JP2016150312A - Coagulation treatment agent for waste water, and coagulation treatment method of waste water - Google Patents

Coagulation treatment agent for waste water, and coagulation treatment method of waste water Download PDF

Info

Publication number
JP2016150312A
JP2016150312A JP2015029174A JP2015029174A JP2016150312A JP 2016150312 A JP2016150312 A JP 2016150312A JP 2015029174 A JP2015029174 A JP 2015029174A JP 2015029174 A JP2015029174 A JP 2015029174A JP 2016150312 A JP2016150312 A JP 2016150312A
Authority
JP
Japan
Prior art keywords
polymer
wastewater
amidine
cationic
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015029174A
Other languages
Japanese (ja)
Other versions
JP6550782B2 (en
Inventor
久典 後藤
Hisanori Goto
久典 後藤
小林 孝行
Takayuki Kobayashi
孝行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015029174A priority Critical patent/JP6550782B2/en
Publication of JP2016150312A publication Critical patent/JP2016150312A/en
Application granted granted Critical
Publication of JP6550782B2 publication Critical patent/JP6550782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coagulation treatment agent capable of forming an excellent coagulation flock even when the used amount of an agent is small, reducing a generation amount of sludge, reducing greatly chromaticity, and obtaining treated water having excellent water quality.SOLUTION: There is provided a coagulation treatment agent for waste water, which forms a coagulation flock by adding a polymer coagulant into the waste water, and then subjects the formed coagulation flock to solid-liquid separation. In the coagulation treatment agent for waste water, the polymer coagulant contains an amidine-based cationic polymer (A) and an amphoteric polymer (B), and the mixing ratio in terms of the mass between the polymer (A) and the amphoteric polymer (B) is 5:5 to 8:2.SELECTED DRAWING: None

Description

本発明は、廃水の凝集処理剤に関し、詳しくは、薬剤使用量が少なくても、良好な凝集フロックを形成でき、汚泥の発生量が低減され、かつ色度を大幅に低減し、良好な水質の処理水が得られる廃水の凝集処理剤に関する。 The present invention relates to a flocculation treatment agent for wastewater, and more specifically, even if the amount of chemical used is small, a good flocculation floc can be formed, the amount of sludge generated is reduced, the chromaticity is greatly reduced, and the water quality is good. The present invention relates to a flocculation treatment agent for wastewater from which treated water can be obtained.

飲料の抽出工程や食品の加工工程で発生する着色廃水、染色廃水、ダストコントロール用品の洗浄廃水、洗濯廃水、その他、様々な工場施設より発生する着色廃水の凝集処理は、一般的に、無機凝結剤を添加後、さらにアニオン性高分子凝集剤を添加し、凝集フロックを形成させて凝集沈殿または加圧浮上させる。そして、浄化された処理水は、河川、海域などに放流されるのが一般的である。 Colored wastewater generated during beverage extraction and food processing, dyeing wastewater, washing wastewater for dust control products, laundry wastewater, and other wastewater generated from various factory facilities are generally coagulated with inorganic coagulants. After the addition, an anionic polymer flocculant is further added to form a floc floc for aggregation precipitation or pressurization under pressure. The purified treated water is generally discharged into rivers and sea areas.

従来より、河川、海域への放流水質の規制強化への対応策として、廃水処理の装置や方法の改良により処理水の水質改善が図られてきた。しかし、着色廃水は、BOD、SSなどが規制値を満足していても、色度が高い場合が多く、地域住民に著しい汚染感を与えてしまう場合が多い。そのため、色度の規制が設定される場合があり、着色廃水に対する効率的な脱色方法が強く望まれている。 Conventionally, the quality of treated water has been improved by improving wastewater treatment equipment and methods as countermeasures to strengthen regulations on the quality of discharged water to rivers and sea areas. However, colored wastewater often has high chromaticity even if BOD, SS, etc. satisfy the regulation values, and often gives a significant sense of contamination to local residents. Therefore, regulation of chromaticity may be set, and an efficient decoloring method for colored wastewater is strongly desired.

一般的に、処理水の水質は、凝集分離で用いる硫酸アルミニウム(以下「バンド」と記す)、ポリ塩化アルミニウム(以下「PAC」と記す)、ポリ硫酸第二鉄(以下「ポリ鉄」と記す)、塩化第二鉄などの無機凝結剤の添加量を増加させると向上する。しかし、色度については、ある程度は無機凝結剤の添加で除去できるが、満足できるレベルまで脱色することは困難な場合が多い。さらに、多様な着色の原因物質や廃水中に共存する種々の物質が凝集効果に悪影響を与えることから、安定した脱色性能を得るために無機凝結剤の必要添加量が増加する。その結果、汚泥発生量が増加して総合的な処理コストが高くなる場合が多い。 In general, the quality of treated water is aluminum sulfate (hereinafter referred to as “band”), polyaluminum chloride (hereinafter referred to as “PAC”), and ferric sulfate (hereinafter referred to as “polyiron”) used in coagulation and separation. ), And increase when the amount of inorganic coagulant such as ferric chloride is increased. However, the chromaticity can be removed to some extent by adding an inorganic coagulant, but it is often difficult to decolorize to a satisfactory level. Furthermore, since various substances causing coloration and various substances coexisting in the wastewater adversely affect the coagulation effect, the necessary amount of inorganic coagulant is increased in order to obtain stable decolorization performance. As a result, the amount of sludge generation increases and the overall treatment cost often increases.

処理水の脱色性の向上を図る目的で水溶性カチオン重合体の一種である有機凝結剤を処理水に適用する処理方法が提案されている。有機凝結剤は、分子内に多数のカチオン基を有する高分子電解質であるため、無機凝結剤と同様に被処理水中の懸濁物質の荷電を中和する目的で用いられる。有機凝結剤は、無機凝結剤よりもカチオン密度が高く、分子量も無機凝結剤よりも高いため、その凝結作用および凝集作用は無機凝結剤より遥かに大きいという特徴を持っている。また、有機凝結剤は、懸濁物質を荷電中和するだけでなく、負に帯電しているリグニンスルホン酸、フミン酸などの溶解物質と反応して不溶性塩を形成する作用があり、色度およびCODの減少効果も期待される。 In order to improve the decolorization of treated water, a treatment method has been proposed in which an organic coagulant, which is a kind of water-soluble cationic polymer, is applied to treated water. Since the organic coagulant is a polyelectrolyte having a large number of cationic groups in the molecule, it is used for the purpose of neutralizing the charge of the suspended substance in the water to be treated in the same manner as the inorganic coagulant. Organic coagulants are characterized by a higher cation density than inorganic coagulants and a higher molecular weight than inorganic coagulants, so that their coagulation and coagulation effects are much greater than inorganic coagulants. Organic coagulants not only neutralize suspended substances but also react with negatively charged dissolved substances such as lignin sulfonic acid and humic acid to form insoluble salts. And a reduction effect of COD is also expected.

現在用いられている有機凝結剤の代表的なものとしては、アルキルアミン・エピクロルヒドリン縮合物、アルキレンジクロライドとポリアルキレンポリアミンの縮合物、ジシアンジアミド・ホルマリン縮合物、ジメチルジアリルアンモニウムクロライドポリマーなどの低分子量かつ強カチオン密度の水溶性ポリマーが挙げられる。これらの有機凝結剤を用いた処方では、ある程度の脱色効果は得られるものの、種々の着色廃水に対し満足のいく脱色効果は得られない場合が多い。 Representative organic coagulants currently used are low molecular weight and strong compounds such as alkylamine / epichlorohydrin condensate, alkylene dichloride and polyalkylene polyamine condensate, dicyandiamide / formalin condensate, and dimethyldiallylammonium chloride polymer. Examples thereof include water-soluble polymers having a cation density. In the prescription using these organic coagulants, although a certain degree of decoloring effect is obtained, a satisfactory decoloring effect is often not obtained for various colored wastewaters.

凝集処理による廃水の水質浄化は、負に帯電した溶解物質(廃水中の懸濁物質、コロイド状物質、BODおよびCOD成分など)と無機凝結剤および有機凝結剤とが反応し荷電中和されて不溶化した後、凝集分離されることにより達成される。 Waste water purification by agglomeration treatment is performed by neutralizing charge by reacting negatively charged dissolved substances (suspended substances, colloidal substances, BOD and COD components, etc. in waste water) with inorganic coagulants and organic coagulants. This is accomplished by agglomeration and separation after insolubilization.

懸濁物質やコロイド状物質は粒子径が比較的大きく、水に不溶性な粒子なので荷電中和されれば凝結して微細フロックを形成する。しかし、水への溶解性が高い染料などの着色物質は、無機凝結剤および有機凝結剤を添加して、荷電中和されても、一部は親水性を保ったまま、水に溶解した状態を維持するため、不溶化せず微細フロックを形成しない場合がある。そのため、高分子凝集剤を添加しても凝集フロックが形成されず、着色物質が水中に溶存し、処理水の脱色効果が得られない場合が多い。 Suspended substances and colloidal substances have a relatively large particle size and are insoluble in water, and therefore, when charged and neutralized, they condense and form fine flocs. However, coloring substances such as dyes that are highly soluble in water are dissolved in water while retaining some hydrophilicity even when neutralized by adding inorganic and organic coagulants. Therefore, there is a case where fine flocs are not formed without insolubilization. Therefore, even when a polymer flocculant is added, aggregated flocs are not formed, the colored substance is dissolved in water, and the decoloring effect of the treated water is often not obtained.

アミジン構成単位を含むアミジン系カチオン性ポリマー(以下「アミジンポリマー」と記す)はカチオン密度が高く、荷電中和や架橋吸着の作用において優れた性能を有することから、アミジンポリマーを添加することで、染料などの着色物質が不溶化し、その結果、良好な脱色効果が得られることが知られている。これは、アミジンポリマーの特有の効果であり、負に帯電した着色物質を荷電中和すると同時に、アミジンポリマーが着色物質以外のイオン性成分と反応してイオンコンプレックスを形成し、着色物質を巻き込みながら不溶化するため、着色物質が良好に不溶化されて脱色効果が改善する。 An amidine-based cationic polymer containing an amidine structural unit (hereinafter referred to as “amidine polymer”) has a high cation density and has excellent performance in the action of charge neutralization and cross-linking adsorption. Therefore, by adding an amidine polymer, It is known that coloring substances such as dyes are insolubilized, and as a result, a good decoloring effect can be obtained. This is a peculiar effect of the amidine polymer. While neutralizing the negatively charged coloring substance, the amidine polymer reacts with an ionic component other than the coloring substance to form an ion complex, and the coloring substance is involved. Since it is insolubilized, the coloring substance is well insolubilized and the decoloring effect is improved.

アミジンポリマーを用いた着色廃水の凝集処理方法としては、例えば、着色廃水に無機凝結剤とアミジンポリマーを添加した後、アニオン性高分子凝集剤を用いて凝集分離する方法(特許文献1)、着色廃水に不溶性吸着剤として、ゼオライトや活性炭粉末などの無機系固形粉末を添加した後、アミジンポリマーおよびジアリルアミン系カチオン性ポリマーなどを添加し凝集分離する方法(特許文献2)が提案されている。これらの方法は、良好な脱色効果が得られるものの、何れの方法も多量の無機系添加剤を併用するため、凝集分離後の汚泥の発生量が多くなり、処理コストが高くなる。 As a coagulation treatment method of colored wastewater using amidine polymer, for example, an inorganic coagulant and an amidine polymer are added to colored wastewater and then coagulated and separated using an anionic polymer coagulant (Patent Document 1), coloring There has been proposed a method (Patent Document 2) in which an inorganic solid powder such as zeolite or activated carbon powder is added as an insoluble adsorbent to waste water, and then an amidine polymer and a diallylamine cationic polymer are added and agglomerated and separated. Although these methods can provide a good decoloring effect, since both methods use a large amount of inorganic additives, the amount of sludge generated after agglomeration and separation increases, and the processing cost increases.

無機系の添加剤を使用せず、有機凝結剤や有機高分子凝集剤を用いて着色廃水を凝集処理する処理方法としては、例えば、浮遊固形物(以下「SS」と記す)濃度が500mg/L以上である着色廃水にアミジンポリマーとジアリルアミン系カチオン性ポリマーなどを添加し凝集分離する方法(特許文献3)、食品加工着色廃水にジシアンジアミド・ホルマリン縮合物を添加した後、余剰汚泥を混合し、さらにアミジンポリマーを含む高分子凝集剤を添加し凝集分離する方法(特許文献4)が提案されている。 As a treatment method for coagulating colored wastewater using an organic coagulant or an organic polymer flocculant without using an inorganic additive, for example, a suspended solid (hereinafter referred to as “SS”) concentration of 500 mg / A method of adding an amidine polymer and a diallylamine cationic polymer to a colored wastewater that is L or more and aggregating and separating (Patent Document 3), adding a dicyandiamide / formalin condensate to a food processing colored wastewater, and then mixing excess sludge; Furthermore, a method (Patent Document 4) has been proposed in which a polymer flocculant containing an amidine polymer is added to perform flocculation separation.

一般的に、着色廃水に高分子凝集剤を添加して凝集処理を行う場合は、初めに無機凝結剤や有機凝結剤で荷電中和することによって着色成分が不溶化して核となる。その後、不溶化した着色成分を巻き込みながら凝集剤の作用で微細フロックを形成する。このため、着色廃水のSS濃度が高いほど、凝集性能は良好となる。前記の方法は、何れも、SS濃度が所定濃度以上であるような着色廃水、またはSS濃度を所定濃度に調整した着色廃水に対して有効な凝集処理方法であるが、SS濃度が低い着色廃水に対しては、凝集性が悪化するため、脱色効果の低下を招くことになる。 In general, when a polymer flocculant is added to a colored wastewater to perform a flocculation treatment, the colored components are first insolubilized by neutralization with an inorganic coagulant or an organic coagulant to become a nucleus. Thereafter, fine flocs are formed by the action of the flocculant while entraining the insolubilized coloring component. For this reason, the higher the SS concentration of colored wastewater, the better the aggregation performance. Each of the above methods is a coagulation treatment method effective for colored wastewater having an SS concentration equal to or higher than a predetermined concentration, or colored wastewater having an SS concentration adjusted to a predetermined concentration, but colored wastewater having a low SS concentration. On the other hand, since the cohesiveness is deteriorated, the decoloring effect is lowered.

特開2012−5993号公報JP 2012-5993 A 特開2011−50945号公報JP 2011-50945 A 特開2011−50946号公報JP 2011-50946 A 特開2001−162285号公報JP 2001-162285 A

廃水の凝集処理において、薬剤使用量が少なくても、良好な凝集フロックを形成でき、汚泥の発生量が低減され、かつ色度を大幅に低減し、良好な水質の処理水が得られる凝集処理剤を提供することにある。 In agglomeration treatment of wastewater, even when the amount of chemical used is small, a good agglomeration floc can be formed, the amount of sludge generated is reduced, the chromaticity is greatly reduced, and a treated water with good water quality can be obtained. It is to provide an agent.

本発明者らは、前記実情に鑑みて、鋭意探索の結果、次のような知見を得た。
即ち、前記の性状の着色廃水の場合には、アミジンポリマーによる負に帯電した溶解性の着色物質を荷電中和する作用と、廃水中に含まれる着色物質以外のアニオン性もしくは両性の有機高分子成分や無機塩由来のアニオン成分から成るイオン性成分がアミジンポリマーと反応してイオンコンプレックスを形成し着色物質を巻き込みながら不溶化する作用によって、着色物質を良好に不溶化させる。しかし、その後、不溶化した着色物質が微細フロックを形成して、更に、凝集分離に有効なフロック径の凝集フロックにまで粗大化させるには、アミジンポリマーの必要添加量が多くなる。そこで、アミジンポリマーと特定の両性ポリマーを混合し使用することによって、アミジンポリマーの必要添加量が増加することなく、不溶化した着色物質が微細フロックを形成する反応と、微細フロックが粗大化して凝集フロックに成長する反応が効率よく進行することを見出した。
In view of the above circumstances, the present inventors have obtained the following knowledge as a result of earnest search.
That is, in the case of colored wastewater having the above-mentioned properties, the neutralization of the negatively charged soluble colored substance by the amidine polymer and the anionic or amphoteric organic polymer other than the colored substance contained in the wastewater An ionic component composed of a component or an anionic component derived from an inorganic salt reacts with the amidine polymer to form an ion complex, and insolubilizes the colored material, thereby insolubilizing the colored material well. However, after that, the insoluble colored substance forms fine flocs, and further increases the amount of the amidine polymer required for coarsening to flocs having a floc diameter effective for flocculation and separation. Therefore, by mixing and using an amidine polymer and a specific amphoteric polymer, the amount of amidine polymer added does not increase, and the insoluble colored substance forms a fine floc, and the fine floc becomes coarse and agglomerated floc It was found that the reaction of growing rapidly progresses.

アミジンポリマーと両性ポリマーの混合物により着色廃水を凝集処理する場合、アミジンポリマーと両性ポリマーの合計質量に対する両性ポリマーの割合が所定の範囲であれば、アミジンポリマーにより着色物質が不溶化する。更に、両性ポリマーと反応し架橋構造を形成することで、不溶化した着色物質が微細フロックを形成し、微細フロックが粗大な凝集フロックに成長する。このため、良好な凝集フロックが得られ、着色廃水の脱色効果が改善される。 When the colored wastewater is agglomerated with a mixture of the amidine polymer and the amphoteric polymer, the colored substance is insolubilized by the amidine polymer if the ratio of the amphoteric polymer to the total mass of the amidine polymer and the amphoteric polymer is within a predetermined range. Furthermore, by reacting with the amphoteric polymer to form a crosslinked structure, the insoluble colored substance forms fine flocs, and the fine flocs grow into coarse aggregated flocs. For this reason, a favorable aggregation floc is obtained and the decoloring effect of colored wastewater is improved.

即ち、本発明の廃水の凝集処理剤は、廃水に高分子凝集剤を添加して凝集フロックを形成させ、次いで、形成した凝集フロックを固液分離する廃水の凝集処理剤であって、前記高分子凝集剤が、アミジン系カチオン性ポリマー(A)および両性ポリマー(B)を含み、前記ポリマー(A)および両性ポリマー(B)の質量としての混合比が5:5〜8:2である廃水の凝集処理剤である。 That is, the wastewater flocculation treatment agent of the present invention is a wastewater flocculation treatment agent for adding a polymer flocculant to wastewater to form agglomeration floc, and then solid-liquid separating the formed agglomeration floc. Waste water in which the molecular flocculant contains an amidine-based cationic polymer (A) and an amphoteric polymer (B), and the mixing ratio as a mass of the polymer (A) and the amphoteric polymer (B) is 5: 5 to 8: 2. It is a coagulation treatment agent.

また、本発明の廃水の凝集処理剤は、前記アミジン系カチオン性ポリマー(A)が下記一般式(1)または下記一般式(2)のいずれかで表されるアミジン構成単位を有するポリマーである前記の廃水の凝集処理剤である。 Moreover, the coagulation treatment agent for wastewater of the present invention is a polymer in which the amidine-based cationic polymer (A) has an amidine structural unit represented by either the following general formula (1) or the following general formula (2). It is a coagulation treatment agent for the waste water.


(ただし、一般式(1)および(2)中、R、Rはそれぞれ独立して水素原子またはメチル基を表し、Xは陰イオンを表す。)

(In the general formulas (1) and (2), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and X represents an anion.)

また、本発明の廃水の凝集処理剤は、前記両性ポリマー(B)が下記一般式(3)で表されるカチオン性構成単位と、アニオン性構成単位と、非イオン性構成単位を有するポリマーである前記の廃水の凝集処理剤である。 Further, the coagulation treatment agent for wastewater of the present invention is a polymer in which the amphoteric polymer (B) has a cationic structural unit represented by the following general formula (3), an anionic structural unit, and a nonionic structural unit. It is a coagulation treatment agent for certain waste water.


(式中、Rは、水素原子またはメチル基を表し、RおよびRは、それぞれ独立して水素原子または炭素数が1〜4のアルキル基を表し、Rは、炭素数が1〜4のアルキル基またはベンジル基を表し、Yは、酸素原子またはNHを示し、Zは、陰イオンを表し、nは1〜3の整数を表す。)

(Wherein R 3 represents a hydrogen atom or a methyl group, R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 has 1 carbon atom) represents to 4 alkyl group or a benzyl group, Y represents an oxygen atom or NH, Z - represents an anion, n is an integer of 1 to 3).

また、本発明の廃水の凝集処理剤は、前記両性ポリマー(B)の1規定塩化ナトリウム水溶液の25℃における還元粘度が0.1〜10dL/gである前記の廃水の凝集処理剤である。 Moreover, the coagulation treatment agent of the wastewater of the present invention is the coagulation treatment agent of the above wastewater in which the reduced viscosity at 25 ° C. of the 1N sodium chloride aqueous solution of the amphoteric polymer (B) is 0.1 to 10 dL / g.

また、本発明の廃水の凝集処理剤は、前記両性ポリマー(B)が有するアニオン性構成単位の全構成単位に対する割合をMaモル%、カチオン性構成単位の全構成単位に対する割合をMcモル%としたとき、比Ma/Mcが0.15〜0.55である前記の廃水の凝集処理剤である。 Further, in the wastewater flocculation treatment agent of the present invention, the ratio of the anionic structural unit of the amphoteric polymer (B) to all structural units is Ma mol%, and the ratio of the cationic structural unit to all structural units is Mc mol%. When the waste water is aggregated, the ratio Ma / Mc is 0.15 to 0.55.

また、本発明の廃水の凝集処理剤は、高分子凝集剤として、前記アミジン系カチオン性ポリマー(A)と前記両性ポリマー(B)の他に、非アミジン系カチオン性ポリマー(C)を含む前記の廃水の凝集処理剤である。 Moreover, the flocculation treatment agent of the waste water of the present invention contains the non-amidine cationic polymer (C) as a polymer flocculant in addition to the amidine cationic polymer (A) and the amphoteric polymer (B). It is a coagulation treatment agent for wastewater.

また、本発明の廃水の凝集処理剤は、前記非アミジン系カチオン性ポリマー(C)が下記一般式(4)で表されるカチオン性モノマー単位を60〜100モル%含む非アミジン系カチオン性ポリマーである前記の廃水の凝集処理剤である。 The coagulation treatment agent for wastewater of the present invention is a non-amidine cationic polymer in which the non-amidine cationic polymer (C) contains 60 to 100 mol% of a cationic monomer unit represented by the following general formula (4). It is a coagulation treatment agent of the said wastewater which is.


(式中、Rは、水素原子またはメチル基を表し、RおよびRは、それぞれ独立して水素原子または炭素数が1〜4のアルキル基を表し、Rは、炭素数が1〜4のアルキル基またはベンジル基を表し、Yは、酸素原子またはNHを示し、Zは、陰イオンを表し、nは1〜3の整数を表す。)

(Wherein R 3 represents a hydrogen atom or a methyl group, R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 has 1 carbon atom) represents to 4 alkyl group or a benzyl group, Y represents an oxygen atom or NH, Z - represents an anion, n is an integer of 1 to 3).

また、本発明の廃水の凝集処理剤は、前記アミジン系カチオン性ポリマー(A)、前記両性ポリマー(B)および前記非アミジン系カチオン性ポリマー(C)の合計量中の前記アミジン系カチオン性ポリマー(A)と前記両性ポリマー(B)の合計量と前記非アミジン系カチオン性ポリマー(C)との質量としての比が8:2〜5:5である前記の廃水の凝集処理剤である。 Further, the flocculation treatment agent of the waste water of the present invention is the amidine-based cationic polymer in the total amount of the amidine-based cationic polymer (A), the amphoteric polymer (B) and the non-amidine-based cationic polymer (C). The waste water flocculating agent is a ratio of the total amount of (A) and the amphoteric polymer (B) to the non-amidine cationic polymer (C) of 8: 2 to 5: 5.

また、本発明の廃水の凝集処理方法は、前記のいずれか一項に記載の凝集処理剤を用いた廃水の凝集処理方法である。 Moreover, the coagulation treatment method of the wastewater of the present invention is a coagulation treatment method of wastewater using the coagulation treatment agent according to any one of the above.

更に、本発明の廃水の凝集処理方法は、前記廃水が着色廃水である前記の廃水の凝集処理方法である。 Furthermore, the wastewater flocculation treatment method of the present invention is the wastewater flocculation treatment method, wherein the wastewater is colored wastewater.

本発明の廃水の凝集処理剤によれば、廃水の凝集処理において、薬剤使用量が少なくても、良好な凝集フロックを形成でき、汚泥の発生量が低減され、かつ色度を大幅に低減し、良好な水質の処理水が得られる凝集処理剤を提供することができる。 According to the flocculation treatment agent of the present invention, in the flocculation treatment of wastewater, even if the amount of chemical used is small, a good flocculation floc can be formed, the generation amount of sludge is reduced, and the chromaticity is greatly reduced. It is possible to provide an aggregating treatment agent capable of obtaining treated water with good water quality.

以下、本発明を詳細に説明する。
「着色物質」とは、水溶性の着色物質を意味する。
「着色廃水」とは、着色物質を含む廃水を意味し、着色物質以外に懸濁物質、コロイド状物質、イオン性成分などを含んでいてもよい。
「イオン性成分」とは、着色廃水に含まれる着色物質以外のアニオン性もしくは両性の有機高分子成分や無機塩由来のアニオン性成分を意味する。
「浮遊固形物(SS)」とは、JIS K 0102:2008にしたがって着色廃水を孔径1μmのろ過材でろ過したとき、ろ過材上に残留する物質を意味する。
「構成単位」とは、モノマーが重合することによって形成されたモノマー分子由来の構造単位、またはモノマー分子由来の構造単位のペンダント基と他のモノマー分子由来の構造単位のペンダント基との反応によってペンダント基同士が連結した2つ以上のモノマー分子由来の構造単位からなる構造単位を意味する。
「凝集剤」とは、着色廃水に含まれる着色物質、着色物質以外の懸濁物質、コロイド状物質、イオン性成分などを凝集して、微細フロックや凝集フロックを形成する機能を有する薬剤を意味する。
「ポリマー」とは、複数の構成単位から構成された構造を有する化合物を意味する。
「凝集処理」とは、着色廃水に含まれる着色物質、着色物質以外の懸濁物質、コロイド状物質、イオン性成分などを凝集して微細フロックを形成し、さらに微細フロックを凝集フロックに成長させ、凝集フロックを分離して処理水を得ることを意味する。
「微細フロック」とは、負に帯電した水溶性の着色物質が荷電中和により、不溶化したものが凝集し微細な集合体を形成したものを意味し、それ以外に、懸濁物質やコロイド状物質などの水に不溶な粒子が荷電中和され凝集し微細な集合体を形成したものを含んでもよい。
「凝集フロック」とは、微細フロックがさらに凝集して、凝集分離に必要なフロック径にまで粗大化したものを意味する。
「SS濃度」とは、JIS K 0102:2008に記載の測定方法に準じて、ろ過材として孔径1μmのガラス繊維ろ紙を用いて測定した値を意味する。
「COD」とは、着色物質を含む有機物や無機物による廃水の汚濁を意味し、本発明においては、着色物質の含有量の指標として用いる。CODの値は、JIS K 0102:1998に記載のCODMn分析方法に準じて測定した値を意味する。
「電気伝導度」とは、着色廃水中の各種イオン、塩類の量を示す指標を意味する。電気伝導度の値は、JIS K 0102:1998に記載の電気伝導度測定方法に準じて測定した値を意味する。
Hereinafter, the present invention will be described in detail.
“Coloring substance” means a water-soluble coloring substance.
“Colored wastewater” means wastewater containing colored substances, and may contain suspended substances, colloidal substances, ionic components and the like in addition to colored substances.
The “ionic component” means an anionic component derived from an anionic or amphoteric organic polymer component or inorganic salt other than a coloring substance contained in colored wastewater.
“Floating solid matter (SS)” means a substance remaining on a filter medium when colored wastewater is filtered with a filter medium having a pore diameter of 1 μm according to JIS K 0102: 2008.
A “structural unit” is a structural unit derived from a monomer molecule formed by polymerization of a monomer, or a pendant group formed by reaction of a pendant group of a structural unit derived from a monomer molecule with a pendant group of a structural unit derived from another monomer molecule. It means a structural unit composed of structural units derived from two or more monomer molecules in which groups are linked.
"Aggregating agent" means a drug that has the function of aggregating colored substances, suspended substances other than colored substances, colloidal substances, ionic components, etc. contained in colored wastewater to form fine flocs and aggregated flocs. To do.
“Polymer” means a compound having a structure composed of a plurality of structural units.
“Agglomeration” is a process that agglomerates colored substances contained in colored wastewater, suspended substances other than colored substances, colloidal substances, ionic components, etc. to form fine flocs, and further grows fine flocs into aggregated flocs. This means that the treated flocculant is separated to obtain treated water.
"Fine floc" means a negatively charged water-soluble colored substance that has become insoluble due to charge neutralization and agglomerates to form fine aggregates. It may include particles in which water-insoluble particles such as substances are neutralized by charge and aggregate to form fine aggregates.
The “aggregated floc” means a fine floc further agglomerated and coarsened to a floc diameter necessary for aggregating and separating.
The “SS concentration” means a value measured using glass fiber filter paper having a pore diameter of 1 μm as a filter medium according to the measurement method described in JIS K 0102: 2008.
“COD” means pollution of wastewater by organic matter or inorganic matter containing a coloring substance, and is used as an index of the content of the coloring substance in the present invention. The value of COD means a value measured according to the CODMn analysis method described in JIS K 0102: 1998.
“Electrical conductivity” means an index indicating the amount of various ions and salts in colored wastewater. The value of electrical conductivity means a value measured according to the electrical conductivity measurement method described in JIS K 0102: 1998.

(着色廃水の凝集処理方法)
着色廃水の凝集処理は、着色廃水に、特定のアミジンポリマー(A)と両性ポリマー(B)を含む混合物から成る高分子凝集剤を添加し凝集フロックを形成させ、次いで、形成した凝集フロックを固液分離する。
(Coagulation treatment method for colored wastewater)
In the flocculation treatment of colored wastewater, a polymer flocculant composed of a mixture containing a specific amidine polymer (A) and an amphoteric polymer (B) is added to the colored wastewater to form flocculated flocs, and then the formed flocculated flocs are solidified. Separate the liquid.

(着色廃水)
本発明が対象とする着色廃水としては、例えば、飲料の製造工程や食品の加工工程で発生する着色廃水、染色廃水、ダストコントロール用品の洗浄廃水、洗濯廃水、その他、様々な工場施設より発生する着色廃水などが挙げられる。
(Colored wastewater)
The colored wastewater targeted by the present invention includes, for example, colored wastewater generated in beverage manufacturing processes and food processing processes, dyeing wastewater, washing wastewater for dust control products, washing wastewater, and other color generated from various factory facilities. Examples include waste water.

着色廃水に含まれる着色物質は、水溶性の着色物質であり、着色物質の含有量の指標として、CODの値を用いることができる。着色廃水のCODは、50〜3000mg/Lが好ましい。 The colored substance contained in the colored wastewater is a water-soluble colored substance, and the value of COD can be used as an index of the content of the colored substance. The COD of the colored wastewater is preferably 50 to 3000 mg / L.

本発明の着色廃水の凝集処理方法は、SS濃度が450mg/L以下の着色廃水に対しても好適に適用される。 The colored wastewater flocculation treatment method of the present invention is also suitably applied to colored wastewater having an SS concentration of 450 mg / L or less.

着色廃水のSS濃度は、20mg/L以上が好ましく、50mg/L以上がより好ましい。また、450mg/L以下が好ましく、250mg/L以下がより好ましく、200mg/L以下がさらに好ましい。着色廃水のSS濃度が前記範囲内であれば、着色物質が効率よく不溶化し、良好な凝集フロックが形成され、良好な脱色効果が得られる。 The SS concentration of colored wastewater is preferably 20 mg / L or more, more preferably 50 mg / L or more. Moreover, 450 mg / L or less is preferable, 250 mg / L or less is more preferable, and 200 mg / L or less is further more preferable. When the SS concentration of the colored wastewater is within the above range, the colored substance is efficiently insolubilized, a good aggregated floc is formed, and a good decoloring effect is obtained.

本発明が対象とする着色廃水は無機塩を多く含む。前記無機塩としては廃水に元々含まれる無機塩や、生物処理によって有機物が分解することで形成される無機塩、本発明の着色廃水の処理設備よりも前段の工程において実施される凝集沈殿や加圧浮上などの廃水処理で使用された無機凝結剤などの無機薬剤由来の無機塩などが挙げられる。着色廃水中の無機塩としては、特に限定されないが、硫酸塩、リン酸塩、珪酸塩などが挙げられる。着色廃水の電気伝導度は、廃水中に含まれる無機塩の量を示す指標として用いることができ、本発明が対象とする着色廃水は、無機塩を多量に含むため、電気伝導度が高い状態にあり、その値は0.5mS/cm以上が好ましく、1.0mS/cm以上がより好ましい。また、50mS/cm以下が好ましく、30mS/cm以下がより好ましい。 The colored wastewater targeted by the present invention contains a lot of inorganic salts. Examples of the inorganic salt include an inorganic salt originally contained in wastewater, an inorganic salt formed by decomposing organic matter by biological treatment, and a coagulating sedimentation and addition performed in a step preceding the treatment facility for colored wastewater of the present invention. Examples thereof include inorganic salts derived from inorganic agents such as inorganic coagulants used in wastewater treatment such as pressure levitation. Although it does not specifically limit as an inorganic salt in colored wastewater, A sulfate, a phosphate, a silicate, etc. are mentioned. The electrical conductivity of colored wastewater can be used as an index indicating the amount of inorganic salt contained in the wastewater, and since the colored wastewater targeted by the present invention contains a large amount of inorganic salt, the electrical conductivity is high. The value is preferably 0.5 mS / cm or more, and more preferably 1.0 mS / cm or more. Moreover, 50 mS / cm or less is preferable and 30 mS / cm or less is more preferable.

(高分子凝集剤)
本発明では、特定のアミジンポリマー(A)と特定の両性ポリマー(B)を組み合わせて高分子凝集剤として用いる。
(Polymer flocculant)
In the present invention, a specific amidine polymer (A) and a specific amphoteric polymer (B) are used in combination as a polymer flocculant.

着色物質を効率よく不溶化させ、良好な凝集フロックを形成し、優れた脱水効果を得るためにはアミジンポリマー(A)と両性ポリマー(B)を所定の混合比率で用いる必要がある。即ち、混合比率は、各ポリマーの合計質量に対するアミジンポリマー(A)の割合が50〜80質量%、両性ポリマー(B)の割合が20〜50質量%である。前記混合比率であれば、不溶化した着色成分が凝集し微細フロックを形成する反応と、微細フロックから凝集フロックへの成長反応が効率よく進行し、良好な凝集フロックが形成され、着色廃水の脱色効果が改善される。 In order to insolubilize the colored substance efficiently, to form a good aggregated floc and to obtain an excellent dehydration effect, it is necessary to use the amidine polymer (A) and the amphoteric polymer (B) at a predetermined mixing ratio. That is, as for the mixing ratio, the ratio of the amidine polymer (A) to the total mass of each polymer is 50 to 80% by mass, and the ratio of the amphoteric polymer (B) is 20 to 50% by mass. If the mixing ratio, the insoluble coloring component aggregates to form fine flocs and the growth reaction from fine flocs to agglomerated flocs proceeds efficiently, and good aggregated flocs are formed. Is improved.

前記ポリマー(A)と(B)の合計質量に対する前記両性ポリマー(B)の割合が50質量%を超えると、微細フロックが形成される段階で、アミジンポリマーのカチオン性を示す官能基の一部と、高粘度な両性ポリマー(B)のアニオン性を示す官能基の一部が反応し直ちに自己架橋を形成し不溶化するため、微細フロックの形成反応が抑制される。一方、前記ポリマー(A)と(B)の合計質量に対する前記両性ポリマー(B)の割合が、20質量%以下であると、不溶化した着色物質の凝集性が低下し、良好な凝集フロックを形成するためには、前記高分子凝集剤の必要添加量が増加する。 When the ratio of the amphoteric polymer (B) to the total mass of the polymers (A) and (B) exceeds 50% by mass, a part of the functional group showing the cationic property of the amidine polymer in the stage where fine flocs are formed Then, a part of the functional group showing anionic property of the high-viscosity amphoteric polymer (B) reacts to immediately form self-crosslinks and insolubilize, so that the formation reaction of fine flocs is suppressed. On the other hand, when the ratio of the amphoteric polymer (B) to the total mass of the polymers (A) and (B) is 20% by mass or less, the cohesiveness of the insolubilized colored substance is lowered and a good aggregated floc is formed. In order to do this, the required amount of the polymer flocculant added increases.

アミジンポリマー(A)は、前記一般式(1)または前記一般式(2)の少なくともいずれかで表されるアミジン構成単位を含有する。アミジンポリマー(A)におけるアミジン構成単位の含有量は、通常30モル%以上が好ましく、40モル%以上がより好ましい。また、90モル%以下が好ましく、80モル%以下がより好ましい。前記範囲内であれば、効率よく着色物質が不溶化され、良好な凝集フロックを形成でき、脱色効果が改善される。 The amidine polymer (A) contains an amidine structural unit represented by at least one of the general formula (1) and the general formula (2). The content of the amidine structural unit in the amidine polymer (A) is usually preferably 30 mol% or more, and more preferably 40 mol% or more. Moreover, 90 mol% or less is preferable and 80 mol% or less is more preferable. If it is in the said range, a coloring substance will be insolubilized efficiently, a favorable aggregation floc can be formed, and the decoloring effect will be improved.

アミジンポリマー(A)の製造方法としては、特に限定されないが、アミノ基または変換反応によりアミノ基を形成し得る置換アミノ基を有するエチレン性不飽和モノマーと、アクリロニトリルまたはメタクリロニトリルなどのニトリル類とのコポリマーを製造し、当該コポリマー中のシアノ基とアミノ基を酸性下反応させてアミジン化する方法が挙げられる。 A method for producing the amidine polymer (A) is not particularly limited, and an ethylenically unsaturated monomer having an amino group or a substituted amino group capable of forming an amino group by a conversion reaction, and a nitrile such as acrylonitrile or methacrylonitrile; And a method in which a cyano group and an amino group in the copolymer are reacted under acidic conditions to form an amidine.

前記のエチレン性不飽和モノマーとしては、一般式(5)であるCH=CR−NHCOR(式中、Rは水素原子またはメチル基、Rは炭素数1〜4のアルキル基または水素原子を表す。)で表わされる化合物であることが好ましい。前記コポリマーは、加水分解あるいは加アルコール分解により容易にアミノ基に変換される。さらに、このアミノ基は、隣接したシアノ基と反応してアミジン化する。前記の一般式(5)で表される化合物の具体例としては、N−ビニルホルムアミド(R=H、R=H)、N−ビニルアセトアミド(R=H、R=CH)などが挙げられる。 Examples of the ethylenically unsaturated monomer include CH 2 ═CR 7 —NHCOR 8 (wherein R 7 is a hydrogen atom or a methyl group, and R 8 is an alkyl group having 1 to 4 carbon atoms). It is preferably a compound represented by the following formula: The copolymer is easily converted to an amino group by hydrolysis or alcoholysis. In addition, this amino group reacts with the adjacent cyano group to amidinate. Specific examples of the compound represented by the general formula (5) include N-vinylformamide (R 7 = H, R 8 = H), N-vinylacetamide (R 7 = H, R 8 = CH 3 ). Etc.

前記コポリマーにおけるエチレン性不飽和モノマーとニトリル類との使用割合は、モル比で通常20:80〜80:20が好ましく、40:60〜60:40がより好ましい。 The use ratio of the ethylenically unsaturated monomer and the nitrile in the copolymer is usually preferably 20:80 to 80:20, more preferably 40:60 to 60:40 in terms of molar ratio.

アミジンポリマー(A)は、最も典型的には、前記で説明したところに従い、N−ビニルホルムアミドとアクリロニトリルとを共重合させ、形成したコポリマーを、塩酸の存在下、加熱し加水分解で形成したアミノ基と隣接するシアノ基からアミジン構成単位を形成させることにより製造される。この場合、共重合に供するN−ビニルホルムアミドとアクリロニトリルとのモル比、およびコポリマーのアミジン化条件を適宜、選択することにより、各種の組成を持つアミジンポリマー(A)が得られる。なお、アミジンポリマー(A)としては、入手し易い市販品から選択して使用しても良い。 The amidine polymer (A) is most typically an amino acid formed by hydrolysis by copolymerizing N-vinylformamide and acrylonitrile in the presence of hydrochloric acid as described above. It is produced by forming an amidine building block from a cyano group adjacent to the group. In this case, the amidine polymer (A) having various compositions can be obtained by appropriately selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to copolymerization and the amidine formation conditions of the copolymer. The amidine polymer (A) may be selected from commercially available products.

アミジンポリマー(A)の粘度を示す物性値としては、アミジンポリマー(A)を0.1g/dL含む1規定塩化ナトリウム水溶液の25℃における還元粘度(以下、「還元粘度」と記す)が、通常は0.1dL/g以上が好ましく、1dL/g以上がより好ましい。また、10dL/g以下が好ましく、5dL/g以下がより好ましい。 As a physical property value showing the viscosity of the amidine polymer (A), the reduced viscosity at 25 ° C. (hereinafter referred to as “reduced viscosity”) of a 1 N sodium chloride aqueous solution containing 0.1 g / dL of the amidine polymer (A) is usually used. Is preferably 0.1 dL / g or more, more preferably 1 dL / g or more. Moreover, 10 dL / g or less is preferable and 5 dL / g or less is more preferable.

両性ポリマー(B)は、カチオン性構成単位として前記一般式(3)で表される構成単位を有するポリマーである。カチオン性構成単位としては、例えば、カチオン性モノマーであるジアルキルアミノアルキル(メタ)アクリレートのアミン塩もしくはアルキルクロライド4級塩に由来するカチオン性構成単位、またはジアルキルアミノアルキル(メタ)アクリルアミドのアミン塩もしくはアルキルクロライド4級塩に由来するカチオン性構成単位が挙げられる。特に、ジアルキルアミノアルキル(メタ)アクリレートアルキルクロライド4級塩が好ましい。モノマーは、カチオン性モノマー1種を単独で用いても良く、2種類以上を併用しても良い。 The amphoteric polymer (B) is a polymer having a structural unit represented by the general formula (3) as a cationic structural unit. As the cationic structural unit, for example, a cationic structural unit derived from an amine salt or alkyl chloride quaternary salt of a dialkylaminoalkyl (meth) acrylate which is a cationic monomer, or an amine salt of dialkylaminoalkyl (meth) acrylamide or Examples include cationic structural units derived from alkyl chloride quaternary salts. In particular, dialkylaminoalkyl (meth) acrylate alkyl chloride quaternary salts are preferred. As the monomer, one type of cationic monomer may be used alone, or two or more types may be used in combination.

両性ポリマー(B)におけるカチオン性構成単位の含有量は、通常25モル%以上が好ましい。また、80モル%以下が好ましく、55モル%以下がより好ましい。このような構成単位を有する両性ポリマー(B)であれば、不溶化した着色物質が凝集し微細フロックを形成する反応と、微細フロックから凝集フロックに成長する反応が効率よく進行し、良好な凝集フロックが形成され、脱色効果が改善される。 The content of the cationic structural unit in the amphoteric polymer (B) is usually preferably 25 mol% or more. Moreover, 80 mol% or less is preferable and 55 mol% or less is more preferable. With the amphoteric polymer (B) having such a constitutional unit, a reaction in which insoluble colored substances are aggregated to form fine flocs and a reaction in which the fine flocs grow into the aggregated flocs proceed efficiently, and good aggregated flocs are obtained. Is formed, and the decolorization effect is improved.

両性ポリマー(B)は、アニオン性構成単位を有するポリマーであるが、アニオン性を示す官能基を有する構成単位としては、(メタ)アクリル酸、2−アクリルアミド−2メチルプロパンスルホン酸など挙げられ、これらの中では、アクリル酸が好ましい。両性ポリマー(B)におけるアニオン性構成単位の含有量は、通常3モル%以上が好ましく、5モル%以上がより好ましい。また、75モル%以下が好ましく、30モル%以下がより好ましい。 The amphoteric polymer (B) is a polymer having an anionic structural unit, and examples of the structural unit having an anionic functional group include (meth) acrylic acid and 2-acrylamido-2methylpropanesulfonic acid. Of these, acrylic acid is preferred. The content of the anionic structural unit in the amphoteric polymer (B) is usually preferably 3 mol% or more, and more preferably 5 mol% or more. Moreover, 75 mol% or less is preferable and 30 mol% or less is more preferable.

両性ポリマー(B)は、前記カチオン性構成単位と前記アニオン性構成単位の他に非イオン性構成単位を有するポリマーであるが、非イオン性構成単位としては(メタ)アクリルアミドが挙げられる。両性ポリマー(B)における非イオン性構成単位の含有量は通常1〜70モル%である。 The amphoteric polymer (B) is a polymer having a nonionic structural unit in addition to the cationic structural unit and the anionic structural unit, and examples of the nonionic structural unit include (meth) acrylamide. The content of nonionic structural units in the amphoteric polymer (B) is usually 1 to 70 mol%.

両性ポリマー(B)の還元粘度は、通常0.1dL/g以上が好ましく、3.0dL/g以上がより好ましい。また、10.0dL/g以下が好ましく、7.5dL/g以下がより好ましい。両性ポリマー(B)の還元粘度が前記範囲内であれば、凝集フロックへ成長する段階で、アミジンポリマーのカチオン性を示す官能基の一部と、両性ポリマーのアニオン性を示す官能基の一部が効率よく反応するため、良好な凝集フロックが形成され、着色廃水の脱色効果が改善される。 The reduced viscosity of the amphoteric polymer (B) is usually preferably 0.1 dL / g or more, and more preferably 3.0 dL / g or more. Moreover, 10.0 dL / g or less is preferable and 7.5 dL / g or less is more preferable. If the reduced viscosity of the amphoteric polymer (B) is within the above range, a part of the functional group showing the cationic property of the amidine polymer and a part of the functional group showing the anionic property of the amphoteric polymer at the stage of growing into an aggregated floc. Reacts efficiently, so that good coagulation flocs are formed and the decolorization effect of colored wastewater is improved.

両性ポリマー(B)が有するアニオン性構成単位の含有率をMaモル%、カチオン性構成単位の含有率をMcモル%としたとき、アニオン性構成単位とカチオン性構成単位の含有率の比Ma/Mc(以下、「A/C」という)は、通常は0.15以上が好ましく、0.25以上がより好ましい。また、0.55、以下が好ましく、0.45以下がより好ましい。A/Cが前記範囲内であれば、両性ポリマー(B)により、不溶化した着色物質が凝集し微細フロックを形成する反応と、微細フロックから凝集フロックへの成長反応が効率よく進行し、良好な凝集フロックが形成され、着色廃水の脱色効果が改善される。 When the content of the anionic structural unit of the amphoteric polymer (B) is Ma mol% and the content of the cationic structural unit is Mc mol%, the ratio of the content of the anionic structural unit to the cationic structural unit Ma / Mc (hereinafter referred to as “A / C”) is usually preferably 0.15 or more, and more preferably 0.25 or more. Moreover, 0.55 or less is preferable and 0.45 or less is more preferable. If A / C is within the above range, the amphoteric polymer (B) causes the insoluble colorant to aggregate to form fine flocs, and the growth reaction from fine flocs to agglomerated flocs proceeds efficiently and is favorable. Agglomerated flocs are formed and the decolorization effect of colored wastewater is improved.

本発明が対象とする着色廃水には、無機塩が多く含まれており、これらの無機塩は廃水中では1〜3価の陰イオン即ちアニオン性成分として混在しているものが多い。アミジンポリマー(A)は、これらの無機塩由来のアニオン性成分および着色物質と反応し荷電を中和し、イオンコンプレックスを形成することで、着色物質を効率よく不溶化させることができる。アミジンポリマー(A)により不溶化した着色物質は、その後、両性ポリマー(B)の架橋吸着によって、微細フロックから凝集フロックへと成長し、良好な凝集フロックが形成される。本発明の着色廃水の凝集処理方法では、さらに、非アミジン系カチオン性ポリマー(以下「カチオンポリマー」と記す)(C)を組み合わせて使用することで、両性ポリマー(B)の架橋吸着の機能が向上し、より良好な凝集フロックを形成し得るため、前記高分子凝集剤は、カチオンポリマー(C)を含むことが好ましい。 The colored wastewater targeted by the present invention contains a lot of inorganic salts, and these inorganic salts are often mixed as 1 to 3 anions, that is, anionic components in the wastewater. The amidine polymer (A) can efficiently insolubilize the colored substance by reacting with the anionic component derived from these inorganic salts and the colored substance to neutralize the charge and form an ion complex. The colored substance insolubilized by the amidine polymer (A) then grows from fine flocs to agglomerated flocs by cross-linking adsorption of the amphoteric polymer (B), and good agglomerated flocs are formed. In the coagulation treatment method of the colored wastewater according to the present invention, the non-amidine-based cationic polymer (hereinafter referred to as “cationic polymer”) (C) is used in combination so that the function of cross-linking adsorption of the amphoteric polymer (B) is achieved. The polymer flocculant preferably contains a cationic polymer (C) in order to improve and form a better aggregated floc.

前記カチオンポリマー(C)は、カチオン性構成単位として、前記一般式(3)で表される構成単位を有するポリマーである。カチオン性構成単位としては、例えば、カチオン性モノマーであるジアルキルアミノアルキル(メタ)アクリレートのアミン塩もしくはアルキルクロライド4級塩に由来するカチオン性構成単位、またはジアルキルアミノアルキル(メタ)アクリルアミドのアミン塩もしくはアルキルクロライド4級塩に由来するカチオン性構成単位が挙げられる。特に、ジアルキルアミノアルキル(メタ)アクリレートアルキルクロライド4級塩が好ましい。モノマーは、カチオン性モノマー1種を単独で用いても良く、2種類以上を併用しても良い。 The cationic polymer (C) is a polymer having a structural unit represented by the general formula (3) as a cationic structural unit. As the cationic structural unit, for example, a cationic structural unit derived from an amine salt or alkyl chloride quaternary salt of a dialkylaminoalkyl (meth) acrylate which is a cationic monomer, or an amine salt of dialkylaminoalkyl (meth) acrylamide or Examples include cationic structural units derived from alkyl chloride quaternary salts. In particular, dialkylaminoalkyl (meth) acrylate alkyl chloride quaternary salts are preferred. As the monomer, one type of cationic monomer may be used alone, or two or more types may be used in combination.

前記カチオンポリマー(C)におけるカチオン性構成単位の含有量は、通常60モル%以上が好ましく、80モル%以上がより好ましい。また、100モル%以下が好ましい。また、前記カチオン性構成単位としては、全構成単位中の割合として、少なくともジメチルアミノエチルアクリレート塩化メチル4級塩モノマー構成単位を60〜100モル%、並びにジメチルアミノエチルメタクリレート塩化メチル4級塩モノマー構成単位を0〜30モル%含有することが好ましい。このような構成単位を有するカチオンポリマー(C)は、良好な凝集フロックが得られ、脱水効果が改善される。 The content of the cationic structural unit in the cationic polymer (C) is usually preferably 60 mol% or more, and more preferably 80 mol% or more. Moreover, 100 mol% or less is preferable. The cationic structural unit includes at least 60 to 100 mol% of a dimethylaminoethyl acrylate methyl chloride quaternary salt monomer structural unit and a dimethylaminoethyl methacrylate methyl chloride quaternary salt monomer structure as a proportion of the total structural units. It is preferable to contain 0-30 mol% of units. In the cationic polymer (C) having such a structural unit, a good aggregation floc is obtained and the dehydration effect is improved.

前記カチオンポリマー(C)は、非イオン性構成単位を含有するポリマーであり、非イオン性構成単位としては(メタ)アクリルアミドが挙げられる。非アミジン系カチオン性ポリマー(C)における非イオン性構成単位の含有量は通常1〜70モル%である。 The cationic polymer (C) is a polymer containing a nonionic structural unit, and examples of the nonionic structural unit include (meth) acrylamide. The content of the nonionic structural unit in the nonamidine-based cationic polymer (C) is usually 1 to 70 mol%.

着色物質を効率よく不溶化させ、良好な凝集フロックを形成し、優れた脱水効果を得るためにはアミジンポリマー(A)と両性ポリマー(B)の混合物とカチオンポリマー(C)を所定の混合比率で用いる必要がある。即ち、混合比率は、アミジンポリマー(A)と両性ポリマー(B)の混合物とカチオンポリマー(C)の合計質量に対するアミジンポリマー(A)と両性ポリマー(B)の混合物の割合が50〜80質量%、カチオンポリマー(C)の割合が20〜50質量%である。このような混合比率であれば、不溶化した着色成分が凝集し微細フロックを形成する反応と、微細フロックから凝集フロックへの成長反応が効率よく進行し、良好な凝集フロックが形成され、着色廃水の脱色効果が改善される。 In order to efficiently insolubilize the colored substance, form a good aggregated floc, and obtain an excellent dehydration effect, a mixture of the amidine polymer (A) and the amphoteric polymer (B) and the cationic polymer (C) are mixed at a predetermined mixing ratio. It is necessary to use it. That is, the mixing ratio is 50 to 80% by mass of the mixture of the amidine polymer (A) and the amphoteric polymer (B) with respect to the total mass of the mixture of the amidine polymer (A) and the amphoteric polymer (B) and the cationic polymer (C). The ratio of the cationic polymer (C) is 20 to 50% by mass. With such a mixing ratio, the insoluble coloring component aggregates to form fine flocs and the growth reaction from fine flocs to aggregated flocs proceeds efficiently, and good aggregated flocs are formed. Decolorization effect is improved.

両性ポリマー(B)およびカチオンポリマー(C)の製造方法は、特に限定されないが、前記のモノマーを水に溶解させたモノマー水溶液を均一なシート状にし、光開始剤を用いて可視光または紫外光を照射して共重合させる水溶液光重合方法、モノマーの水溶液に1種以上の開始剤を加えて重合させ水性ゲル状の重合物を得る断熱重合方法、非水溶媒中にモノマー水溶液を分散させて重合する分散重合方法、非水溶媒中で乳化剤を用いてモノマー水溶液を乳化させて重合する乳化重合方法などの方法を適宜選択することができる。光重合、断熱重合などの場合は、ポリマーは水性ゲルとして取得されるので、水性ゲルを粉砕、乾燥して粉末にすることが好ましい。 The production method of the amphoteric polymer (B) and the cationic polymer (C) is not particularly limited, but an aqueous monomer solution in which the above monomer is dissolved in water is made into a uniform sheet, and visible light or ultraviolet light is used using a photoinitiator. Aqueous photopolymerization method for copolymerization by irradiation, adiabatic polymerization method for obtaining an aqueous gel polymer by adding one or more initiators to an aqueous monomer solution, and dispersing an aqueous monomer solution in a non-aqueous solvent Methods such as a dispersion polymerization method for polymerization and an emulsion polymerization method for emulsifying an aqueous monomer solution using an emulsifier in a non-aqueous solvent can be appropriately selected. In the case of photopolymerization, adiabatic polymerization, and the like, the polymer is obtained as an aqueous gel. Therefore, it is preferable to pulverize and dry the aqueous gel into a powder.

前記の還元粘度の両性ポリマー(B)の調製方法としては、特に限定されないが、製造工程における重合時間、重合温度、連鎖移動剤添加量などの条件を製造するポリマーの粘度を考慮して適宜選定する。本発明においては、連鎖移動剤添加量の条件により、還元粘度を調製することが好ましい。連鎖移動剤の種類は特に限定されないが、例えばメルカプトエタノール、メルカプトプロピオン酸などのチオール化合物、亜硫酸ナトリウム、亜硫酸水素ナトリウム、次亜リン酸ナトリウムなどの還元性無機塩類などが挙げられる。その中でも特に次亜リン酸ナトリウムが好ましい。連鎖移動剤の添加量は、原料全モノマーに対して通常1〜3000ppmである。 The method for preparing the above-mentioned reduced viscosity amphoteric polymer (B) is not particularly limited, but is appropriately selected in consideration of the viscosity of the polymer for producing conditions such as polymerization time, polymerization temperature, and chain transfer agent addition amount in the production process. To do. In the present invention, it is preferable to adjust the reduced viscosity according to the condition of the chain transfer agent addition amount. The type of chain transfer agent is not particularly limited, and examples thereof include thiol compounds such as mercaptoethanol and mercaptopropionic acid, and reducing inorganic salts such as sodium sulfite, sodium bisulfite, and sodium hypophosphite. Of these, sodium hypophosphite is particularly preferable. The addition amount of the chain transfer agent is usually 1 to 3000 ppm with respect to all raw materials monomers.

本発明において、高分子凝集剤の着色廃水への添加方法および凝集フロックの形成方法としては、公知の方法が適用できる。 In the present invention, known methods can be applied as a method for adding the polymer flocculant to the colored waste water and the method for forming the floc floc.

高分子凝集剤の添加方法としては、高分子凝集剤を水に0.05〜0.5質量%の濃度で溶解させた後、着色廃水に添加することが好ましい。また、高分子凝集剤は、アミジンポリマー(A)、両性ポリマー(B)、カチオンポリマー(C)を混合した1剤型薬剤として添加することが好ましい。場合によっては、高分子凝集剤を粉末状のまま着色廃水に添加しても良い。 As a method for adding the polymer flocculant, it is preferable to dissolve the polymer flocculant in water at a concentration of 0.05 to 0.5% by mass and then add it to the colored waste water. Further, the polymer flocculant is preferably added as a one-drug agent in which the amidine polymer (A), the amphoteric polymer (B), and the cationic polymer (C) are mixed. In some cases, the polymer flocculant may be added to the colored waste water in the form of a powder.

高分子凝集剤は、本発明の効果を損なわない範囲で、アミジンポリマー(A)や両性ポリマー(B)、カチオンポリマー(C)以外の他のカチオン性ポリマーおよび両性ポリマーを含んでいてもよい。他のカチオン性ポリマーおよび両性ポリマーの混合比率は、高分子凝集剤の全質量に対して、10質量%未満が好ましく、5質量%未満がより好ましく、0質量%が更に好ましい。 The polymer flocculant may contain other cationic polymers and amphoteric polymers other than the amidine polymer (A), the amphoteric polymer (B), and the cationic polymer (C) as long as the effects of the present invention are not impaired. The mixing ratio of the other cationic polymer and amphoteric polymer is preferably less than 10% by mass, more preferably less than 5% by mass, and still more preferably 0% by mass with respect to the total mass of the polymer flocculant.

本発明の着色廃水の凝集処理方法において、より良好な凝集フロックを形成するために、必要に応じて、着色廃水の高分子凝集剤を添加した後に、さらにアニオン性ポリマー(以下「アニオンポリマー」と記す)(D)からなる高分子凝集剤を添加しても良い。 In the flocculation treatment method of the colored wastewater of the present invention, in order to form a better flocculation floc, if necessary, after adding a polymer flocculant of the colored wastewater, an anionic polymer (hereinafter referred to as “anionic polymer”). A polymer flocculant consisting of (D) may be added.

アニオンポリマー(D)は、アニオン性構成単位を有するポリマーである。アニオン性構成単位としては、(メタ)アクリル酸、2−アクリルアミド−2メチルプロパンスルホン酸などが挙げられるが、これらの中では、アクリル酸が好ましい。アニオンポリマー(D)におけるアニオン性構成単位の含有量は、通常5〜90モル%である。更に前記アニオンポリマー(D)は、非イオン性構成単位を有するポリマーであり、非イオン性構成単位としては(メタ)アクリルアミドが挙げられる。アニオンポリマー(D)における非イオン性構成単位の含有量は通常10〜95モル%である。
アニオンポリマー(D)の製造方法としては、特に限定されないが、沈殿重合法、塊状重合法、分散重合法、水溶液重合法などが挙げられる。
The anionic polymer (D) is a polymer having an anionic structural unit. Examples of the anionic structural unit include (meth) acrylic acid and 2-acrylamido-2methylpropanesulfonic acid. Among these, acrylic acid is preferable. The content of the anionic structural unit in the anionic polymer (D) is usually 5 to 90 mol%. Furthermore, the anionic polymer (D) is a polymer having a nonionic structural unit, and examples of the nonionic structural unit include (meth) acrylamide. Content of the nonionic structural unit in an anionic polymer (D) is 10-95 mol% normally.
Although it does not specifically limit as a manufacturing method of an anionic polymer (D), A precipitation polymerization method, a block polymerization method, a dispersion polymerization method, an aqueous solution polymerization method etc. are mentioned.

高分子凝集剤を添加する際には、着色廃水を撹拌することが好ましい。撹拌が弱すぎると、高分子凝集剤が均一に混和されず、撹拌が強すぎると微細フロックが凝集フロックへと成長しにくくなる。したがって、高分子凝集剤を添加する際には、180〜3000rpmの回転数で着色廃水を撹拌することが好ましい。 When adding the polymer flocculant, it is preferable to stir the colored wastewater. If the stirring is too weak, the polymer flocculant is not uniformly mixed, and if the stirring is too strong, the fine flocs are difficult to grow into the aggregated flocs. Therefore, when adding the polymer flocculant, it is preferable to stir the colored waste water at a rotational speed of 180 to 3000 rpm.

高分子凝集剤の水への溶解性の向上や、高分子凝集剤の水溶液の粘度低下などの劣化防止のために、酸性物質を添加しても良い。酸性物質としては、例えば、スルファミン酸、酸性亜硫酸ナトリウムなどが挙げられる。 An acidic substance may be added in order to improve the solubility of the polymer flocculant in water and to prevent deterioration such as a decrease in the viscosity of the aqueous solution of the polymer flocculant. Examples of the acidic substance include sulfamic acid and acidic sodium sulfite.

凝集フロックを固液分離する方法としては、特に限定されないが、例えば、凝集沈殿や浮上分離、遠心分離やろ過などの方法が挙げられ、凝集沈殿や浮上分離によって固液分離することが好ましい。 The method for solid-liquid separation of the aggregate flocs is not particularly limited, and examples thereof include methods such as aggregation precipitation, flotation separation, centrifugation and filtration, and solid-liquid separation is preferably performed by aggregation precipitation or flotation separation.

高分子凝集剤の添加量は、着色廃水中の着色廃水、懸濁物質、コロイド状物質、イオン性成分などの濃度などにより異なり一概には言えないが、大まかな目安としては、着色廃水中に対して、1〜500ppmとなる量である。 The amount of polymer flocculant added varies depending on the concentration of colored wastewater, suspended substances, colloidal substances, ionic components, etc. in the colored wastewater, but it cannot be said unconditionally. On the other hand, the amount is 1 to 500 ppm.

本発明においては、高分子凝集剤に加えて、無機凝結剤および/または有機凝結剤(以下、これらをまとめて単に「凝結剤」という)を併用しても良い。前記の高分子凝集剤は、凝結剤と併用しても、着色廃水に対する脱色効果を十分に発揮できる。無機凝結剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、ポリ鉄(ポリ硫酸鉄、ポリ塩化鉄)などが挙げられる。有機凝結剤としては、例えば、ポリアミン、ポリジアリルジメチルアンモニウムクロライド、ポリジアルキルアミノアルキルメタクリレートのアルキルクロライド4級塩、カチオン性界面活性剤などが挙げられる。 In the present invention, in addition to the polymer flocculant, an inorganic coagulant and / or an organic coagulant (hereinafter collectively referred to simply as “coagulant”) may be used in combination. Even if it uses together with the said coagulant | flocculant, the said polymer flocculent can fully exhibit the decoloring effect with respect to colored wastewater. Examples of the inorganic coagulant include sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate, ferric sulfate, polyiron (polyiron sulfate, polyiron chloride) and the like. Examples of the organic coagulant include polyamine, polydiallyldimethylammonium chloride, alkyl chloride quaternary salt of polydialkylaminoalkyl methacrylate, and a cationic surfactant.

凝結剤の添加時期は、特に限定されないが、高分子凝集剤を添加する前の工程で添加することが好ましい。凝結剤の添加量は、本発明の高分子凝集剤100質量部に対し、通常5〜3000質量部である。 The timing of adding the coagulant is not particularly limited, but it is preferably added in the step before adding the polymer flocculant. The addition amount of the coagulant is usually 5 to 3000 parts by mass with respect to 100 parts by mass of the polymer flocculant of the present invention.

以下、実施例および比較例を用いて本発明を詳細に説明するが、本発明はその要旨を超えない限り以下の記載によって限定されるものではない。なお、本実施例および比較例における「%」は特に断りのない限り「質量%」を示す。以下の製造例で得られた各ポリマーについては、以下に示す還元粘度の測定を行った。測定には、粉末状の高分子凝集剤を用いた。 EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited by the following description, unless the summary is exceeded. In the examples and comparative examples, “%” indicates “% by mass” unless otherwise specified. About each polymer obtained by the following manufacture examples, the reduced viscosity shown below was measured. For the measurement, a powdery polymer flocculant was used.

[還元粘度の測定]
1規定塩化ナトリウム水溶液中、0.1g/dLのポリマー溶液として25℃でオストワルドの粘度計により還元粘度を測定した。
[Measurement of reduced viscosity]
The reduced viscosity was measured with an Ostwald viscometer at 25 ° C. as a 0.1 g / dL polymer solution in a 1 N aqueous sodium chloride solution.

実施例で用いた原料を以下に示す。
[モノマー]
(i)カチオン性モノマー:
(a)N,N−ジメチルアミノエチルアクリレート塩化メチル4級塩(以下、「DME」と記す)、大阪有機化学工業社製、80質量%水溶液
(b)N,N−ジメチルアミノエチルメタクリレート塩化メチル4級塩(以下、「DMC」と記す)、大阪有機化学工業社製、80質量%水溶液
(ii)アニオン性モノマー:
アクリル酸(以下、「AA」と記す)、三菱化学社製、50質量%水溶液
(iii)非イオン性モノマー:
(a)アクリルアミド(以下、「AAM」と記す)、ダイヤニトリックス社製、50質量%水溶液
(b)アクリロニトリル(以下、「AN」と記す)、ダイヤニトリックス社製、純度99質量%
(c)N−ビニルホルムアミド(以下、「NVF」と記す)、ダイヤニトリックス社製、純度91質量%水溶液
[開始剤]
(i)2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン(DAROCUR1173)、(以下、「D−1173」と記す)、Ciba社製
(ii)2,2’−アゾビス(2−アミジノプロパン)2塩酸塩(V−50)(以下、「V−50」と記す)、和光純薬社製
[連鎖移動剤]
次亜リン酸ナトリウム(以下、「HPA」と記す)、和光純薬社製
The raw materials used in the examples are shown below.
[monomer]
(I) Cationic monomer:
(A) N, N-dimethylaminoethyl acrylate methyl chloride quaternary salt (hereinafter referred to as “DME”), manufactured by Osaka Organic Chemical Industry Co., Ltd., 80 mass% aqueous solution (b) N, N-dimethylaminoethyl methacrylate methyl chloride Quaternary salt (hereinafter referred to as “DMC”), manufactured by Osaka Organic Chemical Industry Co., Ltd., 80% by weight aqueous solution (ii) anionic monomer:
Acrylic acid (hereinafter referred to as “AA”), manufactured by Mitsubishi Chemical Corporation, 50 mass% aqueous solution (iii) nonionic monomer:
(A) Acrylamide (hereinafter referred to as “AAM”), manufactured by Daianitrix Co., Ltd., 50% by mass aqueous solution (b) Acrylonitrile (hereinafter referred to as “AN”), manufactured by Daianitrix Co., Ltd., purity 99% by mass
(C) N-vinylformamide (hereinafter referred to as “NVF”), manufactured by Diaanitrix, 91 mass% aqueous solution [initiator]
(I) 2-hydroxy-2-methyl-1-phenylpropan-1-one (DAROCUR1173) (hereinafter referred to as “D-1173”), (ii) 2,2′-azobis (2- Amidinopropane) dihydrochloride (V-50) (hereinafter referred to as “V-50”), manufactured by Wako Pure Chemical Industries, Ltd. [chain transfer agent]
Sodium hypophosphite (hereinafter referred to as “HPA”), manufactured by Wako Pure Chemical Industries, Ltd.

[アミジンポリマー(A)の合成]
(製造例1)
攪拌機、窒素導入管、冷却管を備えた内容積50mLの四つ口フラスコにANとNVFの混合物(モル比55:45)6gと蒸留水34gとの混合物を入れた。窒素ガス中攪拌しつつ60℃に昇温し、V−50の0.12gを添加し、さらに、60℃で3時間保持し、水中にポリマーが析出した懸濁物を得た。懸濁物に蒸留水20g添加し、さらに、濃塩酸をポリマーのホルミル基に対し1当量添加し100℃で4時間保持し、黄色の高粘度液を得た。これを多量のアセトンに添加し、ポリマーを析出させ、得られたポリマーゲルを細断し、60℃で1昼夜乾燥後粉砕してアミジンポリマー(A)(ポリマーA−1)を得た。
[Synthesis of Amidine Polymer (A)]
(Production Example 1)
A mixture of 6 g of AN and NVF (molar ratio 55:45) and 34 g of distilled water was placed in a 50-mL four-necked flask equipped with a stirrer, a nitrogen introduction tube, and a cooling tube. While stirring in nitrogen gas, the temperature was raised to 60 ° C., 0.12 g of V-50 was added, and the mixture was further maintained at 60 ° C. for 3 hours to obtain a suspension in which the polymer was precipitated in water. 20 g of distilled water was added to the suspension, and 1 equivalent of concentrated hydrochloric acid was added to the formyl group of the polymer and kept at 100 ° C. for 4 hours to obtain a yellow high-viscosity liquid. This was added to a large amount of acetone to precipitate a polymer, and the resulting polymer gel was chopped, dried at 60 ° C. for one day and night, and pulverized to obtain an amidine polymer (A) (polymer A-1).

ポリマーA−1を重水に溶解させ、NMRスペクトロメーター(日本電子社製、270MHz)にて13C−NMRスペクトルを測定した。13C−NMRスペクトルの各繰り返し単位に対応したピークの積分値より各構成単位の組成を算出した。前記一般式(1)および(2)の構成単位は、区別することなく、その総量として求めた。結果を表1に示す。 Polymer A-1 was dissolved in heavy water, and a 13 C-NMR spectrum was measured with an NMR spectrometer (manufactured by JEOL Ltd., 270 MHz). The composition of each constituent unit was calculated from the integrated value of the peak corresponding to each repeating unit of the 13 C-NMR spectrum. The structural units of the general formulas (1) and (2) were determined as the total amount without distinction. The results are shown in Table 1.


(*)アミジン:アミジン塩酸塩構成単位、NVF:N−ビニルホルムアミド構成単位、AN:アクリロニトリル構成単位、VAM:ビニルアミン塩酸塩構成単位

(*) Amidine: Amidine hydrochloride structural unit, NVF: N-vinylformamide structural unit, AN: Acrylonitrile structural unit, VAM: Vinylamine hydrochloride structural unit

[両性ポリマー(B)の合成]
(製造例2)
DMEの632.9g、AAの100.0g、AAMの900.0gを、内容積2000mL褐色耐熱瓶に投入し、HPAの3.0gと蒸留水を加え、総質量が2000gのモノマー水溶液(DME:AA:AAM=26.9:7.2:65.9(モル%)、モノマー濃度50%)を調製した。さらに、D−1173を、モノマー水溶液の総質量に対して、150ppmとなるように投入し、これに窒素ガスを30分間吹き込みながらモノマー水溶液の温度を20℃に調節した。
[Synthesis of Amphoteric Polymer (B)]
(Production Example 2)
632.9 g of DME, 100.0 g of AA, and 900.0 g of AAM were put into a 2000 mL brown heat-resistant bottle, 3.0 g of HPA and distilled water were added, and a monomer aqueous solution (DME: total mass of 2000 g) was added. AA: AAM = 26.9: 7.2: 65.9 (mol%), monomer concentration 50%) was prepared. Furthermore, D-1173 was added so that it might become 150 ppm with respect to the total mass of monomer aqueous solution, and the temperature of monomer aqueous solution was adjusted to 20 degreeC, blowing nitrogen gas into this for 30 minutes.

その後、モノマー水溶液をステンレス反応容器に移し、容器の下方から16℃の水を噴霧しながら、ケミカルランプを用いて、容器の上方から5W/mの照射強度で、表面温度が40℃になるまで光を照射した。表面温度が40℃に到達した後は、0.3W/mの照射強度で30分間光を照射した。さらに、モノマーの残存量を低減させるために、照射強度を50W/mにして10分間光を照射した。これにより、含水ゲル状のポリマーを得た。得られた含水ゲル状のポリマーを容器から取り出し、小型ミートチョッパーを用いて解砕した後、温度60℃で16時間乾燥した。その後、ウィレー型粉砕機を用いて乾燥したポリマーを粉砕し両性ポリマー(B)(ポリマーB−a1)を得た。 Thereafter, the monomer aqueous solution is transferred to a stainless steel reaction vessel, and the surface temperature becomes 40 ° C. with an irradiation intensity of 5 W / m 2 from above the vessel using a chemical lamp while spraying water at 16 ° C. from below the vessel. It was irradiated with light. After the surface temperature reached 40 ° C., light was irradiated for 30 minutes at an irradiation intensity of 0.3 W / m 2 . Furthermore, in order to reduce the residual amount of monomer, irradiation was performed for 10 minutes at an irradiation intensity of 50 W / m 2 . Thereby, a hydrogel polymer was obtained. The obtained hydrogel polymer was taken out from the container, crushed using a small meat chopper, and then dried at a temperature of 60 ° C. for 16 hours. Thereafter, the dried polymer was pulverized using a Willet pulverizer to obtain an amphoteric polymer (B) (polymer B-a1).

(製造例3〜20)
製造例2において、各モノマーおよびHPAの量を調節し、表2に記載の割合に変更した以外は、製造例2と同様の操作を行い、両性ポリマー(B)(ポ
リマーB−a2〜a4、b1〜b3、c1〜c3、d1〜d3、e1、e2、f1、f2、g1、g2)を得た。
(Production Examples 3 to 20)
In Production Example 2, the amount of each monomer and HPA was adjusted, and the same operation as in Production Example 2 was carried out except that the ratios shown in Table 2 were changed, and the amphoteric polymer (B) (Polymers B-a2 to a4, b1-b3, c1-c3, d1-d3, e1, e2, f1, f2, g1, g2) were obtained.

[カチオンポリマー(C)の合成]
(製造例21〜24)
製造例2において、各モノマーおよびHPAの量を調節し、表3に記載の割合に変更した以外は、製造例2と同様の操作を行い、カチオンポリマー(C)(ポリマーC−1〜4)を得た。
[Synthesis of Cationic Polymer (C)]
(Production Examples 21 to 24)
In Production Example 2, the amount of each monomer and HPA was adjusted, and the same operation as in Production Example 2 was carried out except that the ratios shown in Table 3 were changed, and the cationic polymer (C) (Polymers C-1 to 4) Got.

[高分子凝集剤の調製]
(製造例25〜56)
表1〜3に記載のポリマーを表4〜6に記載の各混合比率で、混合・調製して表4〜6に記載の高分子凝集剤(ブレンド1〜32)を得た。
[Preparation of polymer flocculant]
(Production Examples 25-56)
The polymers described in Tables 1 to 3 were mixed and prepared at the mixing ratios described in Tables 4 to 6 to obtain polymer flocculants (Blends 1 to 32) described in Tables 4 to 6.

[着色廃水のSS濃度の測定]
着色廃水のSS濃度は、前記の着色廃水のSS濃度の測定方法によって測定した。
[Measurement of SS concentration of colored wastewater]
The SS concentration of colored wastewater was measured by the above-described method for measuring the SS concentration of colored wastewater.

[着色廃水のCODの測定]
着色廃水のCODは、前記のCODMnの測定方法によって測定した。
[Measurement of COD of colored wastewater]
The COD of the colored wastewater was measured by the above-described COD Mn measuring method.

[着色廃水の電気伝導度の測定]
着色廃水の電気伝導度は、前記の電気伝導度の測定方法によって測定した。
[Measurement of electrical conductivity of colored wastewater]
The electrical conductivity of the colored wastewater was measured by the above-described method for measuring electrical conductivity.

(実施例1〜19)
[使用着色廃水]
食品産業の廃水処理施設から発生した着色廃水として、H株式会社の飲料抽出工場の廃水処理施設で採取した着色廃水で次の特性を有する廃水を用いた。即ち、JIS規格に記載された分析方法を用いて測定された廃水のpHが7.31、SS濃度が340mg/L、電気伝導度が1.7mS/cm、CODが390mg/Lである着色廃水。
(Examples 1 to 19)
[Use colored wastewater]
As colored wastewater generated from the wastewater treatment facility of the food industry, wastewater having the following characteristics was used in the wastewater treatment facility of the beverage extraction factory of H Co., Ltd. That is, a colored wastewater having a pH of 7.31, an SS concentration of 340 mg / L, an electric conductivity of 1.7 mS / cm, and a COD of 390 mg / L, measured using an analysis method described in JIS standards. .

[凝集試験]
先ず、500mLビーカーに前記着色廃水の500mLを採取した。次いで、表4〜6に記載の高分子凝集剤を0.3%に溶解して高分子凝集剤水溶液を調製し、これを表7に記載の濃度になるよう添加した後、ジャーテスターで攪拌速度:180回転/分、攪拌時間:60秒間の条件下に撹拌混合して凝集フロックを形成させた。その後、凝集フロックを沈殿させ、凝集フロックと処理水を分離した。後述の評価結果を表7に示す。
[Aggregation test]
First, 500 mL of the colored waste water was collected in a 500 mL beaker. Next, a polymer flocculant described in Tables 4 to 6 was dissolved in 0.3% to prepare an aqueous polymer flocculant solution, which was added to the concentration shown in Table 7, and then stirred with a jar tester. Aggregation flocs were formed by stirring and mixing under conditions of speed: 180 revolutions / minute, stirring time: 60 seconds. Thereafter, the aggregated floc was precipitated, and the aggregated floc and treated water were separated. Table 7 shows the evaluation results described later.

(比較例1〜7)
用いた高分子凝集剤を表8に示す通りに変更した以外は、実施例1と同様にして凝集フロックを形成させ、凝集フロックと処理水を分離した。後述の評価結果を表8に示す。
(Comparative Examples 1-7)
Except that the polymer flocculant used was changed as shown in Table 8, agglomerated floc was formed in the same manner as in Example 1 to separate the agglomerated floc and treated water. Table 8 shows the evaluation results described later.

[評価方法]
[凝集フロック粒径、処理水のSS濃度、処理水のCOD]
各実施例と比較例において凝集フロックを形成させた後に攪拌を止め、凝集フロック粒径と処理水SS濃度を目視により測定した。その後、処理水を採取し、処理水のCODを測定した。処理水のCODの測定は、着色廃水のCODと同様に前記のCODMnの測定方法によって測定した。
[Evaluation method]
[Agglomerated floc particle size, SS concentration of treated water, COD of treated water]
In each of the examples and comparative examples, after agglomeration floc was formed, stirring was stopped, and the agglomeration floc particle diameter and treated water SS concentration were visually measured. Thereafter, the treated water was collected and the COD of the treated water was measured. The COD of the treated water was measured by the above-described COD Mn measuring method in the same manner as the COD of the colored wastewater.

[処理水のSS濃度]
処理水のSS濃度については、目視によって下記の基準で評価した。
A:凝集フロックを分離した後の処理水がほとんど透き通っており、浮遊物はほぼ見られない(SS濃度目安:10mg/L未満)。
B:凝集フロックを分離した後の処理水に一部濁りが見られ、浮遊物がわずかに存在する(SS濃度目安:10mg/L以上50mg/L未満)。
C:凝集フロックを分離した後の処理水に部分的に濁りが見られ、浮遊物がところどころ存在する(SS濃度目安:50mg/L以上100mg/L未満)。
D:凝集フロックを分離した後の処理水に多数の濁りが見られ、浮遊物が全体的に存在する(SS濃度目安:100mg/L以上300mg/L未満)。
E:凝集フロックを分離した後の処理水に全体的に多数の濁りが見られ、浮遊物が全体的に存在し、一部粗大な大きさで存在する(SS濃度目安:300mg/L以上500mg/L未満)。
×:凝集フロックを分離した後の処理水が完全に濁り、粗大な浮遊物が多数存在する(SS濃度目安:500mg/L以上)。
[SS concentration of treated water]
About the SS density | concentration of treated water, it evaluated by the following reference | standard by visual observation.
A: The treated water after separating the aggregated floc is almost transparent, and almost no suspended matter is seen (SS concentration guideline: less than 10 mg / L).
B: Some turbidity is seen in the treated water after separating the flocs and flocs are present slightly (SS concentration guideline: 10 mg / L or more and less than 50 mg / L).
C: Turbidity is partially observed in the treated water after separating the aggregated flocs, and suspended matter is present in some places (SS concentration guideline: 50 mg / L or more and less than 100 mg / L).
D: Many turbidity is seen in the treated water after separating the aggregated floc, and the suspended matter is present as a whole (SS concentration guideline: 100 mg / L or more and less than 300 mg / L).
E: Numerous turbidity is generally observed in the treated water after separating the aggregated floc, and the suspended matter is present entirely and partially in a large size (SS concentration guideline: 300 mg / L or more and 500 mg) / L).
X: The treated water after separating the flocs flocs is completely turbid, and there are many coarse suspended matters (SS concentration guideline: 500 mg / L or more).

表7に示すように、本発明の高分子凝集剤を用いた実施例1〜19では、粗大な凝集フロックを形成し、処理水のSS濃度も低かった。特に、両性ポリマー(B)の還元粘度が3.0〜7.5dL/gの範囲内であり、かつA/Cが0.25〜0.45の範囲内である実施例1〜4は、フロック径の大きい粗大な凝集フロックが得られ、処理水のCODも低く良質な水質の処理水が得られた。 As shown in Table 7, in Examples 1 to 19 using the polymer flocculant of the present invention, coarse aggregated flocs were formed and the SS concentration of treated water was low. In particular, Examples 1-4 in which the reduced viscosity of the amphoteric polymer (B) is in the range of 3.0 to 7.5 dL / g and A / C is in the range of 0.25 to 0.45, A coarse coagulated floc having a large floc diameter was obtained, and treated water having a low quality COD and a high quality water was obtained.

表8に示すように、比較例1〜7は、各ポリマーの混合比率が本願発明の所定割合の範囲から外れた高分子凝集剤を用いた例で、いずれも形成した凝集フロックが小さく、処理水のSS濃度、CODが高かった。 As shown in Table 8, Comparative Examples 1 to 7 are examples using a polymer flocculant in which the mixing ratio of each polymer deviates from the range of the predetermined ratio of the present invention. The SS concentration and COD of water were high.

(実施例20〜31、比較例8、9)
[使用着色廃水]
ダストコントロール産業の廃水処理施設から発生した着色廃水として、T株式会社のクリーニング工場の廃水処理施設で採取した着色廃水で次の特性を有する廃水を用いた。即ち、JIS規格に記載された分析方法を用いて測定された廃水のpHが7.56、SS濃度が157mg/L、電気伝導度が1.98mS/cm、CODが580mg/Lである着色廃水。
(Examples 20 to 31, Comparative Examples 8 and 9)
[Use colored wastewater]
As the colored wastewater generated from the wastewater treatment facility of the dust control industry, the wastewater having the following characteristics was used in the colored wastewater collected at the wastewater treatment facility of the cleaning factory of T Corporation. That is, a colored wastewater having a pH of 7.56, an SS concentration of 157 mg / L, an electric conductivity of 1.98 mS / cm, and a COD of 580 mg / L measured using an analysis method described in JIS standards. .

(凝集試験)
試験に用いた高分子凝集剤を表9に示す通りに変更した以外は、実施例1と同様の凝集試験を実施した。実施例20〜31および比較例8、9における評価結果を表9に示す。
(Aggregation test)
The same aggregation test as in Example 1 was performed except that the polymer flocculant used in the test was changed as shown in Table 9. Table 9 shows the evaluation results in Examples 20 to 31 and Comparative Examples 8 and 9.

表9に示すように、本発明の高分子凝集剤を用いた実施例20〜31では、粗大な凝集フロックを形成し、処理水のSS濃度も低かった。特に、両性ポリマー(B)の還元粘度が3.0〜7.5dL/gの範囲内であり、かつA/Cが0.25〜0.45の範囲内である実施例20〜22、25〜31では、径の大きい粗大な凝集フロックが得られ、処理水のCODも低く良質な水質の処理水が得られた。また、実施例25〜31は、カチオンポリマー(C)を含む混合物からなる高分子凝集剤を用いた例であるが、カチオンポリマー(C)のカチオン性構成単位の含有割合および各ポリマーの混合比率が本願発明の所定割合の範囲内である実施例25、26、29、30では、より処理水のCODが低く優れた脱色効果が得られた。 As shown in Table 9, in Examples 20 to 31 using the polymer flocculant of the present invention, coarse aggregated flocs were formed and the SS concentration of treated water was low. In particular, Examples 20-22, 25 in which the reduced viscosity of the amphoteric polymer (B) is in the range of 3.0 to 7.5 dL / g and A / C is in the range of 0.25 to 0.45. In ˜31, coarse coagulated flocs having a large diameter were obtained, and treated water with a low quality COD and a high quality water was obtained. Moreover, although Examples 25-31 are examples using the polymer flocculent which consists of a mixture containing a cationic polymer (C), the content rate of the cationic structural unit of a cationic polymer (C), and the mixing ratio of each polymer In Examples 25, 26, 29, and 30 in which the ratio is within the predetermined ratio range of the present invention, an excellent decolorization effect with a lower COD of the treated water was obtained.

比較例8、9は、各ポリマーの混合比率が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例で、いずれも形成した凝集フロックが小さく、処理水のSS濃度、CODが高かった。 Comparative Examples 8 and 9 are examples using a sludge dehydrating agent in which the mixing ratio of each polymer is outside the range of the predetermined ratio of the present invention. Both of the formed floc flocs are small and the SS concentration and COD of the treated water are high. It was.

(実施例32、比較例10)
[使用着色廃水]
食品の廃水処理施設から発生した着色廃水として、N株式会社の廃水処理施設で採取した着色廃水で次の特性を有する廃水を用いた。即ち、JIS規格に記載された分析方法を用いて測定された廃水のpHが6.50、SS濃度が510mg/L、電気伝導度が0.75mS/cm、CODが780mg/Lである着色廃水。
(Example 32, Comparative Example 10)
[Use colored wastewater]
As the colored wastewater generated from the wastewater treatment facility for food, the wastewater having the following characteristics was used in the colored wastewater collected at the wastewater treatment facility of N Corporation. That is, a colored wastewater having a pH of 6.50, an SS concentration of 510 mg / L, an electric conductivity of 0.75 mS / cm, and a COD of 780 mg / L measured using an analysis method described in JIS standards. .

[凝集試験]
試験に用いた高分子凝集剤を表10に示す通りに変更した以外は、実施例1と同様の凝集試験を実施した。実施例32および比較例10における評価結果を表10に示す。
[Aggregation test]
The same aggregation test as in Example 1 was performed except that the polymer flocculant used in the test was changed as shown in Table 10. The evaluation results in Example 32 and Comparative Example 10 are shown in Table 10.

表10に示すように、本発明の高分子凝集剤を用いた実施例32では、粗大な凝集フロックを形成し、処理水のSS濃度も低く、処理水のCODも低く良質な水質の処理水が得られた。比較例10は、各ポリマーの混合比率が本願発明の所定割合の範囲から外れた汚泥脱水剤を用いた例で、形成した凝集フロックが小さく、処理水のSS濃度、CODが高かった。 As shown in Table 10, in Example 32 using the polymer flocculant of the present invention, a coarse coagulation floc was formed, the SS concentration of the treated water was low, the COD of the treated water was low, and the quality treated water was of good quality. was gotten. Comparative Example 10 was an example using a sludge dehydrating agent in which the mixing ratio of each polymer deviated from the range of the predetermined ratio of the present invention. The formed flocs were small, and the SS concentration and COD of the treated water were high.

本発明によれば、廃水の凝集処理において、薬剤使用量が少なくても、良好な凝集フロックを形成でき、汚泥の発生量が低減され、かつ色度を大幅に低減し、良好な水質の処理水が得られる凝集処理剤として、広く適用できる。 According to the present invention, even in a wastewater flocculation process, a good flocculation floc can be formed even if the amount of chemical used is small, the amount of sludge generated is reduced, and the chromaticity is greatly reduced, thus providing a good water quality treatment. It can be widely applied as an aggregating agent from which water is obtained.

Claims (10)

廃水に高分子凝集剤を添加して凝集フロックを形成させ、次いで、形成した凝集フロックを固液分離する廃水の凝集処理剤であって、前記高分子凝集剤が、アミジン系カチオン性ポリマー(A)および両性ポリマー(B)を含み、前記ポリマー(A)および両性ポリマー(B)の質量としての混合比が5:5〜8:2である廃水の凝集処理剤。 A coagulation flocculant is formed by adding a polymer flocculant to waste water to form a floc floc and then solid-liquid-separates the formed floc floc. The polymer flocculant is an amidine-based cationic polymer (A ) And the amphoteric polymer (B), and the mixing ratio of the polymer (A) and the amphoteric polymer (B) as a mass is 5: 5 to 8: 2. 前記アミジン系カチオン性ポリマー(A)が下記一般式(1)または下記一般式(2)のいずれかで表されるアミジン構成単位を有するポリマーである請求項1に記載の廃水の凝集処理剤。


(ただし、一般式(1)および(2)中、R、Rはそれぞれ独立して水素原子またはメチル基を表し、Xは陰イオンを表す。)
The flocculation treatment agent for wastewater according to claim 1, wherein the amidine-based cationic polymer (A) is a polymer having an amidine structural unit represented by either the following general formula (1) or the following general formula (2).


(In the general formulas (1) and (2), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and X represents an anion.)
前記両性ポリマー(B)が下記一般式(3)で表されるカチオン性構成単位と、アニオン性構成単位と、非イオン性構成単位を有するポリマーである請求項1または請求項2に記載の廃水の凝集処理剤。

(式中、Rは、水素原子またはメチル基を表し、RおよびRは、それぞれ独立して水素原子または炭素数が1〜4のアルキル基を表し、Rは、炭素数が1〜4のアルキル基またはベンジル基を表し、Yは、酸素原子またはNHを示し、Zは、陰イオンを表し、nは1〜3の整数を表す。)
The wastewater according to claim 1 or 2, wherein the amphoteric polymer (B) is a polymer having a cationic structural unit represented by the following general formula (3), an anionic structural unit, and a nonionic structural unit. Aggregation treatment agent.

(Wherein R 3 represents a hydrogen atom or a methyl group, R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 has 1 carbon atom) represents to 4 alkyl group or a benzyl group, Y represents an oxygen atom or NH, Z - represents an anion, n is an integer of 1 to 3).
前記両性ポリマー(B)の1規定塩化ナトリウム水溶液の25℃における還元粘度が0.1〜10dL/gである請求項1〜3のいずれか一項に記載の廃水の凝集処理剤。 The coagulation treatment agent for wastewater according to any one of claims 1 to 3, wherein the 1 V sodium chloride aqueous solution of the amphoteric polymer (B) has a reduced viscosity at 25 ° C of 0.1 to 10 dL / g. 前記両性ポリマー(B)が有するアニオン性構成単位の全構成単位に対する割合をMaモル%、カチオン性構成単位の全構成単位に対する割合をMcモル%としたとき、比Ma/Mcが0.15〜0.55である請求項1〜4のいずれか一項に記載の廃水の凝集処理剤。 When the ratio of the anionic structural unit of the amphoteric polymer (B) to all structural units is Ma mol% and the ratio of the cationic structural unit to all structural units is Mc mol%, the ratio Ma / Mc is 0.15 to 0.15. The flocculation treatment agent for wastewater according to any one of claims 1 to 4, which is 0.55. 高分子凝集剤として、前記アミジン系カチオン性ポリマー(A)と前記両性ポリマー(B)の他に、非アミジン系カチオン性ポリマー(C)を含む請求項1〜5のいずれか一項に記載の廃水の凝集処理剤。 The polymer flocculant according to any one of claims 1 to 5, which contains a non-amidine cationic polymer (C) in addition to the amidine cationic polymer (A) and the amphoteric polymer (B). Waste water coagulant. 前記非アミジン系カチオン性ポリマー(C)が下記一般式(4)で表されるカチオン性モノマー単位を60〜100モル%含む非アミジン系カチオン性ポリマーである請求項6に記載の廃水の凝集処理剤。

(式中、Rは、水素原子またはメチル基を表し、RおよびRは、それぞれ独立して水素原子または炭素数が1〜4のアルキル基を表し、Rは、炭素数が1〜4のアルキル基またはベンジル基を表し、Yは、酸素原子またはNHを示し、Zは、陰イオンを表し、nは1〜3の整数を表す。)
The coagulation treatment of wastewater according to claim 6, wherein the non-amidine cationic polymer (C) is a non-amidine cationic polymer containing 60 to 100 mol% of a cationic monomer unit represented by the following general formula (4). Agent.

(Wherein R 3 represents a hydrogen atom or a methyl group, R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 has 1 carbon atom) represents to 4 alkyl group or a benzyl group, Y represents an oxygen atom or NH, Z - represents an anion, n is an integer of 1 to 3).
前記アミジン系カチオン性ポリマー(A)、前記両性ポリマー(B)および前記非アミジン系カチオン性ポリマー(C)の合計量中の前記アミジン系カチオン性ポリマー(A)と前記両性ポリマー(B)の合計量と前記非アミジン系カチオン性ポリマー(C)との質量としての比が8:2〜5:5である請求項6〜7のいずれか一項に記載の廃水の凝集処理剤。 Sum of the amidine cationic polymer (A) and the amphoteric polymer (B) in the total amount of the amidine cationic polymer (A), the amphoteric polymer (B) and the non-amidine cationic polymer (C). The waste water coagulation treatment agent according to any one of claims 6 to 7, wherein the ratio of the amount to the mass of the non-amidine cationic polymer (C) is 8: 2 to 5: 5. 請求項1〜8のいずれか一項に記載の凝集処理剤を用いた廃水の凝集処理方法。 A coagulation treatment method for wastewater using the coagulation treatment agent according to any one of claims 1 to 8. 前記廃水が着色廃水である請求項9に記載の廃水の凝集処理方法。 The wastewater aggregation treatment method according to claim 9, wherein the wastewater is colored wastewater.
JP2015029174A 2015-02-18 2015-02-18 Flocculating agent for wastewater and flocculation method for wastewater Active JP6550782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029174A JP6550782B2 (en) 2015-02-18 2015-02-18 Flocculating agent for wastewater and flocculation method for wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029174A JP6550782B2 (en) 2015-02-18 2015-02-18 Flocculating agent for wastewater and flocculation method for wastewater

Publications (2)

Publication Number Publication Date
JP2016150312A true JP2016150312A (en) 2016-08-22
JP6550782B2 JP6550782B2 (en) 2019-07-31

Family

ID=56695012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029174A Active JP6550782B2 (en) 2015-02-18 2015-02-18 Flocculating agent for wastewater and flocculation method for wastewater

Country Status (1)

Country Link
JP (1) JP6550782B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016963A (en) * 2002-06-18 2004-01-22 Ebara Corp Method and apparatus for treating coating effluent
JP2011050946A (en) * 2009-08-05 2011-03-17 Daiyanitorikkusu Kk Method for removing coloring component
JP2012005993A (en) * 2010-06-28 2012-01-12 Daiyanitorikkusu Kk Coagulation treatment method for colored waste water
JP2013006159A (en) * 2011-06-27 2013-01-10 Daiyanitorikkusu Kk Sludge dehydration treatment method
JP2014155898A (en) * 2013-02-15 2014-08-28 Mitsubishi Rayon Co Ltd Sludge dehydration treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016963A (en) * 2002-06-18 2004-01-22 Ebara Corp Method and apparatus for treating coating effluent
JP2011050946A (en) * 2009-08-05 2011-03-17 Daiyanitorikkusu Kk Method for removing coloring component
JP2012005993A (en) * 2010-06-28 2012-01-12 Daiyanitorikkusu Kk Coagulation treatment method for colored waste water
JP2013006159A (en) * 2011-06-27 2013-01-10 Daiyanitorikkusu Kk Sludge dehydration treatment method
JP2014155898A (en) * 2013-02-15 2014-08-28 Mitsubishi Rayon Co Ltd Sludge dehydration treatment method

Also Published As

Publication number Publication date
JP6550782B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6378342B2 (en) Organic wastewater treatment method
Lee et al. Flocculation activity of novel ferric chloride–polyacrylamide (FeCl3-PAM) hybrid polymer
KR100562456B1 (en) Wastewater Treating Agent, Method for Wastewater Treatment, Sludge Dehydrant, and Method for Sludge Treatment
KR101846041B1 (en) Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers
EP1274652B1 (en) Method of clarifying water using low molecular weight cationic dispersion polymers
Yang et al. Fabrication and characterization of poly (ferric chloride)-polyamine flocculant and its application to the decolorization of reactive dyes
JP6131465B2 (en) Sludge dewatering method
JP5961934B2 (en) Sludge dewatering method
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP5906672B2 (en) Sludge dewatering agent and organic sludge dewatering method using the same
JP2015062901A (en) Method for removing colored component
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP5952593B2 (en) Wastewater treatment method
JP5843428B2 (en) Coagulation treatment method for colored wastewater
JP6729641B2 (en) Method for treating organic wastewater and composition for treating organic wastewater
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater
JP7216967B2 (en) Organic wastewater treatment method and its use
JP5709086B2 (en) Organic coagulant
KR20000047351A (en) Coagulant for treating wastewater
RU2288181C1 (en) Method of preparing water-soluble reagent to clean natural and waste waters and to separate phases
JP6028598B2 (en) Method for dewatering organic sludge
JPS61200148A (en) Water-soluble high polymer composition
JP2013184160A (en) Wastewater treatment method using organic coagulant
JPS61200900A (en) Treatment of excessive activated sludge
JP2011050945A (en) Method for removing coloring component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6550782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250