JP2014166619A - Method of suppressing rise of transmembrane pressure difference in membrane separation active sludge apparatus - Google Patents

Method of suppressing rise of transmembrane pressure difference in membrane separation active sludge apparatus Download PDF

Info

Publication number
JP2014166619A
JP2014166619A JP2013039628A JP2013039628A JP2014166619A JP 2014166619 A JP2014166619 A JP 2014166619A JP 2013039628 A JP2013039628 A JP 2013039628A JP 2013039628 A JP2013039628 A JP 2013039628A JP 2014166619 A JP2014166619 A JP 2014166619A
Authority
JP
Japan
Prior art keywords
membrane
water
activated sludge
sludge
pressure difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039628A
Other languages
Japanese (ja)
Other versions
JP6142574B2 (en
Inventor
Akihiro Shimamoto
章裕 島元
Yutaka Kurahashi
裕 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013039628A priority Critical patent/JP6142574B2/en
Publication of JP2014166619A publication Critical patent/JP2014166619A/en
Application granted granted Critical
Publication of JP6142574B2 publication Critical patent/JP6142574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of suppressing the rise of the transmembrane pressure difference by improving the method of adding a water-soluble polymer to treated water after an active sludge treatment in a membrane separation active sludge apparatus.SOLUTION: A method of suppressing the rise of the transmembrane pressure difference in a membrane separation active sludge apparatus uses an unused separation membrane and a separation membrane having an initial transmembrane pressure difference in non-use of +10 kPa or smaller and comprises adding at least one water-soluble polymer selected from cationic and amphoteric polymers to the membrane separation active sludge apparatus so that the deformation ratio, measured by the following method, of concentrated sludge separated by the separation membranes is 30% or lower.

Description

本発明は膜分離活性汚泥装置における膜間差圧の上昇を抑制する方法に関する。   The present invention relates to a method for suppressing an increase in transmembrane pressure difference in a membrane separation activated sludge apparatus.

近年、水質向上、水の再利用のし易さ、余剰汚泥発生量の低減化、水リサイクルの必要性などの観点から、都市下水や食品、化学、電気電子などの工場で発生する廃水の処理法として膜分離活性汚泥法が普及しつつある。ここで、膜分離活性汚泥法とは、活性汚泥法において最終沈殿槽を設けず精密膜あるいは限外濾過膜等の分離膜により固液分離を行う方法である。
しかしながら、膜分離活性汚泥法においては、活性汚泥処理した処理水に膜閉塞を発生させる物質が含まれていると、分離膜の細孔を閉塞させ、分離膜を目詰まりさせて、膜間差圧を上昇させることがあった。
世界的に水の需要が増しており、再生水の必要性が一層高まり、低コストで維持管理が容易で効率的な水処理方法の開発が求められている。
In recent years, from the viewpoint of water quality improvement, ease of water reuse, reduction of excess sludge generation, necessity of water recycling, etc., treatment of wastewater generated in factories such as municipal sewage, food, chemistry, electric and electronic As a method, the membrane separation activated sludge method is spreading. Here, the membrane separation activated sludge method is a method of performing solid-liquid separation using a separation membrane such as a precision membrane or an ultrafiltration membrane without providing a final sedimentation tank in the activated sludge method.
However, in the membrane separation activated sludge method, if the activated sludge treated water contains a substance that causes membrane clogging, the pores of the separation membrane are clogged and the separation membrane is clogged. The pressure was sometimes increased.
The demand for water is increasing globally, the need for reclaimed water is further increased, and there is a need to develop an efficient water treatment method that is low in cost, easy to maintain and manage.

そこで、膜間差圧の上昇の抑制策として、種々の方法が開示されている。
例えば、膜分離活性汚泥装置の分離膜面上の流れに凝集剤を未反応で新鮮な状態でかつ高濃度に存在させる方法がある(特許文献1)。
また、水溶性重合体からなる高分子凝集剤や塩化第二鉄、硫酸バンドなどからなる無機凝集剤に活性炭を併用して膜分離活性汚泥装置に添加する方法(特許文献2)、制御装置を用いてアルミニウム系の無機凝集剤を膜分離活性汚泥装置に添加して膜間差圧の上昇を抑制する方法(特許文献3)もある。
Thus, various methods have been disclosed as measures for suppressing the increase in transmembrane pressure difference.
For example, there is a method in which the flocculant is unreacted and present in a high concentration in the flow on the separation membrane surface of the membrane separation activated sludge apparatus (Patent Document 1).
In addition, a method of adding activated carbon to a polymer flocculant made of a water-soluble polymer, an inorganic flocculant made of ferric chloride, a sulfuric acid band, etc. and adding it to a membrane separation activated sludge device (Patent Document 2), a control device There is also a method (Patent Document 3) in which an aluminum-based inorganic flocculant is added to a membrane separation activated sludge device to suppress an increase in transmembrane pressure difference.

特開2005-279448号公報JP 2005-279448 A 特開2006-223921号公報JP 2006-223922 A 特開2008-168199号公報JP 2008-168199 A

しかしながら、特許文献1は注入方法については記載されているが、水溶性重合体の添加量については、具体的に記載されていない。また、特許文献2に記載の方法は、水溶性重合体の添加量をリン濃度で決定する方法が開示されているが、リンが含まれていない膜分離活性汚泥に対しては、適用出来ない。さらに、特許文献2および3に記載の方法では、無機凝集剤を添加によりスラッジ増加の問題があった。そこで、本発明者らは検討を重ねた結果、膜間差圧の上昇の抑制が、水溶性重合体を添加する際の膜の状態および活性汚泥と水溶性重合体の反応性に影響を受けることを見出し、本方法を発明するに到った。
本発明の目的は、膜分離活性汚泥装置において、活性汚泥処理がなされた処理水への水溶性重合体の添加方法を改良し、膜間差圧の上昇を安定的に抑制する方法を提供することにある。
However, Patent Document 1 describes the injection method, but does not specifically describe the amount of water-soluble polymer added. In addition, the method described in Patent Document 2 discloses a method of determining the amount of water-soluble polymer added based on the phosphorus concentration, but is not applicable to membrane-separated activated sludge that does not contain phosphorus. . Further, the methods described in Patent Documents 2 and 3 have a problem of increasing sludge by adding an inorganic flocculant. Therefore, as a result of repeated studies, the inventors have suppressed the increase in the transmembrane pressure difference, which is affected by the state of the membrane when adding the water-soluble polymer and the reactivity of the activated sludge and the water-soluble polymer. As a result, the present inventors have invented this method.
An object of the present invention is to improve a method for adding a water-soluble polymer to treated water subjected to activated sludge treatment in a membrane separation activated sludge apparatus, and provide a method for stably suppressing an increase in transmembrane pressure difference. There is.

すなわち、本発明は次のとおりである。
[1] 被処理水を導入し該被処理水の有機物を活性汚泥と共に曝気処理し、凝集剤の添加された活性汚泥混合液を分離膜で固液分離する機能を備えた膜分離活性汚泥装置において、吸引ポンプによって分離膜に与えられる膜間差圧の上昇を抑制する方法であって、未使用の分離膜および洗浄により未使用時の初期膜間差圧+10kPa以下の分離膜を用い、分離膜で分離される以下の測定方法で求められる濃縮スラッジの変形率が30%以下となるようにカチオン性重合体および両性重合体の少なくとも一方の水溶性重合体を膜分離活性汚泥装置に添加することを特徴とする、膜分離活性汚泥装置における膜間差圧の上昇を抑制する方法。
<濃縮スラッジの変形率の測定方法>
水溶性重合体を添加し混合した汚泥300mLを48メッシュのナイロン製のろ布の上に載せた内径が36mmからなる透明なろ過筒でろ過する。ろ液が無くなったときのスラッジの高さをAcmとし、ろ過筒を取り除いた後のスラッジの高さをBcmとし、以下の式により変形率を求める。
濃縮スラッジ変形率(%)=(1−B/A)×100
That is, the present invention is as follows.
[1] Membrane-separated activated sludge apparatus having a function of introducing treated water, aeration treatment of the organic matter of the treated water together with activated sludge, and solid-liquid separation of the activated sludge mixed liquid to which the flocculant is added with a separation membrane In this method, the increase in the transmembrane pressure difference applied to the separation membrane by the suction pump is controlled by using an unused separation membrane and a separation membrane having an initial transmembrane pressure difference of 10 kPa or less when unused by washing. A water-soluble polymer of at least one of a cationic polymer and an amphoteric polymer is added to the membrane separation activated sludge apparatus so that the deformation rate of the concentrated sludge obtained by the following measurement method separated by a membrane is 30% or less. A method for suppressing an increase in transmembrane pressure difference in a membrane separation activated sludge apparatus.
<Method for measuring deformation rate of concentrated sludge>
300 mL of sludge mixed with a water-soluble polymer is mixed with a transparent filter cylinder having an inner diameter of 36 mm placed on a 48 mesh nylon filter cloth. The sludge height when the filtrate runs out is Acm, the sludge height after removing the filter cylinder is Bcm, and the deformation rate is obtained by the following equation.
Concentrated sludge deformation rate (%) = (1−B / A) × 100

[2]前記カチオン性重合体が、下記一般式(1)及びまたは下記一般式(2)で表されるアミジン構造単位を有するカチオン性重合体であることを特徴とする上記1に記載の方法。

Figure 2014166619
[一般式(1)、(2)中、R〜Rは各々独立して水素原子またはメチル基である。X、Yは各々陰イオンである。] [2] The method according to 1 above, wherein the cationic polymer is a cationic polymer having an amidine structural unit represented by the following general formula (1) and / or the following general formula (2): .
Figure 2014166619
[In General Formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom or a methyl group. X and Y are each an anion. ]

本発明の水溶性重合体の添加方法によれば、水溶性重合体の添加量を簡便に決定でき、安定的に膜間差圧の上昇を抑制できる。   According to the method for adding a water-soluble polymer of the present invention, the amount of the water-soluble polymer added can be easily determined, and an increase in transmembrane pressure difference can be stably suppressed.

以下に、本発明を更に詳細に説明するが、本発明の範囲はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail, but the scope of the present invention is not limited thereto.

本発明において膜分離活性汚泥装置とは、活性汚泥法において最終沈殿槽を設けず精密膜等の分離膜により固液分離を行う装置を指す。すなわち、活性汚泥を含む曝気槽に原水を供給し、曝気により原水を生物処理し、得られた処理水を、分離膜に通しながら引き抜いて固液分離する装置である。   In the present invention, the membrane separation activated sludge apparatus refers to an apparatus that performs solid-liquid separation using a separation membrane such as a precision membrane without providing a final sedimentation tank in the activated sludge method. That is, it is an apparatus for supplying raw water to an aeration tank containing activated sludge, biologically treating the raw water by aeration, and drawing out the obtained treated water while passing through a separation membrane for solid-liquid separation.

本発明は、被処理水を導入し該被処理水の有機物を活性汚泥と共に曝気処理し、凝集剤の添加された活性汚泥混合液を分離膜で固液分離する機能を備えた膜分離活性汚泥装置において、吸引ポンプによって分離膜に与えられる膜間差圧の上昇を抑制する方法である。膜分離活性汚泥装置としては、上記の機能を備えている限り特に限定されず、前記先行文献に記載された膜分離活性汚泥装置などを使用することが出来る。曝気槽以外に、他の生物処理槽、例えば、別の曝気槽、嫌気槽、無酸素槽、好気処理槽などが独立に設けられても構わない。   The present invention is a membrane-separated activated sludge having a function of introducing treated water, aeration treatment of organic matter of the treated water together with activated sludge, and solid-liquid separation of the activated sludge mixed liquid to which the flocculant is added by a separation membrane. In the apparatus, the increase in the transmembrane pressure applied to the separation membrane by the suction pump is suppressed. The membrane separation activated sludge device is not particularly limited as long as it has the above function, and the membrane separation activated sludge device described in the above-mentioned prior literature can be used. In addition to the aeration tank, other biological treatment tanks such as another aeration tank, anaerobic tank, anoxic tank, and aerobic treatment tank may be provided independently.

膜分離活性汚泥装置において使用される分離膜は、精密ろ過膜、限外ろ過膜等で挙げられるが、高い透過流速が得られる点では、精密ろ過膜が好ましい。
分離膜の形状は、平膜、管状膜あるいは中空糸膜などいずれの形でも構わない。材質は、セルロース系、ポリオレフィン系、ポリビニルアルコール系、ポリメチルメタクリレート系、ポリスルフォン系、ポリフッ化ビニリデン系等の各種材料からなるものが使用できる。
処理水の引き抜きは、分離膜の二次側(下流側)をポンプで吸引することによって行われる。引き抜きの際、処理水は分離膜を通過するが、フロック等の粒状物は通過しにくくなっている。そのため、処理水の引き抜きによって固液分離できるようになっている。
Examples of the separation membrane used in the membrane separation activated sludge apparatus include a microfiltration membrane and an ultrafiltration membrane. A microfiltration membrane is preferable in that a high permeation flow rate can be obtained.
The shape of the separation membrane may be any shape such as a flat membrane, a tubular membrane or a hollow fiber membrane. Materials made of various materials such as cellulose, polyolefin, polyvinyl alcohol, polymethyl methacrylate, polysulfone, and polyvinylidene fluoride can be used.
Extraction of treated water is performed by sucking the secondary side (downstream side) of the separation membrane with a pump. At the time of drawing, the treated water passes through the separation membrane, but particulate matter such as floc is difficult to pass through. Therefore, solid-liquid separation can be performed by drawing the treated water.

膜分離活性汚泥法では、曝気槽にて原水を活性汚泥処理している最中に、処理水を分離膜に通して引き抜く。処理水の引き抜き速度は、処理水によっても異なるが、概ね0.1〜1.5m/日である。   In the membrane separation activated sludge method, the treated water is drawn through the separation membrane while the raw water is being treated with activated sludge in an aeration tank. The withdrawal speed of the treated water varies depending on the treated water, but is generally 0.1 to 1.5 m / day.

原水または活性汚泥には、膜閉塞を発生させる物質(以下、「膜閉塞原因物質」という。)が含まれる。膜閉塞原因物質の具体例としては、炭酸カルシウム、硫酸カルシウム等の無機塩類、シリカ、水酸化鉄等の無機性コロイドのほか、糖、蛋白質等の有機性コロイド、溶解性有機物質、付着性微生物、懸濁物質等が挙げられる。
膜閉塞原因物質による膜閉塞によって引き抜き速度を高められず、0.1〜1.0m/日となる場合には、本発明による膜閉塞の抑制効果は顕著となる。
The raw water or activated sludge contains substances that cause membrane clogging (hereinafter referred to as “membrane clogging substances”). Specific examples of membrane clogging substances include inorganic salts such as calcium carbonate and calcium sulfate, inorganic colloids such as silica and iron hydroxide, organic colloids such as sugars and proteins, soluble organic substances, and adherent microorganisms. And suspended substances.
In the case where the drawing speed cannot be increased due to the membrane occlusion due to the membrane occlusion cause substance and becomes 0.1 to 1.0 m / day, the effect of suppressing the membrane occlusion according to the present invention becomes remarkable.

曝気槽に添加する「水溶性重合体」としては、カチオン性重合体、両性重合体よりなる群から選ばれる1種または2種以上が挙げられる。
「カチオン性重合体」とは、カチオン性単量体単位を有する重合体のことであり、カチオン性単量体単位のみであってもよいし、ノニオン性単量体単位を有してもよい。また、「カチオン性重合体」は、上記一般式(1)及びまたは上記一般式(2)で表されるアミジン構造単位を有するカチオン性重合体であってもよい。
「両性重合体」とは、カチオン性単量体単位およびアニオン性単量体単位を有する重合体のことであり、カチオン性単量体単位およびアニオン性単量体単位のみであってもよいし、ノニオン性単量体単位を有してもよい。
Examples of the “water-soluble polymer” added to the aeration tank include one or more selected from the group consisting of a cationic polymer and an amphoteric polymer.
The “cationic polymer” is a polymer having a cationic monomer unit, and may be a cationic monomer unit alone or a nonionic monomer unit. . Further, the “cationic polymer” may be a cationic polymer having an amidine structural unit represented by the general formula (1) and / or the general formula (2).
The “amphoteric polymer” is a polymer having a cationic monomer unit and an anionic monomer unit, and may be only a cationic monomer unit and an anionic monomer unit. And may have a nonionic monomer unit.

カチオン性単量体単位は、カチオン性単量体に由来する。カチオン性単量体としては、第4級または第3級アンモニウム基含有カチオン性メタクリレート単量体、第4級アンモニウム基含有カチオン性アクリレート単量体、ジアリル第4級アンモニウム単量体などが挙げられる。具体的には、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレートなどのメチルクロライド4級塩やベンジルクロライド4級塩、ジアリルジメチルアンモニウムのクロライド塩、ジメチルアミノエチルメタクリレートなどの硫酸あるいは塩酸塩などが挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   The cationic monomer unit is derived from a cationic monomer. Examples of the cationic monomer include quaternary or tertiary ammonium group-containing cationic methacrylate monomers, quaternary ammonium group-containing cationic acrylate monomers, diallyl quaternary ammonium monomers, and the like. . Specific examples include methyl chloride quaternary salts such as dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate, benzyl chloride quaternary salts, chloride salts of diallyldimethylammonium, and sulfuric acid or hydrochloride such as dimethylaminoethyl methacrylate. These may be used alone or in combination of two or more.

アミジン構造単位を有するカチオン性重合体において、一般式(1)、(2)中、R〜Rは各々独立して水素原子またはメチル基であるが、全てが同一であってもよいし、異なっていてもよい。
また、X、Yは各々独立して陰イオンであるが、全てが同一であってもよいし、異なっていてもよい。一般式(1)及び(2)において、X,Yで表される陰イオンとしては、具体的には、Cl、Br、1/2SO 2−、CH(CO)O、H(CO)Oなどが挙げられる。
In the cationic polymer having an amidine structural unit, in the general formulas (1) and (2), R 1 to R 4 are each independently a hydrogen atom or a methyl group, but they may all be the same. , May be different.
X and Y are each independently an anion, but all may be the same or different. In the general formulas (1) and (2), the anions represented by X and Y are specifically Cl , Br , 1 / 2SO 4 2− , CH 3 (CO) O −. , H (CO) O 2 — and the like.

ノニオン性単量体単位は、ノニオン性単量体に由来する。ノニオン性単量体としては、アクリルアミド、メタクリルアミドなどが挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   The nonionic monomer unit is derived from a nonionic monomer. Examples of nonionic monomers include acrylamide and methacrylamide. These may be used alone or in combination of two or more.

アニオン性単量体単位は、アニオン性単量体に由来する。アニオン性単量体としては、アクリル酸、メタクリル酸、2−アクリルアミド−2メチルプロパンスルホン酸、及びそのナトリウム塩、カリウム塩などが挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   The anionic monomer unit is derived from an anionic monomer. Examples of the anionic monomer include acrylic acid, methacrylic acid, 2-acrylamido-2methylpropanesulfonic acid, and sodium salts and potassium salts thereof. These may be used alone or in combination of two or more.

カチオン性重合体、両性重合体のいずれにおいても、カチオン性単量体単位、ノニオン性単量体単位、アニオン性単量体単位以外のビニル系単量体単位を有してもよい。   Either the cationic polymer or the amphoteric polymer may have a vinyl monomer unit other than the cationic monomer unit, the nonionic monomer unit, and the anionic monomer unit.

カチオン性重合体、両性重合体の製造方法としては、公知の一般的な重合方法により製造することができる。
具体的には、各単量体単位を、重合開始剤の存在下で公知の方法で重合することにより製造することができる。重合開始剤としては、例えば、過硫酸カリウム、過硫酸2,2’−アゾビズ−2−アミジノプロパン塩酸塩等のラジカル開始剤が挙げられる。重合方法としては、特に制限されず、水溶液重合、光重合、懸濁重合、エマルション重合等の方法を適用することができる。
カチオン性重合体が、アミジン構造単位を有するカチオン性重合体である場合には、N−ビニルホルムアミド、N−ビニルアセトアミドなどのN−ビニルカルボン酸アミドと、アクリロニトリルまたはメタアクリロニトリルのニトリル類とを塊状重合、水溶液沈殿重合、懸濁重合、乳化重合等の公知の方法で共重合した後、酸加水分解し、共重合により得られた共重合体中のシアノ基と一級アミノ基とを反応させてアミジン化する方法により製造できる。
As a manufacturing method of a cationic polymer and an amphoteric polymer, it can manufacture with a well-known general polymerization method.
Specifically, each monomer unit can be produced by polymerizing by a known method in the presence of a polymerization initiator. Examples of the polymerization initiator include radical initiators such as potassium persulfate and persulfate 2,2′-azobiz-2-amidinopropane hydrochloride. The polymerization method is not particularly limited, and methods such as aqueous solution polymerization, photopolymerization, suspension polymerization, and emulsion polymerization can be applied.
When the cationic polymer is a cationic polymer having an amidine structural unit, N-vinylcarboxylic acid amides such as N-vinylformamide and N-vinylacetamide and nitriles of acrylonitrile or methacrylonitrile are bulky. After copolymerization by a known method such as polymerization, aqueous precipitation polymerization, suspension polymerization, emulsion polymerization, etc., acid hydrolysis is carried out, and a cyano group and a primary amino group in the copolymer obtained by copolymerization are reacted. It can be produced by a method for amidine formation.

曝気槽に添加する水溶性重合体としては、膜間差圧の上昇をより抑制できる点から、カチオン性重合体および両性重合体の少なくとも一方が好ましい。カチオン性重合体および両性重合体の少なくとも一方が膜間差圧の上昇をより抑制できるのは、膜閉塞原因物質は概ねアニオン性を示すことが多く、カチオン性重合体および両性重合体は膜閉塞原因物質との相互作用が強いためと考えられる。そのため、水溶性重合体のカチオン当量は、高ければより好ましく、少なくとも2meq/g以上ならば効果を発揮しやすい。カチオン性重合体と両性重合体を併用してもその効果は得られ、その添加は、カチオン性重合体と両性重合体を別々に添加する方法や、あるいはあらかじめ両者を混合したものを添加する方法のいずれでも良い。
さらに、カチオン性重合体の中でも、膜閉塞原因物質との相互作用がより強いことから、アミジン構造単位を主成分とするカチオン性重合体が好ましい。アミジン構造は荷電密度が高く疎水的であるため、膜閉塞原因物質や活性汚泥と強固なフロックを形成し、分離膜との相互作用も低くなるため、膜の目詰まりをより防止でき、膜間差圧上昇をより抑制できる。
As the water-soluble polymer added to the aeration tank, at least one of a cationic polymer and an amphoteric polymer is preferable from the viewpoint that the increase in transmembrane pressure difference can be further suppressed. The reason why at least one of the cationic polymer and the amphoteric polymer can suppress the increase in the transmembrane pressure difference is that the substance causing the membrane occlusion is generally anionic, and the cationic polymer and the amphoteric polymer are occluded. This is probably due to the strong interaction with the causative substance. For this reason, the cation equivalent of the water-soluble polymer is preferably as high as possible, and if it is at least 2 meq / g, the effect is easily exhibited. The effect can be obtained even if a cationic polymer and an amphoteric polymer are used in combination, and the addition is a method of adding a cationic polymer and an amphoteric polymer separately, or a method of adding a mixture of both in advance. Either of these is acceptable.
Furthermore, among the cationic polymers, a cationic polymer having an amidine structural unit as a main component is preferable because of its stronger interaction with a substance that causes membrane blockage. The amidine structure has a high charge density and is hydrophobic, so it forms a strong flock with the substances that clog the membrane and activated sludge, and the interaction with the separation membrane is also low, which can further prevent clogging of the membrane, The increase in differential pressure can be further suppressed.

本発明の特徴は、未使用の分離膜および洗浄により未使用時の初期膜間差圧+10kPa以下の分離膜を用い、分離膜で分離される以下の測定方法で求められる濃縮スラッジの変形率が30%以下となるようにカチオン性重合体および両性重合体の少なくとも一方の水溶性重合体を膜分離活性汚泥装置に添加する点にある。   The feature of the present invention is that the deformation rate of the concentrated sludge obtained by the following measurement method separated by the separation membrane using an unused separation membrane and a separation membrane having an initial transmembrane pressure difference of 10 kPa or less when not used due to washing is as follows. The water-soluble polymer of at least one of a cationic polymer and an amphoteric polymer is added to the membrane separation activated sludge apparatus so that it becomes 30% or less.

<濃縮スラッジの変形率の測定方法>
水溶性重合体を添加し混合した汚泥300mLを48メッシュのナイロン製のろ布の上に載せた内径が36mmからなる透明なろ過筒でろ過する。ろ液が無くなったときのスラッジの高さをAcmとし、ろ過筒を取り除いた後のスラッジの高さをBcmとし、以下の式により変形率を求める。
濃縮スラッジ変形率(%)=(1−B/A)×100
<Method for measuring deformation rate of concentrated sludge>
300 mL of sludge mixed with a water-soluble polymer is mixed with a transparent filter cylinder having an inner diameter of 36 mm placed on a 48 mesh nylon filter cloth. The sludge height when the filtrate runs out is Acm, the sludge height after removing the filter cylinder is Bcm, and the deformation rate is obtained by the following equation.
Concentrated sludge deformation rate (%) = (1−B / A) × 100

濃縮スラッジの変形率の値が低いほど、水溶性重合体により膜閉塞原因物質や活性汚泥と強固なフロックを形成していることを示す。30%以下であれば、膜閉塞原因物質や活性汚泥と強固なフロックを形成し、汚泥の表面に水溶性重合体が必要十分量吸着されることで、その後の活性汚泥から分泌される膜閉塞原因物質もフロックから液相に放出されにくくなると考えられる。濃縮スラッジの変形率は、水溶性重合体の添加量により調整することができる。濃縮スラッジの変形率が30%以下となる水溶性重合体の添加量は、水溶性重合体の添加量を変えて濃縮スラッジ変形率を測定し求めることができる。   The lower the value of the deformation rate of the concentrated sludge, the stronger the flocs are formed by the water-soluble polymer and the membrane clogging substances and activated sludge. If it is 30% or less, it forms a strong flock with the membrane clogging substances and activated sludge, and a necessary and sufficient amount of water-soluble polymer is adsorbed on the surface of the sludge, so that the membrane clogged from the activated sludge thereafter It is thought that causative substances are less likely to be released from the floc into the liquid phase. The deformation rate of the concentrated sludge can be adjusted by the amount of water-soluble polymer added. The addition amount of the water-soluble polymer at which the deformation rate of the concentrated sludge becomes 30% or less can be obtained by measuring the concentration sludge deformation rate while changing the addition amount of the water-soluble polymer.

水溶性重合体を添加する際の形態は、短時間で膜分離活性汚泥と混合できる点では水溶液が好ましい。その水溶液における水溶性重合体濃度は0.05〜1質量%が好ましい。水溶性重合体濃度が前記下限値以上であれば、供給時間をより短時間にでき、前記上限値以下であれば、均一に混合させることができ、膜への付着をより防止できる。
また、水溶液の形態では、水溶性重合体の溶解性を向上させ、また、水溶液の保存安定性を向上させるために、固体酸を添加しても構わない。固体酸としては、スルファミン酸等が挙げられる。
The form when adding the water-soluble polymer is preferably an aqueous solution in that it can be mixed with the membrane separation activated sludge in a short time. The water-soluble polymer concentration in the aqueous solution is preferably 0.05 to 1% by mass. When the water-soluble polymer concentration is at least the lower limit value, the supply time can be shortened, and when the water-soluble polymer concentration is at most the upper limit value, it can be mixed uniformly and the adhesion to the film can be further prevented.
In the form of an aqueous solution, a solid acid may be added in order to improve the solubility of the water-soluble polymer and to improve the storage stability of the aqueous solution. Examples of the solid acid include sulfamic acid.

曝気槽に添加する水溶性重合体としては、膜分離活性汚泥との混合に要する時間および膜閉塞原因物質とのフロック形成のしやすさの点から、0.5%塩粘度は、3〜40mPa・sが好ましい。水溶性重合体の添加量が前記下限値以上であれば、膜閉塞原因物質と強固なフロックを形成できて、前記上限以下であれば、膜分離活性汚泥と短時間で均一に混合でき、膜間差圧上昇をより抑制できる。   As a water-soluble polymer to be added to the aeration tank, 0.5% salt viscosity is 3 to 40 mPa from the time required for mixing with the membrane separation activated sludge and the ease of floc formation with the membrane clogging substance. -S is preferable. If the amount of the water-soluble polymer added is equal to or greater than the lower limit value, it can form a strong flock with the membrane clogging cause substance. An increase in the differential pressure can be further suppressed.

膜閉塞による膜間差圧の上昇は、膜表面または膜孔内に糖、蛋白質等の有機性コロイド、溶解性有機物質などの膜閉塞原因物質が付着し始めることで、そこを起点として他の物質が次々と膜に付着し、膜閉塞が進行することに起因すると考えられる。水溶性重合体の添加によって、このような膜閉塞原因物質を活性汚泥とフロック化し膜と接する液相から除去されるとともに、汚泥の表面に水溶性重合体が必要十分量吸着することで、その後の活性汚泥から分泌される膜閉塞原因物質もフロックから液相に放出されにくくなると考えられる。
膜閉塞原因物質の1つである糖の濃度が汚泥中に10mg/L以上存在すると、膜閉塞が生じやすく、水溶性重合体の添加による抑制効果を発揮しやすい。一方、汚泥中の糖の濃度が前記下限以下であれば、膜閉塞が発生しにくい。
また、膜閉塞原因物質の存在の指標としてろ紙ろ過量が知られている。ろ紙ろ過量とは、50mLの汚泥をろ過したときに5分間にろ紙を通過するろ過量であり、この値が20mL以下では、膜閉塞原因物質による膜閉塞を生じやすく、本方法が効果的である。
一方、ろ過量が前記上限以上であれば、膜閉塞は発生しにくい。
また、膜閉塞が進行した状態で水溶性重合体を添加しても、膜間差圧の上昇は効果的に抑制できない。これは、水溶性重合体により糖、蛋白質等の有機性コロイド、溶解性有機物質などを除去し、また膜閉塞原因物質の放出を抑えても、既に膜表面に形成されている付着物に対するその他の物質の付着は抑制できないためと考えられる。
The increase in the transmembrane pressure difference due to membrane clogging is due to the fact that organic colloids such as sugars and proteins, and membrane clogging substances such as soluble organic substances start to adhere to the membrane surface or pores. This is thought to be due to the fact that substances adhere to the membrane one after another and membrane clogging proceeds. By adding a water-soluble polymer, such a membrane clogging substance is flocked with activated sludge and removed from the liquid phase in contact with the membrane, and a necessary and sufficient amount of the water-soluble polymer is adsorbed on the surface of the sludge. It is considered that the membrane blockage causative substance secreted from activated sludge is not easily released from the floc into the liquid phase.
When the concentration of sugar, which is one of the membrane clogging substances, is 10 mg / L or more in the sludge, membrane clogging is likely to occur, and the suppression effect due to the addition of the water-soluble polymer is likely to be exhibited. On the other hand, if the sugar concentration in the sludge is less than or equal to the lower limit, membrane clogging is unlikely to occur.
Moreover, the amount of filter paper filtration is known as an indicator of the presence of a substance that causes membrane blockage. The amount of filter paper filtration is the amount of filtration that passes through the filter paper for 5 minutes when 50 mL of sludge is filtered. If this value is 20 mL or less, membrane clogging due to membrane clogging substances tends to occur, and this method is effective. is there.
On the other hand, if the filtration amount is equal to or more than the upper limit, membrane clogging hardly occurs.
Moreover, even if a water-soluble polymer is added in a state where membrane occlusion has progressed, an increase in transmembrane pressure difference cannot be effectively suppressed. This is because the water-soluble polymer removes organic colloids such as sugar and protein, soluble organic substances, etc. This is probably because the adhesion of these substances cannot be suppressed.

そこで、本発明においては、未使用の膜および洗浄により未使用時の初期膜間差圧+10kPa以下の膜を用いる。   Therefore, in the present invention, an unused film and a film having an initial inter-membrane differential pressure of +10 kPa or less when not used due to cleaning are used.

次亜洗浄液を用いて膜を洗浄する際は、一般的に行われているとおり、次亜洗浄液に膜を浸漬後、水ですすぐことで、膜閉塞原因物質を除去できる。   When the membrane is washed with a hypo-cleaning solution, as is generally done, the membrane-causing substance can be removed by immersing the membrane in the hypo-cleaning solution and rinsing with water.

また、活性汚泥処理での曝気量は特に制限されず、原水の流入量、原水中の有機物質含有量、活性汚泥の活性等に応じて適宜選択される。また、曝気量は、水溶性重合体を添加しているときと、添加していないときとで同じであってもよいし、異なってもよい。従来、膜分離活性汚泥装置における曝気量は、膜ケーキ層形成や膜閉塞抑制のために標準活性汚泥法よりも多くしていたが、本発明の水処理方法を適用し、膜洗浄頻度を標準活性汚泥法と同等とするのであれば、曝気量を少なくすることもできる。   Moreover, the aeration amount in the activated sludge treatment is not particularly limited, and is appropriately selected according to the inflow amount of the raw water, the organic substance content in the raw water, the activity of the activated sludge, and the like. The aeration amount may be the same or different when the water-soluble polymer is added and when it is not added. Conventionally, the amount of aeration in the membrane separation activated sludge apparatus was larger than the standard activated sludge method for membrane cake layer formation and membrane clogging suppression, but the water treatment method of the present invention was applied to standardize the membrane cleaning frequency. If it is equivalent to the activated sludge method, the amount of aeration can be reduced.

以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限り、下記実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

<カチオン当量の測定>
カチオン性重合体および両性重合体を脱塩水に溶解し、pH=3.0において、トルイジンブルーを指示薬として、1/400規定のPVSK(ポリビニル硫酸カリウム)水溶液により滴定した。
<Measurement of cation equivalent>
The cationic polymer and the amphoteric polymer were dissolved in demineralized water, and titrated with a 1/400 normal PVSK (polyvinyl potassium sulfate) aqueous solution at pH = 3.0 using toluidine blue as an indicator.

<0.5%塩粘度の測定>
カチオン性重合体および両性重合体の2.5gを4%NaCl水溶液に溶解し、0.5%ポリマー水溶液の500gを調製した。B型粘度計(東機産業社製)を用い、温度25℃、回転速度60rpmの条件で、前記0.5%ポリマー水溶液の攪拌を開始してから5分後の0.5%塩粘度を測定した。
<Measurement of 0.5% salt viscosity>
2.5 g of the cationic polymer and the amphoteric polymer were dissolved in 4% NaCl aqueous solution to prepare 500 g of 0.5% polymer aqueous solution. Using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.), at a temperature of 25 ° C. and a rotational speed of 60 rpm, 0.5% salt viscosity after 5 minutes from the start of stirring of the 0.5% polymer aqueous solution It was measured.

<カチオン性重合体および両性重合体>
実施例および比較例では、膜分離活性汚泥に添加する水溶性重合体として、カチオン性重合体または両性重合体を用いた。
また、カチオン性重合体としては、ジメチルアミノエチルメタクリレートのメチルクロライド4級塩の単独重合体であるKP201G(ダイヤニトリックス(株)カチオン当量3.9meq/g 0.5%塩粘度 16mPa・s)、または、アミジン重合体を主成分とするKP7000(ダイヤニトリックス(株)カチオン当量5.4meq/g 0.5%塩粘度 7mPa・s)を用いた。
また、両性重合体としては、ジメチルアミノエチルメタクリレートのメチルクロライド4級塩とジメチルアミノエチルアクリレートのメチルクロライド4級塩とアクリルアミドとアクリル酸の共重合体であるKA405D(ダイヤニトリックス(株)カチオン当量2meq/g 0.5%塩粘度 25mPa・s)を用いた。
<Cationic polymer and amphoteric polymer>
In Examples and Comparative Examples, a cationic polymer or an amphoteric polymer was used as the water-soluble polymer added to the membrane separation activated sludge.
In addition, as the cationic polymer, KP201G which is a homopolymer of methyl chloride quaternary salt of dimethylaminoethyl methacrylate (Daanitrix Co., Ltd., cation equivalent 3.9 meq / g 0.5% salt viscosity 16 mPa · s), or KP7000 (Daninitx Co., Ltd., cation equivalent 5.4 meq / g 0.5% salt viscosity 7 mPa · s) containing an amidine polymer as the main component was used.
In addition, as an amphoteric polymer, KA405D (Daanitrix Co., Ltd., cation equivalent 2 meq / m) is a copolymer of methyl chloride quaternary salt of dimethylaminoethyl methacrylate, methyl chloride quaternary salt of dimethylaminoethyl acrylate, acrylamide and acrylic acid. g 0.5% salt viscosity 25 mPa · s) was used.

<水溶性重合体の添加による濃縮スラッジ変形率の測定方法>
以下の試験例(実施例及び比較例)において、水溶性重合体の膜分離活性汚泥に添加量を決めるため、以下の方法により、濃縮スラッジ変形率を測定した。
水溶性重合体を添加し混合した汚泥300mLを48メッシュのナイロン製のろ布の上に載せた内径が36mmからなる透明なろ過筒でろ過する。ろ液が無くなったときのスラッジの高さをAcmとし、ろ過筒を取り除いた後のスラッジの高さをBcmとし、以下の式により変形率を求める。
濃縮スラッジ変形率(%)=(1−B/A)×100
<Measurement method of deformation rate of concentrated sludge by addition of water-soluble polymer>
In the following test examples (Examples and Comparative Examples), the concentrated sludge deformation rate was measured by the following method in order to determine the amount of addition to the membrane-separated activated sludge of the water-soluble polymer.
300 mL of sludge mixed with a water-soluble polymer is mixed with a transparent filter cylinder having an inner diameter of 36 mm placed on a 48 mesh nylon filter cloth. The sludge height when the filtrate runs out is Acm, the sludge height after removing the filter cylinder is Bcm, and the deformation rate is obtained by the following equation.
Concentrated sludge deformation rate (%) = (1−B / A) × 100

<水溶性重合体の添加による膜間差圧上昇抑制効果の評価>
以下の試験例(実施例及び比較例)において、水溶性重合体の添加による膜間差圧上昇抑制効果の評価は、膜分離活性汚泥装置において一定の通水量で膜濾過した際の膜間差圧上昇速度を計測することにより行った。その結果を表1、2、3および4にそれぞれ示す。
<Evaluation of increase effect of transmembrane pressure difference by addition of water-soluble polymer>
In the following test examples (Examples and Comparative Examples), the effect of suppressing the increase in transmembrane pressure difference due to the addition of a water-soluble polymer is evaluated as the transmembrane difference when membrane filtration is performed with a constant water flow rate in a membrane separation activated sludge apparatus This was done by measuring the rate of pressure rise. The results are shown in Tables 1, 2, 3 and 4, respectively.

<糖濃度の測定>
糖濃度とは、水に溶存、またはコロイド状で存在する多糖類濃度を示すものであり、紫外可視分光光度計(島津サイエンス(株)製 UV−3100)により490nm付近の吸光度を測定し、標準液による検量線から算出した。
汚泥中の糖濃度の測定は、次のように実施した。すなわち、採取した汚泥を孔径0.45μmのシリンジフィルター(Whatman(社)製 25mmGD/X Sterile Syringe Filters)によりフィルターろ過して得られた処理液について、全糖濃度の測定を常法;フェノール硫酸法[Hodge,J.E.and Hofreiter,B.T., Method in Carbohydrate Chemistry,1,338(1962)]に準じて実施した。
<Measurement of sugar concentration>
The sugar concentration indicates the concentration of polysaccharide dissolved in water or colloidally, and the absorbance near 490 nm is measured with an ultraviolet-visible spectrophotometer (UV-3100, manufactured by Shimadzu Science Co., Ltd.). It calculated from the calibration curve by a liquid.
The sugar concentration in the sludge was measured as follows. That is, for the treatment liquid obtained by filtering the collected sludge with a syringe filter having a pore diameter of 0.45 μm (25 mm GD / X Sterile Syringe Filters manufactured by Whatman Co., Ltd.), the total sugar concentration is measured by a conventional method; the phenol-sulfuric acid method [Hodge, J. et al. E. and Hofreiter, B .; T.A. , Method in Carbohydrate Chemistry, 1, 338 (1962)].

<ろ紙ろ過量の測定>
ろ紙ろ過量とは、径185mmの5Cろ紙(ADVANTEC社製)を16折りとし、漏斗に入れて50mlメスシリンダーに装着した後、ろ過流束低下原因物質除去後の汚泥50mlを流し入れ、5分後のろ過量を測定した。
<Measurement of filter paper filtration rate>
The amount of filter paper filtration is 16 folds of 5C filter paper (ADVANTEC) with a diameter of 185 mm, put in a funnel and attached to a 50 ml graduated cylinder. The amount of filtration of was measured.

<膜の次亜塩素酸洗浄と洗浄完了の確認>
使用後に取り出した膜を濃度0.3%となるよう調整した次亜塩素酸水1Lに20時間浸漬した後、膜を取り出して、これを水道水ですすいだ。すすぎ終わった膜を未使用品の膜を同じ流速で処理水を引抜いた際に、未使用時の初期膜間差圧+10kPa以下の膜間差圧の範囲となることを確認して、膜の洗浄完了を判断し未閉塞の膜とした。なお、未使用品の膜間差圧は2.0kPaであった。
<Membrane hypochlorous acid cleaning and cleaning completion confirmation>
The membrane taken out after use was immersed in 1 L of hypochlorous acid water adjusted to a concentration of 0.3% for 20 hours, and then the membrane was taken out and rinsed with tap water. When the treated water is drawn out from the unused membrane at the same flow rate, the membrane after rinsing is confirmed to be within the range of the initial membrane differential pressure when not used +10 kPa or less. The completion of washing was judged and an unoccluded membrane was obtained. In addition, the transmembrane differential pressure of the unused product was 2.0 kPa.

<実施例1>
中空糸精密ろ過膜(三菱レイヨン(株)製、ポリフッ化ビニリデン製「SADF膜」)を幅0.088mに19本均等に配置し、該中空糸精密ろ過膜の両端を環状支持体に接続した未閉塞の膜モジュール(有効膜長さ0.077m、膜面積0.0012m)を用意した。その膜モジュールを、膜長さ方向が鉛直方向に沿うように、曝気槽(横幅0.2m、奥行き0.1m、高さ0.35m)の内部の、散気管の上方に設置して、膜分離活性汚泥装置とした。
MLSSが5000mg/L、糖濃度10mg/L、ろ紙ろ過量が10mL/5分のA社の化学工場排水処理設備の活性汚泥(pH6.7)を採取し、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加したところ、活性汚泥の濃縮スラッジの変形率が10%であった。この活性汚泥を膜分離化成汚泥装置に4000mL充填し、曝気量9L/分として、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加して、化学工業排水を流速0.42m/日となるよう供給を開始した。このときの膜間差圧は2.2kPaであった。添加後1日目及び14日目の膜間差圧を測定した。それぞれの時点での測定は、圧力センサ((株)キーエンス製、AP−10S(達成圧型))を用いて計測し、各1日での差圧上昇値を24時間で除した値を膜間差圧上昇速度として求めた。
<Example 1>
19 hollow fiber microfiltration membranes (Mitsubishi Rayon Co., Ltd., "SADF membrane" made of polyvinylidene fluoride) were equally arranged in a width of 0.088 m, and both ends of the hollow fiber microfiltration membrane were connected to an annular support. An unoccluded membrane module (effective membrane length 0.077 m, membrane area 0.0012 m 2 ) was prepared. The membrane module is installed above the air diffuser in the aeration tank (width 0.2 m, depth 0.1 m, height 0.35 m) so that the membrane length direction is along the vertical direction. A separation activated sludge apparatus was used.
Activated sludge (pH 6.7) of wastewater treatment equipment of company A with MLSS of 5000 mg / L, sugar concentration of 10 mg / L, and filter paper filtration rate of 10 mL / 5 was collected, and a 0.3 mass% aqueous solution of KP7000. When 100 mg / L of activated sludge was added per total amount of sludge, the deformation rate of the concentrated sludge of activated sludge was 10%. This activated sludge is filled with 4000 mL of membrane-separated chemical sludge apparatus, and the aeration rate is 9 L / min. A 0.3 mass% aqueous solution of KP7000 is added at 100 mg / L per activated sludge, and chemical industrial wastewater is supplied at a flow rate of 0.42 m. The supply was started to be / day. The transmembrane pressure difference at this time was 2.2 kPa. The transmembrane pressure difference was measured on day 1 and day 14 after the addition. The measurement at each time point was measured using a pressure sensor (manufactured by Keyence Co., Ltd., AP-10S (achieved pressure type)), and the value obtained by dividing the differential pressure increase in each day by 24 hours was measured between the membranes. It was determined as the differential pressure increase rate.

<実施例2>
KP7000の0.3質量%の水溶液を活性汚泥全量当たり70mg/L(活性汚泥の濃縮スラッジの変形率25%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
<Example 2>
The same procedure as in Example 1 was carried out except that a 0.3 mass% aqueous solution of KP7000 was added at 70 mg / L of activated sludge in total (deformation rate of concentrated sludge of activated sludge was 25%). The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.

<比較例1>
KP7000の0.3質量%の水溶液を活性汚泥全量当たり40mg/L(活性汚泥の濃縮スラッジの変形率40%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
しかしながら、14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative Example 1>
The same procedure as in Example 1 was performed except that 40 mg / L of an aqueous solution of 0.3% by mass of KP7000 was added per 40% of activated sludge (deformation rate of concentrated sludge of activated sludge was 40%). The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.
However, since the transmembrane pressure difference became 50 kPa or more before the 14th day and it became impossible to draw a certain amount of treated water, the experiment was stopped.

<比較例2>
KP7000の0.3質量%の水溶液を活性汚泥全量当たり20mg/L(活性汚泥の濃縮スラッジの変形率60%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.0kPaであった。
しかしながら、14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative example 2>
The same operation as in Example 1 was carried out except that a 0.3 mass% aqueous solution of KP7000 was added at 20 mg / L (total activated sludge deformation rate of 60%) per activated sludge. The transmembrane pressure difference when starting the supply of chemical industrial wastewater was 2.0 kPa.
However, since the transmembrane pressure difference became 50 kPa or more before the 14th day and it became impossible to draw a certain amount of treated water, the experiment was stopped.

<比較例3>
水溶性重合体を添加しなかったこと以外は、実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
しかしながら、14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative Example 3>
The same procedure as in Example 1 was performed except that the water-soluble polymer was not added. The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.
However, since the transmembrane pressure difference became 50 kPa or more before the 14th day and it became impossible to draw a certain amount of treated water, the experiment was stopped.

Figure 2014166619
Figure 2014166619

曝気槽へ上澄み液中の糖濃度が10mg/L、ろ紙ろ過量が10mLの活性汚泥に水溶性重合体としてKP7000を活性汚泥全量当たり100mg/L(濃縮スラッジの変形率15%)、活性汚泥全量当たり100mg/L(濃縮スラッジの変形率25%)となるように添加した実施例1および2では、水溶性重合体を添加しなかった比較例3に比べて、膜間差圧上昇速度が低く抑えられていた。
また、濃縮スラッジの変形率が40%(活性汚泥全量当たり20mg/L)、60%(40mg/L)となるように水溶性重合体としてKP7000を用いた比較例2および3は、水溶性重合体としてKP7000を用いなかった比較例3と同じく、膜間差圧上昇速度が速かった。
To the aeration tank, the concentration of sugar in the supernatant liquid is 10 mg / L, the amount of filter paper filtration is 10 mL, and KP7000 as a water-soluble polymer is 100 mg / L (total sludge deformation rate: 15%) per activated sludge. In Examples 1 and 2 added so as to be 100 mg / L per minute (concentration sludge deformation rate: 25%), the rate of increase in transmembrane pressure difference is lower than that in Comparative Example 3 where no water-soluble polymer was added. It was suppressed.
Comparative Examples 2 and 3 using KP7000 as the water-soluble polymer so that the deformation rate of the concentrated sludge was 40% (20 mg / L per activated sludge total amount) and 60% (40 mg / L) Similar to Comparative Example 3 in which KP7000 was not used as the coalescence, the transmembrane pressure increase rate was high.

<実施例3>
実施例1と同じA社の化学工場排水処理設備の活性汚泥(pH6.7)を採取し、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加したところ、活性汚泥の濃縮スラッジの変形率が10%であった。この活性汚泥を実施例1と同じ膜分離化成汚泥装置に4000mL充填し、曝気量9L/分として、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加して、化学工業排水を流速0.42m/日となるよう供給を開始した。このときの膜間差圧は2.3kPaであった。添加後1日目及び14日目の膜間差圧を測定した。それぞれの時点での測定は、圧力センサ((株)キーエンス製、AP−10S(達成圧型))を用いて計測し、各1日での差圧上昇値を24時間で除した値を膜間差圧上昇速度として求めた。
<Example 3>
The activated sludge (pH 6.7) of the same chemical factory wastewater treatment facility of Company A as in Example 1 was collected, and a 0.3 mass% aqueous solution of KP7000 was added at 100 mg / L per activated sludge to concentrate the activated sludge. The deformation rate of sludge was 10%. This activated sludge is filled in 4000 mL of the same membrane-separation conversion sludge apparatus as in Example 1, and an aeration rate of 9 L / min is added, and an aqueous solution of 0.3% by mass of KP7000 is added at 100 mg / L per activated sludge. The supply was started so that the flow rate became 0.42 m / day. The transmembrane pressure difference at this time was 2.3 kPa. The transmembrane pressure difference was measured on day 1 and day 14 after the addition. The measurement at each time point was measured using a pressure sensor (manufactured by Keyence Co., Ltd., AP-10S (achieved pressure type)), and the value obtained by dividing the differential pressure increase in each day by 24 hours was measured between the membranes. It was determined as the differential pressure increase rate.

<実施例4>
KP201Gの0.3質量%の水溶液を活性汚泥全量当たり100mg/L(活性汚泥の濃縮スラッジの変形率20%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
<Example 4>
The same procedure as in Example 1 was performed except that an aqueous solution of 0.3% by mass of KP201G was added at 100 mg / L (total sludge deformation rate of activated sludge of 20%) per activated sludge. The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.

<実施例5>
KA405Dの0.3質量%の水溶液を活性汚泥全量当たり100mg/L(活性汚泥の濃縮スラッジの変形率30%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.2kPaであった。
<Example 5>
The same procedure as in Example 1 was performed, except that 100 mg / L of an aqueous solution of 0.3% by mass of KA405D was added per activated sludge in total (deformation rate of concentrated sludge of activated sludge was 30%). The transmembrane pressure difference when starting the supply of chemical industrial wastewater was 2.2 kPa.

<実施例6>
KP201GおよびKA405Dを0.3質量%の水溶液状を活性汚泥全量当たり各50mg/Lずつ(活性汚泥の濃縮スラッジの変形率25%)順次添加してから、処理水引き抜きを再開した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
<Example 6>
Example: Except that the aqueous solution of 0.3% by mass of KP201G and KA405D was added in an amount of 50 mg / L per activated sludge in total (deformation rate of concentrated sludge of activated sludge was 25%) and then withdrawing of treated water was resumed. 1 was performed. The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.

<比較例4>
水溶性重合体を添加しなかったこと以外は、実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.3kPaであった。しかしながら、14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative example 4>
The same procedure as in Example 1 was performed except that the water-soluble polymer was not added. The transmembrane pressure difference when starting the supply of chemical industrial wastewater was 2.3 kPa. However, since the transmembrane pressure difference became 50 kPa or more before the 14th day and it became impossible to draw a certain amount of treated water, the experiment was stopped.

<実施例7>
水溶性重合体を添加した時の膜間差圧が12.3kPaであったこと以外は実施例3と同様に行った。
<Example 7>
The same operation as in Example 3 was performed except that the transmembrane pressure difference when the water-soluble polymer was added was 12.3 kPa.

<実施例8>
水溶性重合体を添加した時の膜間差圧が12.1kPaであったこと以外は実施例4と同様に行った。
<Example 8>
The same operation as in Example 4 was performed except that the transmembrane pressure difference when the water-soluble polymer was added was 12.1 kPa.

<実施例9>
水溶性重合体を添加した時の膜間差圧が12.2kPaであったこと以外は実施例5と同様に行った。
<Example 9>
The same operation as in Example 5 was conducted except that the transmembrane pressure difference when the water-soluble polymer was added was 12.2 kPa.

<実施例10>
水溶性重合体を添加した時の膜間差圧が12.1kPaであったこと以外は実施例6と同様に行った。
<Example 10>
The same operation as in Example 6 was performed except that the transmembrane pressure difference when the water-soluble polymer was added was 12.1 kPa.

<比較例5>
水溶性重合体を添加しなかったこと以外は、実施例7と同様に行った。膜間差圧が12.3kPaの時から14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative Example 5>
The same procedure as in Example 7 was performed except that the water-soluble polymer was not added. Since the transmembrane pressure difference became 50 kPa or more before the 14th day from the time when the transmembrane pressure difference was 12.3 kPa, and a certain amount of treated water could not be drawn, the experiment was stopped.

Figure 2014166619
Figure 2014166619

曝気槽へ上澄み液中の糖濃度が10mg/L、ろ紙ろ過量が10mLの活性汚泥に水溶性重合体を添加した実施例3〜10では、膜間差圧上昇速度が低く抑えられていた。
また、水溶性重合体としてKP7000を用いた実施例3および実施例7は、水溶性重合体としてKP7000を用いなかった実施例4,5、6、8、9および10よりも、膜間差圧上昇速度が低く、14日目でも差圧は小さかった。
水溶性重合体を添加しなかった比較例4および5では、膜間差圧上昇速度が速かった。
In Examples 3 to 10 in which the water-soluble polymer was added to the activated sludge having a sugar concentration of 10 mg / L in the supernatant liquid in the aeration tank and a filter paper filtration amount of 10 mL, the rate of increase in transmembrane pressure difference was kept low.
In addition, Example 3 and Example 7 using KP7000 as the water-soluble polymer were more transmembrane pressure differential than Examples 4, 5, 6, 8, 9 and 10 where KP7000 was not used as the water-soluble polymer. The rate of rise was low, and the differential pressure was small even on the 14th day.
In Comparative Examples 4 and 5 in which no water-soluble polymer was added, the rate of increase in transmembrane pressure difference was fast.

<実施例11>
実施例1と同じA社の化学工場排水処理設備の活性汚泥(pH6.7)を採取し、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加したところ、活性汚泥の濃縮スラッジの変形率が10%であった。この活性汚泥を実施例1と同じ膜分離化成汚泥装置に4000mL充填し、曝気量9L/分として、化学工業排水を流速0.42m/日となるよう供給を開始した。膜間差圧20kPaとなった時に、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加した。添加後1日目の膜間差圧は43.8kPa、膜間差圧上昇速度は1.2kPa/時であった。次いで、引き抜きを停止し、未閉塞の膜(膜間差圧2.1kPa)に交換後に引き抜きを再開し、添加後2日目および膜交換後17日目の膜間差圧上昇速度を測定すると、それぞれ0.015kPa/時、0.025kPa/時と低く抑えられていた。
<Example 11>
The activated sludge (pH 6.7) of the same chemical factory wastewater treatment facility of Company A as in Example 1 was collected, and a 0.3 mass% aqueous solution of KP7000 was added at 100 mg / L per activated sludge to concentrate the activated sludge. The deformation rate of sludge was 10%. The activated sludge was charged in 4000 mL of the same membrane separation chemical sludge apparatus as in Example 1, and the supply of chemical industrial wastewater was started at a flow rate of 0.42 m / day with an aeration rate of 9 L / min. When the transmembrane pressure difference reached 20 kPa, a 0.3 mass% aqueous solution of KP7000 was added at 100 mg / L per activated sludge. On the first day after the addition, the transmembrane pressure difference was 43.8 kPa, and the transmembrane pressure increase rate was 1.2 kPa / hour. Next, when the drawing is stopped, the drawing is resumed after replacement with an unoccluded membrane (transmembrane pressure difference 2.1 kPa), and the rate of increase in transmembrane pressure difference is measured on the second day after addition and on the 17th day after membrane exchange. , Respectively, were kept low at 0.015 kPa / hour and 0.025 kPa / hour.

<比較例6>
水溶性重合体を添加後1日目に膜を交換しなかったこと以外は、実施例11と同様に行った。しかしながら、添加後1日目以降に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative Example 6>
The same procedure as in Example 11 was performed except that the membrane was not changed on the first day after the addition of the water-soluble polymer. However, the experiment was stopped because the transmembrane pressure difference became 50 kPa or more after the first day after the addition, and it became impossible to draw a certain amount of treated water.

Figure 2014166619
Figure 2014166619

曝気槽の糖濃度が10mg/L、ろ紙ろ過量が10mLとなった活性汚泥に未洗浄の膜で水溶性重合体の添加を行った実施例7では、添加後1日目まで膜間差圧上昇速度が速かったが、未閉塞の膜に交換すると、交換後17日目でも、膜間差圧上昇速度が低く抑えられた。
一方、曝気槽への水溶性重合体を添加したが、膜を交換せずに継続した比較例3では、膜間差圧上昇速度が速かった。
In Example 7 in which the water-soluble polymer was added to the activated sludge having a sugar concentration of 10 mg / L in the aeration tank and the filter paper filtration amount to 10 mL with an unwashed membrane, the transmembrane pressure difference until the first day after the addition. Although the rate of increase was fast, when the membrane was replaced with an unoccluded membrane, the rate of increase in transmembrane pressure difference was kept low even on the 17th day after the replacement.
On the other hand, although the water-soluble polymer was added to the aeration tank, the rate of increase in the transmembrane pressure difference was high in Comparative Example 3 which was continued without replacing the membrane.

<実施例12>
MLSSが4000mg/L、糖濃度15mg/L、ろ紙ろ過量が5mL/5分のB社の化学工場排水処理設備の活性汚泥(pH6.7)を採取し、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加したところ、活性汚泥の濃縮スラッジの変形率が15%であった。この活性汚泥を実施例1と同じ膜分離化成汚泥装置に4000mL充填し、曝気量9L/分として、KP7000の0.3質量%の水溶液を活性汚泥全量当たり100mg/L添加して、化学工業排水を流速0.42m/日となるよう供給を開始した。このときの膜間差圧は2.3kPaであった。添加後1日目及び14日目の膜間差圧を測定した。
<Example 12>
Activated sludge (pH 6.7) of wastewater treatment equipment of company B with MLSS of 4000 mg / L, sugar concentration of 15 mg / L, and filter paper filtration amount of 5 mL / 5 min. Was added at 100 mg / L per activated sludge, and the deformation rate of the concentrated sludge of activated sludge was 15%. This activated sludge is filled in 4000 mL of the same membrane-separation conversion sludge apparatus as in Example 1, and an aeration rate of 9 L / min is added, and an aqueous solution of 0.3% by mass of KP7000 is added at 100 mg / L per activated sludge. The supply was started so that the flow rate became 0.42 m / day. The transmembrane pressure difference at this time was 2.3 kPa. The transmembrane pressure difference was measured on day 1 and day 14 after the addition.

<実施例13>
KP201Gの0.3質量%の水溶液を活性汚泥全量当たり100mg/L(活性汚泥の濃縮スラッジの変形率20%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.2kPaであった。
<Example 13>
The same procedure as in Example 1 was performed except that an aqueous solution of 0.3% by mass of KP201G was added at 100 mg / L (total sludge deformation rate of activated sludge of 20%) per activated sludge. The transmembrane pressure difference when starting the supply of chemical industrial wastewater was 2.2 kPa.

<実施例14>
KA405Dの0.3質量%の水溶液を活性汚泥全量当たり100mg/L(活性汚泥の濃縮スラッジの変形率30%)添加した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
<Example 14>
The same procedure as in Example 1 was performed, except that 100 mg / L of an aqueous solution of 0.3% by mass of KA405D was added per activated sludge in total (deformation rate of concentrated sludge of activated sludge was 30%). The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.

<実施例15>
KP201GおよびKA405Dを0.3質量%の水溶液状を活性汚泥全量当たり各50mg/Lずつ(活性汚泥の濃縮スラッジの変形率25%)順次添加してから、処理水引き抜きを再開した以外は実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.1kPaであった。
<Example 15>
Example: Except that the aqueous solution of 0.3% by mass of KP201G and KA405D was added in an amount of 50 mg / L per activated sludge in total (deformation rate of concentrated sludge of activated sludge was 25%) and then withdrawing of treated water was resumed. 1 was performed. The transmembrane pressure difference when the supply of chemical industrial wastewater was started was 2.1 kPa.

<比較例7>
水溶性重合体を添加しなかったこと以外は、実施例1と同様に行った。化学工業排水の供給を開始した時の膜間差圧は2.4kPaであった。しかしながら、14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative Example 7>
The same procedure as in Example 1 was performed except that the water-soluble polymer was not added. The transmembrane pressure difference when starting the supply of chemical industrial wastewater was 2.4 kPa. However, since the transmembrane pressure difference became 50 kPa or more before the 14th day and it became impossible to draw a certain amount of treated water, the experiment was stopped.

<実施例16>
水溶性重合体を添加した時の膜間差圧が12.3kPaであったこと以外は実施例3と同様に行った。
<Example 16>
The same operation as in Example 3 was performed except that the transmembrane pressure difference when the water-soluble polymer was added was 12.3 kPa.

<実施例17>
水溶性重合体を添加した時の膜間差圧が12.2kPaであったこと以外は実施例3と同様に行った。
<Example 17>
The same operation as in Example 3 was performed except that the transmembrane pressure difference when the water-soluble polymer was added was 12.2 kPa.

<実施例18>
水溶性重合体を添加した時の膜間差圧が12.1kPaであったこと以外は実施例3と同様に行った。
<Example 18>
The same operation as in Example 3 was performed except that the transmembrane pressure difference when the water-soluble polymer was added was 12.1 kPa.

<実施例19>
水溶性重合体を添加した時の膜間差圧が膜間差圧は12.1kPaであったこと以外は実施例3と同様に行った。
<Example 19>
The transmembrane differential pressure when the water-soluble polymer was added was the same as in Example 3 except that the transmembrane differential pressure was 12.1 kPa.

<比較例8>
水溶性重合体を添加しなかったこと以外は、実施例1と同様に行った。膜間差圧が12.4kPaの時から14日目よりも前に膜間差圧が50kPa以上となり、一定量の処理水の引抜きが不可能となったため実験を中止した。
<Comparative Example 8>
The same procedure as in Example 1 was performed except that the water-soluble polymer was not added. Since the transmembrane pressure difference became 50 kPa or more before the 14th day from the time when the transmembrane pressure difference was 12.4 kPa, and a certain amount of treated water could not be drawn, the experiment was stopped.

曝気槽へ上澄み液中の糖濃度が15mg/L、ろ紙ろ過量が5mLの活性汚泥に水溶性重合体を添加した後、未閉塞の膜に交換して行った実施例12から19では、膜間差圧上昇速度が低く抑えられていた。
また、水溶性重合体としてKP7000を用いた実施例12および実施例16は、水溶性重合体としてKP7000を用いなかった実施例13,14、15、17、18および19よりも、膜間差圧上昇速度が低く、14日目でも差圧は小さかった。
水溶性重合体を添加しなかった比較例7および8では、膜間差圧上昇速度が速かった。
In Examples 12 to 19, the water-soluble polymer was added to the activated sludge having a sugar concentration of 15 mg / L in the supernatant and the filtration amount of the filter paper to 5 mL, and then replaced with an unoccluded membrane. The differential pressure increase rate was kept low.
In addition, Example 12 and Example 16 using KP7000 as the water-soluble polymer were more transmembrane differential pressures than Examples 13, 14, 15, 17, 18, and 19 where KP7000 was not used as the water-soluble polymer. The rate of rise was low, and the differential pressure was small even on the 14th day.
In Comparative Examples 7 and 8 in which no water-soluble polymer was added, the rate of increase in transmembrane pressure difference was fast.

Figure 2014166619
Figure 2014166619

Claims (2)

被処理水を導入し該被処理水の有機物を活性汚泥と共に曝気処理し、凝集剤の添加された活性汚泥混合液を分離膜で固液分離する機能を備えた膜分離活性汚泥装置において、吸引ポンプによって分離膜に与えられる膜間差圧の上昇を抑制する方法であって、未使用の分離膜および洗浄により未使用時の初期膜間差圧+10kPa以下の分離膜を用い、分離膜で分離される以下の測定方法で求められる濃縮スラッジの変形率が30%以下となるようにカチオン性重合体および両性重合体の少なくとも一方の水溶性重合体を膜分離活性汚泥装置に添加することを特徴とする、膜分離活性汚泥装置における膜間差圧の上昇を抑制する方法。
<濃縮スラッジの変形率の測定方法>
水溶性重合体を添加し混合した汚泥300mLを48メッシュのナイロン製のろ布の上に載せた内径が36mmからなる透明なろ過筒でろ過する。ろ液が無くなったときのスラッジの高さをAcmとし、ろ過筒を取り除いた後のスラッジの高さをBcmとし、以下の式により変形率を求める。
濃縮スラッジ変形率(%)=(1−B/A)×100
In a membrane separation activated sludge apparatus equipped with a function of introducing treated water, aeration treatment of the organic matter of the treated water together with activated sludge, and solid-liquid separation of the activated sludge mixed liquid added with the flocculant with a separation membrane, suction This is a method to suppress the increase in transmembrane pressure applied to the separation membrane by the pump, using an unused separation membrane and a separation membrane with an initial membrane differential pressure of 10 kPa or less when not used by washing, and separating with the separation membrane A water-soluble polymer of at least one of a cationic polymer and an amphoteric polymer is added to the membrane separation activated sludge apparatus so that the deformation rate of the concentrated sludge required by the following measurement method is 30% or less. The method of suppressing the raise of the transmembrane differential pressure in a membrane separation activated sludge apparatus.
<Method for measuring deformation rate of concentrated sludge>
300 mL of sludge mixed with a water-soluble polymer is mixed with a transparent filter cylinder having an inner diameter of 36 mm placed on a 48 mesh nylon filter cloth. The sludge height when the filtrate runs out is Acm, the sludge height after removing the filter cylinder is Bcm, and the deformation rate is obtained by the following equation.
Concentrated sludge deformation rate (%) = (1−B / A) × 100
前記カチオン性重合体が、下記一般式(1)及びまたは下記一般式(2)で表されるアミジン構造単位を有するカチオン性重合体であることを特徴とする請求項1に記載の水溶性重合体の添加方法。
Figure 2014166619
[一般式(1)、(2)中、R〜Rは各々独立して水素原子またはメチル基である。X、Yは各々陰イオンである。]
The water-soluble heavy polymer according to claim 1, wherein the cationic polymer is a cationic polymer having an amidine structural unit represented by the following general formula (1) and / or the following general formula (2). How to add coalescence.
Figure 2014166619
[In General Formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom or a methyl group. X and Y are each an anion. ]
JP2013039628A 2013-02-28 2013-02-28 Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus Active JP6142574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039628A JP6142574B2 (en) 2013-02-28 2013-02-28 Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039628A JP6142574B2 (en) 2013-02-28 2013-02-28 Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus

Publications (2)

Publication Number Publication Date
JP2014166619A true JP2014166619A (en) 2014-09-11
JP6142574B2 JP6142574B2 (en) 2017-06-07

Family

ID=51616627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039628A Active JP6142574B2 (en) 2013-02-28 2013-02-28 Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus

Country Status (1)

Country Link
JP (1) JP6142574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243600A (en) * 1995-03-13 1996-09-24 Hymo Corp Polymer flocculant
JPH10277550A (en) * 1997-04-10 1998-10-20 Mitsubishi Rayon Co Ltd Sludge thickening method and sludge thickening system
JPH1157739A (en) * 1997-08-25 1999-03-02 Hitachi Ltd Water purifying method
JP2003260486A (en) * 2002-03-11 2003-09-16 Nippon Steel Corp Sewage treatment method
JP2006320794A (en) * 2005-05-17 2006-11-30 Hitachi Ltd Water purifying facilities and their operation method
JP2008168199A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Membrane separation activated sludge apparatus and its operation method
JP2008229613A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Wastewater treatment method
JP2010503527A (en) * 2006-09-13 2010-02-04 ナルコ カンパニー Method for improving membrane bioreactor performance
JP2010207752A (en) * 2009-03-11 2010-09-24 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
WO2011016482A1 (en) * 2009-08-05 2011-02-10 ダイヤニトリックス株式会社 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP2012120936A (en) * 2010-12-06 2012-06-28 Swing Corp Washing method of membrane filter, and cleaning equipment for the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243600A (en) * 1995-03-13 1996-09-24 Hymo Corp Polymer flocculant
JPH10277550A (en) * 1997-04-10 1998-10-20 Mitsubishi Rayon Co Ltd Sludge thickening method and sludge thickening system
JPH1157739A (en) * 1997-08-25 1999-03-02 Hitachi Ltd Water purifying method
JP2003260486A (en) * 2002-03-11 2003-09-16 Nippon Steel Corp Sewage treatment method
JP2006320794A (en) * 2005-05-17 2006-11-30 Hitachi Ltd Water purifying facilities and their operation method
JP2010503527A (en) * 2006-09-13 2010-02-04 ナルコ カンパニー Method for improving membrane bioreactor performance
JP2008168199A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Membrane separation activated sludge apparatus and its operation method
JP2008229613A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Wastewater treatment method
JP2010207752A (en) * 2009-03-11 2010-09-24 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
WO2011016482A1 (en) * 2009-08-05 2011-02-10 ダイヤニトリックス株式会社 Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP2012120936A (en) * 2010-12-06 2012-06-28 Swing Corp Washing method of membrane filter, and cleaning equipment for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment

Also Published As

Publication number Publication date
JP6142574B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
RU2429901C2 (en) Method of increasing efficiency of membrane ultrafiltration or microfiltration in rinsing water treatment
HU228884B1 (en) Method of using water soluble polymers in a membrane biological reactor
JP2012508091A (en) Method for conditioning a mixed liquid using a tannin-containing polymer
US20120255903A1 (en) Non-woven membrane bioreactor and its fouling control method
JP2016026238A (en) Vinyl chloride-based resin, vinyl chloride-based resin solution and production method of the same
MX2008015301A (en) Method of improving performance of ultrafiltration or microfiltration membrane process in landfill leachate treatment.
JP5282864B2 (en) Membrane separation method and membrane separation apparatus
JP5672447B2 (en) Filtration device and water treatment device
JP6142574B2 (en) Method for suppressing increase of transmembrane pressure difference in membrane activated sludge apparatus
WO2014034845A1 (en) Water production method
WO2019008822A1 (en) Water treatment method and water treatment device
JP6115017B2 (en) Water treatment method
JP6303945B2 (en) Solid-liquid separation method in membrane separation activated sludge treatment
WO2011016482A1 (en) Method for removing substance causative of flow velocity decrease in membrane-separation activated-sludge process
JP2011206750A (en) Water treatment method and water treatment apparatus
JP6467886B2 (en) Waste water treatment method and waste water treatment system
JP2019188338A (en) Water treatment method and water treatment apparatus
WO2016066633A1 (en) New filtration processes
JP2003103289A (en) Wastewater treatment method
JP2016093789A (en) Water treatment method and water treatment system
JP2014046235A (en) Fresh water generating method
JP6825318B2 (en) Water treatment equipment and water treatment method
CN201660515U (en) Anti-penetration equipment with resin softening device
JP2005111404A (en) Flocculating/filtering method
JP2007007490A (en) Porous membrane, its manufacturing method, and repairing method of porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R151 Written notification of patent or utility model registration

Ref document number: 6142574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151