and 0.1 g / dl of the amphoteric polymer An amphoteric polymer having a reduced viscosity at 25 ° C. of a sodium chloride aqueous solution of 0.1 to 10.0 dl / g.
Figure 2014155898
(Wherein R 3 is a hydrogen atom or a methyl group, R 4 and R 5 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 is an alkyl having 1 to 4 carbon atoms. Y is an oxygen atom or NH, Z is Cl , Br , or 1 / 2SO 4 2− , and n is an integer of 1 to 3).

[非アミジン系カチオン性ポリマー(C)]
前記一般式(3)で表されるカチオン性構成単位と、非イオン性構成単位を含有する少なくとも一種の非アミジン系カチオン性ポリマー。
[Non-amidine cationic polymer (C)]
The at least 1 type non-amidine type cationic polymer containing the cationic structural unit represented by the said General formula (3), and a nonionic structural unit.

本発明の汚泥脱水処理方法によれば、従来技術では脱水処理が困難である特定性状の汚泥(電気伝導度が0.5〜50mS/cmであり、繊維分が0.5〜10%/TSで且つVTSが5〜65%/TSの範囲の汚泥)を対象汚泥とし、長期間安定して十分な粒径と強度を持ち、従って、水切れが良好で脱水性の高い凝集フロックを形成させることができるため、SS量が少ない分離液及び含水率の低い脱水ケーキが得られる。   According to the sludge dewatering method of the present invention, sludge having a specific property that is difficult to dewater with the prior art (the electric conductivity is 0.5 to 50 mS / cm, and the fiber content is 0.5 to 10% / TS. And sludge with a VTS in the range of 5 to 65% / TS), which is stable for a long period of time and has a sufficient particle size and strength. Therefore, a separated liquid with a small amount of SS and a dehydrated cake with a low water content can be obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<汚泥脱水剤>
先ず、本発明で用いる汚泥脱水剤について説明する。本発明では、特定のアミジン系カチオン性ポリマー(A)と特定の両性ポリマー(B)と非アミジン系カチオン性ポリマー(C)を組み合わせて用いる。
<Sludge dewatering agent>
First, the sludge dehydrating agent used in the present invention will be described. In the present invention, a specific amidine-based cationic polymer (A), a specific amphoteric polymer (B), and a non-amidine-based cationic polymer (C) are used in combination.

アミジン系カチオン性ポリマー(A)は、前記一般式(1)及び/又は前記一般式(2)で表されるアミジン構成単位を含有する。アミジン系カチオン性ポリマー(A)におけるアミジン構成単位の含有量は、通常30〜90モル%、好ましくは40〜80モル%である。含有量が30〜90モル%であれば、水切れの良好な凝集フロックが形成される。   The amidine-based cationic polymer (A) contains an amidine structural unit represented by the general formula (1) and / or the general formula (2). The content of the amidine structural unit in the amidine-based cationic polymer (A) is usually 30 to 90 mol%, preferably 40 to 80 mol%. If the content is from 30 to 90 mol%, an agglomerated floc with good drainage is formed.

アミジン系カチオン性ポリマー(A)の製造方法としては、特に制限はされないが、1級アミノ基又は変換反応により1級アミノ基が生成し得る置換アミノ基を有するエチレン性不飽和モノマーと、アクリロニトリル又はメタアクリロニトリル等のニトリル類とのコポリマーを製造し、当該コポリマー中のシアノ基と1級アミノ基を酸性化反応させてアミジン化する方法が挙げられる。   The production method of the amidine-based cationic polymer (A) is not particularly limited, but an ethylenically unsaturated monomer having a primary amino group or a substituted amino group capable of forming a primary amino group by a conversion reaction, and acrylonitrile or Examples thereof include a method in which a copolymer with nitriles such as methacrylonitrile is produced, and a cyano group and a primary amino group in the copolymer are acidified to be amidined.

前記のエチレン性不飽和モノマーとしては、一般式CH=CR−NHCOR(式中、Rは水素原子又はメチル基、Rは炭素数1〜4のアルキル基又は水素原子を表す。)で表わされる化合物が好ましい。コポリマー中において、斯かる化合物に由来する置換アミノ基は、加水分解あるいは加アルコール分解により容易に1級アミノ基に変換される。更に、この1級アミノ基は、隣接したシアノ基と反応してアミジン化する。前記の一般式で表される化合物の具体例としては、N−ビニルホルムアミド(R=H、R=H)、N−ビニルアセトアミド(R=H、R=CH)等が挙げられる。 As the ethylenically unsaturated monomers, the general formula CH 2 = CR 7 -NHCOR 8 (wherein, R 7 is a hydrogen atom or a methyl group, R 8 represents an alkyl group or a hydrogen atom having 1 to 4 carbon atoms. ) Is preferred. In the copolymer, substituted amino groups derived from such compounds are easily converted to primary amino groups by hydrolysis or alcoholysis. Furthermore, this primary amino group reacts with an adjacent cyano group to be amidineated. Specific examples of the compound represented by the above general formula include N-vinylformamide (R 7 = H, R 8 = H), N-vinylacetamide (R 7 = H, R 8 = CH 3 ) and the like. It is done.

前記コポリマーにおけるエチレン性不飽和モノマーとニトリル類との使用割合(モル比)は、通常20:80〜80:20、好ましくは40:60〜60:40である。   The use ratio (molar ratio) of the ethylenically unsaturated monomer and the nitrile in the copolymer is usually 20:80 to 80:20, preferably 40:60 to 60:40.

アミジン系カチオン性ポリマー(A)は、最も典型的には、前記で説明したところに従い、N−ビニルホルムアミドとアクリロニトリルとを共重合させ、生成したコポリマーを、塩酸の存在下、加熱し加水分解で生成したアミノ基と隣接するシアノ基からアミジン構成単位を形成させることにより製造される。この場合、共重合に供するN−ビニルホルムアミドとアクリロニトリルとのモル比、及びコポリマーのアミジン化条件を選択することにより、各種の組成を持つアミジン系カチオン性ポリマー(A)が得られる。なお、アミジン系カチオン性ポリマー(A)としては、入手し易い市販品から選択使用しても良い。   Most typically, the amidine-based cationic polymer (A) is obtained by copolymerizing N-vinylformamide and acrylonitrile as described above, and heating the resulting copolymer in the presence of hydrochloric acid for hydrolysis. It is produced by forming an amidine structural unit from a cyano group adjacent to the produced amino group. In this case, the amidine-based cationic polymer (A) having various compositions can be obtained by selecting the molar ratio of N-vinylformamide and acrylonitrile to be used for copolymerization and the amidination conditions of the copolymer. The amidine-based cationic polymer (A) may be selected from commercially available products.

両性ポリマー(B)は、カチオン性構成単位として、基本的には前記一般式(3)で表される構成単位を含有するポリマーである。カチオン性構成単位としては、例えば、カチオン性モノマーであるジアルキルアミノアルキル(メタ)アクリレートのアミン塩もしくはアルキルクロライド4級物に由来するカチオン性構成単位、又はジアルキルアミノアルキル(メタ)アクリアミドのアミン塩もしくはアルキルクロライド4級化物に由来するカチオン性構成単位が挙げられる。特に、ジアルキルアミノアルキル(メタ)アクリレートアルキルクロライド4級物が好ましい。モノマーは、カチオン性モノマー1種を単独で用いても良く、2種類以上を併用しても良い。   The amphoteric polymer (B) is basically a polymer containing a structural unit represented by the general formula (3) as a cationic structural unit. Examples of the cationic structural unit include a cationic structural unit derived from an amine salt of a dialkylaminoalkyl (meth) acrylate or an alkyl chloride quaternary compound that is a cationic monomer, or an amine salt of a dialkylaminoalkyl (meth) acrylamide, Examples include cationic structural units derived from alkyl chloride quaternized compounds. In particular, a quaternary dialkylaminoalkyl (meth) acrylate alkyl chloride is preferable. As the monomer, one type of cationic monomer may be used alone, or two or more types may be used in combination.

両性ポリマー(B)におけるカチオン性構成単位の含有量は、通常25〜80モル%、好ましくは25〜55モル%である。このような構成単位を含有する両性ポリマー(B)は、水切れが良好で、フロック強度の強い凝集フロックを形成し得る。   The content of the cationic structural unit in the amphoteric polymer (B) is usually 25 to 80 mol%, preferably 25 to 55 mol%. The amphoteric polymer (B) containing such a constitutional unit can form an agglomerated floc having good water drainage and strong floc strength.

両性ポリマー(B)は、アニオン性構成単位を含有するポリマーであるが、アニオン性を示す官能基を有する構成単位としては、(メタ)アクリル酸、2−アクリルアミド−2メチルプロパンスルホン酸など挙げられるが、これらの中では、アクリル酸が好ましい。両性ポリマー(B)におけるアニオン性構成単位の含有量は、通常5〜75モル%、好ましくは10〜55モル%である。   The amphoteric polymer (B) is a polymer containing an anionic structural unit, and examples of the structural unit having a functional group exhibiting anionicity include (meth) acrylic acid and 2-acrylamido-2methylpropanesulfonic acid. Of these, acrylic acid is preferred. The content of the anionic structural unit in the amphoteric polymer (B) is usually 5 to 75 mol%, preferably 10 to 55 mol%.

両性ポリマー(B)は、前記カチオン性構成単位と前記アニオン性構成単位の他に非イオン性構成単位を含有するポリマーであるが、非イオン性を示す官能基を有する構成単位としては(メタ)アクリルアミドが挙げられる。両性ポリマー(B)における非イオン性構成単位の含有量は通常1〜70モル%以下である。   The amphoteric polymer (B) is a polymer containing a nonionic structural unit in addition to the cationic structural unit and the anionic structural unit, but the structural unit having a functional group exhibiting nonionicity is (meth). Examples include acrylamide. The content of the nonionic structural unit in the amphoteric polymer (B) is usually 1 to 70 mol% or less.

両性ポリマー(B)の粘度を示す物性値としては、当該両性ポリマーを0.1g/dl含む1規定塩化ナトリウム水溶液の25℃における還元粘度が0.1〜10.0dl/gであるが、1.0〜7.5dl/gが好ましい。還元粘度が0.1〜10.0dl/gであれば、水切れが良好で脱水性の高い凝集フロックを形成し得る。   The physical property value indicating the viscosity of the amphoteric polymer (B) is that the 1 V sodium chloride aqueous solution containing 0.1 g / dl of the amphoteric polymer has a reduced viscosity at 25 ° C. of 0.1 to 10.0 dl / g. 0.0 to 7.5 dl / g is preferable. When the reduced viscosity is from 0.1 to 10.0 dl / g, it is possible to form an agglomerated floc having good water drainage and high dewaterability.

両性ポリマー(B)は、これが含有するアニオン性構成単位の含有率をMaモル%、カチオン性構成単位の含有率をMcモル%としたとき、アニオン性構成単位とカチオン性構成単位の含有率の比Ma/Mc(以下、「A/C」という)は、通常は0.35〜1.65、好ましくは0.50〜1.30である。A/Cが0.35〜1.65である両性ポリマー(B)は、水切れが良好で、よりフロック強度の強い凝集フロックを形成し得るため脱水性能が向上しやすい。   In the amphoteric polymer (B), when the content of the anionic structural unit contained in the amphoteric polymer is Ma mol% and the content of the cationic structural unit is Mc mol%, the content of the anionic structural unit and the cationic structural unit is The ratio Ma / Mc (hereinafter referred to as “A / C”) is usually 0.35 to 1.65, preferably 0.50 to 1.30. The amphoteric polymer (B) having an A / C of 0.35 to 1.65 has good drainage and can form agglomerated flocs with stronger floc strength, so that the dewatering performance is easily improved.

非アミジン系カチオン性ポリマー(C)は、カチオン性構成単位として、基本的には前記一般式(3)で表される構成単位を含有するポリマーである。カチオン性構成単位としては、例えば、カチオン性モノマーであるジアルキルアミノアルキル(メタ)アクリレートのアミン塩もしくはアルキルクロライド4級物に由来するカチオン性構成単位、又はジアルキルアミノアルキル(メタ)アクリアミドのアミン塩もしくはアルキルクロライド4級化物に由来するカチオン性構成単位が挙げられる。特に、ジアルキルアミノアルキル(メタ)アクリレートアルキルクロライド4級物が好ましい。モノマーは、カチオン性モノマー1種を単独で用いても良く、2種類以上を併用しても良い。   The non-amidine cationic polymer (C) is basically a polymer containing a structural unit represented by the general formula (3) as a cationic structural unit. Examples of the cationic structural unit include a cationic structural unit derived from an amine salt of a dialkylaminoalkyl (meth) acrylate or an alkyl chloride quaternary compound that is a cationic monomer, or an amine salt of a dialkylaminoalkyl (meth) acrylamide, Examples include cationic structural units derived from alkyl chloride quaternized compounds. In particular, a quaternary dialkylaminoalkyl (meth) acrylate alkyl chloride is preferable. As the monomer, one type of cationic monomer may be used alone, or two or more types may be used in combination.

非アミジン系カチオン性ポリマー(C)におけるカチオン性構成単位の含有量は、通常30〜90モル%、好ましくは50〜80モル%である。また、当該カチオン性構成単位としては、全構成単位中の割合として、少なくともジメチルアミノエチルアクリレートの塩化メチル4級塩モノマー構成単位を30〜90モル%、並びにジメチルアミノエチルメタクリレートの塩化メチル4級塩モノマー構成単位を0〜30モル%含有することが好ましい。このような構成単位を含有する非アミジン系カチオン性ポリマー(C)は、水切れが良好で、フロック強度の強い凝集フロックを形成し得る。   The content of the cationic structural unit in the non-amidine cationic polymer (C) is usually 30 to 90 mol%, preferably 50 to 80 mol%. In addition, as the cationic structural unit, at least 30 to 90 mol% of a methyl chloride quaternary salt monomer structural unit of dimethylaminoethyl acrylate and a methyl chloride quaternary salt of dimethylaminoethyl methacrylate as a proportion of all the structural units. It is preferable to contain 0-30 mol% of monomer structural units. The non-amidine cationic polymer (C) containing such a constitutional unit can form agglomerated flocs with good water drainage and strong floc strength.

非アミジン系カチオン性ポリマー(C)は、非イオン性構成単位を含有するポリマーであり、非イオン性構成単位としては(メタ)アクリルアミドが挙げられる。非アミジン系カチオン性ポリマー(C)における非イオン性構成単位の含有量は通常1〜70モル%以下である。   The non-amidine cationic polymer (C) is a polymer containing a nonionic structural unit, and examples of the nonionic structural unit include (meth) acrylamide. The content of the nonionic structural unit in the nonamidine-based cationic polymer (C) is usually 1 to 70 mol% or less.

有機性汚泥等、汚泥中にアニオン性もしくは両性の有機高分子成分が存在する場合、アミジン系カチオン性ポリマーを使用すると、凝集フロックを形成しやすい。これは前記成分がアミジン系カチオン性ポリマーと反応しコンプレックスを生成するためである。ところが本発明が対象とする汚泥の性状においては、生物処理の工程で汚泥中のアニオン−両性の有機高分子成分が微生物体により分解され、その含有量が低下するため、コンプレックスの生成が少なく、凝集フロックが成長できない。凝集機能を両性ポリマーで代替する場合、通常であれば分子量が大きく、高粘度の両性ポリマーを用いると汚泥粒子の架橋能力も高く有効に作用することが多い。   When an anionic or amphoteric organic polymer component is present in sludge, such as organic sludge, the use of amidine-based cationic polymers tends to form aggregated flocs. This is because the component reacts with the amidine-based cationic polymer to form a complex. However, in the sludge properties targeted by the present invention, the anionic-amphoteric organic polymer component in the sludge is decomposed by the microorganisms in the biological treatment process, and the content is reduced, so that the formation of complex is small, Aggregated floc cannot grow. When the agglomeration function is replaced with an amphoteric polymer, the molecular weight is usually large, and when an amphoteric polymer having a high viscosity is used, the sludge particles have a high crosslinking ability and often act effectively.

しかしながら、本発明が対象とする汚泥の場合、逆に分子量が比較的小さく、低粘度の両性ポリマーの方が凝集フロックの形成性能が高い。これは分子鎖の広がりよりも分子の拡散速度や反応速度が重要なファクターになっているためと考えられる。そのため、両性ポリマー(B)は、還元粘度が0.1〜10.0g/dlの範囲にある場合、水切れが良好で、フロック強度が高い凝集フロックを形成することができる。還元粘度が前記より大きい場合は、その反応速度が遅くなり、前記自己架橋による不溶化によって凝集フロックの成長過程の反応が抑制され、大きな凝集フロックが形成できず、前記より小さい場合は、架橋能力が小さく、生成した凝集フロックが小さくその強度が弱く、濾過性能も低く脱水ケーキの含水率が高くなる。   However, in the case of the sludge targeted by the present invention, on the contrary, the amphoteric polymer having a relatively low molecular weight and low viscosity has a higher ability to form agglomerated floc. This is probably because the diffusion rate and reaction rate of molecules are more important factors than the spread of molecular chains. Therefore, when the reduced viscosity of the amphoteric polymer (B) is in the range of 0.1 to 10.0 g / dl, it is possible to form an agglomerated floc that has good water drainage and high floc strength. When the reduced viscosity is larger than the above, the reaction rate becomes slow, the reaction of the growth process of the aggregated floc is suppressed by the insolubilization by the self-crosslinking, and the large aggregated floc cannot be formed. Small, small floc flocs produced, low strength, low filtration performance, high moisture content of dehydrated cake.

また本発明が対象とする汚泥には、無機塩が多く含まれており、これらの無機塩は汚泥中では1〜3価の陰イオン即ちアニオン性成分として混在しているものが多い。アミジン系カチオン性ポリマーは、これらの無機塩由来のアニオン性成分と反応し荷電を中和するため、水切れが良好で脱水性の高い凝集フロックが形成し得る。しかし、この無機塩由来のアニオン性成分と反応により、アミジン系カチオン性ポリマー(A)と汚泥中のアニオン−両性の有機高分子成分及び、両性ポリマー(B)の吸着によって生成されたコンプレックスが更に凝集フロックへと成長する際に必要となる架橋吸着の機能が低下するため、汚泥中の無機塩の含有量が多くなれば、粗大な凝集フロックを形成するために、多くの添加量を要する。一方で、非アミジン系カチオン性ポリマー(C)は、無機塩由来のアニオン性成分との反応性がアミジン系カチオン性ポリマー(A)よりも低く、無機塩による架橋吸着への影響を受け難い。よって、非アミジン系カチオン性ポリマー(C)を併用することで、前記の凝集フロックへ成長過程の架橋吸着が改善し、少ない添加量で且つより優れた強度を持つ凝集フロックが形成し得る。   Further, the sludge targeted by the present invention contains a large amount of inorganic salts, and these inorganic salts are often mixed as 1 to 3 anions, that is, anionic components in the sludge. The amidine-based cationic polymer reacts with anionic components derived from these inorganic salts to neutralize the charge, so that an aggregated floc having good water drainage and high dehydrating property can be formed. However, the complex produced by the adsorption of the amidine-based cationic polymer (A) and the anionic-amphoteric organic polymer component in the sludge and the amphoteric polymer (B) by the reaction with the anionic component derived from the inorganic salt is further provided. Since the function of cross-linking adsorption necessary for growing into agglomerated flocs is reduced, if the content of inorganic salt in the sludge increases, a large amount of addition is required to form coarse agglomerated flocs. On the other hand, the non-amidine-based cationic polymer (C) has a lower reactivity with the anionic component derived from the inorganic salt than the amidine-based cationic polymer (A), and is not easily affected by the crosslinking adsorption by the inorganic salt. Therefore, by using the non-amidine-based cationic polymer (C) in combination, the cross-linking adsorption during the growth process is improved to the above-mentioned aggregated floc, and an aggregated floc having a superior strength can be formed with a small addition amount.

両性ポリマー(B)及び非アミジン系カチオン性ポリマー(C)の製造方法は、特に制限されないが、前記のモノマーを水に溶解させたモノマー水溶液を均一なシート状にし、光開始剤を用いて可視光又は紫外光を照射して共重合させる水溶液光重合方法、モノマーの水溶液に1種以上の開始剤を加えて重合させ水性ゲル状の重合物を得る断熱重合、非水溶媒中にモノマー水溶液を分散させて重合する分散重合、非水溶媒中で乳化剤を用いてモノマー水溶液を乳化させて重合する乳化重合等の方法が自由に選択できる。光重合、断熱重合等の場合は、ポリマーは水性ゲルとして取得されるので、粉砕、乾燥して粉末にするのが好ましい。   The method for producing the amphoteric polymer (B) and the non-amidine cationic polymer (C) is not particularly limited, but a monomer aqueous solution in which the above monomer is dissolved in water is made into a uniform sheet and visible using a photoinitiator. Aqueous photopolymerization method for copolymerization by irradiation with light or ultraviolet light, adiabatic polymerization to obtain an aqueous gel polymer by adding one or more initiators to an aqueous monomer solution, and an aqueous monomer solution in a nonaqueous solvent Methods such as dispersion polymerization for polymerization by dispersion and emulsion polymerization for polymerization by emulsifying an aqueous monomer solution using an emulsifier in a non-aqueous solvent can be freely selected. In the case of photopolymerization, adiabatic polymerization, etc., the polymer is obtained as an aqueous gel, and therefore, it is preferably pulverized and dried to form a powder.

前記の両性ポリマー(B)の還元粘度の調整方法にとしては、特に制限されないが、製造工程における重合時間、重合温度、連鎖移動剤添加量等の条件を製造するポリマーの粘度を考慮して適宜選定する。本発明においては、連鎖移動剤添加量の条件により、還元粘度を調整することが好ましい。連鎖移動剤の種類は特に制限されず、例えばメルカプトエタノール、メルカプトプロピオン酸等のチオール化合物、亜硫酸ナトリウム、重亜硫酸水素ナトリウム、次亜リン酸ナトリウム等の還元性無機塩類等が挙げられる。その中でも特に次亜リン酸ナトリウムが好ましい。連鎖移動剤の添加量は、原料全モノマーに対して通常1〜3000ppm程度である。   The method for adjusting the reduced viscosity of the amphoteric polymer (B) is not particularly limited, but is appropriately determined in consideration of the viscosity of the polymer for producing conditions such as polymerization time, polymerization temperature, and chain transfer agent addition amount in the production process. Select. In the present invention, the reduced viscosity is preferably adjusted according to the condition of the chain transfer agent addition amount. The type of chain transfer agent is not particularly limited, and examples thereof include thiol compounds such as mercaptoethanol and mercaptopropionic acid, and reducing inorganic salts such as sodium sulfite, sodium bisulfite, and sodium hypophosphite. Of these, sodium hypophosphite is particularly preferable. The addition amount of the chain transfer agent is usually about 1 to 3000 ppm with respect to all raw materials monomers.

本発明で用いる汚泥脱水剤は、アミジン系カチオン性ポリマー(A)と両性ポリマー(B)と非アミジン系カチオン性ポリマー(C)からなるが、凝集フロックの水切れが良好で、優れた強度を持つ凝集フロックを形成し得るためには、アミジン系カチオン性ポリマー(A)と両性ポリマー(B)と非アミジン系カチオン性ポリマー(C)を所定の混合比で用いる必要がある。即ち、混合比は、各ポリマーの合計質量に対するアミジン系カチオン性ポリマー(A)の割合が10〜50質量%、両性ポリマー(B)の割合が10〜40質量%、非アミジン系カチオン性ポリマー(C)の割合が10〜80質量%である。このような混合比は、優れた強度を持つ凝集フロックを形成し得るのでより効率的である。   The sludge dehydrating agent used in the present invention is composed of an amidine-based cationic polymer (A), an amphoteric polymer (B), and a non-amidine-based cationic polymer (C). In order to form an aggregated floc, it is necessary to use the amidine-based cationic polymer (A), the amphoteric polymer (B), and the non-amidine-based cationic polymer (C) at a predetermined mixing ratio. That is, the mixing ratio of the amidine-based cationic polymer (A) to the total mass of each polymer is 10 to 50% by mass, the ratio of the amphoteric polymer (B) is 10 to 40% by mass, and the non-amidine-based cationic polymer ( The ratio of C) is 10 to 80% by mass. Such a mixing ratio is more efficient because it can form agglomerated flocs with excellent strength.

<汚泥>
次に、本発明の対象汚泥について説明する。本発明の対象汚泥は、電気伝導度が0.5〜50mS/cmであり、繊維分が0.5〜10%/TSで且つVTSが5〜65%の範囲の汚泥である。具体的に化学(染色、樹脂、繊維、化成品)、医薬品、食品産業や産業廃棄物処理場、埋立処分場等の廃水処理施設やから発生する余剰汚泥、凝集沈殿汚泥、加圧浮上スカム汚泥等が挙げられる。
<Sludge>
Next, the target sludge of the present invention will be described. The target sludge of the present invention is a sludge having an electric conductivity of 0.5 to 50 mS / cm, a fiber content of 0.5 to 10% / TS, and a VTS of 5 to 65%. Specifically, surplus sludge, coagulated sediment sludge, pressurized scum sludge generated from wastewater treatment facilities such as chemistry (dyeing, resin, fiber, chemical products), pharmaceuticals, food industry, industrial waste treatment plant, landfill disposal site, etc. Etc.

このような性状を有する汚泥に含まれる無機塩は、廃水処理施設に供給される前の廃水に多量に含まれる無機塩や、生物処理による有機分の分解により生成られる無機塩、また、凝集沈殿や加圧浮上等の廃水処理にて、無機凝結剤などの無機薬剤を多量に使用したため発生する無機塩などが挙げられる。汚泥中の無機塩としては、硫酸塩、リン酸塩、珪酸塩、等が挙げられるが、特に限定されるものではない。汚泥の電気伝導度は、汚泥中に含まれる無機塩の量を表すーつの指標であり、本発明が対象とする汚泥は、無機塩を多量に含み、電気伝導度が高い状態にあるものであり、その値は前記のとおりであるが、好ましくは3.0〜30mS/cmである。   Inorganic salts contained in sludge having such properties include inorganic salts contained in large amounts in wastewater before being supplied to wastewater treatment facilities, inorganic salts produced by the decomposition of organic components by biological treatment, and coagulation precipitation. And inorganic salts generated due to the use of a large amount of an inorganic agent such as an inorganic coagulant in wastewater treatment such as pressure levitation. Examples of the inorganic salt in the sludge include sulfates, phosphates, silicates and the like, but are not particularly limited. The electrical conductivity of sludge is an indicator of the amount of inorganic salt contained in the sludge. The sludge targeted by the present invention contains a large amount of inorganic salt and has a high electrical conductivity. Yes, and the value is as described above, preferably 3.0 to 30 mS / cm.

また、廃水処理施設から発生する余剰汚泥であれば、繊維分などの汚泥中に含まれる生体由来の有機高分子成分が、生物処理や汚泥の腐敗進行によって分解され含有量が低下し、繊維分の値は低い状態にあるものであり、その値は前記のとおりであるが、好ましくは0.5〜5%/TSである。   In the case of surplus sludge generated from wastewater treatment facilities, organic polymer components derived from living organisms contained in sludge such as fibers are decomposed by the progress of biotreatment or sludge decay, and the content decreases. The value of is in a low state, and the value is as described above, but is preferably 0.5 to 5% / TS.

一般的に汚泥中にはアニオン−両性の有機高分子成分が存在し、アミジン系カチオン性ポリマー(A)はこれらの成分に対して強固に吸着しコンプレックスが生成し、それが汚泥粒子と架橋吸着することで凝集フロックが形成される。汚泥のVTSは、この汚泥中のアニオン−両性の有機高分子成分の指標であり、VTSの値が低ければ、それだけアミジン系カチオン性ポリマー(A)と反応しうる成分の含有量は少ない汚泥性状であると考えられる。本発明が対象とする汚泥の性状においては、生物処理の行程で汚泥中のアニオン−両性の有機高分子成分が微生物体により分解されるため、汚泥のVTSの値は低い傾向にある。このようにVTSが低い汚泥に対しては、アミジン系カチオン性ポリマー(A)とコンプレックスを生成する機能を代替しうる両性ポリマー(B)の併用がより有効であると考えられる。本発明が対象とする汚泥のVTSは5〜65%/TSであり、好ましくは5〜50%/TSである。本汚泥脱水剤を前記汚泥に加えることで、水切れが良く、より優れた強度を持つ凝集フロックを形成し得ることができる。   In general, there are anionic and amphoteric organic polymer components in sludge, and the amidine-based cationic polymer (A) is strongly adsorbed to these components to form a complex, which is adsorbed on the sludge particles and cross-linked. By doing so, an aggregated floc is formed. Sludge VTS is an indicator of anionic-amphoteric organic polymer components in this sludge. The lower the VTS value, the less the content of components that can react with the amidine-based cationic polymer (A). It is thought that. In the sludge properties targeted by the present invention, the anionic-amphoteric organic polymer components in the sludge are decomposed by the microorganisms in the process of biological treatment, and therefore the VTS value of the sludge tends to be low. Thus, it is considered that the combined use of the amidine-based cationic polymer (A) and the amphoteric polymer (B) capable of substituting the function of forming a complex is more effective for sludge having a low VTS. The VTS of the sludge targeted by the present invention is 5 to 65% / TS, preferably 5 to 50% / TS. By adding the present sludge dehydrating agent to the sludge, it is possible to form an agglomerated floc with good drainage and superior strength.

前記の電気伝導度は、汚泥中の各種イオン、塩類の量を示す。電気伝導度の測定は、日本工業標準調査会データベース 「JIS、K0102、工場排水試験方法」に準拠して行われる。   The electrical conductivity indicates the amount of various ions and salts in the sludge. The electrical conductivity is measured in accordance with the Japanese Industrial Standards Committee database “JIS, K0102, Factory Wastewater Test Method”.

前記の繊維分は、具体的に以下のような手順で測定される。
(i)汚泥100mlを200メッシュの篩いで濾過し、濾物を充分に洗浄する。
(ii)105℃で12時間乾燥し秤量する。
(iii)その後600℃で2時間加熱し、灰化後、秤量する。
(iv)105℃乾燥後の値から灰化後の値を引いた値(汚泥中繊維量)(g)を計算する。
(v)元の汚泥100mlをそのまま105℃で6時間乾燥し残量(総固形分量)(g)を秤量する。
(vi)下記式で繊維分(%/TS)を計算する。

Figure 2014155898
The fiber content is specifically measured by the following procedure.
(I) 100 ml of sludge is filtered through a 200-mesh sieve, and the residue is thoroughly washed.
(Ii) Dry at 105 ° C. for 12 hours and weigh.
(Iii) Then, it heats at 600 degreeC for 2 hours, weighs after ashing.
(Iv) A value obtained by subtracting the value after ashing from the value after drying at 105 ° C. (fiber amount in sludge) (g) is calculated.
(V) 100 ml of the original sludge is directly dried at 105 ° C. for 6 hours, and the remaining amount (total solid content) (g) is weighed.
(Vi) The fiber content (% / TS) is calculated by the following formula.
Figure 2014155898

前記のVTSは、具体的に以下のような手順で測定される。
(i)汚泥100mlをそのまま105℃で6時間乾燥し残量(総固形分量)(g)を秤量する。
(ii)その後600℃で2時間加熱し、灰化後の残量(焼却重量)(g)を秤量する。
(iii)下記式で強熱減量物(VTS)(%/TS)を計算する。

Figure 2014155898
The VTS is specifically measured by the following procedure.
(I) 100 ml of sludge is directly dried at 105 ° C. for 6 hours, and the remaining amount (total solid content) (g) is weighed.
(Ii) Thereafter, the mixture is heated at 600 ° C. for 2 hours, and the remaining amount after incineration (incineration weight) (g) is weighed.
(Iii) Calculate the ignition loss (VTS) (% / TS) by the following formula.
Figure 2014155898

<汚泥脱水処理方法>
次に、本発明の汚泥脱水処理方法について説明する。本発明において、汚泥脱水剤の汚泥への添加方法及び凝集フロックの形成方法としては、公知の方法が適用できる。
<Sludge dewatering method>
Next, the sludge dewatering method of the present invention will be described. In the present invention, known methods can be applied as a method for adding a sludge dewatering agent to sludge and a method for forming agglomerated floc.

汚泥脱水剤の添加方法としては、汚泥脱水剤を水に0.05〜0.5質量%の濃度で溶解させた後、汚泥に添加することが好ましい。また、汚泥脱水剤は、アミジン系カチオン性ポリマー(A)、両性ポリマー(B)、非アミジン系カチオン性ポリマー(C)を混合した1剤型薬剤として添加することが好ましい。場合によっては、汚泥脱水剤を粉末状のまま汚泥に添加しても良い。また、汚泥脱水剤の水への溶解性を向上させるために酸性物質を添加しても良い。酸性物質としては、例えば、スルファミン酸が挙げられる。   As a method for adding the sludge dewatering agent, it is preferable that the sludge dewatering agent is dissolved in water at a concentration of 0.05 to 0.5% by mass and then added to the sludge. Moreover, it is preferable to add a sludge dehydrating agent as a 1 agent type | mold chemical | medical agent which mixed the amidine-type cationic polymer (A), the amphoteric polymer (B), and the non-amidine-type cationic polymer (C). In some cases, the sludge dehydrating agent may be added to the sludge in a powder form. Further, an acidic substance may be added in order to improve the solubility of the sludge dewatering agent in water. Examples of the acidic substance include sulfamic acid.

凝集を形成した後は、脱水装置を用いて凝集フロックを脱水し、脱水ケーキを得ることにより汚泥脱水処理を完了することができる。脱水機としては、例えば、フィルタープレス型脱水機、スクリュープレス型脱水機、圧入式スクリュープレス型脱水機、真空型脱水機、ベルトプレス型脱水機、遠心型脱水機、多重円板型脱水機等が挙げられるが、特に汚泥のフロック径により脱水効果が大きく影響を受けるスクリュープレス型脱水機や遠心型脱水機において本発明の効果が顕著である。   After the aggregation is formed, the sludge dewatering treatment can be completed by dehydrating the aggregated flocs using a dehydrator and obtaining a dehydrated cake. Examples of dehydrators include filter press dehydrators, screw press dehydrators, press-fit screw press dehydrators, vacuum dehydrators, belt press dehydrators, centrifugal dehydrators, multiple disk dehydrators, etc. In particular, the effect of the present invention is remarkable in a screw press type dehydrator or a centrifugal type dehydrator whose dehydration effect is greatly influenced by the floc diameter of sludge.

汚泥脱水剤の添加量は、汚泥の性状、濃度などにより異なり一概には言えないが、大まかな目安として、汚泥の乾燥固形物100質量部に対し、通常0.1〜5.0質量部、好ましくは0.5〜2.0質量部である。汚泥脱水剤の添加量が0.1質量部以上であれば、十分な粒径及び強度を有する凝集フロックが形成されやすい。また、汚泥脱水剤の添加量が5.0質量部以下であれば、汚泥脱水剤が過剰となることで形成される凝集フロックの粒径が小さくなったり、処理速度が遅くなったり、脱水ケーキの含水率が高くなったりすることを抑制しやすい。   The amount of sludge dehydrating agent varies depending on the properties and concentration of the sludge and cannot be generally specified, but as a rough guideline, it is usually 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the dried sludge solids, Preferably it is 0.5-2.0 mass parts. If the added amount of the sludge dehydrating agent is 0.1 parts by mass or more, agglomerated flocs having a sufficient particle size and strength are easily formed. Moreover, if the amount of sludge dehydrating agent added is 5.0 parts by mass or less, the particle size of the aggregated floc formed by the excess sludge dehydrating agent is reduced, the processing speed is reduced, or the dehydrated cake It is easy to suppress that the moisture content of becomes high.

また、本発明においては、汚泥脱水剤に加えて、無機凝結剤及び/又は有機凝結剤(以下、これらをまとめて単に「凝結剤」という)を併用しても良い。前期の汚泥脱水剤は、凝結剤と併用しても、汚泥に対する脱水効果を十分に発揮できる。無機凝結剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、ポリ鉄(ポリ硫酸鉄、ポリ塩化鉄等)が挙げられる。有機凝結剤としては、例えば、ポリアミン、ポリジアリルジメチルアンモニウムクロライド、ポリジアルキルアミノアルキルメタクリレートのアルキルクロライド4級塩、カチオン性界面活性剤が挙げられる。   In the present invention, an inorganic coagulant and / or an organic coagulant (hereinafter collectively referred to simply as “coagulant”) may be used in combination with the sludge dewatering agent. Even if the sludge dehydrating agent in the previous period is used in combination with a coagulant, it can sufficiently exert the dewatering effect on the sludge. Examples of the inorganic coagulant include sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate, ferric sulfate, polyiron (polyiron sulfate, polyiron chloride, etc.). Examples of the organic coagulant include polyamine, polydiallyldimethylammonium chloride, alkyl chloride quaternary salt of polydialkylaminoalkyl methacrylate, and cationic surfactant.

凝結剤の添加時期は、特に制限はないが、汚泥脱水剤を添加する前の工程で添加することが好ましい。凝結剤の添加量は、本汚泥脱水剤100質量部に対し、通常5〜3000質量部である。凝結剤の前記添加量が5質量部未満であると、凝結剤を併用した効果が得られ難く、汚泥によっては本汚泥脱水剤の性能が発揮され難くなる。また、凝結剤の添加量が3000質量部を超えると、特に無機凝結剤では添加量の増加に伴って脱水ケーキの含水率が増加する傾向がある。   The timing of adding the coagulant is not particularly limited, but it is preferably added in the step before adding the sludge dewatering agent. The addition amount of the coagulant is usually 5 to 3000 parts by mass with respect to 100 parts by mass of the present sludge dehydrating agent. When the addition amount of the coagulant is less than 5 parts by mass, the effect of using the coagulant is difficult to obtain, and depending on the sludge, the performance of the present sludge dehydrating agent is difficult to be exhibited. Moreover, when the addition amount of a coagulant exceeds 3000 mass parts, especially in an inorganic coagulant, there exists a tendency for the moisture content of a dewatering cake to increase with the increase in addition amount.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明はその要旨を超えない限り以下の記載によって限定されるものではない。なお、本実施例における「%」は特に断りのない限り「質量%」を示す。以下の製造例で得られた各ポリマーについては、下記に示す還元粘度の測定を行った。測定には、粉末状の汚泥脱水剤を用いた。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited by the following description, unless the summary is exceeded. Note that “%” in this example represents “% by mass” unless otherwise specified. About each polymer obtained by the following manufacture examples, the reduced viscosity shown below was measured. For the measurement, a powdery sludge dehydrating agent was used.

[還元粘度の測定]
1規定塩化ナトリウム水溶液中、0.1g/dlの溶液として25℃でオストワルドの粘度計により測定した。
[Measurement of reduced viscosity]
It measured with the Ostwald viscometer at 25 degreeC as a 0.1g / dl solution in 1N sodium chloride aqueous solution.

本実施例で用いた原料を以下に示す。
[モノマー]
(i)カチオン性モノマー:
(a)N,N−ジメチルアミノエチルアクリレート塩化メチル4級塩(以下、「DME」という。)、大阪有機化学工業社製、80%水溶液
(b)N,N−ジメチルアミノエチルメタクリレート塩化メチル4級塩(以下、「DMC」という。)、大阪有機化学工業社製、80%水溶液
(ii)アニオン性モノマー:
アクリル酸(以下、「AA」という。)、三菱化学社製、50%水溶液
(iii)非イオン性モノマー:
(a)アクリルアミド(以下、「AAM」という。)、ダイヤニトリックス社製、50%水溶液
(b)アクリロニトリル(以下、「AN」という。)、ダイヤニトリックス社製、純度99%
(c)N−ビニルホルムアミド(以下、「NVF」という。)、ダイヤニトリックス社製、純度91%水溶液
[開始剤]
(i)2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン(DAROCUR1173)、(以下、「D−1173」という。)、Ciba社製
(ii)2,2’−アゾビス(2−アミジノプロパン)2塩酸塩(V−50)(以下、「V−50」という。)、和光純薬社製
[連鎖移動剤]
次亜リン酸ナトリウム(以下、「HPA」という。)、和光純薬社製
The raw materials used in this example are shown below.
[monomer]
(I) Cationic monomer:
(A) N, N-dimethylaminoethyl acrylate methyl chloride quaternary salt (hereinafter referred to as “DME”), manufactured by Osaka Organic Chemical Industry Co., Ltd., 80% aqueous solution (b) N, N-dimethylaminoethyl methacrylate methyl chloride 4 Grade salt (hereinafter referred to as “DMC”), manufactured by Osaka Organic Chemical Industry Co., Ltd., 80% aqueous solution (ii) anionic monomer:
Acrylic acid (hereinafter referred to as “AA”), manufactured by Mitsubishi Chemical Corporation, 50% aqueous solution (iii) nonionic monomer:
(A) Acrylamide (hereinafter referred to as “AAM”), manufactured by Daianitrix, 50% aqueous solution (b) Acrylonitrile (hereinafter referred to as “AN”), manufactured by Diaanitrix, 99% purity
(C) N-vinylformamide (hereinafter referred to as “NVF”), manufactured by Diatrix, Inc., 91% pure aqueous solution [initiator]
(I) 2-hydroxy-2-methyl-1-phenylpropan-1-one (DAROCUR1173) (hereinafter referred to as “D-1173”), (ii) 2,2′-azobis (2- Amidinopropane) dihydrochloride (V-50) (hereinafter referred to as “V-50”), manufactured by Wako Pure Chemical Industries, Ltd. [chain transfer agent]
Sodium hypophosphite (hereinafter referred to as “HPA”), manufactured by Wako Pure Chemical Industries, Ltd.

<アミジン系カチオン性ポリマー(A)の合成>
[製造例1]
攪拌機、窒素導入管、冷却管を備えた内容積50mlの四つ口フラスコにANとNVFの混合物(モル比55:45)6gと蒸留水34gとの混合物を入れた。窒素ガス中攪拌しつつ60℃に昇温し、V−50の0.12gを添加し、更に、3時間保持し、水中にポリマーが析出した懸濁物を得た。懸濁物に蒸留水20g添加し、更に、濃塩酸をポリマーのホルミル基に対し当量添加し100℃で4時間保持し、黄色の高粘度液を得た。これを多量のアセトンに添加し、ポリマーを析出させ、細断し、60℃で1昼夜乾燥後粉砕してアミジン系カチオン性ポリマー(A)(ポリマーA)を得た。
<Synthesis of Amidine Cationic Polymer (A)>
[Production Example 1]
A mixture of 6 g of a mixture of AN and NVF (molar ratio 55:45) and 34 g of distilled water was placed in a 50-ml four-necked flask equipped with a stirrer, a nitrogen introduction tube, and a cooling tube. While stirring in nitrogen gas, the temperature was raised to 60 ° C., 0.12 g of V-50 was added, and the mixture was further maintained for 3 hours to obtain a suspension in which the polymer was precipitated in water. 20 g of distilled water was added to the suspension, and concentrated hydrochloric acid was added in an equivalent amount to the formyl group of the polymer and kept at 100 ° C. for 4 hours to obtain a yellow high-viscosity liquid. This was added to a large amount of acetone, the polymer was precipitated, chopped, dried at 60 ° C. for one day and then pulverized to obtain an amidine cationic polymer (A) (polymer A).

ポリマーAを重水に溶解させ、NMRスペクトロメーター(日本電子社製、270MHz)にて13C−NMRスペクトルを測定した。13C−NMRスペクトルの各繰り返し単位に対応したピークの積分値より各単位の組成を算出した。前記一般式(1)及び(2)の構造単位は、区別することなく、その総量として求めた。結果を表1に示す。 Polymer A was dissolved in heavy water, and a 13 C-NMR spectrum was measured with an NMR spectrometer (manufactured by JEOL Ltd., 270 MHz). The composition of each unit was calculated from the integrated value of the peak corresponding to each repeating unit of the 13 C-NMR spectrum. The structural units of the general formulas (1) and (2) were determined as the total amount without distinction. The results are shown in Table 1.

Figure 2014155898
Figure 2014155898

<両性ポリマー(B)の合成>
[製造例2]
DMEの822.8g、AAの600.0g、AAMの100.0gを、内容積2000ml褐色耐熱瓶に投入し、HPAの3.0gと蒸留水を加え、総質量が2000gのモノマー水溶液(DME:AA:AAM=27.0:36.2:36.8(モル%)、モノマー濃度50%)を調製した。更に、D−1173を、モノマー水溶液の総質量に対して、150ppmとなるように投入し、これに窒素ガスを30分間吹き込みながらモノマー水溶液の温度を20℃に調節した。
<Synthesis of amphoteric polymer (B)>
[Production Example 2]
822.8 g of DME, 600.0 g of AA, and 100.0 g of AAM were put into a brown heat resistant bottle with an internal volume of 2000 ml, 3.0 g of HPA and distilled water were added, and an aqueous monomer solution (DME: total mass of 2000 g) was added. AA: AAM = 27.0: 36.2: 36.8 (mol%), monomer concentration 50%) was prepared. Furthermore, D-1173 was added so that it might become 150 ppm with respect to the total mass of monomer aqueous solution, and the temperature of monomer aqueous solution was adjusted to 20 degreeC, blowing nitrogen gas into this for 30 minutes.

その後、モノマー水溶液をステンレス反応容器に移し、容器の下方から16℃の水を噴霧しながら、ケミカルランプを用いて、容器の上方から5W/mの照射強度で、表面温度計が40℃になるまで光を照射した。表面温度計が40℃に到達した後は、0.3W/mの照射強度で30分間光を照射した。更に、モノマーの残存量を低減させるために、照射強度を50W/mにして10分間光を照射した。これにより、含水ゲル状のポリマーを得た。以降、製造例1と同様の操作を行い、両性ポリマー(B)(ポリマーB−1)を得た。得られた含水ゲル状のポリマーを容器から取り出し、小型ミートチョッパーを用いて解砕した後、温度60℃で16時間乾燥した。その後、ウィレー型粉砕機を用いて乾燥したポリマーを粉砕し両性ポリマー(B)(ポリマーB−1) Thereafter, the aqueous monomer solution is transferred to a stainless steel reaction vessel, and sprayed with water at 16 ° C. from below the vessel, using a chemical lamp, the surface thermometer reaches 40 ° C. with an irradiation intensity of 5 W / m 2 from above the vessel. Light was irradiated until After the surface thermometer reached 40 ° C., light was irradiated for 30 minutes at an irradiation intensity of 0.3 W / m 2 . Furthermore, in order to reduce the residual amount of monomer, the irradiation intensity was 50 W / m 2 and irradiation was performed for 10 minutes. Thereby, a hydrogel polymer was obtained. Thereafter, the same operation as in Production Example 1 was performed to obtain an amphoteric polymer (B) (polymer B-1). The obtained hydrogel polymer was taken out from the container, crushed using a small meat chopper, and then dried at a temperature of 60 ° C. for 16 hours. Thereafter, the dried polymer was pulverized using a Willet pulverizer, and the amphoteric polymer (B) (polymer B-1)

[製造例3〜14]
製造例2において、各モノマーおよびHPAの量を調節し、表2に記載の割合に変更した以外は、製造例2と同様の操作を行い、両性ポリマー(B)(ポリマーB−2〜11、b−1、2)を得た。
[Production Examples 3 to 14]
In Production Example 2, the amount of each monomer and HPA was adjusted, and the same operation as in Production Example 2 was carried out except that the proportions shown in Table 2 were changed, and the amphoteric polymer (B) (Polymers B-2 to 11, b-1 and 2) were obtained.

<非アミジン系カチオン性ポリマー(C)の合成>
[製造例15〜17]
製造例2において、各モノマーおよびHPAの量を調節し、表2に記載の割合に変更した以外は、製造例2と同様の操作を行い、非アミジン系カチオン性ポリマー(C)(ポリマーC−1〜3)を得た。
<Synthesis of non-amidine cationic polymer (C)>
[Production Examples 15 to 17]
In Production Example 2, the same operations as in Production Example 2 were performed except that the amounts of each monomer and HPA were adjusted and changed to the ratios shown in Table 2, and the non-amidine cationic polymer (C) (polymer C- 1-3) were obtained.

Figure 2014155898
Figure 2014155898

[汚泥の電気伝導度の測定]
汚泥の電気伝導度は、上述の電気伝導度の測定方法によって測定した。
[Measurement of electrical conductivity of sludge]
The electrical conductivity of sludge was measured by the above-described method for measuring electrical conductivity.

[汚泥の繊維分の測定]
汚泥の繊維分は、上述の繊維分の測定方法によって測定した。
[Measurement of fiber content of sludge]
The fiber content of sludge was measured by the above-described fiber content measurement method.

[汚泥のVTSの測定]
汚泥のVTSは、上述のVTSの測定方法によって測定した。
[Measurement of sludge VTS]
The VTS of sludge was measured by the above-described VTS measurement method.

[汚泥のTSの測定]
汚泥濃度(以下、TSという。)は、具体的に以下の測定方法によって測定した。
(i)汚泥100mlを採取し重量(汚泥総重量)(g)を秤量する。
(ii)汚泥100mlをそのまま105℃で6時間乾燥し残量(総固形分量)(g)を秤量する。
(iii)下記式で汚泥濃度(TS)(%)を計算する。

Figure 2014155898
[Measurement of sludge TS]
The sludge concentration (hereinafter referred to as TS) was specifically measured by the following measuring method.
(I) 100 ml of sludge is collected and weighed (total sludge weight) (g).
(Ii) 100 ml of sludge is dried as it is at 105 ° C. for 6 hours, and the remaining amount (total solid content) (g) is weighed.
(Iii) The sludge concentration (TS) (%) is calculated by the following formula.
Figure 2014155898

[実施例1〜11]
(使用汚泥)
化学産業の廃水処理施設から発生する余剰汚泥として、T株式会社の樹脂・繊維工場の廃水処理施設で採取した余剰汚泥で次の特性を有する汚泥を用いた。即ち、JIS規格に記載された分析方法を用いて測定された汚泥のVTSが30.2%、TSが1.14%、電気伝導度が25.7mS/cm、繊維分が0.5%/TSである汚泥。
[Examples 1 to 11]
(Used sludge)
As the excess sludge generated from the wastewater treatment facility in the chemical industry, surplus sludge collected at the wastewater treatment facility at the resin / fiber factory of T Corporation was used. That is, the VTS of sludge measured using the analysis method described in the JIS standard is 30.2%, TS is 1.14%, electrical conductivity is 25.7 mS / cm, and fiber content is 0.5% / Sludge that is TS.

(脱水試験)
先ず、500mlビーカーに前記汚泥の300mlを採取した。次いで、表1に記載のポリマーを表4に記載の各混合比率で0.3%に溶解して汚泥脱水剤水溶液を調製し、これを表4に記載の濃度になるよう添加した後、スパチュラにより、攪拌速度:180回転/分、攪拌時間:60秒間の条件下に撹拌混合して凝集フロックを形成させ、汚泥の脱水処理を行った。後述の評価結果を表3に示す。
(Dehydration test)
First, 300 ml of the sludge was collected in a 500 ml beaker. Next, the polymer shown in Table 1 was dissolved in 0.3% at each mixing ratio shown in Table 4 to prepare a sludge dewatering agent aqueous solution, and this was added to the concentration shown in Table 4, and then the spatula Thus, agitation flocs were formed by stirring and mixing under the conditions of stirring speed: 180 rotations / minute, stirring time: 60 seconds, and sludge was dehydrated. The evaluation results described later are shown in Table 3.

[比較例1〜7]
汚泥脱水剤に用いたポリマーを表3に示す通りに変更した以外は、実施例1と同様にして凝集フロックを形成させ、汚泥の脱水処理を行った。後述の評価結果を表3に示す。
[Comparative Examples 1 to 7]
Except that the polymer used in the sludge dehydrating agent was changed as shown in Table 3, coagulated flocs were formed in the same manner as in Example 1, and sludge was dehydrated. The evaluation results described later are shown in Table 3.

[評価方法]
(凝集フロック粒径、濾過性能、濾過水のSS量)
各例において凝集フロックを形成させた後に攪拌を止め、凝集フロック粒径を目視により測定した。その後、予め濾布を敷いたヌッチェに凝集した汚泥を移し、濾過性能(10秒間の濾過水量)を測定した。このとき、60秒間濾過した後の濾過水のSS量を目視により以下の基準で評価した。
[Evaluation method]
(Agglomerated floc particle size, filtration performance, SS amount of filtered water)
In each example, after agglomerated floc was formed, stirring was stopped and the agglomerated floc particle size was measured visually. Thereafter, the coagulated sludge was transferred to Nutsche previously laid with a filter cloth, and the filtration performance (the amount of filtered water for 10 seconds) was measured. At this time, the SS amount of filtrate after filtration for 60 seconds was visually evaluated according to the following criteria.

(濾過水のSS量の評価基準)
− :濾過水がほとんど透き通っており、浮遊物はほぼ見られない(SS量目安:50ppm未満)。
+ :濾過水に一部濁りが見られ、浮遊物がわずかに存在する(SS量目安:50ppm以上100ppm未満)。
++ :濾過水に部分的に濁りが見られ、浮遊物がところどころ存在する(SS量目安:100ppm以上200ppm未満)。
+++ :濾過水に多数の濁りが見られ、浮遊物が全体的に存在する(SS量目安:200ppm以上500ppm未満)。
++++:濾過水に全体的に多数の濁りが見られ、浮遊物が全体的に存在し、一部粗大な大きさで存在する(SS量目安:500ppm以上1000ppm未満)。
× :濾過水が完全に濁り、粗大な浮遊物が多数存在する(SS量目安:1000ppm以上)。
(Evaluation criteria for SS amount of filtered water)
-: Filtration water is almost transparent and suspended matter is hardly seen (SS amount standard: less than 50 ppm).
+: Part of the filtered water is turbid, and there is a slight amount of suspended matter (SS amount guideline: 50 ppm or more and less than 100 ppm).
++: Partly turbidity is observed in the filtered water, and there are some floating substances (SS amount guideline: 100 ppm or more and less than 200 ppm).
+++: Numerous turbidity is observed in the filtered water, and the suspended matter is entirely present (SS guideline: 200 ppm or more and less than 500 ppm).
++++: Many turbidity is observed in the filtered water as a whole, and the suspended matter is present as a whole, and is partially present in a coarse size (SS guideline: 500 ppm or more and less than 1000 ppm).
X: The filtered water is completely turbid, and there are many coarse suspended matters (SS amount guideline: 1000 ppm or more).

(凝集フロック強度)
濾過濃縮した汚泥(凝集フロック)を濾布上で50回転がし、凝集フロックの強度(団粒性)を以下の基準で評価した。
(Cohesive floc strength)
The filtered and concentrated sludge (aggregated floc) was rotated 50 times on the filter cloth, and the strength (aggregation property) of the aggregated floc was evaluated according to the following criteria.

AA:濾布上で転がすことにより水が切れ、凝集フロックが数個の団子状になる。
A :濾布上で転がすことにより水が切れ、凝集フロックが一塊状になる。
B :濾布上で転がすことにより水が切れるが、凝集フロックが崩れ塊状にならない。
C :濾布上で転がすことにより、凝集汚泥が崩れて流れ、ドロドロになる。
AA: Water is cut off by rolling on the filter cloth, and the aggregated flocs form several dumplings.
A: Water is cut off by rolling on the filter cloth, and the aggregated flocs become one lump.
B: Water is cut by rolling on the filter cloth, but the aggregated floc is broken and does not form a lump.
C: By rolling on the filter cloth, the coagulated sludge flows and becomes muddy.

(脱水ケーキの含水率)
凝集フロック強度の測定後、凝集フロックを0.1MPaの圧力で60秒間プレス脱水して脱水ケーキを得て、その含水率を測定した。含水率の測定は、(財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297に準拠して行った。
(Water content of dehydrated cake)
After measurement of the aggregate floc strength, the aggregate floc was press dehydrated at a pressure of 0.1 MPa for 60 seconds to obtain a dehydrated cake, and the water content was measured. The water content was measured according to the Japan Sewerage Association, “Sewerage Test Method, Vol. 1997 edition” p296-297.

Figure 2014155898
Figure 2014155898

表3に示すように、本発明の汚泥脱水剤を用いた実施例1〜11では、粗大な凝集フロックを生成し、脱水ケーキの含水率も低かった。特に、両性ポリマー(B)の還元粘度が1.0〜7.5dl/gの範囲内であり、且つA/Cが0.50〜1.30の範囲内である実施例1、2、7、8、11では、優れた強度を持ち、脱水性に優れた凝集フロックが得られた。   As shown in Table 3, in Examples 1 to 11 using the sludge dehydrating agent of the present invention, coarse agglomerated flocs were generated, and the moisture content of the dehydrated cake was low. In particular, Examples 1, 2, and 7 in which the reduced viscosity of the amphoteric polymer (B) is in the range of 1.0 to 7.5 dl / g and A / C is in the range of 0.50 to 1.30. 8 and 11, aggregated flocs having excellent strength and excellent dewaterability were obtained.

比較例1,2は、両性ポリマー(B)の還元粘度が本願発明の所定範囲から外れた汚泥脱水剤を用いた例で、いずれも生成した凝集フロックが小さく、凝集フロックの強度が弱く、濾過性能が低く、脱水ケーキの含水率が高かった。   Comparative Examples 1 and 2 are examples using a sludge dehydrating agent in which the reduced viscosity of the amphoteric polymer (B) deviated from the predetermined range of the present invention. Both produced aggregate flocs were small, and the strength of the aggregate flocs was weak. The performance was low and the moisture content of the dehydrated cake was high.

比較例3〜7、各ポリマーの混合比が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例で、凝集フロックのフロック径が小さく、凝集フロックの強度も弱く、ろ過性能も低かった。   Comparative Examples 3 to 7 are examples using a sludge dehydrating agent in which the mixing ratio of each polymer is outside the range of the predetermined ratio of the present invention. The floc diameter of the flocs is small, the strength of the flocs is low, and the filtration performance is low. It was.

[実施例12〜16、比較例8〜14]
(使用汚泥)
食品産業の廃水処理施設から発生する余剰汚泥として、H株式会社の製糖工場の廃水処理施設で採取した余剰汚泥で次の特性を有する汚泥を用いた。即ち、JIS規格に記載された分析方法を用いて測定された汚泥のVTSが41.3%、TSが1.36%、電気伝導度が6.7mS/cm、繊維分が1.4%/TSである汚泥。
[Examples 12 to 16, Comparative Examples 8 to 14]
(Used sludge)
As surplus sludge generated from the wastewater treatment facility of the food industry, surplus sludge collected at the wastewater treatment facility of the sugar factory of H Co., Ltd. and having the following characteristics was used. That is, the VTS of sludge measured using the analysis method described in the JIS standard is 41.3%, TS is 1.36%, electric conductivity is 6.7 mS / cm, and fiber content is 1.4% / Sludge that is TS.

(脱水試験)
汚泥脱水剤に用いたポリマーを表4に示す通りに変更した以外は、実施例1と同様の脱水試験を実施した。実施例12〜16及び比較例8〜14における評価結果を表4に示す。
(Dehydration test)
A dehydration test similar to Example 1 was performed except that the polymer used for the sludge dehydrating agent was changed as shown in Table 4. The evaluation results in Examples 12 to 16 and Comparative Examples 8 to 14 are shown in Table 4.

Figure 2014155898
Figure 2014155898

表4に示すように、本発明の汚泥脱水剤を用いた実施例12〜16では、粗大な凝集フロックを生成し、脱水ケーキの含水率も低かった。特に、両性ポリマー(B)の還元粘度が1.0〜7.5dl/gの範囲内であり、且つA/Cが0.50〜1.30の範囲内である実施例12、13、16では、優れた強度を持ち、脱水性に優れた凝集フロックが得られた。   As shown in Table 4, in Examples 12 to 16 using the sludge dehydrating agent of the present invention, coarse aggregated flocs were generated, and the moisture content of the dehydrated cake was low. In particular, Examples 12, 13, and 16 in which the reduced viscosity of the amphoteric polymer (B) is in the range of 1.0 to 7.5 dl / g and A / C is in the range of 0.50 to 1.30. Then, an agglomerated floc having excellent strength and excellent dewaterability was obtained.

比較例8,9は、両性ポリマー(B)の還元粘度が本願発明の所定範囲から外れた汚泥脱水剤を用いた例で、いずれも生成した凝集フロックが小さく、凝集フロックの強度が弱く、濾過性能が低く、脱水ケーキの含水率が高かった。   Comparative Examples 8 and 9 are examples using a sludge dehydrating agent in which the reduced viscosity of the amphoteric polymer (B) deviated from the predetermined range of the present invention. Both produced aggregated flocs were small, and the strength of the aggregated flocs was weak. The performance was low and the moisture content of the dehydrated cake was high.

比較例10〜14、各ポリマーの混合比が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例で、凝集フロックのフロック径が小さく、凝集フロックの強度も弱く、ろ過性能も低かった   Comparative Examples 10 to 14 are examples using a sludge dehydrating agent in which the mixing ratio of each polymer deviates from the predetermined ratio range of the present invention. The floc diameter of the floc floc is small, the floc floc strength is weak, and the filtration performance is low. The

[実施例17〜20及び比較例15、16]
(使用汚泥)
埋立処分場の廃水処理施設から発生する凝集沈殿汚泥として、O株式会社の廃水処理施設で採取した凝集沈殿汚泥で次の特性を有する汚泥を用いた。即ち、JIS規格に記載された分析方法を用いて測定された汚泥のVTSが18.4%、TSが2.77%、電気伝導度が16.8mS/cm、繊維分が0.4%/TSである汚泥。
[Examples 17 to 20 and Comparative Examples 15 and 16]
(Used sludge)
As the coagulated sediment sludge generated from the wastewater treatment facility at the landfill disposal site, the coagulated sediment sludge collected at the wastewater treatment facility of O Co., Ltd. was used. That is, the VTS of sludge measured using the analysis method described in the JIS standard is 18.4%, TS is 2.77%, electrical conductivity is 16.8 mS / cm, and fiber content is 0.4% / Sludge that is TS.

(脱水試験)
汚泥脱水剤に用いたポリマーを表5に示す通りに変更した以外は、実施例1と同様の脱水試験を実施した。実施例17〜20及び比較例15、16における評価結果を表5に示す。
(Dehydration test)
A dehydration test similar to that of Example 1 was performed except that the polymer used for the sludge dehydrating agent was changed as shown in Table 5. The evaluation results in Examples 17 to 20 and Comparative Examples 15 and 16 are shown in Table 5.

Figure 2014155898
Figure 2014155898

表5に示すように、本発明の汚泥脱水剤を用いた実施例17〜20では、粗大な凝集フロックを生成し、脱水ケーキの含水率も低かった。特に、両性ポリマー(B)の還元粘度が1.0〜7.5dl/gの範囲内であり、且つA/Cが0.50〜1.30の範囲内である実施例17、18では、優れた強度を持ち、脱水性に優れた凝集フロックが得られた。   As shown in Table 5, in Examples 17 to 20 using the sludge dewatering agent of the present invention, coarse agglomerated flocs were generated, and the moisture content of the dewatered cake was low. In particular, in Examples 17 and 18 where the reduced viscosity of the amphoteric polymer (B) is in the range of 1.0 to 7.5 dl / g and A / C is in the range of 0.50 to 1.30, Agglomerated flocs having excellent strength and excellent dewaterability were obtained.

比較例15,16は、両性ポリマー(B)の還元粘度が本願発明の所定範囲から外れた汚泥脱水剤を用いた例で、比較例15では凝集フロックが形成せず、また比較例16では生成したフロックが小さく、生成フロックの強度が弱く、濾過性能が低く、脱水ケーキの含水率が高かった。   Comparative Examples 15 and 16 are examples using a sludge dehydrating agent in which the reduced viscosity of the amphoteric polymer (B) is out of the predetermined range of the present invention. In Comparative Example 15, no floc flocs are formed, and in Comparative Example 16, it is generated. The flocs produced were small, the strength of the produced flocs was weak, the filtration performance was low, and the moisture content of the dehydrated cake was high.

[比較例17〜19]
(使用汚泥)
化学産業の廃水処理施設から発生する余剰汚泥として、Y株式会社の樹脂・繊維工場の廃水処理施設で採取した余剰汚泥で次の特性を有する汚泥を用いた。即ち、JIS規格に記載された分析方法を用いて測定された汚泥のVTSが58.0%、TSが0.83%、電気伝導度が0.3mS/cm、繊維分が8.5%/TSである汚泥。
[Comparative Examples 17 to 19]
(Used sludge)
As surplus sludge generated from the wastewater treatment facility of the chemical industry, surplus sludge collected at the wastewater treatment facility of the resin / fiber factory of Y Corporation was used. That is, the VTS of sludge measured using the analysis method described in the JIS standard is 58.0%, TS is 0.83%, electric conductivity is 0.3 mS / cm, and fiber content is 8.5% / Sludge that is TS.

(脱水試験)
汚泥脱水剤に用いたポリマーを表6に示す通りに変更した以外は、実施例1と同様の脱水試験を実施した。比較例17〜19における評価結果を表6に示す。
(Dehydration test)
A dehydration test similar to Example 1 was performed except that the polymer used for the sludge dehydrating agent was changed as shown in Table 6. The evaluation results in Comparative Examples 17 to 19 are shown in Table 6.

Figure 2014155898
Figure 2014155898

表6は、汚泥の電気伝導度が本願発明の所定範囲から外れた汚泥を用いて脱水試験を実施した結果を示したものである。また、比較例17は本発明の汚泥脱水剤を用いた例であり、比較例18は各ポリマーの混合比が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例であるが、どちらも粗大な凝集フロックの生成し、脱水ケーキの含水率も低く、凝集性能は同等であった。   Table 6 shows the results of a dehydration test using sludge whose sludge has an electrical conductivity outside the predetermined range of the present invention. Comparative Example 17 is an example using the sludge dehydrating agent of the present invention, and Comparative Example 18 is an example using a sludge dehydrating agent in which the mixing ratio of each polymer is out of the predetermined ratio range of the present invention. In both cases, coarse flocculated flocs were formed, the moisture content of the dehydrated cake was low, and the flocculation performance was the same.

一方で、比較例19は、両性ポリマー(B)の還元粘度が本願発明の所定範囲から外れた汚泥脱水剤を用いた例であるが、フロック径、フロック強度、脱水ケーキ含水率は、比較例17と同等の結果であった。   On the other hand, Comparative Example 19 is an example using a sludge dehydrating agent in which the reduced viscosity of the amphoteric polymer (B) is outside the predetermined range of the present invention, but the floc diameter, floc strength, and dehydrated cake moisture content are comparative examples. The result was equivalent to 17.

[比較例20、21]
(使用汚泥)
化学工場の廃水処理施設から余剰発生するとして、N株式会社の繊維工場の廃水処理施設で採取した余剰汚泥で次の特性を有する汚泥を用いた。即ち、JIS規格に記載された分析方法を用いて測定された汚泥のVTSが60.5%、TSが1.63%、電気伝導度が6.7mS/cm、繊維分が11.5/TSである汚泥。
[Comparative Examples 20 and 21]
(Used sludge)
The surplus sludge collected at the wastewater treatment facility at the textile factory of N Corporation was used as sludge having the following characteristics as surplus from the wastewater treatment facility at the chemical factory. That is, the VTS of sludge measured using the analysis method described in the JIS standard is 60.5%, TS is 1.63%, electric conductivity is 6.7 mS / cm, and fiber content is 11.5 / TS. Is sludge.

(脱水試験)
汚泥脱水剤に用いたポリマーを表7に示す通りに変更した以外は、実施例1と同様の脱水試験を実施した。比較例20、21における評価結果を表7に示す。
(Dehydration test)
A dehydration test similar to that of Example 1 was performed except that the polymer used for the sludge dehydrating agent was changed as shown in Table 7. The evaluation results in Comparative Examples 20 and 21 are shown in Table 7.

Figure 2014155898
Figure 2014155898

表7は、汚泥の繊維分が本願発明の所定範囲から外れた汚泥を用いて脱水試験を実施した結果を示したものである。また、比較例20は本発明の汚泥脱水剤を用いた例であり、比較例21は各ポリマーの混合比が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例であるが、どちらも粗大な凝集フロックの生成し、脱水ケーキの含水率も低く、凝集性能は同等であった。   Table 7 shows the results of a dehydration test using sludge whose sludge fiber content is out of the predetermined range of the present invention. Comparative Example 20 is an example using the sludge dehydrating agent of the present invention, and Comparative Example 21 is an example using a sludge dehydrating agent in which the mixing ratio of each polymer is out of the predetermined ratio range of the present invention. In both cases, coarse flocculated flocs were formed, the moisture content of the dehydrated cake was low, and the flocculation performance was the same.

[比較例22、23]
(使用汚泥)
化学工場の廃水処理施設から発生する余剰汚泥として、S株式会社の染色工場の廃水処理施設で採取した余剰汚泥で次の特性を有する汚泥を用いた。即ち、JIS規格に記載された分析方法を用いて測定された汚泥のVTSが70.5%、TSが1.23%、電気伝導度が0.9mS/cm、繊維分が3.4%/TSである汚泥
[Comparative Examples 22 and 23]
(Used sludge)
As the excess sludge generated from the wastewater treatment facility of the chemical factory, the sludge having the following characteristics was used as the excess sludge collected at the wastewater treatment facility of the dyeing factory of S Corporation. That is, the VTS of the sludge measured using the analysis method described in the JIS standard is 70.5%, TS is 1.23%, electric conductivity is 0.9 mS / cm, and the fiber content is 3.4% / Sludge that is TS

(脱水試験)
汚泥脱水剤に用いたポリマーを表8に示す通りに変更した以外は、実施例1と同様の脱水試験を実施した。比較例22、23における評価結果を表8に示す。
(Dehydration test)
A dehydration test similar to that of Example 1 was performed except that the polymer used for the sludge dehydrating agent was changed as shown in Table 8. The evaluation results in Comparative Examples 22 and 23 are shown in Table 8.

Figure 2014155898
Figure 2014155898

表8は、汚泥のVTSが本願発明の所定範囲から外れた汚泥を用いて脱水試験を実施した結果を示したものである。また、比較例22は本発明の汚泥脱水剤を用いた例であり、比較例23は両性ポリマー(B)の還元粘度が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例であるが、どちらも粗大な凝集フロックの生成し、脱水ケーキの含水率も低く、凝集性能は同等であった。   Table 8 shows the results of a dehydration test using sludge whose sludge VTS deviated from the predetermined range of the present invention. Comparative Example 22 is an example using the sludge dehydrating agent of the present invention, and Comparative Example 23 is an example using a sludge dehydrating agent in which the reduced viscosity of the amphoteric polymer (B) is out of the predetermined ratio range of the present invention. In both cases, coarse agglomerate flocs were produced, the moisture content of the dehydrated cake was low, and the agglomeration performance was equivalent.

Claims (2)

電気伝導度が0.5〜50mS/cmであり、繊維分が0.5〜10%/TSで且つ強熱減量物(VTS)が5〜65%/TSの範囲である汚泥に汚泥脱水剤を添加した後に脱水処理する汚泥脱水処理方法において、汚泥脱水剤として、以下に記載のアミジン系カチオン性ポリマー(A)と両性ポリマー(B)と非アミジン系カチオン性ポリマー(C)の混合物から成り、各ポリマーの合計質量に対するアミジン系カチオン性ポリマー(A)の割合が10〜50質量%、両性ポリマー(B)の割合が10〜40質量%、非アミジン系カチオン性ポリマー(C)の割合が10〜80質量%である汚泥脱水剤を用いることを特徴とする汚泥脱水処理方法。
[アミジン系カチオン性ポリマー(A)]
下記一般式(1)及び/又は下記一般式(2)で表されるアミジン構成単位を含有するアミジン系カチオン性ポリマー。
Figure 2014155898
Figure 2014155898
(ただし、一般式(1)、(2)中、R、Rはそれぞれ独立に水素原子又はメチル基であり、Xは陰イオンである。)
[両性ポリマー(B)]
下記一般式(3)で表されるカチオン性構成単位と、アニオン性構成単位と、非イオン性構成単位を含有する両性ポリマーで、かつ、当該両性ポリマーを0.1g/dlの1規定塩化ナトリウム水溶液の25℃における還元粘度が0.1〜10.0dl/gである両性ポリマー。

Figure 2014155898
(式中、Rは、水素原子又はメチル基であり、R及びRは、水素原子又は炭素数が1〜4のアルキル基であり、Rは、炭素数が1〜4のアルキル基又はベンジル基であり、Yは、酸素原子又はNHであり、Zは、Cl、Br、又は1/2SO 2−であり、nは1〜3の整数である。)
[非アミジン系カチオン性ポリマー(C)]
前記一般式(3)で表されるカチオン性構成単位と、非イオン性構成単位を含有する非アミジン系カチオン性ポリマー。
Sludge dehydrating agent for sludge having electrical conductivity of 0.5-50 mS / cm, fiber content of 0.5-10% / TS and ignition loss (VTS) of 5-65% / TS. In the sludge dewatering treatment method in which the dewatering treatment is performed after the addition of water, the sludge dehydrating agent comprises a mixture of the following amidine-based cationic polymer (A), amphoteric polymer (B) and non-amidine-based cationic polymer (C). The ratio of the amidine cationic polymer (A) to the total mass of each polymer is 10 to 50% by mass, the ratio of the amphoteric polymer (B) is 10 to 40% by mass, and the ratio of the non-amidine cationic polymer (C) is A sludge dewatering method characterized by using a sludge dewatering agent of 10 to 80% by mass.
[Amidine-based cationic polymer (A)]
An amidine-based cationic polymer containing an amidine structural unit represented by the following general formula (1) and / or the following general formula (2).
Figure 2014155898
Figure 2014155898
(However, in general formula (1), (2), R < 1 >, R < 2 > is a hydrogen atom or a methyl group each independently, and X < - > is an anion.)
[Amphoteric polymer (B)]
1N sodium chloride, an amphoteric polymer containing a cationic structural unit represented by the following general formula (3), an anionic structural unit, and a nonionic structural unit, and 0.1 g / dl of the amphoteric polymer An amphoteric polymer having a reduced viscosity of 0.1 to 10.0 dl / g at 25 ° C. of an aqueous solution.

Figure 2014155898
(Wherein R 3 is a hydrogen atom or a methyl group, R 4 and R 5 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 is an alkyl having 1 to 4 carbon atoms. Y is an oxygen atom or NH, Z is Cl , Br , or 1 / 2SO 4 2− , and n is an integer of 1 to 3).
[Non-amidine cationic polymer (C)]
A non-amidine cationic polymer containing the cationic structural unit represented by the general formula (3) and a nonionic structural unit.
前記両性ポリマー(B)の含有するアニオン性構成単位の含有率をMaモル%、カチオン性構成単位の含有率をMcモル%としたとき、比Ma/Mcが0.35〜1.65である請求項1に記載の汚泥脱水処理方法。   When the content of the anionic structural unit contained in the amphoteric polymer (B) is Ma mol% and the content of the cationic structural unit is Mc mol%, the ratio Ma / Mc is 0.35 to 1.65. The sludge dewatering method according to claim 1.
JP2013027599A 2013-02-15 2013-02-15 Sludge dewatering method Active JP6131465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027599A JP6131465B2 (en) 2013-02-15 2013-02-15 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027599A JP6131465B2 (en) 2013-02-15 2013-02-15 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2014155898A true JP2014155898A (en) 2014-08-28
JP6131465B2 JP6131465B2 (en) 2017-05-24

Family

ID=51577163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027599A Active JP6131465B2 (en) 2013-02-15 2013-02-15 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP6131465B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150312A (en) * 2015-02-18 2016-08-22 三菱レイヨン株式会社 Coagulation treatment agent for waste water, and coagulation treatment method of waste water
WO2017073209A1 (en) * 2015-10-28 2017-05-04 三菱レイヨン株式会社 Method for treating organic waste water and composition for treating organic waste water
JP2017104791A (en) * 2015-12-08 2017-06-15 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method
WO2018199330A1 (en) * 2017-04-28 2018-11-01 三菱ケミカル株式会社 Treatment method for organic wastewater and use of same
CN115925208A (en) * 2022-11-07 2023-04-07 镇江市规划勘测设计集团有限公司 High-water-content waste slurry dehydration method based on controllable skeleton effect and preparation method of high-strength brick

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218399A (en) * 1993-01-27 1994-08-09 Mitsubishi Kasei Corp Sludge dewatering agent
JPH08155500A (en) * 1994-12-09 1996-06-18 Kurita Water Ind Ltd Sludge dewatering agent
JPH1085797A (en) * 1996-09-13 1998-04-07 Ebara Corp Dehydrating agent and dehydrating method for sludge
JPH1147799A (en) * 1997-08-06 1999-02-23 Ebara Corp Dehydration of sludge
JP2000176499A (en) * 1998-12-21 2000-06-27 Japan Organo Co Ltd Dehydration of inorganic oil-containing sludge
JP2004167465A (en) * 2002-11-18 2004-06-17 Kaya Frock Kk Sludge dehydrating agent
JP2006175427A (en) * 2004-11-25 2006-07-06 Daiyanitorikkusu Kk Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant
US20070187331A1 (en) * 2004-03-12 2007-08-16 Tony Whittaker Dewatering process
US20080053916A1 (en) * 2004-11-25 2008-03-06 Dia-Nitrix Co., Ltd. Method For Coagulating And Dewatering Sludge With Use Of Polymer Coagulant And Method For Coagulating And Percipitating Waste Water With Use Of Polymer Coagulant
JP2008055391A (en) * 2006-09-04 2008-03-13 Daiyanitorikkusu Kk Dehydration method of sludge
JP2008080256A (en) * 2006-09-28 2008-04-10 Hymo Corp Stable emulsion composition and method for dehydrating sludge
JP2010222505A (en) * 2009-03-25 2010-10-07 Hymo Corp Water-soluble polymer composition
JP2010264363A (en) * 2009-05-13 2010-11-25 Daiyanitorikkusu Kk Sludge dehydrating agent and sludge dehydration method
JP2013006159A (en) * 2011-06-27 2013-01-10 Daiyanitorikkusu Kk Sludge dehydration treatment method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218399A (en) * 1993-01-27 1994-08-09 Mitsubishi Kasei Corp Sludge dewatering agent
JPH08155500A (en) * 1994-12-09 1996-06-18 Kurita Water Ind Ltd Sludge dewatering agent
JPH1085797A (en) * 1996-09-13 1998-04-07 Ebara Corp Dehydrating agent and dehydrating method for sludge
JPH1147799A (en) * 1997-08-06 1999-02-23 Ebara Corp Dehydration of sludge
JP2000176499A (en) * 1998-12-21 2000-06-27 Japan Organo Co Ltd Dehydration of inorganic oil-containing sludge
JP2004167465A (en) * 2002-11-18 2004-06-17 Kaya Frock Kk Sludge dehydrating agent
US20070187331A1 (en) * 2004-03-12 2007-08-16 Tony Whittaker Dewatering process
JP2006175427A (en) * 2004-11-25 2006-07-06 Daiyanitorikkusu Kk Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant
US20080053916A1 (en) * 2004-11-25 2008-03-06 Dia-Nitrix Co., Ltd. Method For Coagulating And Dewatering Sludge With Use Of Polymer Coagulant And Method For Coagulating And Percipitating Waste Water With Use Of Polymer Coagulant
JP2008055391A (en) * 2006-09-04 2008-03-13 Daiyanitorikkusu Kk Dehydration method of sludge
JP2008080256A (en) * 2006-09-28 2008-04-10 Hymo Corp Stable emulsion composition and method for dehydrating sludge
JP2010222505A (en) * 2009-03-25 2010-10-07 Hymo Corp Water-soluble polymer composition
JP2010264363A (en) * 2009-05-13 2010-11-25 Daiyanitorikkusu Kk Sludge dehydrating agent and sludge dehydration method
JP2013006159A (en) * 2011-06-27 2013-01-10 Daiyanitorikkusu Kk Sludge dehydration treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150312A (en) * 2015-02-18 2016-08-22 三菱レイヨン株式会社 Coagulation treatment agent for waste water, and coagulation treatment method of waste water
WO2017073209A1 (en) * 2015-10-28 2017-05-04 三菱レイヨン株式会社 Method for treating organic waste water and composition for treating organic waste water
JPWO2017073209A1 (en) * 2015-10-28 2017-10-26 三菱ケミカル株式会社 Organic wastewater treatment method and organic wastewater treatment composition
JP2018153811A (en) * 2015-10-28 2018-10-04 三菱ケミカル株式会社 Processing method of organic waste water and composition for processing organic waste water
JP2017104791A (en) * 2015-12-08 2017-06-15 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method
WO2018199330A1 (en) * 2017-04-28 2018-11-01 三菱ケミカル株式会社 Treatment method for organic wastewater and use of same
JPWO2018199330A1 (en) * 2017-04-28 2020-03-12 三菱ケミカル株式会社 Method of treating organic wastewater and its use
US11459250B2 (en) 2017-04-28 2022-10-04 Hymo Corporation Treatment method for organic wastewater and use of same
JP7216967B2 (en) 2017-04-28 2023-02-02 ハイモ株式会社 Organic wastewater treatment method and its use
CN115925208A (en) * 2022-11-07 2023-04-07 镇江市规划勘测设计集团有限公司 High-water-content waste slurry dehydration method based on controllable skeleton effect and preparation method of high-strength brick
CN115925208B (en) * 2022-11-07 2023-11-10 镇江市规划勘测设计集团有限公司 High-water-content waste slurry dehydration method based on controllable skeleton effect and preparation method of high-strength bricks

Also Published As

Publication number Publication date
JP6131465B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
Du et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater
Zhen et al. Synergetic pretreatment of waste activated sludge by Fe (II)–activated persulfate oxidation under mild temperature for enhanced dewaterability
JP6378342B2 (en) Organic wastewater treatment method
JP6131465B2 (en) Sludge dewatering method
JP5700354B2 (en) Sludge dewatering agent and sludge dewatering treatment method
JP2011139997A (en) Coagulation treatment method for waste water
JP5427985B2 (en) Sludge dewatering agent and sludge dewatering method
Marey Effectiveness of chitosan as natural coagulant in treating turbid waters
JP5961934B2 (en) Sludge dewatering method
JP5172372B2 (en) Sludge dewatering method
Sinha Textile wastewater clarification using milk based formulations as an effective dye absorbent and flocculant
JP5042057B2 (en) Sludge dewatering method
JP5906672B2 (en) Sludge dewatering agent and organic sludge dewatering method using the same
Zeng et al. Experimental study on chitosan composite flocculant for treating papermaking wastewater
JP6729641B2 (en) Method for treating organic wastewater and composition for treating organic wastewater
JP7216967B2 (en) Organic wastewater treatment method and its use
JP2016120464A (en) Sludge dewatering method
JP5501122B2 (en) Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP2002045900A (en) Method for dewatering sludge
Sunthornvatin et al. Effect of Poly (Acrylic Acid) Based Polymer Flocculants on Sedimentation of Surface Water
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater
JP2014184406A (en) Powdery organic coagulant
JP6098239B2 (en) Sludge dewatering agent and sludge treatment method
JP2002045892A (en) Method for dewatering sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R151 Written notification of patent or utility model registration

Ref document number: 6131465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250