JP2008229613A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2008229613A
JP2008229613A JP2008017273A JP2008017273A JP2008229613A JP 2008229613 A JP2008229613 A JP 2008229613A JP 2008017273 A JP2008017273 A JP 2008017273A JP 2008017273 A JP2008017273 A JP 2008017273A JP 2008229613 A JP2008229613 A JP 2008229613A
Authority
JP
Japan
Prior art keywords
membrane
flocculant
activated sludge
amount
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008017273A
Other languages
Japanese (ja)
Other versions
JP2008229613A5 (en
JP5163152B2 (en
Inventor
Tsuguhito Itou
世人 伊藤
Atsushi Okabe
淳 岡部
Toshio Otake
要生 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008017273A priority Critical patent/JP5163152B2/en
Publication of JP2008229613A publication Critical patent/JP2008229613A/en
Publication of JP2008229613A5 publication Critical patent/JP2008229613A5/ja
Application granted granted Critical
Publication of JP5163152B2 publication Critical patent/JP5163152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of making the most of the application effect of a flocculant, that is, a technology which can maintain the differential pressure of a membrane stably for a longer time continuously with the same amount of flocculant and keep the risk of membrane function deterioration smaller and, to provide a technology which can reduce the adding amount of the flocculant if it is permissible to have the same degree of an operation risk. <P>SOLUTION: In a wastewater treatment method by a membrane-separation activated sludge method, the membrane is anionic, and a cationic polymetric flocculant is added to the activated sludge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は膜分離活性汚泥法による廃水処理方法に関する。   The present invention relates to a wastewater treatment method using a membrane separation activated sludge method.

近年、処理水質の向上、水の再利用のし易さ、余剰汚泥発生量の低減などの観点から、都市下水や食品、化学、電気電子などの事業場で発生する有機性廃水の処理法として膜分離活性汚泥法が注目されている。ここで、活性汚泥の固液分離用の膜としては、精密ろ過膜、限界ろ過膜が主に用いられ、平膜、中空糸膜あるいは管状膜の形で使用されている。   In recent years, from the viewpoint of improving the quality of treated water, ease of reusing water, and reducing the amount of excess sludge generated, as a method for treating organic wastewater generated at business sites such as municipal sewage, food, chemistry, and electrical / electronics Membrane separation activated sludge method is attracting attention. Here, as membranes for solid-liquid separation of activated sludge, microfiltration membranes and ultrafiltration membranes are mainly used, and they are used in the form of flat membranes, hollow fiber membranes or tubular membranes.

ここで、活性汚泥は、高分子多糖類やタンパク質などから構成される有機ゲル状物質を多く含むため、活性汚泥を膜でろ過する場合は、膜の目詰まり、膜表面への汚れの付着、あるいは、膜間に汚泥が堆積・保持される等の理由で性能低下が生じ易い。これを防止する目的で、膜分離装置の下方に散気装置を設け粗大気泡を散気しながらろ過を行う方法(特許文献1)や、膜透過液を用いて逆洗する方法(特許文献2)など、膜面洗浄を行いながら運転を効率的に行う方法が提案され、広く採用されている。   Here, activated sludge contains a lot of organic gel-like substances composed of polymer polysaccharides, proteins, etc., so when filtering activated sludge with a membrane, the membrane is clogged, dirt adheres to the membrane surface, Alternatively, performance degradation is likely to occur due to sludge accumulation and retention between the membranes. For the purpose of preventing this, a method of performing a filtration with a diffuser provided below the membrane separation device while aeration of coarse bubbles (Patent Document 1) and a method of backwashing using a membrane permeate (Patent Document 2) ) And the like, and a method for efficiently performing the operation while cleaning the membrane surface has been proposed and widely adopted.

しかるに、廃水処理の場合、処理条件は一定ではなく、廃水の水質、水量、水温などの変動がある。また、負荷変動が大きい場合など条件によっては活性汚泥のろ過性が悪化することがある。このような、水量の一時的な増加や、活性汚泥のろ過性が悪化した場合には、前述の物理的な膜面洗浄法だけを用いても、比較的短時間の運転で差圧が増加しやすく、頻繁な薬洗が必要になるなどの事態に至り、装置効率の高い運転を行うことが困難となる。このような場面に適用可能な有効な技術として、活性汚泥に凝集剤を添加し、ろ過性を改善する方法(特許文献3)が提案され、低水温時に活性汚泥のろ過性が悪化する場合や、降雨後のピークフロー対策等で利用されている。
:特開2001−212587号公報 :特開平8−243577号公報 :特開2007−727号公報
However, in the case of wastewater treatment, the treatment conditions are not constant, and there are fluctuations in the quality of the wastewater, the amount of water, the water temperature, and the like. Moreover, depending on conditions, such as when load fluctuation is large, the filterability of activated sludge may deteriorate. When the amount of water temporarily increases or the filterability of activated sludge deteriorates, the differential pressure increases in a relatively short operation even if only the above-mentioned physical membrane cleaning method is used. This leads to a situation where frequent chemical washing is required, and it becomes difficult to operate with high device efficiency. As an effective technique applicable to such a situation, a method (Patent Document 3) for improving the filterability by adding a flocculant to the activated sludge has been proposed, and when the filterability of the activated sludge deteriorates at low water temperature, It is used for peak flow countermeasures after rainfall.
: Japanese Patent Application Laid-Open No. 2001-212587 : JP-A-8-243577 : JP 2007-727 A

活性汚泥に凝集剤を添加する方法は、非常に有効な技術ではあるが、様々な制約があり、凝集剤を添加しても短時間で膜の差圧が上昇し、性能低下を阻止できない場合がある。また、凝集剤の添加は、廃水処理コストの増加に直結するため、凝集剤添加の効果がより発揮される技術が望まれている。   The method of adding a flocculant to activated sludge is a very effective technology, but there are various limitations, and even if a flocculant is added, the differential pressure of the membrane rises in a short time, and it is not possible to prevent performance degradation There is. Moreover, since the addition of the flocculant directly leads to an increase in wastewater treatment cost, a technique that can further enhance the effect of adding the flocculant is desired.

本発明は、凝集剤の適用効果を最大限発揮させる方法を提供することにある。すなわち、同量の凝集剤で膜の差圧をより長時間連続的に安定に維持可能にし、膜性能低下のリスクが少ない技術を提供することにある。膜性能低下のリスクが同程度であることを許容できる場合は、凝集剤添加量を低減可能な技術を提供することにある。   An object of the present invention is to provide a method for maximizing the application effect of a flocculant. That is, it is to provide a technique with which the differential pressure of the membrane can be stably maintained for a longer period of time with the same amount of the flocculant, and the risk of membrane performance degradation is reduced. When it is acceptable that the risk of film performance degradation is comparable, the object is to provide a technique capable of reducing the amount of flocculant added.

本発明は、膜分離活性汚泥法による廃水処理方法において、膜がアニオン性であり、活性汚泥にカチオン性高分子凝集剤を添加することを特徴とする廃水処理方法である。   The present invention is a wastewater treatment method using a membrane separation activated sludge method, wherein the membrane is anionic and a cationic polymer flocculant is added to the activated sludge.

膜分離活性汚泥法による廃水処理方法とは異なるが、アニオン性の架橋芳香族ポリアミド逆浸透膜にカチオン系凝集剤を添加した場合に膜がケミカルファウリングを起こすことが知られており、アニオン性の膜を使用した膜分離活性汚泥法の活性汚泥にカチオン性高分子凝集剤を添加することは、同様の弊害を生じることが想定される。よって、膜分離活性汚泥法よる廃水処理方法において、アニオン性膜を用いることや、カチオン性高分子凝集剤を添加することは、それぞれ公知であるが、これらの技術を結合させることが試みられることはなかった。   Although it is different from the wastewater treatment method by the membrane separation activated sludge method, it is known that when a cationic flocculant is added to an anionic crosslinked aromatic polyamide reverse osmosis membrane, the membrane causes chemical fouling. It is assumed that the addition of a cationic polymer flocculant to the activated sludge of the membrane separation activated sludge method using the above membrane causes the same harmful effect. Therefore, it is known to use an anionic membrane and to add a cationic polymer flocculant in the wastewater treatment method by the membrane separation activated sludge method, but it is attempted to combine these technologies. There was no.

しかし発明者らは、膜分離活性汚泥法による廃水処理方法において、膜がアニオン性であり、活性汚泥にカチオン性高分子凝集剤を添加しても、上記の弊害を生じさせることなく、さらに、膜性能低下のリスクが少なく、凝集剤の適用効果を最大限発揮させることを見出した。   However, the inventors, in the wastewater treatment method by the membrane separation activated sludge method, the membrane is anionic, and even if a cationic polymer flocculant is added to the activated sludge, without causing the above-described adverse effects, It has been found that there is little risk of film performance degradation and the effect of application of the flocculant is maximized.

膜分離活性汚泥法による廃水処理方法において、膜として、疎水性、中性親水性やカチオン性の膜ではなく、アニオン性の膜を使用する場合において、カチオン性高分子凝集剤を用いることでろ過性能が向上する機構は以下の理由によると考えられる(図5)。すなわち、マイナス荷電を帯びている活性汚泥のフロックが、カチオン性高分子凝集剤の添加でサイズが増加する際、凝集剤と結合した部分のマイナス荷電は中和されるが、依然として凝集剤が結合していないマイナス領域が存在し、フロック一塊りとしてのマイナスの荷電量が大幅に増加する。それに伴い、膜のアニオン基とのフロックの間での働くクーロン斥力も大幅に増加するため、カチオン性凝集剤で凝集したフロックは、アニオン膜に対して凝集前の状態より顕著に付着しにくくなり、ろ過抵抗が低い、すなわち、フラックスが高い条件での運転が可能となる(図5)。   When using an anionic membrane instead of a hydrophobic, neutral hydrophilic or cationic membrane as a membrane in a wastewater treatment method using a membrane separation activated sludge method, filtration is performed by using a cationic polymer flocculant. The mechanism that improves the performance is considered to be due to the following reason (FIG. 5). That is, when the activated sludge flocs, which are negatively charged, are increased in size by the addition of the cationic polymer flocculant, the negative charge of the part that has bound to the flocculant is neutralized, but the flocculant is still bound. There is a negative region that is not, and the amount of negative charge as a block of flocs is greatly increased. Along with this, the Coulomb repulsive force acting between the flocs with the anion groups of the membrane greatly increases, so that the flocs aggregated with the cationic flocculant are significantly less likely to adhere to the anion membrane than before the aggregation. The operation under the condition of low filtration resistance, that is, high flux becomes possible (FIG. 5).

本発明により、カチオン性高分子凝集剤の適用効果を最大限発揮させることが可能になる。すなわち、同量の凝集剤で膜の差圧をより長時間連続的に安定に維持することが可能となり、膜性能低下のリスクがより少ない運転が可能となる。また、運転リスクが同程度であることを許容できる場合は、カチオン性高分子凝集剤使用量の低減が可能になり、コスト低減につながる。   According to the present invention, it is possible to maximize the application effect of the cationic polymer flocculant. That is, with the same amount of the flocculant, the differential pressure of the membrane can be maintained stably for a longer period of time, and operation with less risk of membrane performance degradation is possible. In addition, when the operation risk can be allowed to be the same level, the amount of the cationic polymer flocculant used can be reduced, leading to cost reduction.

本発明の処理方法により処理される廃水としては、都市下水、生活排水や、化学工場、食品工場などから排出される有機物に富んだ有機性廃水に対して好適に用いることができる。図1に、本発明の廃水処理方法を採用した装置概念図の一例を示す。   As wastewater treated by the treatment method of the present invention, it can be suitably used for organic wastewater rich in organic matter discharged from municipal sewage, domestic wastewater, chemical factories, food factories and the like. In FIG. 1, an example of the apparatus conceptual diagram which employ | adopted the wastewater treatment method of this invention is shown.

図1に示す処理装置は、活性汚泥を収容し生物処理を行う曝気槽1と、その曝気槽1に廃水を供給する原液供給ポンプ4と、生物処理された処理液を固液分離する膜分離装置2と、固液分離の際に分離液を吸引する吸引ポンプ3と、余剰汚泥を引き抜く汚泥引き抜きポンプ7、カチオン性高分子凝集剤供給ライン8とを備えている。膜分離装置2は、曝気槽1内の液に浸漬されており、その膜分離装置2の下方には、酸素を供給し、好気処理を進行させるとともに、膜面の洗浄を行うブロワー6に接続された散気装置5が設けられている。膜分離装置2が収容された曝気槽1以外に、別の生物処理槽、例えば、嫌気槽、無酸素槽、好気処理槽などを独立に設けていても良い。   The treatment apparatus shown in FIG. 1 contains an aeration tank 1 that contains activated sludge and performs biological treatment, a stock solution supply pump 4 that supplies wastewater to the aeration tank 1, and membrane separation that separates the biologically treated treatment liquid into solid and liquid. The apparatus 2 includes a suction pump 3 that sucks a separation liquid during solid-liquid separation, a sludge extraction pump 7 that extracts excess sludge, and a cationic polymer flocculant supply line 8. The membrane separation device 2 is immersed in the liquid in the aeration tank 1, and oxygen is supplied below the membrane separation device 2 to advance the aerobic treatment and to the blower 6 for cleaning the membrane surface. A connected aeration device 5 is provided. In addition to the aeration tank 1 in which the membrane separation device 2 is accommodated, another biological treatment tank, for example, an anaerobic tank, an oxygen-free tank, an aerobic treatment tank, and the like may be provided independently.

ここで、筆者らは、膜分離装置2で使用する膜として、アニオン性膜を用いると、高分子カチオン凝集剤添加時のろ過運転が効率化することを見出した。   Here, the authors have found that when an anionic membrane is used as the membrane used in the membrane separation device 2, the filtration operation when the polymer cation flocculant is added becomes efficient.

本発明におけるアニオン性膜とは、アニオン性樹脂を含む膜である。アニオン性樹脂とは特に限定しないが、エチレン不飽和カルボン酸樹脂やエチレン不飽和スルホン酸樹脂、エチレン不飽和ホスホン酸樹脂があげられる。   The anionic membrane in the present invention is a membrane containing an anionic resin. Although it does not specifically limit with anionic resin, Ethylene unsaturated carboxylic acid resin, ethylene unsaturated sulfonic acid resin, and ethylene unsaturated phosphonic acid resin are mention | raise | lifted.

ここで、膜内におけるアニオン性樹脂の含有量が高いほど細胞浮遊液に対し目詰まりを抑制できると考えられるが、高すぎる場合にはアニオン性樹脂が水中へ溶出し膜の耐久性および除去性能が低下する。下限についてはアニオン性樹脂の種類にもよるが、アニオン性樹脂が膜中に1重量%以上、好ましくは1.5重量%以上含まれていることで本発明の性能を発現することができる。アニオン性樹脂の含有量とは、製膜後の膜中アニオン性樹脂成分の含有量を仕込み組成から計算したものであり、製膜時に溶出する溶媒、界面活性剤、その他溶媒等は製膜後の膜に含まないものとする。   Here, it is thought that the higher the content of anionic resin in the membrane, the more clogging can be suppressed with respect to the cell suspension, but if it is too high, the anionic resin will elute into the water and the durability and removal performance of the membrane Decreases. Although the lower limit depends on the type of anionic resin, the performance of the present invention can be exhibited when the anionic resin is contained in the film in an amount of 1% by weight or more, preferably 1.5% by weight or more. The anionic resin content is calculated from the charged composition of the anionic resin component in the film after film formation. Solvents, surfactants and other solvents that are eluted during film formation are the values after film formation. It is not included in the film.

エチレン不飽和カルボン酸樹脂としては、例えばアクリル酸樹脂、メタクリル酸樹脂、クロトン酸樹脂、α−メチルクロトン酸樹脂、ヘキセン酸樹脂、イタコン酸樹脂等が挙げられる。エチレン不飽和スルホン酸樹脂としては、例えばスチレンスルホン酸樹脂、アクリルスルホン酸樹脂、メタアクリルスルホン酸樹脂、ビニルスルホン酸樹脂、2−アクリルアミド−2−メチルプロパンスルホン酸樹脂等が挙げられる。エチレン不飽和ホスホン酸樹脂としては、例えばビニルホスホン酸樹脂およびビニルフェニルホスホン酸樹脂等が挙げられる。 本発明の多孔質膜は、平膜であっても中空糸膜であっても良い。   Examples of the ethylenically unsaturated carboxylic acid resin include acrylic acid resin, methacrylic acid resin, crotonic acid resin, α-methylcrotonic acid resin, hexenoic acid resin, and itaconic acid resin. Examples of the ethylenically unsaturated sulfonic acid resin include styrene sulfonic acid resin, acrylic sulfonic acid resin, methacryl sulfonic acid resin, vinyl sulfonic acid resin, and 2-acrylamido-2-methylpropane sulfonic acid resin. Examples of the ethylenically unsaturated phosphonic acid resin include vinyl phosphonic acid resin and vinyl phenyl phosphonic acid resin. The porous membrane of the present invention may be a flat membrane or a hollow fiber membrane.

膜の平均細孔径は、0.01μm以上3μm未満が好ましい。平均孔径は、小さすぎると、膜自体のろ過抵抗が高くなり、透水性が損なわれるため、好ましくない。また、他方、孔径が大きすぎると活性汚泥を完全に分離することができなくなり、透過液の水質が悪化するため、好ましくない。   The average pore diameter of the membrane is preferably 0.01 μm or more and less than 3 μm. If the average pore diameter is too small, the filtration resistance of the membrane itself is increased, and the water permeability is impaired. On the other hand, if the pore diameter is too large, the activated sludge cannot be completely separated, and the water quality of the permeate is deteriorated.

本発明で用いるカチオン性高分子凝集剤は、特に限定されるものではなく、メーカーからカチオン性高分子凝集剤として市販されているものの中から、任意に、あるいは、予備試験などを行い、ジャーテストなどによりフロック形成能に優れたものを選択し、用いればよい。代表的なカチオン性高分子凝集剤としては、(メタ)アクリル酸エステル系高分子凝集剤を挙げることができる。   The cationic polymer flocculant used in the present invention is not particularly limited, and the jar test is performed arbitrarily or from a preliminary test, etc., from among those commercially available as cationic polymer flocculants from the manufacturer. A material having excellent floc-forming ability may be selected and used. Representative cationic polymer flocculants include (meth) acrylic acid ester polymer flocculants.

カチオン性高分子凝集剤は、廃水の水量ではなく、活性汚泥の固形分重量を元に添加量を決定する。添加量は、活性汚泥の性状にもよるが、初回の添加時は、曝気槽の全固形分の100重量部に対して、0.05〜2重量部となる量を添加することが好ましいが、0.05重量部未満では、活性汚泥の凝集によるフロック形成が不十分であり、本発明の効果を発揮しきれない。他方、2重量部以上添加しても、活性汚泥の凝集力にあまり効果はなく、カチオン性高分子凝集剤の使用コストが高くつくので好ましくなく、また、過剰なカチオン性高分子凝集剤がアニオン膜を直接汚染させる可能性があり、好ましくない。現場の活性汚泥に合ったカチオン性高分子凝集剤の最適な添加量は、ろ過テストやろ液の有機物濃度や濁度などの指標を元に定期的に把握しておくことが好ましい。例えば、一定液量(例えば50ml)の活性汚泥をろ紙を用いてろ過し、一定時間後(例えば5分後)のろ過液量が最大になるときのカチオン性高分子凝集剤添加量がX重量部である場合、0.05X〜1.5X重量部を好適な添加量の目安として挙げることができる。   The addition amount of the cationic polymer flocculant is determined based on the solid content weight of the activated sludge, not the amount of waste water. Although the addition amount depends on the properties of the activated sludge, it is preferable to add 0.05 to 2 parts by weight with respect to 100 parts by weight of the total solid content of the aeration tank at the first addition. If the amount is less than 0.05 parts by weight, floc formation due to agglomeration of activated sludge is insufficient, and the effects of the present invention cannot be fully achieved. On the other hand, addition of 2 parts by weight or more is not preferable because it does not have much effect on the coagulation force of activated sludge and the use cost of the cationic polymer flocculant is high, and excessive cationic polymer flocculant is an anion. This may cause direct contamination of the membrane, which is not preferred. It is preferable that the optimum addition amount of the cationic polymer flocculant suitable for the activated sludge on site is periodically grasped based on an index such as filtration test or organic matter concentration or turbidity of the filtrate. For example, when the activated sludge of a certain amount (for example, 50 ml) is filtered using a filter paper, the amount of the cationic polymer flocculant added when the amount of the filtrate after a certain time (for example, after 5 minutes) becomes maximum is X weight. In the case of parts, 0.05X to 1.5X parts by weight can be mentioned as a guideline for suitable addition amount.

活性汚泥を余剰汚泥として曝気槽から排出した際には、次の汚泥排出までに増加する活性汚泥の固形分量を算出し、活性汚泥の固形分量100重量部に対して好適な量のカチオン性高分子凝集剤を添加すればよい。汚泥滞留時間の長い系では、カチオン性高分子凝集剤の中に分解を受けると考えられるものもある。この場合は、活性汚泥の増加分に対して必要な量の他に、添加時点における曝気槽の全固形分の重量部に対して、前回加えられた凝集剤の分解分を考慮し、その分を補充する量をたし合わせた量を添加することが好ましい。   When activated sludge is discharged from the aeration tank as surplus sludge, the solid content of activated sludge that increases until the next sludge discharge is calculated, and a suitable amount of cationic high sludge is added to 100 parts by weight of the solid content of activated sludge. A molecular flocculant may be added. In systems with a long sludge residence time, some cationic polymer flocculants are considered to be decomposed. In this case, in addition to the amount necessary for the increased amount of activated sludge, the decomposition amount of the flocculant added last time is taken into account for the weight part of the total solid content of the aeration tank at the time of addition. It is preferable to add an amount to which the amount to be replenished is added.

以下実施例をもって本発明をさらに具体的に説明する。ただし、本発明はこれにより限定されるものではない。
実施例1
本実施例におけるろ過性は、以下のように測定した。評価したい膜を装着し、試料を充填した攪拌式セル(ミリポア(株)製Amicon(登録商標) 8010、有効膜面積4.1cm2)を窒素ガスで加圧し、膜から透過する単位時間ごとの透過水の液量を電子天秤により秤量した。(Chia−Chi Ho, A.L. Zydney, Journal of Colloid and Interface Science, 2002. 232 P389)。電子天秤はコンピューターと接続し、重量の経時変化から膜表面積あたりの透水量であるフラックスを算出した。膜表面は攪拌式セル付属のマグネチックスターラーの回転により膜面流束を与え、攪拌式セルの攪拌速度は1,000rpmに調節し、室温、評価圧力は1kPaとした。活性汚泥は、膜分離活性汚泥法の曝気槽より採取し、MLSS濃度は、約15,000ppmであった。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited thereby.
Example 1
The filterability in this example was measured as follows. A stirring cell (Amicon (registered trademark) 8010 manufactured by Millipore Corporation, 4.1 cm 2 effective membrane area) filled with a sample to be evaluated is pressurized with nitrogen gas, and permeation per unit time permeating through the membrane The amount of water was weighed with an electronic balance. (Chia-Chi Ho, AL Zydney, Journal of Colloid and Interface Science, 2002. 232 P389). The electronic balance was connected to a computer, and the flux that was the amount of water per membrane surface area was calculated from the change in weight over time. The membrane surface was given a membrane surface flux by the rotation of a magnetic stirrer attached to the stirring cell, the stirring speed of the stirring cell was adjusted to 1,000 rpm, the room temperature, and the evaluation pressure was 1 kPa. The activated sludge was collected from the aeration tank of the membrane separation activated sludge method, and the MLSS concentration was about 15,000 ppm.

カチオン性高分子凝集剤としては、サンフロック(登録商標)C−109P(三洋化成工業(株))を用いた。   As the cationic polymer flocculant, Sanflock (registered trademark) C-109P (Sanyo Chemical Industries, Ltd.) was used.

アニオン膜は以下の様に作成した。   The anion membrane was prepared as follows.

ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量35.8万)、アニオン性樹脂としてメタクリル酸メチルとメタクリル酸の共重合体(P(MMA−MAA)、重合平均分子量2.2万、共重合モル比7:3)、N,N−ジメチルホルムアミド(DMF、三菱レーヨン(株)製)、モノステアリン酸ポリオキシエチレンソルビダン(T−60V、三洋化成工業(株)製)、エチレングリコール(EG、和光純薬(株)製)を用い、PVDF16%、P(MMA−MAA)1%、DMF71%、T−60V8%、EG4%の組成で100℃の温度下に十分に攪拌し混合溶解し、製膜原液を調製した。   Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 358,000), anionic resin copolymer of methyl methacrylate and methacrylic acid (P (MMA-MAA), polymerization average molecular weight 22,000, copolymerization mole Ratio 7: 3), N, N-dimethylformamide (DMF, manufactured by Mitsubishi Rayon Co., Ltd.), polyoxyethylene sorbidone monostearate (T-60V, manufactured by Sanyo Chemical Industries, Ltd.), ethylene glycol (EG, Wako Pure Chemical Industries, Ltd.), PVDF 16%, P (MMA-MAA) 1%, DMF 71%, T-60V8%, EG 4% with sufficient stirring at a temperature of 100 ° C. and mixed and dissolved. A film-forming stock solution was prepared.

次に、上記製膜原液を40℃に冷却し、密度が0.48g/cm、厚みが220μmのポリエステル繊維製不織布に塗布し、直ちに25℃の水凝固浴中に5分間浸漬して、多孔質樹脂層が形成された多孔質基材を得た。 Next, the film-forming stock solution is cooled to 40 ° C., applied to a nonwoven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately immersed in a water coagulation bath at 25 ° C. for 5 minutes. A porous substrate on which a porous resin layer was formed was obtained.

この多孔質基材を、95℃の熱水に2分間浸漬してDMFを洗い出し、多孔質膜を得た。上記分離膜について、純水透過係数は54×10−9/m/s/Pa、平均細孔径は0.08μmであった。 This porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash out DMF, thereby obtaining a porous film. The separation membrane had a pure water permeability coefficient of 54 × 10 −9 m 3 / m 2 / s / Pa and an average pore diameter of 0.08 μm.

比較用のアニオン性樹脂を含まない膜は、上記アニオン膜の作成において、P(MMA−MAA)を添加せずにPVDFを17.0重量%に変更した以外は同様にし、得た。純水透過係数は44×10−9/m/s/Pa、平均細孔径は0.08μmであった。 A membrane containing no comparative anionic resin was obtained in the same manner as in the production of the anionic membrane except that PVDF was changed to 17.0% by weight without adding P (MMA-MAA). The pure water permeability coefficient was 44 × 10 −9 m 3 / m 2 / s / Pa, and the average pore diameter was 0.08 μm.

本発明に基づいて、MLSS濃度15,000ppmの活性汚泥にサンフロック(登録商標)C−109Pを150ppm相当添加した液約10mlをアニオン膜を装着した撹拌式セルに仕込み、加圧したときのフラックスの変化を図2の(21)に示す。   Based on the present invention, about 10 ml of a liquid obtained by adding 150 ppm equivalent of Sanflock (registered trademark) C-109P to activated sludge having an MLSS concentration of 15,000 ppm is charged into a stirring cell equipped with an anion membrane, and a flux when pressurized. This change is shown in (21) of FIG.

比較例1
MLSS濃度15,000ppmの活性汚泥にサンフロック(登録商標)C−109Pを150ppm相当添加した液約10mlを比較用に作成したアニオン性モノマーを含まない膜を装着した撹拌式セルに仕込み、加圧したときのフラックスの変化を図2の(22)に示す。
Comparative Example 1
About 10 ml of a liquid obtained by adding 150 ppm equivalent of Sanflock (registered trademark) C-109P to activated sludge with an MLSS concentration of 15,000 ppm was charged into a stirring cell equipped with a membrane containing no anionic monomer and prepared for comparison. The change of the flux when it is done is shown in (22) of FIG.

比較例2
MLSS濃度15,000ppmの活性汚泥を液約10ml、アニオン膜を装着した撹拌式セルに仕込み、加圧したときのフラックスの変化を図2の(23)に示す。
Comparative Example 2
FIG. 2 (23) shows changes in flux when charged with about 10 ml of activated sludge having an MLSS concentration of 15,000 ppm and charged in a stirring cell equipped with an anion membrane.

比較例3
MLSS濃度15,000ppmの活性汚泥を液約10ml、比較用に作成したアニオン性モノマーを含まない膜を装着した撹拌式セルに仕込み、加圧したときのフラックスの変化を図2の(24)に示す。
Comparative Example 3
Fig. 2 (24) shows the change in flux when an activated sludge with a MLSS concentration of 15,000 ppm is charged in a stirred cell equipped with a membrane containing no anionic monomer and prepared for comparison. Show.

上記実験結果から、アニオン膜を使用しない場合(比較例1)、あるいは、カチオン性高分子凝集剤を添加しない場合(比較例2)、アニオン膜を使用せずカチオン性高分子凝集剤も添加しない場合(比較例3)と比較して、本発明で、最もフラックスを高くすることができることがわかる。フラックス一定で運転した場合は、最も、膜の差圧が低い条件、すなわち、安定に運転可能であるといえる。
実施例2
BOD除去型の産業廃水として酢酸系合成廃水を調製し、TOD容積負荷1g/L/日、水滞留時間6〜24時間の条件下で運転している液容積26Lのラボ用メンブレンバイオリアクター(MBR)装置を用いて試験を行った。膜は、実施例1記載のアニオン膜、比較用PVDF膜を用いた。これらの膜を用いて、大きさ14cm四方のミニエレメントを製作し、アニオン膜、比較膜を交互に3枚ずつ8mmの間隔を空けてモジュールに収容し、ろ過に使用した。膜モジュールは散気管の上部、水深方向の中央に配置した。3つのアニオン膜、3つの比較膜の集水チューブは一つにまとめてポンプで吸引ろ過し、3エレメント単位での吸引圧を測定した。高分子凝集剤としては、サンフロック(登録商標)C−109Pを用いた。MBRは、汚泥濃度約30,000ppm、TOC除去率95%以上で安定に運転している状況下にあった。
From the above experimental results, when no anion membrane is used (Comparative Example 1) or when no cationic polymer flocculant is added (Comparative Example 2), no anionic membrane is used and no cationic polymer flocculant is added. Compared with the case (Comparative Example 3), it can be seen that the flux can be maximized in the present invention. When the operation is performed with a constant flux, it can be said that the operation is stable under the condition that the pressure difference across the membrane is the lowest.
Example 2
Acetic acid-based synthetic wastewater is prepared as an industrial wastewater with BOD removal type, and it is operated under the conditions of a TOD volumetric load of 1 g / L / day and a water residence time of 6 to 24 hours. ) Testing was performed using the apparatus. As the membrane, the anion membrane described in Example 1 and the PVDF membrane for comparison were used. Using these membranes, a 14 cm square mini-element was manufactured, and three anion membranes and three comparative membranes were alternately accommodated in a module with an interval of 8 mm, and used for filtration. The membrane module was placed at the top of the air diffuser, in the center of the water depth direction. The water collecting tubes of the three anion membranes and the three comparative membranes were combined into one and suction filtered with a pump, and the suction pressure in units of three elements was measured. As a polymer flocculant, Sunfloc (registered trademark) C-109P was used. The MBR was in a stable operation with a sludge concentration of about 30,000 ppm and a TOC removal rate of 95% or more.

サンフロック(登録商標)C−109Pを汚泥乾燥重量の1%相当添加し、45分おきにフラックスを0.1,0.2,0.3、0.4、0.6m/dと段階的に上げたときのアニオン膜の吸引圧の結果を図3の(31)に、比較膜の吸引圧の結果を図3の(32)にそれぞれ示す。アニオン膜の方が差圧が低く推移し、より高フラックスでの運転に対応可能であることが分かる。なお、透過水影響は実測し所定の流量でていることは確認した。
実施例3
実施例2と同様の方法で、フラックスを45分ごとに0.05ずつ段階的に上げた時の最終吸引圧を測定し、フラックスと吸引圧の関係をプロットし、関係が線形から外れるフラックスであるクリティカルフラックスを評価した結果を、表1に示す。膜には、実施例1記載のアニオン膜、PVDF膜(比較膜1)以外に公称孔径0.4μmの塩素化ポリエチレン製膜を用いた(比較膜2)。表から、本発明により、カチオン性高分子凝集剤の適用効果を最大限発揮させることが可能になる。すなわち、アニオン膜を使用することによって同量の凝集剤で膜の差圧をより安定に維持することが可能となり、膜性能低下のリスクがより少ない運転が可能となる。また、運転リスクが同程度であることを許容できる場合は、カチオン性高分子凝集剤使用量の低減が可能になり、コスト低減につながることが分かる。
Sun floc (registered trademark) C-109P is added in an amount equivalent to 1% of the sludge dry weight, and the flux is gradually changed to 0.1, 0.2, 0.3, 0.4, 0.6 m / d every 45 minutes. FIG. 3 (31) shows the result of the suction pressure of the anion membrane when the pressure is raised, and FIG. 3 (32) shows the result of the suction pressure of the comparative membrane. It can be seen that the anionic membrane has a lower differential pressure and can be operated with higher flux. It was confirmed that the influence of the permeated water was measured and was at a predetermined flow rate.
Example 3
In the same manner as in Example 2, the final suction pressure was measured when the flux was raised stepwise by 0.05 every 45 minutes, and the relationship between the flux and the suction pressure was plotted. The results of evaluating a certain critical flux are shown in Table 1. As the membrane, a chlorinated polyethylene membrane having a nominal pore diameter of 0.4 μm was used in addition to the anion membrane and PVDF membrane (Comparative membrane 1) described in Example 1 (Comparative membrane 2). From the table, according to the present invention, it is possible to maximize the application effect of the cationic polymer flocculant. That is, by using an anion membrane, it is possible to maintain the differential pressure of the membrane more stably with the same amount of the flocculant, and it is possible to operate with less risk of membrane performance degradation. Moreover, when it can accept | permit that a driving | running risk is comparable, it turns out that reduction of the usage-amount of a cationic polymer flocculant is attained, and it turns out that it leads to cost reduction.

Figure 2008229613
Figure 2008229613

実施例4
実施例2の評価系を用いて、汚泥濃度約30,000ppm、粘度130mPa・sの状態のMBRでフラックスを0.8m/d(ろ過時1m/d、8分運転、2分休憩の間欠運転)を実施したときの差圧の推移を比較した結果を図4に示す。アニオン膜の吸引圧の推移を(41)に、比較膜の吸引圧の推移を(42)に示す。図から、運転初期に比べて差圧上昇が加速する限界の時間は、アニオン膜で2倍程度向上することが分かり、一時的な処理水量増加などに、より余裕をもって対応できることが分かる。
Example 4
Using the evaluation system of Example 2, the flux is 0.8 m / d with MBR having a sludge concentration of about 30,000 ppm and a viscosity of 130 mPa · s (1 m / d during filtration, operation for 8 minutes, intermittent operation for 2 minutes break) FIG. 4 shows the result of comparing the transition of the differential pressure when). The change in the suction pressure of the anion membrane is shown in (41), and the change in the suction pressure of the comparative membrane is shown in (42). From the figure, it can be seen that the limit time for the increase in the differential pressure to increase compared to the initial stage of the operation is improved by about 2 times in the anion membrane, and it is possible to deal with a temporary increase in the amount of treated water with more margin.

本発明に係わる膜分離活性汚泥法の一例を示す概念図である。It is a conceptual diagram which shows an example of the membrane separation activated sludge method concerning this invention. 実施例、比較例におけるフラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the flux in an Example and a comparative example. 実施例、比較例における吸引圧の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the suction pressure in an Example and a comparative example. 実施例、比較例における吸引圧の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the suction pressure in an Example and a comparative example. 本発明の拠り所となる原理の推定メカニズムを示す模式図である。It is a schematic diagram which shows the presumed mechanism of the principle used as the foundation of this invention.

符号の説明Explanation of symbols

1:曝気槽
2:膜分離装置
3:吸引ポンプ
4:原液供給ポンプ
5:散気装置
6:ブロワー
7:汚泥引き抜きポンプ
8:カチオン性高分子凝集剤供給ライン
9:有機性廃液
10:清澄液(処理水)
11:余剰汚泥
12:フロック
13:凝集剤で会合したフロック
14:マイナス荷電領域
15:カチオン性高分子凝集剤
16:クーロン力(斥力)
17:アニオン膜
1: Aeration tank 2: Membrane separation device 3: Suction pump 4: Stock solution supply pump 5: Air diffuser 6: Blower 7: Sludge extraction pump 8: Cationic polymer flocculant supply line 9: Organic waste liquid 10: Clarified liquid (Treated water)
11: surplus sludge 12: floc 13: floc associated with flocculant 14: negatively charged region 15: cationic polymer flocculant 16: Coulomb force (repulsive force)
17: Anion membrane

Claims (1)

膜分離活性汚泥法による廃水処理方法において、膜がアニオン性であり、活性汚泥にカチオン性高分子凝集剤を添加することを特徴とする廃水処理方法。   A wastewater treatment method using a membrane separation activated sludge method, wherein the membrane is anionic and a cationic polymer flocculant is added to the activated sludge.
JP2008017273A 2007-02-22 2008-01-29 Wastewater treatment method Expired - Fee Related JP5163152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017273A JP5163152B2 (en) 2007-02-22 2008-01-29 Wastewater treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007042046 2007-02-22
JP2007042046 2007-02-22
JP2008017273A JP5163152B2 (en) 2007-02-22 2008-01-29 Wastewater treatment method

Publications (3)

Publication Number Publication Date
JP2008229613A true JP2008229613A (en) 2008-10-02
JP2008229613A5 JP2008229613A5 (en) 2011-03-10
JP5163152B2 JP5163152B2 (en) 2013-03-13

Family

ID=39903037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017273A Expired - Fee Related JP5163152B2 (en) 2007-02-22 2008-01-29 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5163152B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166619A (en) * 2013-02-28 2014-09-11 Mitsubishi Rayon Co Ltd Method of suppressing rise of transmembrane pressure difference in membrane separation active sludge apparatus
JP2019063783A (en) * 2017-09-29 2019-04-25 東ソー株式会社 Surface modification porous film, and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810593A (en) * 1994-07-05 1996-01-16 Mitsubishi Rayon Co Ltd Porous membrane having negative charge, its production and modifier for porous membrane
JPH08332483A (en) * 1995-06-06 1996-12-17 Inax Corp Treatment of waste water
JP2006272138A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Organic waste treatment method
JP2007000723A (en) * 2005-06-22 2007-01-11 Toray Ind Inc Porous membrane, solid-liquid separation apparatus and solid-liquid separation method using them
JP2008229612A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Porous membrane for cell suspension filtering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810593A (en) * 1994-07-05 1996-01-16 Mitsubishi Rayon Co Ltd Porous membrane having negative charge, its production and modifier for porous membrane
JPH08332483A (en) * 1995-06-06 1996-12-17 Inax Corp Treatment of waste water
JP2006272138A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Organic waste treatment method
JP2007000723A (en) * 2005-06-22 2007-01-11 Toray Ind Inc Porous membrane, solid-liquid separation apparatus and solid-liquid separation method using them
JP2008229612A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Porous membrane for cell suspension filtering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166619A (en) * 2013-02-28 2014-09-11 Mitsubishi Rayon Co Ltd Method of suppressing rise of transmembrane pressure difference in membrane separation active sludge apparatus
JP2019063783A (en) * 2017-09-29 2019-04-25 東ソー株式会社 Surface modification porous film, and manufacturing method thereof
JP7095292B2 (en) 2017-09-29 2022-07-05 東ソー株式会社 Surface-modified porous membrane and its manufacturing method

Also Published As

Publication number Publication date
JP5163152B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
Ping Chu et al. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
Chang et al. Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance
JP5553861B2 (en) Method for improving the flux of membrane bioreactors
Li et al. Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors
US20040168980A1 (en) Combination polymer treatment for flux enhancement in MBR
JP4600172B2 (en) Porous membrane, solid-liquid separator, and solid-liquid separation method using them
US20030192825A1 (en) Membrane bioreactor using non-woven fabric filtration
CZ2004771A3 (en) Method of using water-soluble polymers in a membrane biological reactor
Lee et al. A study on the high-flux MBR system using PTFE flat sheet membranes with chemical backwashing
US20120255903A1 (en) Non-woven membrane bioreactor and its fouling control method
JP5228474B2 (en) Porous membrane for cell suspension filtration
JP5163152B2 (en) Wastewater treatment method
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP6721288B2 (en) Wastewater treatment method and wastewater treatment system
JP6467886B2 (en) Waste water treatment method and waste water treatment system
Qrenawi et al. Membrane Bioreactor (MBR) as a Reliable Technology for Wastewater Treatment
Itonaga et al. Performance of membrane bioreactor combined with pre-coagulation/sedimentation
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
JP2003103289A (en) Wastewater treatment method
JP2016093789A (en) Water treatment method and water treatment system
US20160263528A1 (en) Multi-stage immersion membrane separation device and membrane separation method
Osman et al. Assessment of patterned membrane in a tilted panel filtration system for fouling control in activated sludge filtration
CN104817166B (en) Wastewater treatment method and wastewater treatment apparatus
Park et al. Analysis of hydrophobic membrane fouling on the COD loading rates at the state of passive adsorption in membrane bioreactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees