JP2011050946A - Method for removing coloring component - Google Patents

Method for removing coloring component Download PDF

Info

Publication number
JP2011050946A
JP2011050946A JP2010147578A JP2010147578A JP2011050946A JP 2011050946 A JP2011050946 A JP 2011050946A JP 2010147578 A JP2010147578 A JP 2010147578A JP 2010147578 A JP2010147578 A JP 2010147578A JP 2011050946 A JP2011050946 A JP 2011050946A
Authority
JP
Japan
Prior art keywords
water
soluble
general formula
polymer
coloring component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010147578A
Other languages
Japanese (ja)
Inventor
Emi Ishii
絵美 石井
Makoto Kaneko
真 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2010147578A priority Critical patent/JP2011050946A/en
Priority to CN201010243612.5A priority patent/CN101993139B/en
Publication of JP2011050946A publication Critical patent/JP2011050946A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing a hardly-biodegradable water-soluble coloring component remaining in activated sludge by using a small amount of an organic polymer flocculant. <P>SOLUTION: The method for removing the coloring component in an activated sludge-mixed liquid includes the steps of: adding a coloring component removing agent, which contains at least one polymer of water-soluble and/or water-absorbing cationic polymers (a), (b) each containing a unit shown by the predetermined general formula and water-soluble and/or water-absorbing amphoteric polymers as an effective component, to the activated sludge-mixed liquid, which contains the hardly-biodegradable water-soluble coloring component and has ≥50 chromaticity, in the presence of ≥500 mg/L suspended solid content; and subjecting the coloring component removing agent-added activated sludge-mixed liquid to solid-liquid separation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排水の活性汚泥中に残存する難生分解性の水溶性着色成分の除去方法に関する。   The present invention relates to a method for removing hardly biodegradable water-soluble coloring components remaining in activated sludge of waste water.

有機性排水の活性汚泥処理法では、排水を曝気槽において活性汚泥(以下、単に「汚泥」という場合がある。)と混合して曝気し、汚泥の沈降層や浮上層などの固液分離槽において汚泥を分離し、分離液を処理水として排出する一方、分離した汚泥の一部を返送汚泥として曝気槽に返送し、残りを余剰汚泥として排出している。このような活性汚泥処理法では、ズーグレアなどの細菌群を中心に、各種微生物が集まったフロック(活性汚泥)により有機物が分解されるが、有機性排水に難生分解性の水溶性着色物質を含む場合には、固液分離槽における上澄液に着色成分が残存する場合がある。
本発明において、難生分解性の水溶性着色成分とは、通常の活性汚泥処理では除去することが困難なアニオン性、又は両性官能基を有する有機物で、フミン質、リグニン分解生成物、ビリルビン様物質、その他アミノカルボニル反応により生成する水溶性着色高分子物質等の汚染物質を言い、BOD(生物学的酸素要求量)/CODMn(過マンガン酸カリウムによる化学的酸素要求量)が0.1以下、且つ炭素分として10mg/L水溶液の色度が20以上のものを指す。
フミン質等の難生分解性の水溶性着色成分は、例えば、非特許文献1及び非特許文献2に示されるように、排水、地下水等に含まれている物質で、親水性と疎水性を併せ持つため水中に溶解しており凝集沈殿では分離除去できない。また、これらの着色成分は微生物により分解されにくいため、一般的な処理法である活性汚泥法等では除去するのが難しい。活性炭等による吸着処理は可能であるが極めてコスト高である。
上記難生分解性の水溶性着色成分のうち、ビリルビン様物質とは、し尿や畜産排水中に含まれる血色素の代謝物を指し、赤褐色の胆汁色素であるビリルビンの他、ステルコビリノーゲンやウロビリンを含む。ビリルビン様物質は、化学的に処理可能ではあるが、現状公知方法の実施は経済的に困難であることから希釈して放流しているのが実状であるので、環境負荷の少ない処理方法が求められている。
In the activated sludge treatment method for organic wastewater, the wastewater is mixed with activated sludge in the aeration tank (hereinafter sometimes simply referred to as “sludge”) and aerated, and the solid-liquid separation tank such as sludge sedimentation layer and floating layer is aerated. The sludge is separated and the separated liquid is discharged as treated water, while part of the separated sludge is returned to the aeration tank as return sludge and the rest is discharged as surplus sludge. In such an activated sludge treatment method, organic matter is decomposed by flocs (activated sludge) in which various microorganisms gather, centering on bacteria such as zoom glare, but water-soluble coloring materials that are hardly biodegradable are added to organic wastewater. When it contains, a coloring component may remain in the supernatant liquid in a solid-liquid separation tank.
In the present invention, the hardly biodegradable water-soluble coloring component is an organic substance having an anionic or amphoteric functional group that is difficult to remove by ordinary activated sludge treatment, and is a humic substance, lignin degradation product, bilirubin-like Substances and other pollutants such as water-soluble colored polymer substances produced by aminocarbonyl reaction. BOD (biological oxygen demand) / CODMn (chemical oxygen demand by potassium permanganate) is 0.1 or less In addition, the carbon content is 10 mg / L aqueous solution having a chromaticity of 20 or more.
Non-biodegradable water-soluble coloring components such as humic substances are substances contained in waste water, groundwater, etc., as shown in Non-Patent Document 1 and Non-Patent Document 2, for example. It is dissolved in water and cannot be separated and removed by coagulation sedimentation. Moreover, since these coloring components are difficult to be decomposed by microorganisms, it is difficult to remove them by an activated sludge method, which is a general treatment method. Although adsorption treatment with activated carbon or the like is possible, the cost is extremely high.
Among the above-mentioned hardly biodegradable water-soluble coloring components, bilirubin-like substances refer to metabolites of blood pigments contained in human waste and livestock wastewater. In addition to bilirubin, a red-brown bile pigment, Including. Although bilirubin-like substances can be chemically treated, it is economically difficult to carry out currently known methods, so it is actually diluted and released, so a treatment method with low environmental impact is required. It has been.

上記のような難生分解性の水溶性着色成分を含む着色排水は、活性汚泥法による処理などでBODなどの基準値が達成されていたとしても、CODとしては高いことがある。また、これらの着色成分はその含有量が少量でも着色を示す。それ故、下水、し尿、畜産排水、食品製造排水及び製紙排水等を活性汚泥等で処理した後の排水(処理水)中には、このような難生分解性の水溶性着色成分が含まれているので、これを含んだまま排水を放流することは水資源の汚染に繋がり、また、該着色排水が放流されると周辺住民などからの苦情を招くこととなる。
更に、フミン質等の着色成分は塩素殺菌処理などの際、人体に有害なトリハロメタンとなる前駆物質を含んでおり、河川等に放流されれば上水の取水水質を悪化させることが懸念されている。
加えて、上記の着色成分は、ろ過膜等を使用したろ過処理においてもファウリングの原因となりろ過性能の低下を引き起こすことが知られている。
The colored wastewater containing the hardly biodegradable water-soluble coloring component as described above may have a high COD even if the standard value such as BOD is achieved by the treatment by the activated sludge method. Moreover, these coloring components show coloring even if the content is small. Therefore, wastewater (treated water) after treating sewage, human waste, livestock wastewater, food production wastewater, papermaking wastewater, etc. with activated sludge contains such hardly biodegradable water-soluble coloring components. Therefore, discharging the wastewater while containing it leads to contamination of water resources, and if the colored wastewater is discharged, it causes complaints from the residents in the vicinity.
Furthermore, colored components such as humic substances contain precursors that become trihalomethanes harmful to the human body during chlorination treatment, and there is a concern that the quality of water intake will deteriorate if released into rivers. Yes.
In addition, it is known that the above-mentioned coloring component causes fouling even in a filtration process using a filtration membrane or the like and causes a reduction in filtration performance.

環境汚染が厳しく問われる昨今、このような排水処理に関する排水規制が一層強化されることから、排水のより高度処理の必要性が高まり、低コストで効率のよい水処理方法の開発が望まれている。
そこで、上記の着色成分を含有する排水の種々の処理法が提案されており、例えば、オゾン処理工程とオゾン添加と紫外線照射の併用による促進酸化処理工程とを有する排水処理方法(例えば、特許文献1、非特許文献3)、イオン交換樹脂と接触させて除去する方法(例えば、特許文献2)、チタンを担持した多孔質体を添加して除去する方法(例えば、特許文献3)、活性汚泥処理水に無機凝集剤と有機高分子凝集剤を添加する方法(例えば、特許文献4、特許文献5)等が挙げられている。しかしながら、これらの方法は工程の煩雑さ、除去効率、経済性の観点等から未だ満足すべき方法とはいえない。
なお、カチオン性ポリマーのひとつであるポリビニルアミンが染色排水の脱色用途に使用できることは特許文献6に開示されている。
In recent years, when environmental pollution has been severely questioned, the effluent regulations regarding such effluent treatment have been further strengthened, so the need for more advanced effluent treatment has increased, and the development of a low-cost and efficient water treatment method is desired. Yes.
Accordingly, various treatment methods for waste water containing the above-described coloring components have been proposed. For example, a waste water treatment method having an ozone treatment step and an accelerated oxidation treatment step using a combination of ozone addition and ultraviolet irradiation (for example, patent literature) 1, Non-Patent Document 3), a method of removing by contacting with an ion exchange resin (for example, Patent Document 2), a method of adding and removing a porous material supporting titanium (for example, Patent Document 3), activated sludge Examples include a method of adding an inorganic flocculant and an organic polymer flocculant to treated water (for example, Patent Document 4 and Patent Document 5). However, these methods are not yet satisfactory from the viewpoints of process complexity, removal efficiency, and economical efficiency.
Note that Patent Document 6 discloses that polyvinylamine, which is one of the cationic polymers, can be used for decolorization of dye wastewater.

特開2006−224065号公報JP 2006-224065 A 特開2000−254488号公報JP 2000-254488 A 特開2005−238174号公報JP 2005-238174 A 特開2003−181491号公報JP 2003-181491 A 特開平6−226265号公報JP-A-6-226265 特開平8−81519号公報Japanese Patent Laid-Open No. 8-81519

上田正人,坂本義昭:剛性吸着樹脂を用いた地下水腐植物質の採取と特性分析,原子力バックエンド研究,vol.12 No.1−2(2006)Masato Ueda, Yoshiaki Sakamoto: Collection and characterization of groundwater humic substances using rigid adsorbent resin, nuclear backend research, vol. 12 No. 1-2 (2006) 野上祐作,南有田智子,宮永政光:生活排水の活性汚泥処理水のCODに及ぼすフルボ酸の影響,用水と廃水 vol.43 No.12(2001)Yusaku Nogami, Tomoko Minami Arita, Masamitsu Miyanaga: Effect of fulvic acid on the COD of activated sludge treated water from domestic wastewater, water and wastewater vol. 43 No. 12 (2001) 森達摩,崎元道男:新しい脱色技術,畜産の研究 第57巻 第1号(2003)Tatsuma Mori, Michio Sakimoto: New decolorization technology, research on livestock, Vol. 57, No. 1 (2003)

上記の如く、公知方法は、排水中の難生分解性の水溶性着色成分の除去方法としては満足すべき方法とは言えない。例えば、特許文献1に記載されている、オゾンにより処理する方法は、コストが高いだけでなく反応条件を調整する必要があるため、適用できる排水の種類が限られていた。また、特許文献2,3に記載されている、着色成分を固形分に吸着除去する方法では、吸着容量に限度があるため頻繁な洗浄、ろ材の交換が必要とされる。さらに、特許文献4,5に記載のように、無機凝集剤と有機高分子凝集剤を添加する方法は、凝集剤の添加量が多く必要とされるだけでなくpHを調整するために多量のアルカリが必要であり、処理後のスラッジも大量に発生するという問題があった。特許文献6については、対象が染色排水に限られており、その他の排水の着色成分を除去できることは知られていなかった。
本発明は、活性汚泥中に残存する難生分解性の水溶性着色成分を除去する過程において、従来法と比較して少量の高分子凝集剤を使用し、安価に且つ簡便に、しかも少ないスラッジ発生量で該着色成分を除去し、その濃度を低減し得る方法を提供することを目的とする。
As described above, the known method is not a satisfactory method for removing the hardly biodegradable water-soluble coloring component in the waste water. For example, the method of treating with ozone described in Patent Document 1 is not only high in cost but also requires adjustment of reaction conditions, so that the types of applicable wastewater are limited. Further, in the methods described in Patent Documents 2 and 3, in which the coloring component is adsorbed and removed to the solid content, since the adsorption capacity is limited, frequent cleaning and replacement of the filter medium are required. Furthermore, as described in Patent Documents 4 and 5, the method of adding an inorganic flocculant and an organic polymer flocculant requires not only a large amount of flocculant but also a large amount for adjusting pH. There was a problem that alkali was required and a large amount of sludge was generated after the treatment. About patent document 6, the object is restricted to dyeing | draining waste_water | drain, It was not known that the coloring component of other waste_water | drain can be removed.
In the process of removing the hardly biodegradable water-soluble coloring component remaining in the activated sludge, the present invention uses a small amount of a polymer flocculant as compared with the conventional method, and is inexpensive, simple and less sludge. An object of the present invention is to provide a method capable of removing the coloring component by the generation amount and reducing the concentration thereof.

本発明は、活性汚泥中に残存する水溶性の難生分解性着色成分を効率的に除去する方法に係わり、その要旨は、後記一般式(1)で示されるアミジン構造単位及び/又は後記一般式(2)で示されるアミジン構造単位を含有する水溶性及び/又は吸水性のカチオン性重合体(a)、後記一般式(3)で示される単量体を重合してなる水溶性及び/又は吸水性のカチオン性重合体(b)並びに水溶性及び/又は吸水性の両性重合体の少なくともいずれか1種の重合体を有効成分とする着色成分除去剤を、浮遊固形分500mg/L以上存在下に、難生分解性の水溶性着色成分を含有する色度50以上の活性汚泥混合液に添加し、次いで固液分離することを特徴とする活性汚泥混合液中の着色成分の除去方法に存する。   The present invention relates to a method for efficiently removing water-soluble hardly biodegradable coloring components remaining in activated sludge, the gist of which is the amidine structural unit represented by the following general formula (1) and / or the following general A water-soluble and / or water-absorbing cationic polymer (a) containing an amidine structural unit represented by the formula (2), a water-soluble and / or water-polymerized polymer obtained by polymerizing a monomer represented by the following general formula (3) Alternatively, a coloring component remover containing at least any one of a water-absorbing cationic polymer (b) and a water-soluble and / or water-absorbing amphoteric polymer as an active ingredient is a floating solid content of 500 mg / L or more. A method for removing colored components in an activated sludge mixed solution, comprising adding to an activated sludge mixed solution having a chromaticity of 50 or more containing a hardly biodegradable water-soluble colored component in the presence, followed by solid-liquid separation. Exist.

本発明方法のより好ましい方法として以下の態様、即ち、前記活性汚泥混合液は、着色成分の主成分が染料ではないこと;前記難生分解性の水溶性着色成分がフミン質、リグニン分解生成物、ビリルビン様物質、及びアミノカルボニル反応により生成する水溶性着色高分子物質の少なくとも1種を含むこと;前記着色成分除去剤を、前記活性汚泥混合液に対し0.1〜2000mg/L添加することが挙げられる。   As a more preferred method of the method of the present invention, in the activated sludge mixed liquid, the main component of the coloring component is not a dye; the hardly biodegradable water-soluble coloring component is a humic substance and a lignin decomposition product. A bilirubin-like substance and at least one water-soluble colored polymer substance produced by an aminocarbonyl reaction; 0.1 to 2000 mg / L of the coloring component remover added to the activated sludge mixed solution Is mentioned.

更に他の好ましい態様として、前記両性重合体は、後記一般式(4)で示される単量体単位及び後記一般式(5)で示される単量体単位を含有する両性重合体であること;前記カチオン性重合体(a)は、後記一般式(1)で示されるアミジン構造単位及び/又は後記一般式(2)で示されるアミジン構造単位を5〜90モル%含有すること;前記カチオン性重合体(b)は、後記一般式(3)で示される単量体に由来する単位を10〜100モル%含有すること;前記両性重合体は、後記一般式(4)で表される単量体単位を10〜98モル%及び後記一般式(5)で表される単量体単位を2〜30モル%含有する両性重合体であることが挙げられる。   As still another preferred embodiment, the amphoteric polymer is an amphoteric polymer containing a monomer unit represented by the following general formula (4) and a monomer unit represented by the following general formula (5); The cationic polymer (a) contains 5 to 90 mol% of an amidine structural unit represented by the following general formula (1) and / or an amidine structural unit represented by the following general formula (2); The polymer (b) contains 10 to 100 mol% of a unit derived from a monomer represented by the following general formula (3); the amphoteric polymer is a single unit represented by the following general formula (4). It is mentioned that it is an amphoteric polymer containing 10 to 98 mol% of a monomer unit and 2 to 30 mol% of a monomer unit represented by the following general formula (5).

本発明方法によれば、従来法と比較して少ない使用量の有機高分子凝集剤である水溶性及び/又は吸水性のカチオン性重合体(a)、(b)及び両性重合体の少なくともいずれかを用いて安価に、且つ少ないスラッジ発生量で活性汚泥中に残存する難生分解性の水溶性着色成分の濃度を低減することができる。また、本発明によれば、有機高分子凝集剤を活性汚泥に添加するだけで良いので、処理工程を増やすことなく簡便に上記の着色成分を除去できる。   According to the method of the present invention, at least any one of the water-soluble and / or water-absorbing cationic polymers (a) and (b) and the amphoteric polymers, which are organic polymer flocculants in a small amount used compared with the conventional method. Therefore, the concentration of the hardly biodegradable water-soluble coloring component remaining in the activated sludge can be reduced at a low cost and with a small sludge generation amount. In addition, according to the present invention, since the organic polymer flocculant only needs to be added to the activated sludge, the colored components can be easily removed without increasing the number of treatment steps.

本発明方法は、着色成分除去剤による活性汚泥混合液中の難生分解性の水溶性着色成分の除去方法に係わり、着色成分除去剤は、所謂高分子凝集剤であり、水溶性及び/又は吸水性カチオン性重合体及び/又は両性重合体の少なくともいずれか1種を主成分とするものである。
本発明の着色除去剤の成分として使用される水溶性及び/又は吸水性カチオン性重合体は、下記一般式(1)で示されるアミジン構造単位及び/又は下記一般式(2)で示されるアミジン構造単位を含有するカチオン性重合体(a)及び下記一般式(3)で示される単量体を重合してなるカチオン性重合体(b)から選ばれる少なくとも1種である。尚、当該重合体は架橋性ゲルでもよい。
The method of the present invention relates to a method for removing a hardly biodegradable water-soluble coloring component in an activated sludge mixed liquid with a coloring component removing agent, and the coloring component removing agent is a so-called polymer flocculant, which is water-soluble and / or The main component is at least one of a water-absorbing cationic polymer and / or an amphoteric polymer.
The water-soluble and / or water-absorbing cationic polymer used as a component of the color removal agent of the present invention is an amidine structural unit represented by the following general formula (1) and / or an amidine represented by the following general formula (2). It is at least one selected from a cationic polymer (a) containing a structural unit and a cationic polymer (b) obtained by polymerizing a monomer represented by the following general formula (3). The polymer may be a crosslinkable gel.

[式(1)、(2)中、R〜Rは各々水素原子またはメチル基であり、同一であってもよく、異なっていてもよい。Xは各々陰イオンであり、同一であってもよく、異なっていてもよい。] [In the formulas (1) and (2), R 1 to R 2 are each a hydrogen atom or a methyl group, and may be the same or different. X < - > each represents an anion, and may be the same or different. ]

[式(3)中、Zは陰イオンを表す。] [In Formula (3), Z < - > represents an anion. ]

本発明で使用される水溶性及び/又は吸水性のカチオン性重合体(a)は、上記一般式(1)で示されるアミジン構造単位及び/又は下記一般式(2)で表されるアミジン構造単位を有するものである。上記一般式(1)及び(2)においてXで表される陰イオンとしては、具体的には、Cl、Br、1/2SO 2−、CH(CO)O、H(CO)Oなどが挙げられる。中でもClが好ましい。
このようなカチオン性重合体(a)の製造方法としては、特に制限されないが、例えば、一級アミノ基または変換反応により一級アミノ基が生成し得る置換アミノ基を有するエチレン性不飽和モノマーと、アクリロニトリルまたはメタアクリロニトリルのニトリル類との共重合体を製造し、酸加水分解後、該共重合体中のシアノ基と一級アミノ基を反応させてアミジン化する方法が挙げられる。
The water-soluble and / or water-absorbing cationic polymer (a) used in the present invention has an amidine structure unit represented by the above general formula (1) and / or an amidine structure represented by the following general formula (2). It has a unit. Specific examples of the anion represented by X in the general formulas (1) and (2) include Cl , Br , 1 / 2SO 4 2− , CH 3 (CO) O , H ( CO) O- and the like. Of these, Cl - is preferable.
The method for producing such a cationic polymer (a) is not particularly limited. For example, an ethylenically unsaturated monomer having a primary amino group or a substituted amino group capable of generating a primary amino group by a conversion reaction, and acrylonitrile. Alternatively, a method may be mentioned in which a copolymer of methacrylonitrile with nitriles is produced, and after acid hydrolysis, a cyano group and a primary amino group in the copolymer are reacted to form an amidine.

上記のエチレン性不飽和モノマーとしては、一般式CH=CR−NHCOR(式中、Rは水素原子またはメチル基を表し、Rは炭素数1〜4のアルキル基又は水素原子を表す。)で表される化合物が好ましい。ニトリル類との共重合体中において、かかる化合物に由来する置換アミノ基は、加水分解あるいは加アルコール分解により容易に一級アミノ基に変換される。さらにこの一級アミノ基は、隣接したシアノ基と反応してアミジン化する。該化合物としては、N−ビニルホルムアミド(R=H、R=H)、N−ビニルアセトアミド(R=H、R=CH)等が例示される。
これらのエチレン性不飽和モノマーとニトリル類との重合モル比は、通常20:80〜80:20であるが、所望ならばこの範囲外の重合モル比、例えば、更にエチレン性不飽和モノマーの比率の大きい重合モル比を採用することもできる。一般的に水溶性及び/又は吸水性のカチオン性重合体に占めるアミジン構造単位の比率が多い方が着色成分除去剤とした際の性能は優れている。また、ビニルアミン構造単位も着色成分除去剤としての性能に有利に寄与していると考えられる。従って、着色成分除去剤として好適な共重合体を与える該エチレン性不飽和モノマーとニトリル類との重合モル比は、一般に20:80〜80:20であり、特に好ましくは40:60〜60:40である。
Examples of the ethylenically unsaturated monomer of the general formula CH 2 = CR a -NHCOR b (wherein, R a represents hydrogen atom or a methyl group, a R b is an alkyl group or a hydrogen atom having 1 to 4 carbon atoms The compound represented by this is preferable. In the copolymer with nitriles, the substituted amino group derived from such a compound is easily converted to a primary amino group by hydrolysis or alcoholysis. Furthermore, this primary amino group reacts with an adjacent cyano group to be amidined. Examples of the compound include N-vinylformamide (R a = H, R b = H), N-vinylacetamide (R a = H, R b = CH 3 ) and the like.
The polymerization molar ratio of these ethylenically unsaturated monomers and nitriles is usually 20:80 to 80:20, but if desired, the polymerization molar ratio outside this range, for example, the ratio of ethylenically unsaturated monomers. It is also possible to employ a large polymerization molar ratio. In general, when the ratio of amidine structural units in the water-soluble and / or water-absorbing cationic polymer is larger, the performance when used as a coloring component remover is superior. Moreover, it is thought that the vinylamine structural unit also contributes advantageously to the performance as a coloring component remover. Accordingly, the polymerization molar ratio of the ethylenically unsaturated monomer and the nitrile that gives a copolymer suitable as a coloring component remover is generally 20:80 to 80:20, particularly preferably 40:60 to 60: 40.

エチレン性不飽和モノマーとニトリル類との共重合の方法としては、通常のラジカル重合法が用いられ、塊状重合、水溶液沈殿重合、懸濁重合、乳化重合等のいずれも用いることができる。溶媒中で重合させる場合、原料モノマー濃度が通常5〜80質量%、好ましくは20〜60質量%で実施される。重合開始剤には一般的なラジカル重合開始剤を用いることができるが、アゾ化合物が好ましく、2,2’−アゾビス(2−アミジノプロパン)の塩酸塩等が例示される。また、重合反応は、一般に、不活性ガス気流下、30〜100℃の温度で実施される。得られた共重合体は、そのままの状態あるいは希釈してアミジン化反応に供することができる。また、公知の方法で脱溶媒、乾燥し、共重合体を固体として分離した後、再度溶解し、アミジン化反応に供することもできる。
アミジン化反応においては、エチレン性不飽和モノマーとして前記一般式で示されるN−ビニルアミド化合物を用いる場合には、共重合体の置換アミノ基を一級アミノ基に変換し、次いで、生成した一級アミノ基と隣接するシアノ基と反応させてアミジン構造を生成させるという2段階反応を行うことにより、本発明に用いられる水溶性及び/又は吸水性のカチオン性重合体(a)を製造できる。
なお、共重合体を強酸の存在下、水中で加温して、一段階でアミジン構造を生成させてもよい。この場合においても、先ず、一級アミノ基が中間構造として生成しているものと考えられる。
As a method for copolymerizing the ethylenically unsaturated monomer and the nitrile, an ordinary radical polymerization method is used, and any of bulk polymerization, aqueous solution precipitation polymerization, suspension polymerization, emulsion polymerization, and the like can be used. When polymerizing in a solvent, the raw material monomer concentration is usually 5 to 80% by mass, preferably 20 to 60% by mass. Although a general radical polymerization initiator can be used as the polymerization initiator, an azo compound is preferable, and a hydrochloride of 2,2′-azobis (2-amidinopropane) is exemplified. The polymerization reaction is generally performed at a temperature of 30 to 100 ° C. under an inert gas stream. The obtained copolymer can be used as it is or diluted to be subjected to an amidation reaction. Alternatively, the solvent can be removed by a known method and dried to separate the copolymer as a solid, and then dissolved again to be subjected to an amidation reaction.
In the amidation reaction, when the N-vinylamide compound represented by the above general formula is used as the ethylenically unsaturated monomer, the substituted amino group of the copolymer is converted into a primary amino group, and then the generated primary amino group The water-soluble and / or water-absorptive cationic polymer (a) used in the present invention can be produced by carrying out a two-step reaction in which an amidine structure is formed by reacting with an adjacent cyano group.
Note that the copolymer may be heated in water in the presence of a strong acid to produce an amidine structure in one step. Even in this case, it is considered that a primary amino group is first generated as an intermediate structure.

アミジン化反応の具体的条件としては、例えば、共重合体中の置換アミノ基に対して通常0.1〜5.0倍、好ましくは0.5〜3.0倍当量の強酸、好ましくは塩酸を加え、通常80〜150℃、好ましくは90〜120℃の温度で、通常0.5〜20時間加熱することによりアミジン構造単位を有するカチオン性重合体とすることができる。一般に置換アミノ基に対する強酸の当量比が大きいほど、かつ、反応温度が高いほど、アミジン化が進行する。また、アミジン化に際しては反応に供する共重合体に対し、通常10質量%以上、好ましくは20質量%以上の水を反応系内に存在させるのが好ましい。   Specific conditions for the amidation reaction include, for example, 0.1 to 5.0 times, preferably 0.5 to 3.0 times equivalent of strong acid, preferably hydrochloric acid, with respect to the substituted amino group in the copolymer. And a cationic polymer having an amidine structural unit can be obtained by heating at a temperature of usually 80 to 150 ° C., preferably 90 to 120 ° C., usually for 0.5 to 20 hours. In general, the larger the equivalent ratio of strong acid to substituted amino group and the higher the reaction temperature, the more the amidation proceeds. In addition, it is preferable that 10% by mass or more, preferably 20% by mass or more of water is usually present in the reaction system with respect to the copolymer to be subjected to the reaction in the amidine formation.

本発明に用いられる水溶性及び/又は吸水性のカチオン性重合体(a)は、最も典型的には、上記で説明したところに従い、N−ビニルホルムアミドとアクリロニトリルとを共重合させ、生成した共重合体を、通常、水懸濁液として塩酸の存在下に加熱して置換アミノ基と隣接するシアノ基からアミジン構造単位を形成させることにより製造されるのが好ましい。そして、共重合に供するN−ビニルホルムアミドとアクリロニトリルとのモル比、及び共重合体のアミジン化条件を選択することにより、各種の組成の水溶性及び/又は吸水性のカチオン性重合体(a)が得られる。
このようにして得られる水溶性及び/又は吸水性のカチオン性重合体(a)は、当該カチオン性重合体100モル%中、上記一般式(1)で示されるアミジン構造単位及び/又は上記一般式(2)で示されるアミジン構造単位を繰り返し単位として5〜90モル%含有するのが好ましい。これらのアミジン構造単位の含有率が5モル%未満であると、アミジン構造単位の含有量が少なすぎるため、着色成分除去剤を使用する際に、使用量が多くなる。一方、アミジン構造単位の含有率が90モル%を超えるものは、上述した方法で製造することが困難である。アミジン構造単位の含有率の下限値は、10モル%以上がより好ましく、15モル%以上がさらに好ましく、20モル%以上が特に好ましい。また、アミジン構造単位の含有率の上限値は、85モル%以下がより好ましく、80モル%以下がさらに好ましい。
The water-soluble and / or water-absorbing cationic polymer (a) used in the present invention is most typically prepared by copolymerizing N-vinylformamide and acrylonitrile according to the above description. It is preferred that the polymer is usually produced as a water suspension in the presence of hydrochloric acid to form amidine structural units from cyano groups adjacent to the substituted amino groups. And the water-soluble and / or water-absorbing cationic polymer (a) of various compositions is selected by selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to copolymerization, and the amidation conditions of the copolymer. Is obtained.
The water-soluble and / or water-absorptive cationic polymer (a) thus obtained is the amidine structural unit represented by the above general formula (1) and / or the above general one in 100 mol% of the cationic polymer. It is preferable to contain 5 to 90 mol% of the amidine structural unit represented by the formula (2) as a repeating unit. When the content of these amidine structural units is less than 5 mol%, the content of the amidine structural units is too small, so that the amount used is increased when the coloring component remover is used. On the other hand, it is difficult to produce those in which the content of the amidine structural unit exceeds 90 mol% by the method described above. The lower limit of the content of the amidine structural unit is more preferably 10 mol% or more, further preferably 15 mol% or more, and particularly preferably 20 mol% or more. Further, the upper limit of the content of the amidine structural unit is more preferably 85 mol% or less, and further preferably 80 mol% or less.

カチオン性重合体(a)は、上述した方法により製造すると、前記アミジン構造単位以外にも、下記一般式(6)〜(8)のいずれかで表される単位から選ばれる少なくとも1種を含有する場合がある。   When the cationic polymer (a) is produced by the above-described method, it contains at least one selected from units represented by any one of the following general formulas (6) to (8) in addition to the amidine structural unit. There is a case.

一般式(6)〜(8)中、R11、R13、R14は各々水素原子またはメチル基であり、同一であってもよく、異なっていてもよい。
12は炭素数1〜4のアルキル基または水素原子である。
は陰イオンである。陰イオンとしては、前記一般式(1)、(2)の説明において先に例示した陰イオンと同様である。
In general formulas (6) to (8), R 11 , R 13 , and R 14 are each a hydrogen atom or a methyl group, and may be the same or different.
R 12 is an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
Q is an anion. The anion is the same as the anion exemplified above in the description of the general formulas (1) and (2).

本発明におけるカチオン性重合体(a)が上記一般式(6)〜(8)のいずれかで表される単位を含有する場合、通常、当該カチオン性重合体(a)100モル%中、上記一般式(6)で表される繰り返し単位を0〜40モル%、上記一般式(7)で表される繰り返し単位を0〜70モル%、上記一般式(8)で表される繰り返し単位を0〜70モル%含有する。
前記一般式(1)で示されるアミジン構造単位、前記一般式(2)で表されるアミジン構造単位、および上記一般式(6)〜(8)のいずれかで表される単位の組成は、エチレン性不飽和モノマーとニトリル類との重合モル比や、アミジン化反応の条件(温度や時間)によって調整できる。
また、これらの組成は、カチオン性重合体の13C−NMR(13C−核磁気共鳴)を測定することにより求めることができ、具体的には、各繰り返し単位に対応した13C−NMRスペクトルのピーク(シグナル)の積分値より算出できる。
When the cationic polymer (a) in the present invention contains a unit represented by any one of the above general formulas (6) to (8), usually, the cationic polymer (a) in 100 mol%, the above The repeating unit represented by the general formula (6) is 0 to 40 mol%, the repeating unit represented by the general formula (7) is 0 to 70 mol%, and the repeating unit represented by the general formula (8) is Contains 0 to 70 mol%.
The composition of the amidine structural unit represented by the general formula (1), the amidine structural unit represented by the general formula (2), and the unit represented by any one of the general formulas (6) to (8) is as follows: It can be adjusted by the polymerization molar ratio between the ethylenically unsaturated monomer and the nitrile and the conditions (temperature and time) of the amidine reaction.
Further, these compositions can be obtained by measuring 13 C-NMR ( 13 C-nuclear magnetic resonance) of the cationic polymer. Specifically, the 13 C-NMR spectrum corresponding to each repeating unit is obtained. It can be calculated from the integrated value of the peak (signal).

本発明において使用されるカチオン性重合体(b)は、前記一般式(3)で示される単量体を重合してなるカチオン性重合体であり、該単量体に由来する単位を含む。
カチオン性重合体(b)は、前記一般式(3)で示される単量体に由来する単位を10〜100モル%含有することが好ましい。
一般式(3)中、Z−で示される陰イオンは、具体的にはF−、Cl−、Br−等のハロゲンイオンを表す。
カチオン性重合体(b)は、具体的には、以下に示すようなジアリルアミン系カチオン性モノマーの単独重合体であることが好ましい。
The cationic polymer (b) used in the present invention is a cationic polymer obtained by polymerizing the monomer represented by the general formula (3) and includes units derived from the monomer.
The cationic polymer (b) preferably contains 10 to 100 mol% of units derived from the monomer represented by the general formula (3).
In the general formula (3), the anion represented by Z- specifically represents a halogen ion such as F-, Cl-, Br- or the like.
Specifically, the cationic polymer (b) is preferably a homopolymer of a diallylamine-based cationic monomer as shown below.

本発明に使用されるジアリルアミン系カチオン性モノマーとしては、ジアリルアミン、ジメタアリルアミン等の2級アミンの無機塩または有機酸塩、ジアリルメチルアミン、ジアリルエチルアミン、ジアリルブチルアミン等の3級アミンの無機塩または有機酸塩、塩化ジアリルジメチルアンモニウム、臭化ジアリルジメチルアンモニウム、塩化ジアリルジエチルアンモニウム、臭化ジアリルジエチルアンモニウム、塩化ジアリルジブチルアンモニウム、臭化ジアリルジブチルアンモニウム等の4 級アンモニウム塩が挙げられる。これらの中でも、塩化ジアリルジメチルアンモニウムが特に好ましい。   Examples of diallylamine cationic monomers used in the present invention include inorganic salts of secondary amines such as diallylamine and dimethallylamine or organic acid salts, inorganic salts of tertiary amines such as diallylmethylamine, diallylethylamine and diallylbutylamine, or Examples include organic acid salts, quaternary ammonium salts such as diallyldimethylammonium chloride, diallyldimethylammonium bromide, diallyldiethylammonium chloride, diallyldiethylammonium bromide, diallyldibutylammonium chloride, diallyldibutylammonium bromide. Among these, diallyldimethylammonium chloride is particularly preferable.

次に、本発明で使用される水溶性及び/又は吸水性の両性重合体について説明する。
当該両性重合体は、下記一般式(4)で示される単量体単位及び下記一般式(5)で示される単量体単位を有するビニル系の両性高分子であることが好ましい。
Next, the water-soluble and / or water-absorbing amphoteric polymer used in the present invention will be described.
The amphoteric polymer is preferably a vinyl amphoteric polymer having a monomer unit represented by the following general formula (4) and a monomer unit represented by the following general formula (5).

[式(4)中、Rは水素原子又はメチル基を表し、Rは炭素数1〜4のアルキレン基を表し、Rは炭素数1〜4のアルキル基表し、Rは水素原子、炭素数1〜4のアルキル基又はベンジル基を表し、Aは−O−又は−NH−を表し、Yは陰イオンを表す。] [In Formula (4), R 3 represents a hydrogen atom or a methyl group, R 4 represents an alkylene group having 1 to 4 carbon atoms, R 5 represents an alkyl group having 1 to 4 carbon atoms, and R 6 represents a hydrogen atom. represents an alkyl group or a benzyl group having 1 to 4 carbon atoms, a represents -O- or -NH-, Y - represents an anion. ]

[式(5)中、R、Rは水素原子、メチル基又は−COOM’(M’は水素イオン又はその他の陽イオンを表す。)を表し、Bは、単結合、炭素数1〜2のアルキレン基、フェニレン基、−COOR−(Rは炭素数2〜6のアルキレン基を示す)又は−CONHR10−(R10は炭素数2〜6のアルキレン基を示す)の連結基を表し、Wは、−COO又は−SO を表し、Mは水素イオン又はその他の陽イオンを表す。] Wherein (5), R 7, R 8 represents a hydrogen atom, a methyl group or a -COO - represents M '(. Representing a + M' + is a hydrogen ion or other cation), B represents a single bond, alkylene group, a phenylene group having 1 to 2 carbon atoms, -COOR 9 - (R 9 represents an alkylene group having 2 to 6 carbon atoms) or -CONHR 10 - (R 10 represents an alkylene group having 2 to 6 carbon atoms ), W represents —COO or —SO 3 , and M + represents a hydrogen ion or other cation. ]

前記一般式(4)で示される単量体単位の原料となるビニル系のカチオン性モノマーとしては、例えばジメチルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート、ジエチルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート、ジ一n−プロピルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート、ジイソプロピルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート、ジ−n−ブチルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート、ジ−sec−ブチルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート、ジイソブチルアミノ(メチル、エチル、プロピル又はブチル)アクリレート又はメタクリレート等の(メタ)アクリル酸のジアルキルアミノアルキルエステル類;ジメチルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメタクリルアミド、ジエチルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメタクリルアミド、ジ−n−プロピルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメタクリルアミド、ジイソプロピルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメタクリルアミド、ジ−n−ブチルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメククリルアミド、ジ−sec−ブチルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメククリルアミド、ジイソブチルアミノ(メチル、エチル、プロピル又はブチル)アクリルアミド又はメタクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミド類のハロゲン化水素、硫酸、硝酸、有機酸等による中和塩、ハロゲン化アルキル、ペンジルハライド、ジメチル硫酸、ジエチル硫酸等による四級化物等が挙げられる。これらのビニル系モノマーは1種用いてもよいし、2種以上を組み合わせて用いてもよい。
一般式(4)におけるYで示される陰イオンは、具体的にはCl、Br、1/2SO 2−を表す。
Examples of the vinyl cationic monomer used as a raw material for the monomer unit represented by the general formula (4) include dimethylamino (methyl, ethyl, propyl, or butyl) acrylate or methacrylate, diethylamino (methyl, ethyl, propyl, or Butyl) acrylate or methacrylate, di-n-propylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, diisopropylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, di-n-butylamino (methyl, ethyl Propyl or butyl) acrylate or methacrylate, di-sec-butylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, diisobutylamino (methyl, ethyl, pro Dialkylaminoalkyl esters of (meth) acrylic acid such as acrylate or methacrylate; dimethylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, diethylamino (methyl, ethyl, propyl or butyl) acrylamide or methacryl Amide, di-n-propylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, diisopropylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, di-n-butylamino (methyl, ethyl, propyl) Or butyl) acrylamide or mecrylamide, di-sec-butylamino (methyl, ethyl, propyl or butyl) acrylamide or mecrylamide, di Neutralized salts of dialkylaminoalkyl (meth) acrylamides such as sobutylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide with hydrogen halide, sulfuric acid, nitric acid, organic acid, alkyl halide, pendyl halide, dimethyl Quaternized compounds such as sulfuric acid and diethyl sulfuric acid are listed. These vinyl monomers may be used alone or in combination of two or more.
The anion represented by Y in the general formula (4) specifically represents Cl , Br , 1 / 2SO 4 2− .

また、前記一般式(5)で示される単量体単位の原料となるビニル系のアニオン性モノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミドエタンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタクリルアミドエタンスルホン酸、2−メタクリルアミド−2−メチルプロパンスルホン酸、2−アクリロイルオキシエタンスルホン酸、3−アクリロイルオキシプロパンスルホン酸、4−アクリロイルオキシブタンスルホン酸、2−メタクリロイルオキシエタンスルホン酸、3−メタクリロイルオキシプロパンスルホン酸、4−メタクリロイルオキシブタンスルホン酸、およびこれらのアルカリ金属、アルカリ土類金属等の金属塩またはアンモニウム塩が例示される。これらのアニオン性モノマーは1種用いてもよいし、2種以上を組み合わせてもよい。
なお、一般式(5)においてM’、Mはそれぞれ独立に水素イオン又はその他の陽イオンを表す。該他の陽イオンは、具体的にはNa、K等のアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオン等が挙げられる。
Examples of the vinyl anionic monomer used as a raw material for the monomer unit represented by the general formula (5) include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, vinyl sulfonic acid, and allyl sulfonic acid. , Methallylsulfonic acid, styrenesulfonic acid, 2-acrylamidoethanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamideamidoethanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid, 2- Acryloyloxyethanesulfonic acid, 3-acryloyloxypropanesulfonic acid, 4-acryloyloxybutanesulfonic acid, 2-methacryloyloxyethanesulfonic acid, 3-methacryloyloxypropanesulfonic acid, 4-methacryloyloxybutanesulfonic acid, and these Alkali metal, metal salt or an ammonium salt such as alkaline earth metals are exemplified. These anionic monomers may be used alone or in combination of two or more.
In the general formula (5), M ′ + and M + each independently represent a hydrogen ion or other cation. Specific examples of the other cation include alkali metal ions such as Na + and K + , alkaline earth metal ions, and ammonium ions.

さらに、前記両性重合体中には、非イオン性モノマーに由来する単量体単位が含まれていてもよく、非イオン性モノマーとしては、(メタ)アクリルアミド、(メタ)アクリル酸エステル、(メタ)アクリロニトリル、酢酸ビニル等、その他の共重合可能な非イオン性ビニルモノマーが挙げられる。非イオン性モノマーの内ではアクリルアミドが特に好ましい。このような非イオン性モノマーに由来する単量体単位を、通常0〜90モル%、好ましくは0〜80モル%含有させることができる。   Further, the amphoteric polymer may contain a monomer unit derived from a nonionic monomer. Examples of the nonionic monomer include (meth) acrylamide, (meth) acrylic acid ester, (meta ) Other copolymerizable nonionic vinyl monomers such as acrylonitrile and vinyl acetate. Of the nonionic monomers, acrylamide is particularly preferred. The monomer unit derived from such a nonionic monomer is usually contained in an amount of 0 to 90 mol%, preferably 0 to 80 mol%.

上記の水溶性及び/又は吸水性の両性重合体の製法については特に制限はなく、水溶液重合、分散重合、乳化重合高分子変性等、公知の製造法が用いられる。両性重合体における各成分の割合については、一般式(4)で示される単量体単位が10〜98モル%、好ましくは15〜95モル%であり、一般式(5)で示される単量体単位が2〜30モル%、好ましくは5〜25モル%を含有することが好ましい。該範囲以外では、着色成分除去剤としての効果が十分でないので好ましくない。
また吸水性の重合体(カチオン性重合体及び両性重合体)を製造する方法としては、カチオン性単量体等の原料単量体混合物に例えば、グリオキザール、ジエポキシ化合物等の多官能性の架橋剤を加えて重合する方法、水溶性の重合体に重合体と反応する多官能性の物質を反応させ後架橋する方法、水溶性の重合体を加熱して架橋させる方法などが例示される。
There is no restriction | limiting in particular about the manufacturing method of said water-soluble and / or water-absorbing amphoteric polymer, Well-known manufacturing methods, such as aqueous solution polymerization, dispersion polymerization, and emulsion polymerization polymer modification | denaturation, are used. About the ratio of each component in an amphoteric polymer, the monomer unit shown by General formula (4) is 10-98 mol%, Preferably it is 15-95 mol%, The single quantity shown by General formula (5) It is preferable that the body unit contains 2 to 30 mol%, preferably 5 to 25 mol%. Outside this range, the effect as a coloring component remover is not sufficient, which is not preferable.
In addition, as a method for producing a water-absorbing polymer (cationic polymer and amphoteric polymer), a polyfunctional crosslinking agent such as glyoxal or diepoxy compound is added to a raw material monomer mixture such as a cationic monomer. A method of polymerizing by adding water, a method of reacting a water-soluble polymer with a polyfunctional substance that reacts with the polymer and then crosslinking, a method of crosslinking the water-soluble polymer by heating, and the like are exemplified.

本発明における着色成分除去剤は、主成分である水溶性及び/または吸水性のカチオン性重合体(a)、(b)及び両性重合体の少なくともいずれか1種の重合体を有効成分量含有するが、その他の成分を含有していてもよい。その他の成分としては、例えば、蟻酸、塩化アンモニウムなどが挙げられる。
なお、本発明において、「有効成分量」とは、着色成分除去剤100質量%中の水溶性及び/または吸水性のカチオン性重合体(a)、(b)及び両性重合体の総含有量を意味し、通常、10〜100質量%含有するのが好ましい。
着色成分除去剤がその他の成分を含有する場合、前記カチオン性重合体(a)、(b)や両性重合体を製造した後に所望の配合量となるようにその他の成分を添加してもよく、予めこれらの(共)重合体の製造原料にその他の成分を混合させておいてもよい。
The coloring component remover in the present invention contains an active ingredient in an amount of at least one of a water-soluble and / or water-absorbing cationic polymer (a), (b) and an amphoteric polymer as a main component. However, it may contain other components. Examples of other components include formic acid and ammonium chloride.
In the present invention, the “effective component amount” means the total content of the water-soluble and / or water-absorbing cationic polymers (a) and (b) and the amphoteric polymer in 100% by mass of the coloring component remover. In general, it is preferably contained in an amount of 10 to 100% by mass.
When the coloring component remover contains other components, other components may be added so that the desired blending amount is obtained after the cationic polymer (a), (b) or the amphoteric polymer is produced. These (co) polymer production raw materials may be mixed with other components in advance.

本発明の着色成分除去剤の主成分である前記一般式(1)で示されるアミジン構造単位及び/又は前記一般式(2)で示されるアミジン構造単位を含むカチオン性重合体(a)及び前記一般式(3)で示される単量体を重合してなるカチオン性重合体(b)、及び両性重合体は、いずれも1規定の食塩水にて0.1g/dLの溶液とした際の25℃における還元粘度が0.01〜10dL/gであることが好ましく、より好ましくは0.1〜8dL/gである。還元粘度が0.01dL/g未満であると、着色成分除去剤を製造することが困難となったり、着色成分除去剤の機能が低下したりする傾向にある。一方、還元粘度が10dL/gを超えると、着色成分除去剤の水溶液の粘度が高くなりすぎるため、添加に不都合を生じる場合がある。
なお、上述した還元粘度は、着色成分除去剤の分子量、イオン性の割合、分子量分布、製造方法、組成分布等の調整によって制御できる。例えば、着色成分除去剤の分子量を大きくすると、還元粘度は増加する傾向になる。
The cationic polymer (a) containing the amidine structural unit represented by the general formula (1) and / or the amidine structural unit represented by the general formula (2), which is a main component of the coloring component removing agent of the present invention, and The cationic polymer (b) obtained by polymerizing the monomer represented by the general formula (3) and the amphoteric polymer are both in a 0.1 g / dL solution with 1 N saline. The reduced viscosity at 25 ° C. is preferably 0.01 to 10 dL / g, more preferably 0.1 to 8 dL / g. When the reduced viscosity is less than 0.01 dL / g, it tends to be difficult to produce the coloring component remover, or the function of the coloring component remover tends to deteriorate. On the other hand, when the reduced viscosity exceeds 10 dL / g, the viscosity of the aqueous solution of the coloring component remover becomes too high, which may cause inconvenience in addition.
The reduced viscosity described above can be controlled by adjusting the molecular weight, the ionic ratio, the molecular weight distribution, the production method, the composition distribution, and the like of the coloring component remover. For example, when the molecular weight of the coloring component remover is increased, the reduced viscosity tends to increase.

本発明方法では、上記のような着色成分除去剤を、浮遊固形分が500mg/L以上存在し、難生分解性の水溶性着色成分を含有する色度50以上の活性汚泥混合液に添加し、次いで固液分離することにより活性汚泥中に残存する前記水溶性着色成分を除去するものである。
本発明方法では、活性汚泥混合液中にある程度の浮遊固形分が存在する状態下、つまり500mg/L以上存在下で着色成分除去剤を添加することにより浮遊固形分と共に前記水溶性着色成分を凝集させ凝集沈殿物として除去することができる。
本発明方法において着色成分除去剤が添加される活性汚泥混合液は、含有する難分解性の水溶性着色成分の主成分が染料であるものについてはポリビニルアミンが使用できることが特許文献6に記載されており、本発明においてはその他の成分であることが好ましい。
また、活性汚泥混合液は、難生分解性の水溶性着色成分として、フミン質、リグニン分解生成物、ビリルビン様物質、及びアミノカルボニル反応により生成する水溶性着色高分子物質を含むものであることが好ましい。これら以外の他の成分では着色成分除去剤が十分に作用しない可能性がある。
ここで「水溶性」は、20℃の水に0.1mg/L以上溶解することを意味する。
着色成分除去剤の添加は、活性汚泥に添加しても、活性汚泥処理後の固液分離槽や濃縮汚泥に添加して用いてもよい。濃縮汚泥に添加して用いれば、脱水ろ液中の着色成分が除去されるので返送後の活性汚泥への負荷を低減できる。
なお、本発明の着色成分除去剤は、その効果を損なわない限り他の脱色剤や無機凝集剤、高分子凝集剤と併用して用いても良い。
In the method of the present invention, the coloring component removing agent as described above is added to an activated sludge mixed liquid having a chromaticity of 50 or more, which has a suspended solid content of 500 mg / L or more and contains a hardly biodegradable water-soluble coloring component. Then, the water-soluble coloring component remaining in the activated sludge is removed by solid-liquid separation.
In the method of the present invention, the water-soluble coloring component is agglomerated together with the floating solid by adding a coloring component remover in a state where a certain amount of floating solid is present in the activated sludge mixed liquid, that is, in the presence of 500 mg / L or more. And can be removed as an aggregated precipitate.
Patent Document 6 describes that polyvinylamine can be used for the activated sludge mixed liquid to which a coloring component remover is added in the method of the present invention, in which the main component of the hardly decomposable water-soluble coloring component is a dye. In the present invention, other components are preferable.
The activated sludge mixed liquid preferably contains humic substances, lignin degradation products, bilirubin-like substances, and water-soluble colored polymer substances produced by aminocarbonyl reaction as hardly biodegradable water-soluble coloring components. . There is a possibility that the coloring component removing agent does not work sufficiently with other components.
Here, “water-soluble” means that 0.1 mg / L or more dissolves in water at 20 ° C.
The addition of the coloring component remover may be added to the activated sludge, or may be added to the solid-liquid separation tank or the concentrated sludge after the activated sludge treatment. If added to the concentrated sludge, the colored components in the dehydrated filtrate are removed, so the load on the activated sludge after return can be reduced.
The coloring component remover of the present invention may be used in combination with other decoloring agents, inorganic flocculants, and polymer flocculants as long as the effect is not impaired.

本発明において「活性汚泥混合液に添加する」とは、活性汚泥処理系内の任意の場所に添加し活性汚泥中の微生物に接触させることを意味し、例えば、活性汚泥と共に原水槽に添加して曝気槽に導く、曝気槽に直接添加する、脱窒等を目的とした無酸素槽がある施設で無酸素槽に直接添加するなどの他、難生分解性の水溶性着色成分の除去効果がある限りいずれの添加方法を用いてもよい。さらには、各槽を連結する側溝や配管などの流路やこれら各槽の前に設けられた流量調整槽に添加することも可能である。   In the present invention, “added to the activated sludge mixed solution” means to be added to any place in the activated sludge treatment system and brought into contact with microorganisms in the activated sludge. For example, it is added to the raw water tank together with the activated sludge. In addition to direct addition to the aeration tank, direct addition to the aeration tank, direct addition to the oxygen-free tank at facilities with an oxygen-free tank for the purpose of denitrification, etc., as well as the removal effect of hardly biodegradable water-soluble coloring components As long as there is, any addition method may be used. Further, it can be added to a flow path such as a side groove or a pipe connecting the tanks or a flow rate adjusting tank provided in front of each tank.

(活性汚泥への添加)
本発明方法において、予め着色成分除去剤を活性汚泥に添加する場合、着色成分除去剤の添加量は活性汚泥混合液に対して0.1〜2000mg/Lが好ましく、0.1〜1000mg/Lがより好ましい。添加量が0.1mg/L未満であると着色成分除去剤の効果が十分に得られにくくなる。一方、添加量が2000mg/Lを超えると、活性汚泥中の微生物活性に悪影響を与える可能性がある。
(Addition to activated sludge)
In the method of the present invention, when the color component remover is added to the activated sludge in advance, the amount of the color component remover added is preferably 0.1 to 2000 mg / L, preferably 0.1 to 1000 mg / L with respect to the activated sludge mixed solution. Is more preferable. When the addition amount is less than 0.1 mg / L, the effect of the color component removing agent is not sufficiently obtained. On the other hand, when the addition amount exceeds 2000 mg / L, there is a possibility of adversely affecting the microbial activity in the activated sludge.

以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限りこれらに限定されるものではない。
以下の試験例(実施例及び比較例)において、着色成分除去剤の評価は、活性汚泥上澄液の色度を測定することにより行った。
<色度の測定>
色度とは、水に溶存、またはコロイド状で存在する物質による淡黄色から黄褐色の程度を示すものであり、紫外可視分光光度計(島津サイエンス(株)製 UV−3100)により390nm付近の吸光度を測定し、標準液による検量線から算出した。
なお、色度の測定は常法(社団法人 日本下水道協会編、「下水道試験法上巻1997年度版」p95「2.透過光測定法」)に準じて実施した。
着色成分除去効果の判定は、次式により着色成分の除去率を算出することにより行った。
除去率(%)=(1−D/D)×100
(D:被処理着色排水の色度、D:着色成分除去後の色度)
<pHの測定>
pHの測定にはJIS K0102に記載の方法を用い、試料温度を23℃に調整して測定を行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.
In the following test examples (Examples and Comparative Examples), the coloring component remover was evaluated by measuring the chromaticity of the activated sludge supernatant.
<Measurement of chromaticity>
Chromaticity indicates the degree of pale yellow to yellowish brown due to a substance dissolved in water or present in a colloidal form, and is measured at around 390 nm by an ultraviolet-visible spectrophotometer (UV-3100 manufactured by Shimadzu Science Co., Ltd.). Absorbance was measured and calculated from a calibration curve using a standard solution.
The chromaticity was measured according to a conventional method (edited by the Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p95” “2. Transmitted light measurement method”).
The determination of the color component removal effect was performed by calculating the color component removal rate according to the following equation.
Removal rate (%) = (1−D 2 / D 1 ) × 100
(D 1 : Chromaticity of colored wastewater to be treated, D 2 : Chromaticity after removal of colored components)
<Measurement of pH>
The pH was measured using the method described in JIS K0102, adjusting the sample temperature to 23 ° C.

試験例で使用したカチオン性重合体及び両性重合体を纏めて表1に示す。   The cationic polymer and the amphoteric polymer used in the test examples are collectively shown in Table 1.

[カチオン性重合体(a)]
本発明の着色成分除去剤に用いたカチオン性重合体(a)としては、以下の方法で製造したカチオン性重合体(A1、A2、A3)を使用した。
<カチオン性重合体A1の製造>
攪拌機、窒素導入管、冷却管を備えた50mlの四つ口フラスコにアクリロニトリルとN−ビニルホルムアミドの混合物(モル比55:45)6gと34gの脱塩水との混合物を入れた。窒素ガス中攪拌しつつ60℃に昇温し、10質量%の2,2’−アゾビス(2−アミジノプロパン)の2塩酸塩水溶液0.12gを添加し、さらに3時間保持し、水中に重合体が析出した懸濁物を得た。該懸濁物に水20g添加し、さらに濃塩酸を重合体のホルミル基に対し2当量添加し100℃で4時間保持し、黄色の高粘度液を得た。これを多量のアセトンに添加し、重合体を析出させ、得られた重合体を細断し、60℃で1中夜乾燥後粉砕して粉末の水溶性カチオン性重合体を得た。
[Cationic polymer (a)]
As the cationic polymer (a) used for the coloring component removing agent of the present invention, cationic polymers (A1, A2, A3) produced by the following method were used.
<Production of cationic polymer A1>
A mixture of 6 g of a mixture of acrylonitrile and N-vinylformamide (molar ratio 55:45) and 34 g of demineralized water was placed in a 50 ml four-necked flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube. The temperature was raised to 60 ° C. while stirring in nitrogen gas, and 0.12 g of a 10% by mass 2,2′-azobis (2-amidinopropane) dihydrochloride aqueous solution was added, and the mixture was further maintained for 3 hours. A suspension in which the coalescence precipitated was obtained. 20 g of water was added to the suspension, and 2 equivalents of concentrated hydrochloric acid was added to the formyl group of the polymer, and kept at 100 ° C. for 4 hours to obtain a yellow high-viscosity liquid. This was added to a large amount of acetone to precipitate a polymer, and the obtained polymer was chopped, dried at 60 ° C. for 1 night and pulverized to obtain a powdered water-soluble cationic polymer.

(カチオン性重合体A1の組成)
水溶性カチオン性重合体A1を重水に溶解させ、NMRスペクトロメーター(日本電子社製、270MHz)にて13C−NMRスペクトルを測定した。13C−NMRスペクトルの各繰り返し単位に対応したピークの積分値より各単位の組成を算出した。なお、前記一般式(1)および(2)の構造単位は区別することなく、その総量として求めた。結果を表1に示す。
また、このようにして得られたカチオン性重合体A1に含まれる各単位は、上記一般式[(1)、(2)、(6)〜(8)]中、R〜R,およびR11〜R14が水素原子、X、Qが塩化物イオンであった。
(カチオン性重合体A1の還元粘度測定)
1規定の食塩水100mLにカチオン性重合体A1の0.1gを溶解させ、0.1g/dLの溶液を調製した。該溶液の25℃における還元粘度をオストワルド粘度計(ハリオ研究所社製)にて測定した。結果を表1に示す。
(Composition of cationic polymer A1)
The water-soluble cationic polymer A1 was dissolved in heavy water, and a 13 C-NMR spectrum was measured with an NMR spectrometer (manufactured by JEOL Ltd., 270 MHz). The composition of each unit was calculated from the integrated value of the peak corresponding to each repeating unit of the 13 C-NMR spectrum. The structural units of the general formulas (1) and (2) were determined as the total amount without distinction. The results are shown in Table 1.
Moreover, each unit contained in the cationic polymer A1 obtained in this way is represented by R 1 to R 2 in the general formula [(1), (2), (6) to (8)], and R 11 to R 14 were hydrogen atoms, and X and Q were chloride ions.
(Measurement of reduced viscosity of cationic polymer A1)
0.1 g of the cationic polymer A1 was dissolved in 100 mL of 1N saline to prepare a 0.1 g / dL solution. The reduced viscosity at 25 ° C. of the solution was measured with an Ostwald viscometer (Hario Laboratories). The results are shown in Table 1.

<カチオン性重合体A2の製造>
攪拌機、窒素導入管、冷却管を備えた500mlの四つ口フラスコに、脱塩水を40g、ポリエチレングリコール20000を1.2g、次亜リン酸ナトリウムを0.2g入れ、70℃に昇温し、窒素気流下、アクリロニトリルとN−ビニルホルムアミドの混合物(モル比50:50)の70質量%水溶液120gを2時間かけて滴下した。その間10質量%の2,2’−アゾビス(2−アミジノプロパン)の2塩酸塩水溶液12.6gを5回にわけ分割添加した。さらに2時間熟成後、濃塩酸(対ホルミル基100モル%相当)を加え90℃に昇温し、3時間放置した。これを多量のアセトンに添加し、重合体を析出させ、得られた重合体を細断し、60℃で1中夜乾燥後粉砕してカチオン性重合体を得た。
<Production of cationic polymer A2>
In a 500 ml four-necked flask equipped with a stirrer, a nitrogen introduction tube, and a cooling tube, 40 g of demineralized water, 1.2 g of polyethylene glycol 20000, and 0.2 g of sodium hypophosphite are added, and the temperature is raised to 70 ° C. Under a nitrogen stream, 120 g of a 70% by mass aqueous solution of a mixture of acrylonitrile and N-vinylformamide (molar ratio 50:50) was added dropwise over 2 hours. Meanwhile, 12.6 g of a 2% aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride in 10% by mass was added in 5 divided portions. After further aging for 2 hours, concentrated hydrochloric acid (corresponding to 100 mol% of formyl group) was added, the temperature was raised to 90 ° C., and the mixture was allowed to stand for 3 hours. This was added to a large amount of acetone to precipitate a polymer, and the resulting polymer was chopped, dried at 60 ° C. for 1 night and pulverized to obtain a cationic polymer.

(カチオン性重合体A2の組成)
カチオン性重合体A1と同様にして13C−NMRスペクトルを測定し、各単位の組成を算出した。また、上記一般式(1)および(2)の構造単位は区別することなく、その総量として求めた。結果を表1に示す。
なお、このようにして得られたカチオン性重合体A2に含まれる各単位は、上記一般式[(1)、(2)、(6)〜(8)]中、R〜R,およびR11〜R14が水素原子、X、Qが塩化物イオンであった。
(カチオン性重合体A2の還元粘度)
カチオン性重合体A1と同様にして還元粘度を測定した。結果を表1に示す。
(Composition of cationic polymer A2)
The 13 C-NMR spectrum was measured in the same manner as the cationic polymer A1, and the composition of each unit was calculated. Further, the structural units of the above general formulas (1) and (2) were determined as the total amount without distinction. The results are shown in Table 1.
In addition, each unit contained in the cationic polymer A2 thus obtained is represented by R 1 to R 2 in the general formula [(1), (2), (6) to (8)], and R 11 to R 14 were hydrogen atoms, and X and Q were chloride ions.
(Reduced viscosity of the cationic polymer A2)
The reduced viscosity was measured in the same manner as the cationic polymer A1. The results are shown in Table 1.

<カチオン性重合体A3の製造>
上記のカチオン性重合体A1を加熱処理(120℃、5時間)により架橋反応させた重合体であり、その還元粘度はカチオン性重合体A1と同様にして測定した。結果を表1に示す。
<Production of cationic polymer A3>
A polymer obtained by crosslinking the cationic polymer A1 by a heat treatment (120 ° C., 5 hours), and its reduced viscosity was measured in the same manner as the cationic polymer A1. The results are shown in Table 1.

[カチオン性重合体(b)及び両性重合体]
本発明のカチオン性重合体(b)として下記の方法で製造したカチオン性重合体(B1)を使用し、両性重合体として、市販されているグレードより両性凝集剤(C1〜C3)を選択した。各々の重合体の組成については、各々の重合体を重水に溶解させ、NMRスペクトロメーター(日本電子社製、270MHz)にて13C−NMRスペクトルを測定した。13C−NMRスペクトルの各繰り返し単位に対応したピークの積分値より各単位の組成を算出した。
各々の重合体の還元粘度はカチオン性重合体A1と同様に測定した。
重合体の組成及び還元粘度を表1に示す。
[Cationic polymer (b) and amphoteric polymer]
The cationic polymer (B1) produced by the following method was used as the cationic polymer (b) of the present invention, and amphoteric flocculants (C1 to C3) were selected from the commercially available grades as amphoteric polymers. . About the composition of each polymer, each polymer was dissolved in heavy water, and the 13 C-NMR spectrum was measured with an NMR spectrometer (manufactured by JEOL Ltd., 270 MHz). The composition of each unit was calculated from the integrated value of the peak corresponding to each repeating unit of the 13 C-NMR spectrum.
The reduced viscosity of each polymer was measured in the same manner as the cationic polymer A1.
The composition and reduced viscosity of the polymer are shown in Table 1.

<カチオン性重合体B1の製造>
ジアリルジメチルアンモニウムクロライド32.3g(0.2モル)及び脱イオン水64.7gを300mLセパラブルフラスコに取り、均一に溶解した。この水溶液を撹絆しながら、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)20.3mg(0.03ミリモル)をメタノール1.0mLに溶解した溶液を添加し、水溶液中にTEMPOを分散させた。次に、氷浴中で窒素ガスを500mL/分で3時間通気し、モノマー混合物を含む水溶液中の溶存酸素ガスを除去した。この水溶液を撹絆しながら、ペルオキソニ硫酸アンモニウム22.8mg(0.1ミリモル)を脱イオン水1.0mLに溶解した溶液を添加し、さらに二亜硫酸ナトリウム19.0mg(0.1ミリモル)を脱イオン水1.0mLに溶解した溶液を添加した。このレドックス開始剤を添加してから3時間後、この水溶液を60℃で24時間加熱して重合を行い、ゲル状のポリマーを得た。このポリマーの固有粘度は、1.6dL/gであった。
<Production of cationic polymer B1>
32.3 g (0.2 mol) of diallyldimethylammonium chloride and 64.7 g of deionized water were placed in a 300 mL separable flask and dissolved uniformly. While stirring this aqueous solution, a solution of 20.3 mg (0.03 mmol) of 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) dissolved in 1.0 mL of methanol was added. TEMPO was dispersed in an aqueous solution. Next, nitrogen gas was bubbled in an ice bath at 500 mL / min for 3 hours to remove dissolved oxygen gas in the aqueous solution containing the monomer mixture. While stirring this aqueous solution, a solution of 22.8 mg (0.1 mmol) of ammonium peroxodisulfate dissolved in 1.0 mL of deionized water was added, and 19.0 mg (0.1 mmol) of sodium disulfite was further deionized. A solution dissolved in 1.0 mL of water was added. Three hours after the addition of the redox initiator, the aqueous solution was heated at 60 ° C. for 24 hours for polymerization to obtain a gel polymer. The intrinsic viscosity of this polymer was 1.6 dL / g.

(カチオン性重合体B1の組成)
カチオン性重合体A1と同様にして13C−NMRスペクトルを測定し、各単位の組成を算出した。結果を表1に示す。
(カチオン性重合体B1の還元粘度)
カチオン性重合体A1と同様にして還元粘度を測定した。結果を表1に示す。
なお、比較例として、市販の高分子凝集剤:ダイヤフロックK−415(ダイヤニトリックス(株)製、アクリル系カチオンポリマー41wt%含有)、ダイヤフロックKP−201G(ダイヤニトリックス(株)製、ジメチルアミノエチルメタクリレート4級塩重合物)を使用した。
(Composition of cationic polymer B1)
The 13 C-NMR spectrum was measured in the same manner as the cationic polymer A1, and the composition of each unit was calculated. The results are shown in Table 1.
(Reduced viscosity of the cationic polymer B1)
The reduced viscosity was measured in the same manner as the cationic polymer A1. The results are shown in Table 1.
In addition, as a comparative example, commercially available polymer flocculants: Diafloc K-415 (manufactured by Daianitrix Co., Ltd., containing 41 wt% of acrylic cationic polymer), Diafloc KP-201G (manufactured by Daianitrix Co., Ltd., dimethylaminoethyl methacrylate) Quaternary salt polymer) was used.

AAm:アクリルアミド単位
DMC:メタクリロイルオキシエチルトリメチルアンモニウムクロリド単位
DADMAC:ジアリルジメチルアンモニウムクロライド単位
DMQ:アクリロイルオキシエチルトリメチルアンモニウムクロリド単位
アミジン:アミジン塩酸塩単位
NVF:N−ビニルホルムアミド単位
AN:アクリロニトリル単位
VAM:ビニルアミン塩酸塩単位
AA:アクリル酸単位
AAm: acrylamide unit DMC: methacryloyloxyethyltrimethylammonium chloride unit DADMAC: diallyldimethylammonium chloride unit DMQ: acryloyloxyethyltrimethylammonium chloride unit amidine: amidine hydrochloride unit NVF: N-vinylformamide unit AN: acrylonitrile unit VAM: vinylamine hydrochloride Salt unit AA: Acrylic acid unit

[試験1]
<実施例1>
着色した下水処理場の活性汚泥(pH6.2、色度314)200mlをビーカーに入れ、表2に示す着色成分除去剤を0.1質量%の水溶液状で所定量添加した後、2分間撹拌混合し、一晩静置した。その後、上澄み液につき、波長390nmの吸光度を測定し、測定値から上澄み液の色度を算出することにより着色成分の除去効果を判定した。結果を表2に示す。
[Test 1]
<Example 1>
200 ml of colored sludge activated sludge (pH 6.2, chromaticity 314) is put in a beaker, and a predetermined amount of a coloring component remover shown in Table 2 is added in the form of a 0.1% by mass aqueous solution, followed by stirring for 2 minutes. Mix and let stand overnight. Thereafter, the absorbance at a wavelength of 390 nm was measured for the supernatant, and the chromaticity of the supernatant was calculated from the measured value to determine the effect of removing the colored components. The results are shown in Table 2.

<比較例1>
着色成分除去剤を添加しなかった以外は実施例1と同様にし、着色成分除去効果を判定した。結果を表2に示す。
<比較例2>
市販のポリ塩化アルミニウム凝集剤(高杉製薬株式会社製、PAC:Al成分を10〜11%含有)を用いた以外は実施例1と同様にし、着色成分除去効果を判定した。結果を表2に示す。
<比較例3>
市販の高分子凝集剤(ダイヤニトリックス(株)製、ダイヤフロックK−415)を用いた以外は実施例1と同様にし、着色成分除去効果を判定した。結果を表2に示す。
<Comparative Example 1>
The effect of removing the coloring component was determined in the same manner as in Example 1 except that the coloring component removing agent was not added. The results are shown in Table 2.
<Comparative Example 2>
The colored component removal effect was determined in the same manner as in Example 1 except that a commercially available polyaluminum chloride flocculant (manufactured by Takasugi Pharmaceutical Co., Ltd., containing 10 to 11% of PAC: Al 2 O 3 component) was used. The results are shown in Table 2.
<Comparative Example 3>
The effect of removing the colored components was determined in the same manner as in Example 1 except that a commercially available polymer flocculant (Dianitricks Co., Ltd., Diafloc K-415) was used. The results are shown in Table 2.

[試験2]
<実施例2>
着色したし尿処理場の活性汚泥(pH6.7、色度175)200mlを用いた以外は実施例1と同様にし、下記表3に示す着色成分除去剤を用いてその除去効果を判定した。さらに、活性汚泥のpHを0.1規定塩酸を用いてpH5.5とし、実施例1と同様にして着色成分除去効果を判定した。結果を表3に示す。
なお、活性汚泥の固形浮遊分濃度は、2,400mg/Lであった。
<比較例4>
着色成分除去剤を添加しなかった以外は実施例2と同様にし、着色成分除去効果を判定した。結果を表3に示す。
[Test 2]
<Example 2>
The removal effect was determined using the coloring component remover shown in Table 3 in the same manner as in Example 1 except that 200 ml of colored sludge treatment site activated sludge (pH 6.7, chromaticity 175) was used. Furthermore, the pH of the activated sludge was adjusted to pH 5.5 using 0.1 N hydrochloric acid, and the coloring component removal effect was determined in the same manner as in Example 1. The results are shown in Table 3.
The solid sludge concentration of the activated sludge was 2,400 mg / L.
<Comparative example 4>
The effect of removing the coloring component was determined in the same manner as in Example 2 except that the coloring component removing agent was not added. The results are shown in Table 3.

[試験3]
<実施例3>
着色した製紙工場の排水処理場の活性汚泥(pH6.8、色度84)200mlを用いた以外は実施例1と同様にし、下記表4に示す着色成分除去剤を用いてその除去効果を判定した。結果を表4に示す。
なお、活性汚泥の固形浮遊分濃度は、6,100mg/Lであった。
<比較例5>
着色成分除去剤を添加しなかった以外は実施例3と同様にし、着色成分除去効果を判定した。結果を表4に示す。
<比較例6>
市販のポリ塩化アルミニウム凝集剤(高杉製薬株式会社製、PAC:Al成分を10〜11%含有)を用いた以外は実施例3と同様にし、着色成分除去効果を判定した。結果を表−4に示す。
<比較例7>
市販の高分子凝集剤(ダイヤニトリックス(株)製、ダイヤフロックKP−201G)を用いた以外は実施例1と同様にし、着色成分除去効果を判定した。結果を表4に示す。
[Test 3]
<Example 3>
Except for using 200 ml of activated sludge (pH 6.8, chromaticity 84) from a wastewater treatment plant of a colored paper mill, the removal effect was determined using the coloring component remover shown in Table 4 below. did. The results are shown in Table 4.
The solid sludge concentration of the activated sludge was 6,100 mg / L.
<Comparative Example 5>
The coloring component removal effect was determined in the same manner as in Example 3 except that the coloring component removing agent was not added. The results are shown in Table 4.
<Comparative Example 6>
The colored component removal effect was determined in the same manner as in Example 3 except that a commercially available polyaluminum chloride flocculant (manufactured by Takasugi Pharmaceutical Co., Ltd., containing PAC: Al 2 O 3 component was contained in an amount of 10 to 11%) was used. The results are shown in Table-4.
<Comparative Example 7>
The color component removal effect was determined in the same manner as in Example 1 except that a commercially available polymer flocculant (Dianitricks Co., Ltd., Diaflock KP-201G) was used. The results are shown in Table 4.

Claims (8)

下記一般式(1)で示されるアミジン構造単位及び/又は下記一般式(2)で示されるアミジン構造単位を含有する水溶性及び/又は吸水性のカチオン性重合体(a)、下記一般式(3)で示される単量体を重合してなる水溶性及び/又は吸水性のカチオン性重合体(b)並びに水溶性及び/又は吸水性の両性重合体の少なくともいずれか1種の重合体を有効成分とする着色成分除去剤を、浮遊固形分500mg/L以上存在下に、難生分解性の水溶性着色成分を含有する色度50以上の活性汚泥混合液に添加し、次いで固液分離することを特徴とする活性汚泥混合液中の着色成分の除去方法。
[式(1)、(2)中、R〜Rは各々水素原子またはメチル基であり、同一であってもよく、異なっていてもよい。Xは各々陰イオンであり、同一であってもよく、異なっていてもよい。]
[式(3)中、Zは陰イオンを表す。]
A water-soluble and / or water-absorbing cationic polymer (a) containing an amidine structural unit represented by the following general formula (1) and / or an amidine structural unit represented by the following general formula (2), 3) a water-soluble and / or water-absorbing cationic polymer (b) obtained by polymerizing the monomer represented by 3) and at least one polymer selected from the group consisting of a water-soluble and / or water-absorbing amphoteric polymer. A coloring component removing agent as an active ingredient is added to an activated sludge mixed liquid having a chromaticity of 50 or more containing a water-soluble coloring component that is hardly biodegradable in the presence of 500 mg / L or more of floating solids, and then solid-liquid separation. A method for removing a coloring component in an activated sludge mixed liquid characterized by comprising:
[In the formulas (1) and (2), R 1 to R 2 are each a hydrogen atom or a methyl group, and may be the same or different. X < - > each represents an anion, and may be the same or different. ]
[In Formula (3), Z < - > represents an anion. ]
前記活性汚泥混合液が含有する前記難生分解性の水溶性着色成分の主成分が染料ではない請求項1に記載の着色成分の除去方法。   The method for removing a colored component according to claim 1, wherein a main component of the hardly biodegradable water-soluble colored component contained in the activated sludge mixed liquid is not a dye. 前記難生分解性の水溶性着色成分がフミン質、リグニン分解生成物、ビリルビン様物質、及びアミノカルボニル反応により生成する水溶性着色高分子物質の少なくとも1種を含む請求項1又は2に記載の着色成分の除去方法。   The said hardly biodegradable water-soluble coloring component contains at least 1 sort (s) of the water-soluble coloring polymer substance produced | generated by a humic substance, a lignin degradation product, a bilirubin-like substance, and an aminocarbonyl reaction. Removal method of coloring components. 前記着色成分除去剤を、前記活性汚泥混合液に対し0.1〜2000mg/L添加する請求項1乃至3のいずれか一項に記載の着色成分の除去方法。   The removal method of the coloring component as described in any one of Claims 1 thru | or 3 which adds 0.1-2000 mg / L of the said coloring component removal agent with respect to the said activated sludge liquid mixture. 前記両性重合体は、下記一般式(4)で示される単量体単位及び一般式(5)で示される単量体単位を含有する両性重合体である請求項1乃至4のいずれか一項に記載の着色成分の除去方法。
[式(4)中、Rは水素原子又はメチル基を表し、Rは炭素数1〜4のアルキレン基を表し、Rは炭素数1〜4のアルキル基表し、Rは水素原子、炭素数1〜4のアルキル基又はベンジル基を表し、Aは−O−又は−NH−を表し、Yは陰イオンを表す。]
[式(5)中、R、Rは水素原子、メチル基又は−COOM’(M’は水素イオン又はその他の陽イオンを表す。)を表し、Bは、単結合、炭素数1〜2のアルキレン基、フェニレン基、−COOR−(Rは炭素数2〜6のアルキレン基を示す)又は−CONHR10−(R10は炭素数2〜6のアルキレン基を示す)の連結基を表し、Wは、−COO又は−SO を表し、Mは水素イオン又はその他の陽イオンを表す。]
The amphoteric polymer is an amphoteric polymer containing a monomer unit represented by the following general formula (4) and a monomer unit represented by the general formula (5). The removal method of the coloring component as described in 2.
[In Formula (4), R 3 represents a hydrogen atom or a methyl group, R 4 represents an alkylene group having 1 to 4 carbon atoms, R 5 represents an alkyl group having 1 to 4 carbon atoms, and R 6 represents a hydrogen atom. represents an alkyl group or a benzyl group having 1 to 4 carbon atoms, a represents -O- or -NH-, Y - represents an anion. ]
Wherein (5), R 7, R 8 represents a hydrogen atom, a methyl group or a -COO - represents M '(. Representing a + M' + is a hydrogen ion or other cation), B represents a single bond, alkylene group, a phenylene group having 1 to 2 carbon atoms, -COOR 9 - (R 9 represents an alkylene group having 2 to 6 carbon atoms) or -CONHR 10 - (R 10 represents an alkylene group having 2 to 6 carbon atoms ), W represents —COO or —SO 3 , and M + represents a hydrogen ion or other cation. ]
前記カチオン性重合体(a)は、上記一般式(1)で示されるアミジン構造単位及び/又は上記一般式(2)で示されるアミジン構造単位を5〜90モル%含有する請求項1乃至4のいずれか一項に記載の着色成分の除去方法。   The cationic polymer (a) contains 5 to 90 mol% of an amidine structural unit represented by the general formula (1) and / or an amidine structural unit represented by the general formula (2). The removal method of the coloring component as described in any one of these. 前記カチオン性重合体(b)は、上記一般式(3)で示される単量体に由来する単位を10〜100モル%含有する請求項1乃至6のいずれか一項に記載の着色成分の除去方法。   The cationic polymer (b) contains 10 to 100 mol% of a unit derived from the monomer represented by the general formula (3), according to any one of the coloring components according to any one of claims 1 to 6. Removal method. 前記両性重合体は、上記一般式(4)で表される単量体単位を10〜98モル%、及び、上記一般式(5)で表される単量体単位を2〜30モル%含有する両性重合体である請求項5に記載の着色成分の除去方法。   The amphoteric polymer contains 10 to 98 mol% of the monomer unit represented by the general formula (4) and 2 to 30 mol% of the monomer unit represented by the general formula (5). The method for removing a colored component according to claim 5, which is an amphoteric polymer.
JP2010147578A 2009-08-05 2010-06-29 Method for removing coloring component Pending JP2011050946A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010147578A JP2011050946A (en) 2009-08-05 2010-06-29 Method for removing coloring component
CN201010243612.5A CN101993139B (en) 2009-08-05 2010-07-30 Method of removing a coloring component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009182877 2009-08-05
JP2010147578A JP2011050946A (en) 2009-08-05 2010-06-29 Method for removing coloring component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014232845A Division JP6060958B2 (en) 2009-08-05 2014-11-17 Removal method of coloring components

Publications (1)

Publication Number Publication Date
JP2011050946A true JP2011050946A (en) 2011-03-17

Family

ID=43940534

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010147578A Pending JP2011050946A (en) 2009-08-05 2010-06-29 Method for removing coloring component
JP2014232845A Active JP6060958B2 (en) 2009-08-05 2014-11-17 Removal method of coloring components

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014232845A Active JP6060958B2 (en) 2009-08-05 2014-11-17 Removal method of coloring components

Country Status (1)

Country Link
JP (2) JP2011050946A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194811A (en) * 2012-03-19 2013-09-30 Ntn Corp Material for fluid dynamic bearing, shaft member employing the material, and the fluid dynamic bearing employing the shaft member
JP2013202598A (en) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd Water treatment method
JP2014028365A (en) * 2012-07-02 2014-02-13 Mitsubishi Rayon Co Ltd Method of treating paper industry sewage
JP2016150312A (en) * 2015-02-18 2016-08-22 三菱レイヨン株式会社 Coagulation treatment agent for waste water, and coagulation treatment method of waste water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007246A (en) * 2003-06-17 2005-01-13 Sinto Brator Co Ltd Treatment method for organic waste water
JP2007117956A (en) * 2005-10-31 2007-05-17 Sanyo Chem Ind Ltd Polymer flocculant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928161A (en) * 1972-07-17 1974-03-13
JP2624089B2 (en) * 1991-08-20 1997-06-25 三菱化学株式会社 Cationic polymer flocculant
JP3552754B2 (en) * 1994-09-13 2004-08-11 株式会社クボタ Advanced treatment method of organic sewage and its apparatus
JP2006297301A (en) * 2005-04-21 2006-11-02 Junsuke Haruna Powder wastewater treatment agent containing oyster shell as main component
JP2009119310A (en) * 2007-11-12 2009-06-04 Hymo Corp Activated sludge settling method
WO2010122672A1 (en) * 2009-04-21 2010-10-28 ハイモ株式会社 Coagulant and method of treatment by coagulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007246A (en) * 2003-06-17 2005-01-13 Sinto Brator Co Ltd Treatment method for organic waste water
JP2007117956A (en) * 2005-10-31 2007-05-17 Sanyo Chem Ind Ltd Polymer flocculant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194811A (en) * 2012-03-19 2013-09-30 Ntn Corp Material for fluid dynamic bearing, shaft member employing the material, and the fluid dynamic bearing employing the shaft member
JP2013202598A (en) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd Water treatment method
JP2014028365A (en) * 2012-07-02 2014-02-13 Mitsubishi Rayon Co Ltd Method of treating paper industry sewage
JP2016150312A (en) * 2015-02-18 2016-08-22 三菱レイヨン株式会社 Coagulation treatment agent for waste water, and coagulation treatment method of waste water

Also Published As

Publication number Publication date
JP6060958B2 (en) 2017-01-18
JP2015062901A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
EP1274652B1 (en) Method of clarifying water using low molecular weight cationic dispersion polymers
KR101846041B1 (en) Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers
US20180155224A1 (en) Method of treating wastewater
JP2008055391A (en) Dehydration method of sludge
JP6060958B2 (en) Removal method of coloring components
AU7600296A (en) High performance polymer flocculating agents
JPH06218399A (en) Sludge dewatering agent
US6872779B2 (en) Polymeric flocculant and method of sludge dehydration
JP4868127B2 (en) Organic sludge dewatering method
CN104974454B (en) A kind of flocculant and preparation method thereof
WO2011016482A1 (en) Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP6046875B2 (en) Removal method of coloring components
JPWO2008047739A1 (en) Sewage sludge dewatering method
EP0741110A1 (en) Water treatment methods
JP2017100111A (en) Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
JP5709086B2 (en) Organic coagulant
JP2017000914A (en) Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
CA2817377C (en) Use of water soluble block copolymers to improve membrane bioreactor systems in water treatment
CN101993139B (en) Method of removing a coloring component
CN101993138B (en) Method of removing a coloring component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819