WO2011016482A1 - Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process - Google Patents

Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process Download PDF

Info

Publication number
WO2011016482A1
WO2011016482A1 PCT/JP2010/063175 JP2010063175W WO2011016482A1 WO 2011016482 A1 WO2011016482 A1 WO 2011016482A1 JP 2010063175 W JP2010063175 W JP 2010063175W WO 2011016482 A1 WO2011016482 A1 WO 2011016482A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filtration flux
substance
filtration
membrane separation
Prior art date
Application number
PCT/JP2010/063175
Other languages
French (fr)
Japanese (ja)
Inventor
絵美 石井
金子 真
Original Assignee
ダイヤニトリックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤニトリックス株式会社 filed Critical ダイヤニトリックス株式会社
Priority to KR1020127002821A priority Critical patent/KR20120085713A/en
Priority to CN2010800342259A priority patent/CN102548913A/en
Priority to JP2011525910A priority patent/JPWO2011016482A1/en
Publication of WO2011016482A1 publication Critical patent/WO2011016482A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for efficiently removing filtration flux lowering substances present in a membrane separation activated sludge tank.
  • the gist of the present invention is that a filtration flux lowering agent removing agent containing a water-soluble and / or water-absorbing cationic polymer as an active ingredient is added to a membrane separation activated sludge mixed solution, followed by membrane separation. It is the filtration flux fall cause substance removal method.
  • R 1 to R 4 are each a hydrogen atom or a methyl group, and may be the same or different.
  • X ⁇ and Y ⁇ are each an anion and may be the same or different.
  • the lower limit of the content of the amidine structural unit is more preferably 10 mol% or more, further preferably 15 mol% or more, and particularly preferably 20 mol% or more. Further, the upper limit of the content of the amidine structural unit is more preferably 85 mol% or less, and further preferably 80 mol% or less.
  • “added to the membrane separation activated sludge mixed solution” is added to a membrane separation tank using a precision membrane, an ultrafiltration membrane or the like, and an arbitrary place in the activated sludge treatment system in the process preceding the membrane separation tank. This means that it is brought into contact with microorganisms in activated sludge. For example, it is added to the raw water tank together with the activated sludge and led to the aeration tank. It is added directly to the membrane activated sludge tank. In addition to adding directly to an oxygen-free tank at a certain facility, any addition method may be used as long as it has an effect of removing substances that cause a decrease in filtration flux. Further, it can be added to a flow path such as a side groove or a pipe connecting the tanks or a flow rate adjusting tank provided in front of each tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A method is provided with which a substance causative of a decrease in flow velocity in filtration and present in a mixed liquor that contains activated sludge and is to be subjected to membrane separation is efficiently removed using a small amount of an organic polymeric coagulant. The method, which is for removing a substance causative of a decrease in flow velocity in filtration in a membrane-separation activated-sludge process, is characterized by: adding a remover for substances causative of a decrease in flow velocity in filtration, the remover containing, as an active ingredient, a water-soluble and/or water-absorbing cationic polymer having a structural unit represented by a given formula, to an activated-sludge-containing mixed liquor which is to be subjected to membrane separation and contains a substance causative of a decrease in flow velocity in filtration, the substance being at least one of humic substances and in vitro high-molecular compounds such as polysaccharides and proteins; and implementing membrane separation.

Description

膜分離活性汚泥法における流束低下原因物質の除去方法Removal method of flux-causing substances in membrane separation activated sludge process
 本発明は、膜分離活性汚泥法における分離膜のろ過流束低下原因物質の除去方法に関する。
 本願は、2009年8月5日に、日本に出願された特願2009-182867号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for removing a filtration flux lowering cause substance of a separation membrane in a membrane separation activated sludge method.
This application claims priority based on Japanese Patent Application No. 2009-182867 filed in Japan on August 5, 2009, the contents of which are incorporated herein by reference.
 本発明において、ろ過流束低下原因物質とは、膜分離活性汚泥法において膜の細孔を塞ぐことにより目詰まりを起こし得る物質のことである。前記物質は、流入水中に含まれるか、或いは微生物が産生する多糖類、たんぱく質、フミン様物質、その他、膜の流束低下をもたらす水溶性高分子物質等を指す。
 膜分離活性汚泥法とは、活性汚泥法において最終沈殿槽を設けず精密膜あるいは限外濾過膜等の分離膜により固液分離を行う方法であり、高い処理水質や安定操業の観点から普及しつつある。また、近年、水リサイクルの必要性からも膜分離活性汚泥法の需要が高まっている。
 しかしながら、膜分離活性汚泥法においては、ろ過流束低下をもたらす物質の存在により、膜の目詰まり、あるいはろ過水量の減少等が発生するため、膜洗浄、交換等に係わる維持管理問題を抱えているために広く浸透していないのが実情である。
In the present invention, the filtration flux lowering substance is a substance that can be clogged by blocking the pores of the membrane in the membrane separation activated sludge method. The substance refers to a polysaccharide, protein, humin-like substance, or other water-soluble polymer substance that causes a decrease in membrane flux, contained in inflow water or produced by microorganisms.
Membrane separation activated sludge method is a method in which solid-liquid separation is performed using a separation membrane such as a precision membrane or ultrafiltration membrane without providing a final sedimentation tank in the activated sludge method, and is popular from the viewpoint of high treated water quality and stable operation. It's getting on. In recent years, the demand for the membrane separation activated sludge method has increased due to the necessity of water recycling.
However, in the membrane separation activated sludge method, the presence of substances that cause a decrease in the filtration flux causes clogging of the membrane or a decrease in the amount of filtered water. Therefore, the fact is that it is not widely spread.
 更に、ろ過流束低下の原因物質と言われている多糖類やたんぱく質は、流入原水中に含まれている場合もあるが、非特許文献1に示されるように、微生物により産生される場合もある。フミン質等の難生分解性成分は、例えば、非特許文献2及び非特許文献3に示されるように、排水、地下水等に含まれている高分子物質で、親水性と疎水性を併せ持つ。これらのろ過流束低下原因物質は、水溶性のため水中に溶解しており凝集沈殿では分離除去できない。また、フミン質等は微生物により分解されにくいため、活性汚泥法等では除去するのが難しく、活性炭等による吸着処理は可能であるが極めてコスト高である。
 したがって、公知されている方法による、これらのろ過流束低下原因物質除去の実施は、経済的に困難であるため早急な対策が求められている。
Furthermore, polysaccharides and proteins that are said to be a causative substance for lowering the filtration flux may be contained in the inflow raw water, but as shown in Non-Patent Document 1, they may be produced by microorganisms. is there. The non-biodegradable component such as humic substances is a polymer substance contained in waste water, groundwater, etc. as shown in Non-Patent Document 2 and Non-Patent Document 3, for example, and has both hydrophilicity and hydrophobicity. These substances that cause a decrease in the filtration flux are soluble in water due to water solubility, and cannot be separated and removed by coagulation sedimentation. In addition, since humic substances and the like are hardly decomposed by microorganisms, it is difficult to remove them by the activated sludge method and the like, and adsorption treatment with activated carbon or the like is possible, but the cost is extremely high.
Therefore, it is economically difficult to remove these filtration flux lowering cause substances by a known method, so that an immediate countermeasure is required.
 世界的に水需要が高まる昨今、再生水の必要性が一層高まり、低コストで維持管理が容易な効率的水処理方法の開発が望まれている。
 そこで、膜ろ過流束低下の対策として種々の方法が提案されており、例えば、被処理水に次亜塩素酸を添加する方法(例えば、特許文献1)、粗大気泡発生散気装置により膜を洗浄する方法(例えば、特許文献2)、膜分離活性汚泥槽に無機凝集剤を添加する方法(例えば、特許文献3)、有機高分子凝集剤を添加する方法(例えば、特許文献4)等が挙げられている。しかしながら、これらの方法は維持管理の複雑さ、除去効率、経済性の観点等から未だ満足すべき方法とはいえない。
 なお、カチオン性ポリマーのひとつであるポリビニルアミンがバルキング解消用途に使用できることは特許文献5に記載されている。
In recent years, when the demand for water is increasing worldwide, the need for reclaimed water has further increased, and the development of an efficient water treatment method that is easy to maintain at low cost is desired.
Therefore, various methods have been proposed as countermeasures for reducing the membrane filtration flux. For example, a method of adding hypochlorous acid to the water to be treated (for example, Patent Document 1), a membrane by using a coarse bubble generation diffuser. Methods for cleaning (for example, Patent Document 2), methods for adding an inorganic flocculant to a membrane separation activated sludge tank (for example, Patent Document 3), methods for adding an organic polymer flocculant (for example, Patent Document 4), etc. Are listed. However, these methods are not yet satisfactory from the viewpoints of the complexity of maintenance and management, removal efficiency, and economic efficiency.
Patent Document 5 describes that polyvinylamine, which is one of the cationic polymers, can be used for bulking elimination.
特開2000-237555号公報JP 2000-237555 A 特開2005-95798号公報JP 2005-95798 A 特開2006-15236号公報JP 2006-15236 A 特開2006-334587号公報JP 2006-334877 A 特開2009-000676号公報JP 2009-000676 A
 上記の如く、公知方法は、膜分離活性汚泥中のろ過流束低下原因物質の除去方法としては満足すべき方法とは言えない。例えば、特許文献1に記載されている、被処理水に次亜塩素酸を添加する方法は、薬液コストや人件費が高いだけでなく微生物の活性を低下させる恐れがあった。また、特許文献2に記載されている、粗大気泡発生散気装置により膜を洗浄する方法では、頻繁な洗浄による装置の稼働率低下、酸素溶解効率に無駄があった。
 さらに、特許文献3に記載のように、無機凝集剤を添加する方法は、凝集剤の添加量が多く必要とされるだけでなく、pH低下の懸念やスラッジ増加の問題があった。また、特許文献4に記載の有機高分子凝集剤を添加する方法は、有機高分子凝集剤が加水分解性を有することや耐破壊性が低いことにより効果の持続性に改善の余地があった。特許文献5については、用途がバルキング解消に限られており、水溶性の多糖類やフミン質等を除去できることは知られていなかった。
 本発明は、膜分離活性汚泥槽中に存在するろ過流束低下原因物質を除去する過程において、従来法と比較して安価に且つ簡便に、しかも少ないスラッジ発生量で濃度を低減することにより分離膜の洗浄時間を短縮し、洗浄間隔を延ばし得る方法を提供することを目的とする。
As described above, the known method cannot be said to be a satisfactory method for removing the filtration flux lowering cause substance in the membrane separation activated sludge. For example, the method described in Patent Document 1 for adding hypochlorous acid to water to be treated has a risk of reducing the activity of microorganisms as well as high chemical costs and labor costs. Further, in the method of cleaning a film with a coarse bubble generating air diffuser described in Patent Document 2, there is a waste in reduction in operating rate of the apparatus due to frequent cleaning and oxygen dissolution efficiency.
Furthermore, as described in Patent Document 3, the method of adding an inorganic flocculant not only requires a large amount of flocculant, but also has a problem of pH reduction and sludge increase. Moreover, the method of adding the organic polymer flocculant described in Patent Document 4 has room for improvement in the sustainability of the effect due to the fact that the organic polymer flocculant has hydrolyzability and low fracture resistance. . For Patent Document 5, the use is limited to eliminating bulking, and it has not been known that water-soluble polysaccharides, humic substances, and the like can be removed.
In the process of removing the filtration flux lowering cause substance present in the membrane separation activated sludge tank, the present invention reduces the concentration by reducing the concentration with less sludge generation compared to the conventional method at a lower cost. An object of the present invention is to provide a method capable of shortening the cleaning time of the film and extending the cleaning interval.
 本発明は、膜分離活性汚泥槽中に存在するろ過流束低下原因物質を効率的に除去する方法に関する。その要旨は、水溶性及び/又は吸水性のカチオン性重合体を有効成分とするろ過流束低下原因物質除去剤を、膜分離活性汚泥混合液中に添加し、次いで膜分離を行うことを特徴とするろ過流束低下原因物質除去方法である。 The present invention relates to a method for efficiently removing filtration flux lowering substances present in a membrane separation activated sludge tank. The gist of the present invention is that a filtration flux lowering agent removing agent containing a water-soluble and / or water-absorbing cationic polymer as an active ingredient is added to a membrane separation activated sludge mixed solution, followed by membrane separation. It is the filtration flux fall cause substance removal method.
 本発明方法の好ましい方法として、膜分離におけるろ過流束低下原因物質がフミン様物質、及び微生物が産生する、或いは流入水に含まれる多糖類、たんぱく質の少なくとも1種であること;活性汚泥混合液に対し、10~2000mg/Lの膜ろ過流束低下原因物質除去剤を添加することが挙げられる。 As a preferred method of the method of the present invention, the filtration flux lowering substance in membrane separation is at least one of a humin-like substance and a polysaccharide or protein produced by microorganisms or contained in influent water; activated sludge mixed solution On the other hand, it is possible to add 10 to 2000 mg / L of a membrane filtration flux lowering cause substance removing agent.
 更に他の好ましい態様として以下の態様が挙げられる。
 下記一般式(1)及び/又は(2)で示されるアミジン構造単位を含有するカチオン性重合体であることを特徴とするカチオン性水溶性重合体を有効成分とするろ過流束低下原因物質除去剤を、ろ過流束低下原因物質を含有する膜分離活性汚泥混合液に添加し、膜分離を行うことを特徴とする膜分離活性汚泥法のろ過流束低下原因物質除去方法。
Figure JPOXMLDOC01-appb-C000002
 [式(1)、(2)中、R~Rは各々水素原子またはメチル基であり、同一であっても異なっていてもよい。X、Yは各々陰イオンであり、同一であっても異なっていてもよい。]
 ろ過流束低下原因物質がフミン様物質、多糖類、及びたんぱく質の生体外高分子化合物の少なくとも1種であることを特徴とする前記に記載のろ過流束低下原因物質の除去方法。
 活性汚泥混合液に対し、10~2000mg/Lのろ過流束低下原因物質除去剤を添加することを特徴とする前記に記載のろ過流束低下原因物質の除去方法。
 水溶性及び/又は吸水性カチオン性重合体は、上記一般式(1)及び/又は(2)で示される単量体単位を5~90モル%含有することを特徴とする前記に記載のろ過流束低下原因物質の除去方法。
Still other preferred embodiments include the following embodiments.
Removal of substances that cause a decrease in filtration flux comprising a cationic water-soluble polymer as an active ingredient, which is a cationic polymer containing an amidine structural unit represented by the following general formula (1) and / or (2) A method for removing a filtration flux lowering cause substance of the membrane separation activated sludge method, wherein the agent is added to a membrane separation activated sludge mixed liquid containing a filtration flux lowering cause substance to perform membrane separation.
Figure JPOXMLDOC01-appb-C000002
[In formulas (1) and (2), R 1 to R 4 are each a hydrogen atom or a methyl group, and may be the same or different. X and Y are each an anion and may be the same or different. ]
The method for removing a filtration flux lowering cause substance as described above, wherein the filtration flux lowering cause substance is at least one of a humin-like substance, a polysaccharide, and a protein in vitro polymer compound.
10. The method for removing a filtration flux lowering cause substance as described above, which comprises adding 10 to 2000 mg / L of a filtration flux lowering cause substance removing agent to the activated sludge mixed liquid.
The water-soluble and / or water-absorbing cationic polymer contains 5 to 90 mol% of the monomer unit represented by the general formula (1) and / or (2), as described above How to remove flux-causing substances.
 本発明方法によれば、従来法と比較して少量の有機高分子凝集剤である水溶性及び/又は吸水性のカチオン性重合体を用いて、安価に、且つ少ないスラッジ発生量で膜分離活性汚泥中に存在するろ過流束低下原因物質の濃度を低減することができる。また、本発明方法によれば、有機高分子凝集剤を活性汚泥混合液に添加するだけで良いので、除去工程を複雑化することなく簡便にろ過流束低下原因物質を除去できる。 According to the method of the present invention, membrane separation activity can be achieved at low cost and with a small amount of sludge generation, using a water-soluble and / or water-absorbing cationic polymer that is a small amount of organic polymer flocculant compared with the conventional method. The density | concentration of the filtration flux fall cause substance which exists in sludge can be reduced. Moreover, according to the method of the present invention, it is only necessary to add the organic polymer flocculant to the activated sludge mixed liquid, and therefore, the filtration flux lowering substance can be easily removed without complicating the removal process.
 本発明方法は、流束低下原因物質除去剤による膜分離活性汚泥槽中の膜ろ過流束低下原因物質の除去方法に関する。流束低下原因物質除去剤は、所謂高分子凝集剤であり、水溶性及び/又は吸水性カチオン性重合体を主成分とするものである。尚、前記重合体は架橋性ゲルでもよい。
 本発明の流束低下原因物質除去剤の主成分として使用される水溶性及び/又は吸水性カチオン性重合体は、下記一般式(1)及び/又は(2)で示されるアミジン構造単位を含有するカチオン性重合体である。
The method of the present invention relates to a method for removing a membrane filtration flux lowering cause substance in a membrane separation activated sludge tank by a flux lowering cause substance removing agent. The flux lowering agent removing agent is a so-called polymer flocculant, and is mainly composed of a water-soluble and / or water-absorbing cationic polymer. The polymer may be a crosslinkable gel.
The water-soluble and / or water-absorbing cationic polymer used as a main component of the flux reducing agent removing agent of the present invention contains an amidine structural unit represented by the following general formula (1) and / or (2). A cationic polymer.
Figure JPOXMLDOC01-appb-C000003
 [式(1)、(2)中、R~Rは各々水素原子またはメチル基であり、同一であっても異なっていてもよい。X、Yは各々陰イオンであり、同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000003
[In formulas (1) and (2), R 1 to R 4 are each a hydrogen atom or a methyl group, and may be the same or different. X and Y are each an anion and may be the same or different. ]
 本発明で使用される水溶性及び/又は吸水性カチオン性重合体は、上記一般式(1)及び/又は(2)で表されるアミジン構造単位を有するものである。なお、上記一般式(1)及び(2)においてX,Yで表される陰イオンとしては、具体的には、Cl、Br、1/2SO 2-、CH(CO)O、H(CO)Oなどが挙げられる。中でもClが好ましい。
 このようなカチオン性重合体の製造方法としては、特に制限されないが、例えば、一級アミノ基または変換反応により一級アミノ基が生成し得る置換アミノ基を有するエチレン性不飽和モノマーと、アクリロニトリルまたはメタアクリロニトリルのニトリル類との共重合体を製造し、酸加水分解後、前記共重合体中のシアノ基と一級アミノ基を反応させてアミジン化する方法が挙げられる。
The water-soluble and / or water-absorbing cationic polymer used in the present invention has an amidine structural unit represented by the above general formula (1) and / or (2). Specific examples of the anions represented by X and Y in the general formulas (1) and (2) include Cl , Br , 1 / 2SO 4 2− , CH 3 (CO). O -, H (CO) O - , and the like. Of these, Cl - is preferred.
The method for producing such a cationic polymer is not particularly limited. For example, an ethylenically unsaturated monomer having a primary amino group or a substituted amino group capable of generating a primary amino group by a conversion reaction, and acrylonitrile or methacrylonitrile. A method of producing a copolymer with a nitrile of the above, reacting a cyano group in the copolymer with a primary amino group after acid hydrolysis, and amidinating is mentioned.
 上記のエチレン性不飽和モノマーとしては、一般式CH=CR-NHCOR(式中、Rは水素原子またはメチル基を、Rは炭素数1~4のアルキル基または水素原子を表わす。)で表わされる化合物が好ましい。ニトリル類との共重合体中において、かかる化合物に由来する置換アミノ基は、加水分解あるいは加アルコール分解により容易に一級アミノ基に変換される。さらにこの一級アミノ基は、隣接したシアノ基と反応してアミジン化する。前記化合 物としては、N-ビニルホルムアミド(R=H、R=H)、N-ビニルアセトアミド(R=H、R=CH)等が例示される。 Examples of the ethylenically unsaturated monomer include those represented by the general formula CH 2 ═CR a —NHCOR b (wherein R a represents a hydrogen atom or a methyl group, and R b represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom). .) Are preferred. In the copolymer with nitriles, the substituted amino group derived from such a compound is easily converted to a primary amino group by hydrolysis or alcoholysis. Furthermore, this primary amino group reacts with an adjacent cyano group to be amidined. Examples of the compound include N-vinylformamide (R a = H, R b = H), N-vinylacetamide (R a = H, R b = CH 3 ) and the like.
 これらのエチレン性不飽和モノマーとニトリル類との重合モル比は、通常20:80~80:20であるが、所望ならばこの範囲外の重合モル比、例えば、更にエチレン性不飽和モノマーの比率の大きい重合モル比を採用することもできる。一般的に水溶性及び/又は吸水性カチオン性重合体に占めるアミジン構造単位の比率が多い方がろ過流束低下原因物質除去剤とした際の性能は優れている。また、ビニルアミン構造単位もろ過流束低下原因物質除去剤としての性能に有利に寄与していると考えられる。従って、ろ過流束低下原因物質除去剤として好適な共重合体を与える前記エチレン性不飽和モノマーとニトリル類との重合モル比は、一般に20:80~80:20であり、特に好ましくは40:60~60:40である。 The polymerization molar ratio of these ethylenically unsaturated monomers to nitriles is usually 20:80 to 80:20, but if desired, the polymerization molar ratio outside this range, for example, the ratio of ethylenically unsaturated monomers It is also possible to employ a large polymerization molar ratio. In general, when the ratio of the amidine structural unit in the water-soluble and / or water-absorbing cationic polymer is larger, the performance when the filtration flux lowering agent is removed is superior. Further, it is considered that the vinylamine structural unit also advantageously contributes to the performance as a filtration flux lowering substance removing agent. Therefore, the polymerization molar ratio of the ethylenically unsaturated monomer and the nitrile that gives a copolymer suitable as a filter flux reducing agent removing agent is generally 20:80 to 80:20, particularly preferably 40: 60 to 60:40.
 エチレン性不飽和モノマーとニトリル類との共重合の方法としては、通常のラジカル重合法が用いられ、塊状重合、水溶液沈殿重合、懸濁重合、乳化重合等のいずれも用いることができる。溶媒中で重合させる場合、原料モノマー濃度が通常5~80質量%、好ましくは20~60質量%で実施される。重合開始剤には一般的なラジカル重合開始剤を用いることができるが、アゾ化合物が好ましく、2,2’-アゾビス(2-アミジノプロパン)の塩酸塩等がより好ましい。また、重合反応は、一般に、不活性ガス気流下、30~100℃の温度で実施される。得られた共重合体は、そのままの状態あるいは希釈してアミジン化反応に供することができる。また、公知の方法で脱溶媒、乾燥し、共重合体を固体として分離した後、再度溶解し、アミジン化反応に供することもできる。
 アミジン化反応においては、エチレン性不飽和モノマーとして前記一般式で示されるN-ビニルアミド化合物を用いる場合には、共重合体の置換アミノ基を一級アミノ基に変換し、次いで、生成した一級アミノ基と隣接するシアノ基と反応させてアミジン構造を生成させるという2段階反応を行うことにより、本発明に用いられるカチオン性重合体を製造できる。
 なお、共重合体を強酸の存在下、水中で加温して、一段階でアミジン構造を生成させてもよい。この場合においても、先ず、一級アミノ基が中間構造として生成しているものと考えられる。
As a method for copolymerizing the ethylenically unsaturated monomer and the nitrile, an ordinary radical polymerization method is used, and any of bulk polymerization, aqueous solution precipitation polymerization, suspension polymerization, emulsion polymerization, and the like can be used. When the polymerization is carried out in a solvent, the raw material monomer concentration is usually 5 to 80% by mass, preferably 20 to 60% by mass. As the polymerization initiator, a general radical polymerization initiator can be used, but an azo compound is preferable, and hydrochloride of 2,2′-azobis (2-amidinopropane) is more preferable. The polymerization reaction is generally carried out at a temperature of 30 to 100 ° C. under an inert gas stream. The obtained copolymer can be used as it is or diluted to be subjected to an amidation reaction. Alternatively, the solvent can be removed by a known method and dried to separate the copolymer as a solid, and then dissolved again to be subjected to an amidation reaction.
In the amidation reaction, when the N-vinylamide compound represented by the above general formula is used as the ethylenically unsaturated monomer, the substituted amino group of the copolymer is converted into a primary amino group, and then the primary amino group thus formed is converted. The cationic polymer used in the present invention can be produced by carrying out a two-step reaction in which an amidine structure is formed by reacting with a cyano group adjacent to the.
Note that the copolymer may be heated in water in the presence of a strong acid to produce an amidine structure in one step. Even in this case, it is considered that a primary amino group is first generated as an intermediate structure.
 アミジン化反応の具体的条件としては、例えば、共重合体中の置換アミノ基に対して通常0.1~5.0倍当量の強酸、好ましくは0.5~3.0倍当量の強酸、より好ましくは0.7~1.5倍当量の塩酸を加え、通常80~150℃、好ましくは90~120℃の温度で、通常0.5~20時間加熱することによりアミジン構造単位を有するカチオン性重合体とすることができる。一般に置換アミノ基に対する強酸の当量比が大きいほど、かつ、反応温度が高いほど、アミジン化が進行する。また、アミジン化に際しては反応に供する共重合体に対し、通常10質量%以上、好ましくは20質量%以上の水を反応系内に存在させるのが好ましい。 Specific conditions for the amidination reaction include, for example, usually 0.1 to 5.0 times equivalent of strong acid, preferably 0.5 to 3.0 times equivalent of strong acid, relative to the substituted amino group in the copolymer, More preferably, a cation having an amidine structural unit is added by adding 0.7 to 1.5 times equivalent of hydrochloric acid and heating at a temperature of usually 80 to 150 ° C., preferably 90 to 120 ° C., usually for 0.5 to 20 hours. It can be made a functional polymer. In general, the larger the equivalent ratio of strong acid to substituted amino group and the higher the reaction temperature, the more the amidation proceeds. In addition, it is preferable that 10% by mass or more, preferably 20% by mass or more of water is usually present in the reaction system with respect to the copolymer to be subjected to the reaction in the amidine formation.
 本発明に用いられる水溶性及び/又は吸水性カチオン性重合体は、最も典型的には、上記で説明したところに従い、N-ビニルホルムアミドとアクリロニトリルとを共重合させ、生成した共重合体を、通常、水懸濁液として塩酸の存在下に加熱して置換アミノ基と隣接するシアノ基からアミジン構造単位を形成させることにより製造されるのが好ましい。そして、共重合に供するN-ビニルホルムアミドとアクリロニトリルとのモル比、及び共重合体のアミジン化条件を選択することにより、各種の組成のカチオン性重合体が得られる。
 このようにして得られる水溶性及び/又は吸水性カチオン性重合体は、前記カチオン性重合体100モル%中、上記式(1)および/または(2)で表されるアミジン構造単位を繰り返し単位として5~90モル%含有するのが好ましい。アミジン構造単位の含有率が5モル%未満であると、アミジン構造単位の含有量が少なすぎるため、ろ過流束低下原因物質除去剤を使用する際に、使用量が多くなる。一方、アミジン構造単位の含有率が90モル%を超えるものは、上述した方法で製造することが困難である。アミジン構造単位の含有率の下限値は、10モル%以上がより好ましく、15モル%以上がさらに好ましく、20モル%以上が特に好ましい。また、アミジン構造単位の含有率の上限値は、85モル%以下がより好ましく、80モル%以下がさらに好ましい。
Most typically, the water-soluble and / or water-absorbing cationic polymer used in the present invention is obtained by copolymerizing N-vinylformamide and acrylonitrile in accordance with the above description. Usually, it is preferably produced as an aqueous suspension by heating in the presence of hydrochloric acid to form an amidine structural unit from a cyano group adjacent to the substituted amino group. Then, by selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to copolymerization and the conditions for amidation of the copolymer, cationic polymers having various compositions can be obtained.
The water-soluble and / or water-absorbing cationic polymer thus obtained is a repeating unit of the amidine structural unit represented by the above formula (1) and / or (2) in 100 mol% of the cationic polymer. The content is preferably 5 to 90 mol%. When the content of the amidine structural unit is less than 5 mol%, the content of the amidine structural unit is too small, so that the amount used is increased when using the agent for removing a filtration flux lowering substance. On the other hand, it is difficult to produce those in which the content of the amidine structural unit exceeds 90 mol% by the method described above. The lower limit of the content of the amidine structural unit is more preferably 10 mol% or more, further preferably 15 mol% or more, and particularly preferably 20 mol% or more. Further, the upper limit of the content of the amidine structural unit is more preferably 85 mol% or less, and further preferably 80 mol% or less.
 なお、水溶性及び/又は吸水性カチオン性重合体は、上述した方法により製造すると、前記アミジン構造単位以外にも、下記式(3)~(5)で表される単位を含有する場合がある。 The water-soluble and / or water-absorptive cationic polymer may contain units represented by the following formulas (3) to (5) in addition to the amidine structural unit when produced by the above-described method. .
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)~(5)中、R、R、Rは各々水素原子またはメチル基であり、同一であってもよく、異なっていてもよい。
 Rは炭素数1~4のアルキル基または水素原子である。
 Zは陰イオンである。陰イオンとしては、上記式(1)、(2)の説明において先に例示した陰イオンと同様である。
In formulas (3) to (5), R 5 , R 7 and R 8 are each a hydrogen atom or a methyl group, and may be the same or different.
R 6 is an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
Z is an anion. The anion is the same as the anion exemplified above in the description of the above formulas (1) and (2).
 水溶性及び/又は吸水性カチオン性重合体が上記式(3)~(5)で表される単位を含有する場合、通常、前記カチオン性重合体100モル%中、上記式(3)で表される繰り返し単位を0~40モル%、上記式(4)で表される繰り返し単位を0~70モル%、上記式(5)で表される繰り返し単位を0~70モル%含有する。
 上記式(1)および/または(2)で表されるアミジン構造単位、および上記式(3)~(5)で表される単位の組成は、エチレン性不飽和モノマーとニトリル類との重合モル比や、アミジン化反応の条件(温度や時間)によって調整できる。
 また、これらの組成は、カチオン性重合体の13C-NMR(13C-核磁気共鳴)を測定することにより求めることができ、具体的には、各繰り返し単位に対応した13C-NMRスペクトルのピーク(シグナル)の積分値より算出できる。
 また吸水性のカチオン性重合体を製造する方法としては、例えば、グリオキザール、ジエポキシ化合物等の多官能性の架橋剤を、重合体の原料単量体混合物等に加えて重合する方法、水溶性の重合体に重合体と反応する多官能性の物質を反応させ後架橋する方法、水溶性の重合体を加熱して架橋させる方法などが例示される。
When the water-soluble and / or water-absorbing cationic polymer contains units represented by the above formulas (3) to (5), it is usually represented by the above formula (3) in 100 mol% of the cationic polymer. 0 to 40 mol% of the repeating unit, 0 to 70 mol% of the repeating unit represented by the above formula (4), and 0 to 70 mol% of the repeating unit represented by the above formula (5).
The composition of the amidine structural unit represented by the above formulas (1) and / or (2) and the units represented by the above formulas (3) to (5) is a polymerization mole of the ethylenically unsaturated monomer and the nitrile. It can be adjusted by the ratio and the conditions (temperature and time) of the amidine reaction.
These compositions can be determined by measuring 13 C-NMR ( 13 C-nuclear magnetic resonance) of the cationic polymer. Specifically, the 13 C-NMR spectrum corresponding to each repeating unit is obtained. It can be calculated from the integrated value of the peak (signal).
As a method for producing a water-absorbing cationic polymer, for example, a method in which a polyfunctional crosslinking agent such as glyoxal or diepoxy compound is added to a raw material monomer mixture of the polymer to polymerize, a water-soluble Examples thereof include a method in which a polyfunctional substance that reacts with the polymer is reacted with the polymer, followed by cross-linking, and a method in which a water-soluble polymer is heated to cross-link.
 本発明におけるろ過流束低下原因物質除去剤は、主成分である水溶性及び/又は吸水性のカチオン性重合体を有効成分量含有するが、その他の成分を含有していてもよい。その他の成分としては、例えば、蟻酸、塩化アンモニウムなどが挙げられる。
 なお、本発明において、「有効成分量」とは、ろ過流束低下原因物質除去剤100質量%中の水溶性及び/又は吸水性のカチオン性重合体の含有量を意味し、通常、10~100質量%含有するのが好ましい。
 ろ過流束低下原因物質除去剤がその他の成分を含有する場合、カチオン性重合体を製造した後に所望の配合量となるようにその他の成分を添加してもよく、予めこれらの(共)重合体の製造原料にその他の成分を混合させておいてもよい。
The filtration flux lowering agent removing agent in the present invention contains an effective amount of a water-soluble and / or water-absorbing cationic polymer as a main component, but may contain other components. Examples of other components include formic acid and ammonium chloride.
In the present invention, the “active ingredient amount” means the content of the water-soluble and / or water-absorbing cationic polymer in 100% by mass of the filtration flux lowering agent removing agent, and usually 10 to It is preferable to contain 100 mass%.
When the filtration flux lowering substance removing agent contains other components, the other components may be added so that the desired blending amount is obtained after the cationic polymer is produced. Other components may be mixed with the combined production raw material.
 本発明のろ過流束低下原因物質除去剤の主成分である水溶性カチオン性重合体は、1規定の食塩水にて0.1g/dLの溶液とした際の25℃における還元粘度が0.01~10dL/gであることが好ましく、より好ましくは0.1~8dL/gである。還元粘度が0.01dL/g未満であると、ろ過流束低下原因物質除去剤を製造することが困難となったり、ろ過流束低下原因物質除去剤の機能が低下したりする傾向にある。一方、還元粘度が10dL/gを超えると、ろ過流束低下原因物質除去剤の水溶液の粘度が高くなりすぎるため、添加に不都合を生じる場合がある。
 なお、上述した還元粘度は、水溶性カチオン性重合体の分子量、イオン性の割合、分子量分布、製造方法、組成分布等の調整によって制御できる。例えば、水溶性カチオン性重合体の分子量を大きくすると、還元粘度は増加する傾向になる。
The water-soluble cationic polymer, which is the main component of the agent for removing the flux reduction factor of the present invention, has a reduced viscosity at 25 ° C. of 0.1 g / dL in 1N saline. It is preferably from 01 to 10 dL / g, more preferably from 0.1 to 8 dL / g. When the reduced viscosity is less than 0.01 dL / g, it tends to be difficult to produce a filtration flux lowering substance removing agent, or the function of the filtration flux lowering substance removing agent tends to be reduced. On the other hand, when the reduced viscosity exceeds 10 dL / g, the viscosity of the aqueous solution of the filtration flux lowering substance removing agent becomes too high, which may cause inconvenience in addition.
The reduced viscosity described above can be controlled by adjusting the molecular weight, ionic ratio, molecular weight distribution, production method, composition distribution, and the like of the water-soluble cationic polymer. For example, when the molecular weight of the water-soluble cationic polymer is increased, the reduced viscosity tends to increase.
 本発明方法では、上記のようなろ過流束低下原因物質除去剤を、ろ過流束低下原因物質を含有する膜分離活性汚泥混合液に添加し、次いで膜分離を行うことにより膜ろ過流束の低下を防止するものである。
 なお、本発明のろ過流束低下原因物質除去剤は、その効果を損なわない限り他の膜閉塞対策剤や無機凝集剤、高分子凝集剤と併用して用いても良い。
In the method of the present invention, the filtration flux lowering agent removing agent as described above is added to the membrane separation activated sludge mixed solution containing the filtration flux lowering agent, and then membrane separation is performed to perform the membrane separation of the membrane filtration flux. This prevents the decrease.
In addition, you may use the filtration flux fall cause substance removal agent of this invention in combination with another film | membrane obstruction | occlusion countermeasure agent, an inorganic flocculant, and a polymer flocculant, as long as the effect is not impaired.
 本発明において「膜分離活性汚泥混合液に添加する」とは、精密膜や限外濾過膜等による膜分離槽、及び膜分離槽より前の工程の活性汚泥処理系内の任意の場所に添加し活性汚泥中の微生物に接触させることを意味し、例えば、活性汚泥と共に原水槽に添加して曝気槽に導く、膜式活性汚泥槽に直接添加する、脱窒等を目的とした無酸素槽がある施設で無酸素槽に直接添加するなどの他、ろ過流束低下原因物質の除去効果がある限りいずれの添加方法を用いてもよい。さらには、各槽を連結する側溝や配管などの流路やこれら各槽の前に設けられた流量調整槽に添加することも可能である。 In the present invention, “added to the membrane separation activated sludge mixed solution” is added to a membrane separation tank using a precision membrane, an ultrafiltration membrane or the like, and an arbitrary place in the activated sludge treatment system in the process preceding the membrane separation tank. This means that it is brought into contact with microorganisms in activated sludge. For example, it is added to the raw water tank together with the activated sludge and led to the aeration tank. It is added directly to the membrane activated sludge tank. In addition to adding directly to an oxygen-free tank at a certain facility, any addition method may be used as long as it has an effect of removing substances that cause a decrease in filtration flux. Further, it can be added to a flow path such as a side groove or a pipe connecting the tanks or a flow rate adjusting tank provided in front of each tank.
(活性汚泥への添加)
 本発明方法において、予めろ過流束低下原因物質除去剤を活性汚泥に添加する場合、ろ過流束低下原因物質除去剤の添加量は活性汚泥混合液に対して10~2000mg/Lが好ましく、10~1000mg/Lがより好ましい。添加量が10mg/L未満であると、ろ過流束低下原因物質除去剤の効果が十分に得られにくくなる。一方、添加量が2000mg/Lを超えると、ろ過流束低下原因物質除去剤の効果が十分に得られにくくなるだけでなく、活性汚泥中の微生物活性に悪影響を与える可能性がある。
(Addition to activated sludge)
In the method of the present invention, when the filtration flux lowering agent removing agent is added to the activated sludge in advance, the addition amount of the filtration flux lowering agent removing agent is preferably 10 to 2000 mg / L with respect to the activated sludge mixed solution. ˜1000 mg / L is more preferred. When the addition amount is less than 10 mg / L, it is difficult to sufficiently obtain the effect of the filtration flux lowering substance removing agent. On the other hand, when the addition amount exceeds 2000 mg / L, not only the effect of the filtration flux lowering substance removing agent is not sufficiently obtained, but also the microbial activity in the activated sludge may be adversely affected.
(原水貯留槽への添加)
 原水貯留槽にろ過流束低下原因物質除去剤を添加する場合、通常、水等に溶解させて直接添加するか、膜分離活性汚泥槽に流入するラインに注入して膜分離活性汚泥槽に導けばよい。
 ろ過流束低下原因物質除去剤の使用量は、ろ過流束低下原因物質、および活性汚泥の濃度により異なるので特に限定されないが、例えば活性汚泥混合液に対して、10~2000mg/Lのろ過流束低下原因物質除去剤を用いることが好ましい。
 また、ろ過流束低下原因物質除去剤の使用量は、処理装置内の活性汚泥をビーカー等に採取して、前記除去剤を加え、上澄液の全糖濃度(フェノール硫酸法)、及びろ紙ろ過性を評価することでも決定できる。
(Addition to raw water storage tank)
When adding a removal agent for reducing the filtration flux to the raw water storage tank, it is usually added directly to the membrane separation activated sludge tank by dissolving it in water, etc. or injecting it into the membrane separation activated sludge tank. That's fine.
The amount of the filtration flux lowering substance removing agent used is not particularly limited because it varies depending on the concentration of the filtration flux lowering substance and the activated sludge. For example, a filtration flow of 10 to 2000 mg / L with respect to the activated sludge mixed solution. It is preferable to use a bundle reducing agent removing agent.
Moreover, the amount of the filtration flux lowering agent removing agent used is that the activated sludge in the processing apparatus is collected in a beaker or the like, the removing agent is added, the total sugar concentration of the supernatant (phenol sulfuric acid method), and the filter paper It can also be determined by evaluating filterability.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
 以下の試験例(実施例及び比較例)において、ろ過流束低下原因物質除去剤の評価は、汚泥処理後の処理水の全糖濃度、及びろ紙ろ過量を測定することにより行った。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
In the following test examples (Examples and Comparative Examples), the filtration flux lowering agent removing agent was evaluated by measuring the total sugar concentration of the treated water after the sludge treatment and the filter paper filtration amount.
 <全糖濃度の測定>
 全糖濃度とは、水に溶存、またはコロイド状で存在する多糖類濃度を示すものであり、紫外可視分光光度計(島津サイエンス(株)製 UV-3100)により490nm付近の吸光度を測定し、標準液による検量線から算出した。
 なお、全糖濃度の測定は常法;フェノール硫酸法[Hodge, J. E. and Hofreiter, B. T.,Method in Carbohydrate Chemistry, 1, 338 (1962)]に準じて実施した。
 ろ過流束低下原因物質の除去効果の判定は、次式によりろ過流束低下原因物質の除去率を算出することにより行った。
 除去率(%)=(1-A/A)×100
(A:被処理排水の全糖濃度、A:ろ過流束低下原因物質除去後の全糖濃度)
<Measurement of total sugar concentration>
The total sugar concentration indicates the concentration of polysaccharides dissolved in water or colloidally, and the absorbance near 490 nm is measured with an ultraviolet-visible spectrophotometer (Shimadzu Science Co., Ltd. UV-3100). It calculated from the calibration curve by a standard solution.
The total sugar concentration is measured by a conventional method; the phenol sulfate method [Hodge, J. et al. E. and Hofreiter, B .; T.A. , Method in Carbohydrate Chemistry, 1, 338 (1962)].
The effect of removing the filtration flux lowering cause substance was determined by calculating the removal rate of the filtration flux lowering cause substance by the following equation.
Removal rate (%) = (1−A 2 / A 1 ) × 100
(A 1 : Total sugar concentration of treated wastewater, A 2 : Total sugar concentration after removal of substances that cause filtration flux reduction)
 <ろ紙ろ過量の測定>
 ろ紙ろ過量とは、径185mmの5Cろ紙(ADVANTEC社製)を16折りとし、漏斗に入れて50mlメスシリンダーに装着した後、ろ過流束低下原因物質除去後の汚泥50mlを流し入れ、5分後のろ過量を測定したものである。
 5分後のろ過量が多い程ろ過性に優れるものとし、ろ過流束低下原因物質の除去効果が高いことを意味する。
<Measurement of filter paper filtration rate>
The amount of filter paper filtration is 16 folds of 5C filter paper (ADVANTEC) with a diameter of 185 mm, put in a funnel and attached to a 50 ml graduated cylinder. The amount of filtration of was measured.
The greater the filtration amount after 5 minutes, the better the filterability, and the higher the effect of removing the filtration flux lowering cause substance.
 試験例で使用したカチオン性重合体を纏めて以下の表1に示す。 The cationic polymers used in the test examples are summarized in Table 1 below.
 [カチオン性重合体]
 本発明のカチオン性重合体としては、以下の方法で製造したカチオン性重合体(A1、A2、A3)を使用した。
 <カチオン性重合体A1の製造>
 攪拌機、窒素導入管、冷却管を備えた50mlの四つ口フラスコに、アクリロニトリルとN-ビニルホルムアミドの混合物(モル比55:45)6gと、脱塩水との混合物34gを入れた。窒素ガス中において、前記混合物を攪拌しながら60℃に昇温し、10質量%の2,2’-アゾビス(2-アミジノプロパン)の2塩酸塩水溶液0.12gを添加し、さらに3時間保持し、水中に重合体が析出した懸濁物を得た。前記懸濁物に水20gを添加し、さらに濃塩酸を重合体のホルミル基に対し2当量添加した後100℃で4時間保持し、黄色の高粘度液を得た。前記高粘度液を多量のアセトンに添加した後、重合体を析出させた。その後、得られた重合体を細断し、60℃で一中夜乾燥させた後、前記重合体を粉砕して粉末のカチオン性重合体を得た。
[Cationic polymer]
As the cationic polymer of the present invention, cationic polymers (A1, A2, A3) produced by the following method were used.
<Production of cationic polymer A1>
In a 50 ml four-necked flask equipped with a stirrer, a nitrogen inlet tube and a condenser tube, 6 g of a mixture of acrylonitrile and N-vinylformamide (molar ratio 55:45) and 34 g of a mixture of demineralized water were placed. In nitrogen gas, the mixture was heated to 60 ° C. with stirring, 0.12 g of a 10% by mass 2,2′-azobis (2-amidinopropane) dihydrochloride solution was added, and the mixture was further maintained for 3 hours. Thus, a suspension in which the polymer was precipitated in water was obtained. 20 g of water was added to the suspension, and 2 equivalents of concentrated hydrochloric acid was added to the formyl group of the polymer, and then kept at 100 ° C. for 4 hours to obtain a yellow high-viscosity liquid. After the high viscosity liquid was added to a large amount of acetone, a polymer was precipitated. Thereafter, the obtained polymer was shredded and dried overnight at 60 ° C., and then the polymer was pulverized to obtain a powdered cationic polymer.
 (カチオン性重合体A1の組成)
 カチオン性重合体A1を重水に溶解させ、NMRスペクトロメーター(日本電子社製、270MHz)にて13C-NMRスペクトルを測定した。13C-NMRスペクトルの各繰り返し単位に対応したピークの積分値より各単位の組成を算出した。なお、前記一般式(1)および(2)の構造単位は区別することなく、その総量として求めた。結果を表1に示す。
 また、このようにして得られたカチオン性重合体A1に含まれる各単位は、上記式[(1)、(2)、(3)~(5)]中、R~R,およびR~Rが水素原子、X、Y、Zが塩化物イオンであった。
 (カチオン性重合体A1の還元粘度測定)
 1規定の食塩水100mLにカチオン性重合体A1の0.1gを溶解させ、0.1g/dLの溶液を調製した。前記溶液の25℃におけるカチオン性重合体A1の還元粘度をオストワルド粘度計(ハリオ研究所社製)にて測定した。結果を表1に示す。
(Composition of cationic polymer A1)
Cationic polymer A1 was dissolved in heavy water, and a 13 C-NMR spectrum was measured with an NMR spectrometer (manufactured by JEOL Ltd., 270 MHz). The composition of each unit was calculated from the integrated value of the peak corresponding to each repeating unit of the 13 C-NMR spectrum. The structural units of the general formulas (1) and (2) were determined as the total amount without distinction. The results are shown in Table 1.
The units contained in the cationic polymer A1 thus obtained are R 1 to R 4 and R in the above formula [(1), (2), (3) to (5)]. 5 to R 8 were hydrogen atoms, and X , Y and Z were chloride ions.
(Measurement of reduced viscosity of cationic polymer A1)
0.1 g of the cationic polymer A1 was dissolved in 100 mL of 1N saline to prepare a 0.1 g / dL solution. The reduced viscosity of the cationic polymer A1 at 25 ° C. of the solution was measured with an Ostwald viscometer (manufactured by Hario Laboratories). The results are shown in Table 1.
 <カチオン性重合体A2の製造>
 攪拌機、窒素導入管、冷却管を備えた500mlの四つ口フラスコに、脱塩水を40g、ポリエチレングリコール20000を1.2g、次亜リン酸ナトリウムを0.2g入れた後、70℃に昇温し、窒素気流下、アクリロニトリルとN-ビニルホルムアミドの混合物(モル比50:50)の70質量%水溶液120gを2時間かけて滴下した。その間10質量%の2,2’-アゾビス(2-アミジノプロパン)の2塩酸塩水溶液12.6gを5回にわけて添加した。さらに前記混合物を2時間熟成させた後、濃塩酸(対ホルミル基100モル%相当)を加え90℃に昇温し、3時間放置した。前記混合物を多量のアセトンに添加し、重合体を析出させ、得られた重合体を細断し、60℃で前記重合体を一中夜乾燥させた後、粉砕して粉末のカチオン性重合体を得た。
<Production of cationic polymer A2>
A 500 ml four-necked flask equipped with a stirrer, a nitrogen inlet tube, and a cooling tube was charged with 40 g of demineralized water, 1.2 g of polyethylene glycol 20000, and 0.2 g of sodium hypophosphite, and then heated to 70 ° C. Then, under a nitrogen stream, 120 g of a 70% by mass aqueous solution of a mixture of acrylonitrile and N-vinylformamide (molar ratio 50:50) was added dropwise over 2 hours. Meanwhile, 12.6 g of a 2% aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride in 10% by mass was added in five portions. The mixture was aged for 2 hours, concentrated hydrochloric acid (corresponding to 100 mol% of formyl group) was added, the temperature was raised to 90 ° C., and the mixture was allowed to stand for 3 hours. The mixture is added to a large amount of acetone, the polymer is precipitated, the obtained polymer is shredded, the polymer is dried overnight at 60 ° C., and then pulverized into a powdered cationic polymer. Got.
 (カチオン性重合体A2の組成)
 カチオン性重合体A1と同様にして、カチオン性重合体A2の13C-NMRスペクトルを測定し、各単位の組成を算出した。また、上記一般式(1)および(2)の構造単位は区別することなく、その総量として求めた。結果を表1に示す。
 なお、このようにして得られたカチオン性重合体A2に含まれる各単位は、上記式[(1)、(2)、(3)~(5)]中、R~R,およびR~Rが水素原子、X、Y、Zが塩化物イオンであった。
 (カチオン性重合体A2の還元粘度)
 カチオン性重合体A1と同様にしてカチオン性重合体A2の還元粘度を測定した。結果を表1に示す。
(Composition of cationic polymer A2)
In the same manner as in the cationic polymer A1, the 13 C-NMR spectrum of the cationic polymer A2 was measured, and the composition of each unit was calculated. Further, the structural units of the above general formulas (1) and (2) were determined as the total amount without distinction. The results are shown in Table 1.
The units contained in the cationic polymer A2 thus obtained are R 1 to R 4 and R in the above formula [(1), (2), (3) to (5)]. 5 to R 8 were hydrogen atoms, and X , Y and Z were chloride ions.
(Reduced viscosity of the cationic polymer A2)
The reduced viscosity of the cationic polymer A2 was measured in the same manner as the cationic polymer A1. The results are shown in Table 1.
 <カチオン性重合体A3の製造>
 カチオン性重合体A3は、カチオン性重合体A1を加熱処理(120℃、5時間)により架橋したものであり、カチオン性重合体A3の還元粘度は上記カチオン性重合体A1と同様にして測定した。その結果を表1に示す。
<Production of cationic polymer A3>
The cationic polymer A3 is obtained by crosslinking the cationic polymer A1 by heat treatment (120 ° C., 5 hours), and the reduced viscosity of the cationic polymer A3 was measured in the same manner as the cationic polymer A1. . The results are shown in Table 1.
 なお、比較例として、市販の高分子凝集剤B1:ダイヤフロックK-405(ジシアンジアミド・塩化アンモニウム・ホルムアルデヒド重縮合物 55wt%含有)、B2:ダイヤフロックK-403B(4級ポリアミン 50wt%含有)を使用した。 As comparative examples, commercially available polymer flocculants B1: Diafloc K-405 (containing dicyandiamide / ammonium chloride / formaldehyde polycondensate 55 wt%), B2: Diafloc K-403B (quaternary polyamine 50 wt%) used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 アミジン:アミジン塩酸塩単位
 NVF:N-ビニルホルムアミド単位
 AN:アクリロニトリル単位
 VAM:ビニルアミン塩酸塩単位
 AA:アクリル酸単位
Amidine: Amidine hydrochloride unit NVF: N-vinylformamide unit AN: Acrylonitrile unit VAM: Vinylamine hydrochloride unit AA: Acrylic acid unit
 [試験例]
 <実施例1>
 生活排水を処理する膜分離活性汚泥装置の活性汚泥(pH6.7、MLSS9,000mg/L)200mlをビーカーに入れ、表2に示すろ過流束低下原因物質除去剤を0.1質量%の水溶液状で所定量添加した。その後、2分間撹拌混合し、一晩静置した。その後、上澄み液をフェノール硫酸法にて呈色させ、波長490nmの吸光度を測定し、測定値から上澄み液の全糖濃度を算出することによりろ過流束低下原因物質の除去効果を判定した。一方で、ろ過流束低下原因物質除去後の汚泥50mlをメスシリンダーに装着したろ紙に流し入れ、5分後のろ過水量を測定した。結果を表2に示す。
[Test example]
<Example 1>
200 ml of activated sludge (pH 6.7, MLSS 9,000 mg / L) of a membrane separation activated sludge apparatus for treating domestic wastewater is placed in a beaker, and a 0.1% by mass aqueous solution of the filter flux lowering agent removing agent shown in Table 2 A predetermined amount was added. Thereafter, the mixture was stirred for 2 minutes and allowed to stand overnight. Thereafter, the supernatant liquid was colored by the phenol-sulfuric acid method, the absorbance at a wavelength of 490 nm was measured, and the total sugar concentration of the supernatant liquid was calculated from the measured value to determine the effect of removing the filtration flux lowering cause substance. On the other hand, 50 ml of sludge after removal of the substance causing the filtration flux reduction was poured into a filter paper attached to a graduated cylinder, and the amount of filtrate after 5 minutes was measured. The results are shown in Table 2.
 <比較例1>
 ろ過流束低下原因物質除去剤を添加しなかった以外は実施例1と同様に、ろ過流束低下原因物質除去効果を判定した。結果を表2に示す。
 <比較例2>
 ダイヤニトリックス(株)製高分子凝集剤(B1、B2)を用いた以外は実施例1と同様に、ろ過流束低下原因物質除去効果を判定した。結果を表2に示す。
<Comparative Example 1>
The filtration flux lowering cause substance removal effect was determined in the same manner as in Example 1 except that the filtration flux lowering cause substance removing agent was not added. The results are shown in Table 2.
<Comparative Example 2>
The filtration flux lowering substance removal effect was determined in the same manner as in Example 1 except that the polymer flocculants (B1, B2) manufactured by Dianitricks Co., Ltd. were used. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明方法によれば、従来法と比較して少量の有機高分子凝集剤である水溶性及び/又は吸水性のカチオン性重合体を用いて、安価に、且つ少ないスラッジ発生量で膜分離活性汚泥中に存在するろ過流束低下原因物質の濃度を低減することができる。また、本発明方法によれば、有機高分子凝集剤を活性汚泥混合液に添加するだけで良いので、除去工程を複雑化することなく簡便にろ過流束低下原因物質を除去できる。
 
 
According to the method of the present invention, membrane separation activity can be achieved at low cost and with a small amount of sludge generation, using a water-soluble and / or water-absorbing cationic polymer that is a small amount of organic polymer flocculant compared with the conventional method. The density | concentration of the filtration flux fall cause substance which exists in sludge can be reduced. Moreover, according to the method of the present invention, it is only necessary to add the organic polymer flocculant to the activated sludge mixed liquid, and therefore, the filtration flux lowering substance can be easily removed without complicating the removal process.

Claims (4)

  1.  下記一般式(1)及び/又は(2)で示されるアミジン構造単位を含有するカチオン性重合体であることを特徴とするカチオン性水溶性重合体を有効成分とするろ過流束低下原因物質除去剤を、ろ過流束低下原因物質を含有する膜分離活性汚泥混合液に添加し、膜分離を行うことを特徴とする膜分離活性汚泥法のろ過流束低下原因物質除去方法。
    Figure JPOXMLDOC01-appb-C000001
     [式(1)、(2)中、R~Rは各々水素原子またはメチル基であり、同一であっても異なっていてもよい。X、Yは各々陰イオンであり、同一であっても異なっていてもよい。]
    Removal of substances that cause a decrease in filtration flux comprising a cationic water-soluble polymer as an active ingredient, which is a cationic polymer containing an amidine structural unit represented by the following general formula (1) and / or (2) A method for removing a filtration flux lowering cause substance of the membrane separation activated sludge method, wherein the agent is added to a membrane separation activated sludge mixed liquid containing a filtration flux lowering cause substance to perform membrane separation.
    Figure JPOXMLDOC01-appb-C000001
    [In formulas (1) and (2), R 1 to R 4 are each a hydrogen atom or a methyl group, and may be the same or different. X and Y are each an anion and may be the same or different. ]
  2.  ろ過流束低下原因物質がフミン様物質、多糖類、及びたんぱく質の生体外高分子化合物の少なくとも1種であることを特徴とする請求項1に記載のろ過流束低下原因物質の除去方法。 The method for removing a filtration flux lowering cause substance according to claim 1, wherein the filtration flux lowering cause substance is at least one of a humin-like substance, a polysaccharide, and a protein in vitro polymer compound.
  3.  活性汚泥混合液に対し、10~2000mg/Lのろ過流束低下原因物質除去剤を添加することを特徴とする請求項1に記載のろ過流束低下原因物質の除去方法。 The method for removing a filtration flux lowering cause substance according to claim 1, wherein 10 to 2000 mg / L of a filtration flux lowering cause substance removing agent is added to the activated sludge mixed liquid.
  4.  水溶性及び/又は吸水性カチオン性重合体は、上記一般式(1)及び/又は(2)で示される単量体単位を5~90モル%含有することを特徴とする請求項1に記載のろ過流束低下原因物質の除去方法。 2. The water-soluble and / or water-absorbing cationic polymer contains 5 to 90 mol% of the monomer unit represented by the general formula (1) and / or (2). To remove substances that cause filtration flux reduction.
PCT/JP2010/063175 2009-08-05 2010-08-04 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process WO2011016482A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127002821A KR20120085713A (en) 2009-08-05 2010-08-04 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
CN2010800342259A CN102548913A (en) 2009-08-05 2010-08-04 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP2011525910A JPWO2011016482A1 (en) 2009-08-05 2010-08-04 Removal method of flux-causing substances in membrane separation activated sludge process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009182867 2009-08-05
JP2009-182867 2009-08-05

Publications (1)

Publication Number Publication Date
WO2011016482A1 true WO2011016482A1 (en) 2011-02-10

Family

ID=43544377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063175 WO2011016482A1 (en) 2009-08-05 2010-08-04 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process

Country Status (5)

Country Link
JP (1) JPWO2011016482A1 (en)
KR (1) KR20120085713A (en)
CN (1) CN102548913A (en)
TW (1) TW201107250A (en)
WO (1) WO2011016482A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013863A (en) * 2011-07-05 2013-01-24 Hitachi Plant Technologies Ltd Sea water desalination system and method therefor
JP2013202598A (en) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd Water treatment method
JP2014166619A (en) * 2013-02-28 2014-09-11 Mitsubishi Rayon Co Ltd Method of suppressing rise of transmembrane pressure difference in membrane separation active sludge apparatus
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305299A (en) * 1997-05-02 1998-11-17 Hymo Corp Sludge dehydrating method
JP2006334587A (en) * 2005-06-01 2006-12-14 Nalco Co Method for improving flux in membrane bioreactor
JP2009000676A (en) * 2007-05-23 2009-01-08 Daiyanitorikkusu Kk Bulking eliminating agent
JP2009119310A (en) * 2007-11-12 2009-06-04 Hymo Corp Activated sludge settling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162339B2 (en) * 1998-06-02 2001-04-25 三菱レイヨン株式会社 Sludge treatment method and treatment system
CN1321917C (en) * 2004-12-10 2007-06-20 沈阳建筑大学 Composite medicament for preventing membrane pollution
JP2008132421A (en) * 2006-11-28 2008-06-12 Kurita Water Ind Ltd Water treatment apparatus and water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305299A (en) * 1997-05-02 1998-11-17 Hymo Corp Sludge dehydrating method
JP2006334587A (en) * 2005-06-01 2006-12-14 Nalco Co Method for improving flux in membrane bioreactor
JP2009000676A (en) * 2007-05-23 2009-01-08 Daiyanitorikkusu Kk Bulking eliminating agent
JP2009119310A (en) * 2007-11-12 2009-06-04 Hymo Corp Activated sludge settling method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013863A (en) * 2011-07-05 2013-01-24 Hitachi Plant Technologies Ltd Sea water desalination system and method therefor
JP2013202598A (en) * 2012-03-29 2013-10-07 Mitsubishi Rayon Co Ltd Water treatment method
JP2014166619A (en) * 2013-02-28 2014-09-11 Mitsubishi Rayon Co Ltd Method of suppressing rise of transmembrane pressure difference in membrane separation active sludge apparatus
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment

Also Published As

Publication number Publication date
JPWO2011016482A1 (en) 2013-01-10
CN102548913A (en) 2012-07-04
KR20120085713A (en) 2012-08-01
TW201107250A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
US7722841B2 (en) Polymeric chelant and coagulant to treat metal-containing wastewater
EP1274652B1 (en) Method of clarifying water using low molecular weight cationic dispersion polymers
KR101846041B1 (en) Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers
JP6378342B2 (en) Organic wastewater treatment method
JP2624089B2 (en) Cationic polymer flocculant
US20090065443A1 (en) Water treatment method
AU712556B2 (en) High performance polymer flocculating agents
WO2011016482A1 (en) Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP6060958B2 (en) Removal method of coloring components
JP5641642B2 (en) Concentration method of sludge
JP3314432B2 (en) Sludge dewatering agent
JP5709086B2 (en) Organic coagulant
JPH0665329A (en) Vinylamine copolymer flocculant
JP2015157265A (en) Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus
JP6046875B2 (en) Removal method of coloring components
JP6142574B2 (en) Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater
JP4807647B2 (en) Method for producing (nitrogen) nitrate nitrogen reducing agent and method for reducing (nitrogen) nitrate nitrogen concentration in water by (nitrogen) nitrate nitrogen reducing agent obtained by the method
WO2021006180A1 (en) Method for producing water-absorbing resin particles
JP2012210613A (en) Waste water treatment method
CA2817377C (en) Use of water soluble block copolymers to improve membrane bioreactor systems in water treatment
JP2003299906A (en) Cationic high-molecular flocculant and sludge treatment method using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034225.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525910

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127002821

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806481

Country of ref document: EP

Kind code of ref document: A1