JP6721288B2 - Wastewater treatment method and wastewater treatment system - Google Patents

Wastewater treatment method and wastewater treatment system Download PDF

Info

Publication number
JP6721288B2
JP6721288B2 JP2014236486A JP2014236486A JP6721288B2 JP 6721288 B2 JP6721288 B2 JP 6721288B2 JP 2014236486 A JP2014236486 A JP 2014236486A JP 2014236486 A JP2014236486 A JP 2014236486A JP 6721288 B2 JP6721288 B2 JP 6721288B2
Authority
JP
Japan
Prior art keywords
membrane
treatment
wastewater
water
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014236486A
Other languages
Japanese (ja)
Other versions
JP2015163389A (en
Inventor
朋樹 川岸
朋樹 川岸
小田 康雄
康雄 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014236486A priority Critical patent/JP6721288B2/en
Priority to CN201510041836.0A priority patent/CN104817222B/en
Publication of JP2015163389A publication Critical patent/JP2015163389A/en
Application granted granted Critical
Publication of JP6721288B2 publication Critical patent/JP6721288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

本発明は、廃水処理方法、および当該廃水処理方法に適した廃水処理システムに関する。 The present invention relates to a wastewater treatment method and a wastewater treatment system suitable for the wastewater treatment method.

生活廃水や工業廃水は、その中に含まれる懸濁物質や有機物等を取り除く処理が施されてから河川などに放流されている。
有機物等を含む廃水の処理方法において、従来の標準活性汚泥法と比較し、膜分離活性汚泥法(MBR)は有効な手段である。ここで、MBRとは、活性汚泥法において最終沈殿槽を設けずに分離膜により固液分離を行う方法である。
Domestic wastewater and industrial wastewater are discharged to rivers and the like after being subjected to treatment to remove suspended substances and organic substances contained therein.
The membrane separation activated sludge method (MBR) is an effective means for treating wastewater containing organic substances as compared with the conventional standard activated sludge method. Here, MBR is a method of performing solid-liquid separation by a separation membrane without providing a final settling tank in the activated sludge method.

MBRにおいては、廃水を処理する際にアミジン系の凝集剤を添加する方法が提案されている(例えば特許文献1参照)。凝集剤は汚泥表面に吸着すると同時に、MBRでは分解が困難な難分解性物質等の有機物を吸着する。 In MBR, a method of adding an amidine coagulant when treating wastewater has been proposed (for example, refer to Patent Document 1). The coagulant adsorbs on the surface of the sludge, and at the same time, adsorbs organic substances such as hardly decomposable substances that are difficult to decompose by MBR.

国際公開第2011/016482号International Publication No. 2011/016482

しかしながら、凝集剤を過剰に添加した場合や、汚泥の量が凝集剤の量に対して少ない場合には、凝集剤が処理水中に残存することがあった。凝集剤は有機物であるため、凝集剤が処理水の汚染の原因となる。すなわち、処理水のBODやCODcrが上昇し、処理水の水質が悪化する。
また、処理水を逆浸透膜やナノ濾過膜などによって濾過処理する場合、処理水中に難分解性物質や凝集剤が残存していると、難分解性物質や凝集剤が濾過膜の膜閉塞を引き起こすおそれがあった。
However, when the coagulant is excessively added, or when the amount of sludge is smaller than the amount of the coagulant, the coagulant may remain in the treated water. Since the coagulant is an organic substance, the coagulant causes contamination of treated water. That is, BOD 5 and COD cr of the treated water rise, and the quality of the treated water deteriorates.
In addition, when the treated water is filtered by a reverse osmosis membrane or a nanofiltration membrane, if the hardly decomposable substance or the coagulant remains in the treated water, the hardly decomposable substance or the coagulant will block the membrane of the filtration membrane. There was a risk of causing it.

本発明は上記事情に鑑みてなされたもので、水質の高い処理水を得ることができ、しかも膜分離活性汚泥法で処理した後に処理水を濾過処理する場合でも濾過膜の膜閉塞を抑制できる廃水処理方法および廃水処理システムを提供することを課題とする。 The present invention has been made in view of the above circumstances, and it is possible to obtain high-quality treated water, and it is possible to suppress the membrane clogging of the filtration membrane even when the treated water is filtered after being treated by the membrane separation activated sludge method. An object is to provide a wastewater treatment method and a wastewater treatment system.

本発明は以下の態様を有する。
[1] 活性汚泥中の微生物による生物処理と、分離膜による固液分離処理とを同一の槽内で行う膜分離活性汚泥法により、前記槽に凝集剤を添加して廃水を処理した後、担体に付着した微生物により生物処理を行う生物膜法により、前記膜分離活性汚泥法にて固液分離された膜分離処理水をさらに処理する、廃水処理方法。
[2] 膜分離処理水のBOD/CODcrが0.3以下である、[1]に記載の廃水処理方法。
[3] 生物膜法が生物活性炭処理法である、[1]または[2]に記載の廃水処理方法。
[4] [1]〜[3]のいずれか1つに記載の廃水処理方法によって得られた生物膜処理水を逆浸透膜またはナノ濾過膜によって濾過処理する、廃水処理方法。
[5] 濾過処理により発生した濃縮水を濃縮処理する、[4]に記載の廃水処理方法。
[6] 活性汚泥中の微生物による廃水の生物処理と、分離膜による固液分離処理とを同一の槽内で行う膜分離活性汚泥処理装置と、前記膜分離活性汚泥処理装置にて固液分離された膜分離処理水を担体に付着した微生物により生物処理する生物膜処理装置とを具備し、前記膜分離活性汚泥処理装置は、前記槽に凝集剤を添加する凝集剤添加手段を備える、廃水処理システム。
[7] 膜分離処理水のBOD/CODcrが0.3以下である、[6]に記載の廃水処理システム。
[8] 生物膜処理装置が生物活性炭処理装置である、[6]または[7]に記載の廃水処理システム。
[9] 生物膜処理装置にて処理された生物膜処理水を濾過処理する逆浸透膜濾過装置またはナノ濾過膜濾過装置をさらに具備する、[6]〜[8]のいずれか1つに記載の廃水処理システム。
[10] 逆浸透膜濾過装置またはナノ濾過膜濾過装置により発生した濃縮水を濃縮処理する蒸発濃縮装置をさらに具備する、[9]に記載の廃水処理システム。
The present invention has the following aspects.
[1] After treating the wastewater by adding a flocculant to the tank by a membrane separation activated sludge method in which biological treatment by microorganisms in activated sludge and solid-liquid separation treatment by a separation membrane are performed in the same tank, A method for treating wastewater, further comprising treating the membrane-separated water that has been subjected to solid-liquid separation by the membrane-separated activated sludge method by a biomembrane method in which the microorganisms attached to the carrier are used for biological treatment.
[2] The wastewater treatment method according to [1], wherein the BOD 5 /COD cr of the membrane separation treated water is 0.3 or less.
[3] The wastewater treatment method according to [1] or [2], wherein the biofilm method is a biological activated carbon treatment method.
[4] A wastewater treatment method, wherein the biofilm-treated water obtained by the wastewater treatment method according to any one of [1] to [3] is filtered by a reverse osmosis membrane or a nanofiltration membrane.
[5] The wastewater treatment method according to [4], wherein concentrated water generated by filtration is concentrated.
[6] Membrane separation activated sludge treatment device that performs biological treatment of wastewater by microorganisms in activated sludge and solid-liquid separation treatment using a separation membrane in the same tank, and solid-liquid separation by the membrane separation activated sludge treatment device A biofilm treatment device for biologically treating the treated membrane separation treated water with microorganisms attached to a carrier, wherein the membrane separation activated sludge treatment device comprises coagulant addition means for adding a coagulant to the tank, wastewater Processing system.
[7] The wastewater treatment system according to [6], wherein BOD 5 /COD cr of the membrane separation treated water is 0.3 or less.
[8] The wastewater treatment system according to [6] or [7], wherein the biofilm treatment device is a bioactive carbon treatment device.
[9] The method according to any one of [6] to [8], further including a reverse osmosis membrane filtration device or a nanofiltration membrane filtration device that performs filtration treatment on the biofilm treated water treated by the biofilm treatment device. Wastewater treatment system.
[10] The wastewater treatment system according to [9], further comprising an evaporative concentration device for concentrating the concentrated water generated by the reverse osmosis membrane filtration device or the nanofiltration membrane filtration device.

本発明の廃水処理方法および廃水処理システムによれば、水質の高い処理水を得ることができ、しかも膜分離活性汚泥法で処理した後に処理水を濾過処理する場合でも濾過膜の膜閉塞を抑制できる。 According to the wastewater treatment method and the wastewater treatment system of the present invention, it is possible to obtain treated water with high water quality, and further suppress the membrane clogging of the filtration membrane even when the treated water is filtered after being treated by the membrane separation activated sludge method. it can.

本発明の廃水処理システムの一実施形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of the wastewater treatment system of the present invention. 本発明の廃水処理システムの他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment of the wastewater treatment system of this invention.

〔廃水処理方法〕
本発明の廃水処理方法は、膜分離活性汚泥法(MBR)により廃水を処理するに際して、処理を行う槽(膜分離槽)に凝集剤を添加する方法である。
以下、本発明について、具体的な実施形態を示しながら説明する。
[Wastewater treatment method]
The wastewater treatment method of the present invention is a method of adding a coagulant to a treatment tank (membrane separation tank) when treating wastewater by the membrane separation activated sludge method (MBR).
Hereinafter, the present invention will be described with reference to specific embodiments.

<廃水処理システムの実施形態>
図1は、本発明の廃水処理システムの一実施形態を示す概略構成図である。
この廃水処理システムは、原水槽(図示略)からの廃水を活性汚泥中の微生物によって生物処理すると同時に、分離膜として膜モジュール15によって汚泥と膜分離処理水(透過水)とに固液分離処理する膜分離活性汚泥処理装置10と、膜分離活性汚泥処理装置10にて固液分離された膜分離処理水を担体に付着した微生物により生物処理する生物膜処理装置70とを具備する。
<Embodiment of wastewater treatment system>
FIG. 1 is a schematic configuration diagram showing an embodiment of a wastewater treatment system of the present invention.
In this wastewater treatment system, wastewater from a raw water tank (not shown) is biologically treated by microorganisms in activated sludge, and at the same time, a solid-liquid separation treatment is performed by a membrane module 15 as a separation membrane into sludge and membrane separation treated water (permeate). The membrane separation activated sludge treatment device 10 and the biofilm treatment device 70 for biologically treating the membrane separation treated water that has been solid-liquid separated by the membrane separation activated sludge treatment device 10 by the microorganisms attached to the carrier.

(膜分離活性汚泥処理装置)
膜分離活性汚泥処理装置10は、膜分離槽(第1の曝気槽)11と;膜分離槽11内の底部近傍に配置された散気管12と;散気管12にエアを供給するブロア13と;散気管12とブロア13とを接続するエア導入管14と;膜分離槽11内かつ散気管12の上方に配置された膜モジュール15と;膜分離槽11に凝集剤を添加する凝集剤添加手段16と;膜分離処理水流路51の途中に設けられ、膜モジュール15内を減圧にすることによって汚泥と膜分離処理水(透過水)との固液分離を行い、かつ膜分離処理水を生物膜処理装置70へ送り出す吸引ポンプ18と;原水槽からの廃水を膜分離活性汚泥処理装置10に供給する廃水流路50と;膜分離活性汚泥処理装置10からの膜分離処理水を排出する膜分離処理水流路51と;膜分離活性汚泥処理装置10からの余剰汚泥を排出する余剰汚泥流路52とを備える。
(Membrane separation activated sludge treatment equipment)
The membrane separation activated sludge treatment device 10 includes a membrane separation tank (first aeration tank) 11, an air diffuser 12 arranged near the bottom of the membrane separation tank 11, and a blower 13 for supplying air to the air diffuser 12. An air introduction pipe 14 connecting the air diffuser 12 and the blower 13, a membrane module 15 arranged in the membrane separation tank 11 and above the air diffuser 12, and a coagulant addition for adding a coagulant to the membrane separation tank 11. Means 16; provided in the middle of the membrane separation treated water flow path 51, the solid-liquid separation of the sludge and the membrane separation treated water (permeate) is performed by reducing the pressure in the membrane module 15, and the membrane separation treated water is removed. A suction pump 18 for sending to the biofilm treatment device 70; a wastewater flow passage 50 for supplying wastewater from the raw water tank to the membrane separation activated sludge treatment device 10; and discharge of the membrane separation treated water from the membrane separation activated sludge treatment device 10. A membrane separation treated water channel 51; and an excess sludge channel 52 for discharging the excess sludge from the membrane separation activated sludge treatment device 10.

膜モジュール15としては、公知の濾過膜を備えた公知の膜モジュールが挙げられる。 濾過膜の種類としては、精密濾過膜(MF膜)または限外濾過膜(UF膜)が好ましい。濾過膜の形状としては、中空糸膜、平膜、管状膜、袋状膜等が挙げられる。これらのうち、容積ベースで比較した場合に膜面積の高度集積が可能であることから、中空糸膜が好ましい。 The membrane module 15 may be a known membrane module including a known filtration membrane. As the type of filtration membrane, a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is preferable. Examples of the shape of the filtration membrane include a hollow fiber membrane, a flat membrane, a tubular membrane, and a bag-shaped membrane. Of these, hollow fiber membranes are preferred because they allow a high degree of integration of the membrane area when compared on a volume basis.

濾過膜の材質としては、有機材料(セルロース、ポリオレフィン、ポリスルフォン、ポリビニルアルコール、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリ4フッ化エチレン等)、金属(ステンレス等)、無機材料(セラミック等)が挙げられる。濾過膜の材質は、廃水の性状に応じて適宜選択する。 Examples of the material of the filtration membrane include organic materials (cellulose, polyolefin, polysulfone, polyvinyl alcohol, polymethylmethacrylate, polyvinylidene fluoride, polytetrafluoroethylene, etc.), metals (stainless steel, etc.), inorganic materials (ceramics, etc.). To be The material of the filtration membrane is appropriately selected according to the properties of the wastewater.

濾過膜の孔径は、処理の目的に応じて適宜選択すればよい。MBRにおいて、濾過膜の孔径は、0.001〜3μmが好ましい。孔径が0.001μm以上であれば、膜の抵抗が大きくなるのを抑制できる。孔径が3μm以下であれば、活性汚泥を十分に分離することができ、処理水の水質を良好に維持できる。濾過膜の孔径は、精密濾過膜の範囲とされる0.04〜1.0μmがより好ましい。 The pore size of the filtration membrane may be appropriately selected according to the purpose of treatment. In MBR, the pore size of the filtration membrane is preferably 0.001 to 3 μm. When the pore diameter is 0.001 μm or more, it is possible to suppress an increase in the resistance of the film. When the pore diameter is 3 μm or less, activated sludge can be sufficiently separated, and the quality of treated water can be maintained in good condition. The pore size of the filtration membrane is more preferably 0.04 to 1.0 μm in the range of the microfiltration membrane.

膜分離活性汚泥処理装置10においては、散気管12と膜モジュール15とが一体化された膜ユニットを用いてもよい。このような膜ユニットとしては、例えば特開2013−202524号公報に記載の膜ユニットなどが挙げられる。 In the membrane separation activated sludge treatment device 10, a membrane unit in which the air diffuser 12 and the membrane module 15 are integrated may be used. Examples of such a membrane unit include the membrane unit described in JP2013-202524A.

凝集剤添加手段16は、凝集剤を膜分離槽11に供給する凝集剤流路16aと;凝集剤流路16aの途中に設けられ、凝集剤を膜分離槽11に送り出すポンプ16bとを備える。 The coagulant adding means 16 includes a coagulant channel 16a for supplying the coagulant to the membrane separation tank 11; and a pump 16b provided in the middle of the coagulant channel 16a for feeding the coagulant to the membrane separation tank 11.

(生物膜処理装置)
生物膜処理装置70は、生物膜槽(第2の曝気槽)71と;生物膜槽71内の底部近傍に配置された散気管72と;散気管72にエアを供給するブロア73と;散気管72とブロア73とを接続するエア導入管74と;生物膜槽71にて生物処理された生物膜処理水を排出する生物膜処理水流路62とを備える。
(Biofilm treatment equipment)
The biofilm treatment device 70 includes a biofilm tank (second aeration tank) 71; an air diffuser 72 arranged near the bottom of the biofilm tank 71; a blower 73 that supplies air to the air diffuser 72; An air introducing pipe 74 connecting the trachea 72 and the blower 73; and a biofilm treated water flow path 62 for discharging the biofilm treated water biologically treated in the biofilm tank 71 are provided.

生物膜槽71には、微生物が担体に付着した微生物付着担体(図示略)が収容されている。
微生物付着担体は、生物膜槽71内で流動させておいてもよいし、固定させておいてもよい。微生物付着担体を生物膜槽71内で流動させながら生物処理する生物膜処理装置70を流動床式の生物膜処理装置といい、微生物付着担体を生物膜槽71内で固定させて生物処理する生物膜処理装置70を固定床式の生物膜処理装置という。
The biofilm tank 71 contains a microorganism-attached carrier (not shown) in which microorganisms are attached to the carrier.
The microorganism-attached carrier may be fluidized in the biofilm tank 71 or may be fixed. The biofilm treatment device 70 that performs biological treatment while flowing the microorganism adhesion carrier in the biofilm tank 71 is referred to as a fluidized bed type biofilm treatment device, and organisms for biological treatment by fixing the microorganism adhesion carrier in the biofilm tank 71. The membrane treatment device 70 is referred to as a fixed bed biofilm treatment device.

担体としては、固定床用担体、流動床用担体などが挙げられる。
例えば流動床用担体としては、活性炭などが挙げられる。また、活性炭以外にも、ポリプロピレンやポリビニルアルコール等の樹脂製担体、セラミック製担体などを流動床用担体として用いることもできる。これらの中でも、微生物付着担体となったときに膜分離活性汚泥法では処理が困難とされる難分解性物質や凝集剤の分解に優れる点で活性炭が好ましい。ここで、微生物が活性炭に付着した微生物付着担体が生物膜槽71に収容された生物膜処理装置70を生物活性炭処理装置ともいう。
Examples of the carrier include fixed bed carriers and fluidized bed carriers.
For example, examples of the fluidized bed carrier include activated carbon. In addition to activated carbon, a resin carrier such as polypropylene or polyvinyl alcohol, a ceramic carrier, or the like can be used as the carrier for the fluidized bed. Among these, activated carbon is preferable because it is excellent in decomposing a hardly decomposable substance or a coagulant, which is difficult to process by the membrane separation activated sludge method when it becomes a microorganism-attached carrier. Here, the biofilm treatment device 70 in which the microorganism adhesion carrier in which the microorganisms adhere to the activated carbon is stored in the biofilm tank 71 is also referred to as a bioactivated carbon treatment device.

(標準活性汚泥処理装置)
廃水処理システムは、図2に示すように、膜分離活性汚泥処理装置10の上流に、原水槽(図示略)からの廃水を活性汚泥中の微生物によって生物処理する標準活性汚泥処理装置20をさらに具備していてもよい。
なお、図2において図1と同じ構成要素には同じ符号を付して、その説明を省略する。
(Standard activated sludge treatment equipment)
As shown in FIG. 2, the wastewater treatment system further includes a standard activated sludge treatment device 20 upstream of the membrane separation activated sludge treatment device 10 for biologically treating the wastewater from a raw water tank (not shown) with microorganisms in the activated sludge. You may have.
In FIG. 2, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

標準活性汚泥処理装置20は、活性汚泥槽(第3の曝気槽)21と;活性汚泥槽21内の底部近傍に配置された散気管22と;散気管22にエアを供給するブロア23と;散気管22とブロア23とを接続するエア導入管24と;活性汚泥槽21にて生物処理された活性汚泥槽混合水を汚泥と上澄み液とに固液分離する沈殿槽25と;原水槽からの廃水を活性汚泥槽21に供給する廃水流路50と;活性汚泥槽21にて生物処理された活性汚泥槽混合水を沈殿槽25に移送する活性汚泥槽混合水流路53と;沈殿槽25からの上澄み液を膜分離活性汚泥処理装置10に移送する上澄み液流路54と;沈殿槽25からの余剰汚泥を排出する余剰汚泥流路55と;沈殿槽25からの余剰汚泥の一部を活性汚泥槽21に返送する返送汚泥流路56とを備える。 The standard activated sludge treatment device 20 includes an activated sludge tank (third aeration tank) 21, an air diffusing pipe 22 arranged near the bottom of the activated sludge tank 21, and a blower 23 for supplying air to the air diffusing pipe 22; An air inlet pipe 24 connecting the air diffuser 22 and the blower 23; a settling tank 25 for solid-liquid separating the mixed water of the activated sludge tank biologically treated in the activated sludge tank 21 into sludge and supernatant liquid; from the raw water tank Waste water flow path 50 for supplying the waste water of the activated sludge tank 21 to the activated sludge tank 21; and an activated sludge tank mixed water flow path 53 for transferring the activated sludge tank mixed water biologically treated in the activated sludge tank 21 to the settling tank 25; Supernatant liquid flow path 54 for transferring the supernatant liquid from the above to the membrane separation activated sludge treatment device 10; excess sludge flow path 55 for discharging the excess sludge from the precipitation tank 25; and a part of the excess sludge from the precipitation tank 25 A return sludge flow path 56 for returning the activated sludge to the activated sludge tank 21.

沈殿槽25は、活性汚泥槽21から移送された活性汚泥槽混合水を、重力沈降によって汚泥と上澄み液とに固液分離できるものであればよく、特に限定はされない。沈殿槽25は、一般的な沈殿池であってもよい。 The settling tank 25 is not particularly limited as long as it can solid-liquid separate the activated sludge tank mixed water transferred from the activated sludge tank 21 into a sludge and a supernatant liquid by gravity settling. The settling tank 25 may be a general settling tank.

(濾過装置)
廃水処理システムは、図2に示すように、生物膜槽71にて生物処理され、生物膜処理水流路62から排出された生物膜処理水を濾過処理する濾過装置30をさらに具備していてもよい。
(Filtration device)
As shown in FIG. 2, the wastewater treatment system may further include a filtration device 30 that performs biological treatment in the biofilm tank 71 and filters the biofilm-treated water discharged from the biofilm-treated water channel 62. Good.

濾過装置30は、濾過装置本体31と;濾過装置本体31を透過した精製水を排出する精製水流路58と;濾過装置本体31を透過しなかった濃縮水を排出する濃縮水流路59とを備える。 The filtering device 30 includes a filtering device body 31, a purified water channel 58 for discharging the purified water that has passed through the filtering device body 31, and a concentrated water channel 59 for discharging the concentrated water that has not passed through the filtering device body 31. ..

濾過装置本体31としては、逆浸透膜モジュールまたはナノ濾過膜モジュールを備えたものが挙げられる。ここで、濾過装置本体31として逆浸透膜モジュールを備える濾過装置30を逆浸透膜濾過装置ともいい、濾過装置本体31としてナノ濾過膜モジュールを備える濾過装置30をナノ濾過膜濾過装置ともいう。 Examples of the filtration device body 31 include those provided with a reverse osmosis membrane module or a nanofiltration membrane module. Here, the filtration device 30 including the reverse osmosis membrane module as the filtration device body 31 is also referred to as a reverse osmosis membrane filtration device, and the filtration device 30 including the nano filtration membrane module as the filtration device body 31 is also referred to as a nano filtration membrane filtration device.

逆浸透膜モジュールは、逆浸透膜を透過した精製水と逆浸透膜を透過しない濃縮水とを分離できる形態であればよく、特に限定はされない。
逆浸透膜モジュールとしては、例えば、集水管のまわりに逆浸透膜を巻き回した円柱状の逆浸透膜エレメントを円筒状のケーシングに収納した、いわゆるスパイラル型逆浸透膜モジュール等が挙げられる。
逆浸透膜の材質としては、ポリアミド、ポリスルフォン、セルロースアセテート等が挙げられ、芳香族ポリアミド又は架橋芳香族ポリアミドを含むポリアミドが好ましい。
The reverse osmosis membrane module is not particularly limited as long as it can separate purified water that has passed through the reverse osmosis membrane and concentrated water that does not pass through the reverse osmosis membrane.
Examples of the reverse osmosis membrane module include a so-called spiral type reverse osmosis membrane module in which a cylindrical reverse osmosis membrane element in which a reverse osmosis membrane is wound around a water collection tube is housed in a cylindrical casing.
Examples of the material of the reverse osmosis membrane include polyamide, polysulfone, cellulose acetate, and the like, and aromatic polyamide or polyamide containing crosslinked aromatic polyamide is preferable.

ナノ濾過膜モジュールは、ナノ濾過膜を透過した精製水とナノ濾過膜を透過しない濃縮水とを分離できる形態であればよく、特に限定はされない。
ナノ濾過膜モジュールとしては、例えば、集水管のまわりにナノ濾過膜を巻き回した円柱状のナノ濾過膜エレメントを円筒状のケーシングに収納した、いわゆるスパイラル型ナノ濾過膜モジュール等が挙げられる。
ナノ濾過膜の材質としては、ポリエチレン系、芳香族ポリアミド系や架橋ポリアミド系を含むポリアミド系、脂肪族アミン縮合系ポリマー、複素環ポリマー系、ポリビニルアルコール系、酢酸セルロース系ポリマー等が挙げられる。
The nanofiltration membrane module is not particularly limited as long as it can separate purified water that has passed through the nanofiltration membrane and concentrated water that does not pass through the nanofiltration membrane.
Examples of the nanofiltration membrane module include a so-called spiral nanofiltration membrane module in which a cylindrical nanofiltration membrane element having a nanofiltration membrane wound around a water collection tube is housed in a cylindrical casing.
Examples of the material of the nanofiltration membrane include polyethylene type, polyamide type including aromatic polyamide type and crosslinked polyamide type, aliphatic amine condensation type polymer, heterocyclic polymer type, polyvinyl alcohol type, cellulose acetate type polymer and the like.

(蒸発濃縮装置)
廃水処理システムは、図2に示すように、濾過装置本体31を透過しなかった濃縮水を濃縮処理する蒸発濃縮装置40をさらに具備していてもよい。
(Evaporative concentrator)
As shown in FIG. 2, the wastewater treatment system may further include an evaporative concentrator 40 for concentrating the concentrated water that has not passed through the filter device body 31.

蒸発濃縮装置40は、蒸発器41と;蒸発器41にて蒸発し、凝縮された凝縮水を排出する凝縮水流路60と;蒸発器41にて濃縮された濃縮廃水を排出する濃縮廃水流路61とを備える。 The evaporative concentration apparatus 40 includes an evaporator 41; a condensed water flow path 60 for discharging condensed water condensed and condensed in the evaporator 41; a concentrated waste water flow path for discharging concentrated waste water concentrated in the evaporator 41. And 61.

蒸発器41は、濃縮水を加熱して濃縮できる形態であればよく、特に限定はされない。 The evaporator 41 is not particularly limited as long as the concentrated water can be heated and concentrated.

<廃水処理方法の実施形態>
図1の廃水処理システムを用いた廃水処理方法は、下記のステップ(b)、(c)を有し、図2の廃水処理システムを用いた廃水処理方法は下記のステップ(b)、(c)と、必要に応じて下記の(a)、(d)、(e)を有する。
(a)標準活性汚泥処理装置20にて、原水槽(図示略)からの廃水を活性汚泥中の微生物によって生物処理するステップ。
(b)膜分離活性汚泥処理装置10にて、原水槽(図示略)からの廃水またはステップ(a)で処理された廃水(上澄み液)を活性汚泥中の微生物によって生物処理すると同時に、膜モジュール15によって汚泥と処理水(透過水)とに固液分離するステップ。
(c)生物膜処理装置70にて、膜モジュール15を透過した分離膜処理水(透過水)を生物処理するステップ。
(d)濾過装置30にて、生物膜槽71にて生物処理された生物膜処理水を逆浸透膜またはナノ濾過膜によって濾過処理するステップ。
(e)蒸発濃縮装置40にて、濾過装置本体31を透過しなかった濃縮水を濃縮処理するステップ。
<Embodiment of wastewater treatment method>
The wastewater treatment method using the wastewater treatment system of FIG. 1 has the following steps (b) and (c), and the wastewater treatment method using the wastewater treatment system of FIG. 2 has the following steps (b) and (c). ) And, if necessary, the following (a), (d), and (e).
(A) A step of biologically treating wastewater from a raw water tank (not shown) with microorganisms in the activated sludge in the standard activated sludge treatment device 20.
(B) In the membrane-separated activated sludge treatment device 10, wastewater from a raw water tank (not shown) or wastewater treated in step (a) (supernatant liquid) is biologically treated by microorganisms in the activated sludge, and at the same time, a membrane module. 15. A step of solid-liquid separation into sludge and treated water (permeate) by 15.
(C) A step of biologically treating the separated membrane-treated water (permeated water) that has permeated the membrane module 15 in the biological membrane treatment device 70.
(D) A step of filtering the biofilm-treated water that has been bioprocessed in the biofilm tank 71 with the filtration device 30 using a reverse osmosis membrane or a nanofiltration membrane.
(E) A step of concentrating concentrated water that has not permeated through the filtering device body 31 in the evaporative concentrator 40.

(廃水)
廃水処理システムにて処理される廃水は、通常、易分解性物質や難分解性物質等の有機物を含んでいる。このような廃水としては、例えば生活廃水、工業廃水(化学、製薬、製紙、飲料、製油、半導体、電子等)、畜産廃水などが挙げられる。
廃水は、あらかじめ粗大な浮遊物質、土砂等を除去したり、pHを調整したり、希釈したりしてもよい。
(Waste water)
The wastewater treated in the wastewater treatment system usually contains organic substances such as easily decomposable substances and hardly decomposable substances. Examples of such wastewater include domestic wastewater, industrial wastewater (chemical, pharmaceutical, papermaking, beverage, oil, semiconductor, electronic, etc.), and livestock wastewater.
The waste water may be subjected to removal of coarse floating substances, earth and sand, pH adjustment, or dilution in advance.

(ステップ(a))
ステップ(b)において処理される廃水は、事前に標準活性汚泥処理装置20で処理してもよい。
ステップ(a)では、まず、原水槽(図示略)に貯留された廃水を、廃水流路50を経て標準活性汚泥処理装置20の活性汚泥槽21に供給する。
活性汚泥槽21においては、ブロア23を作動させて散気管22からエアを導入し、活性汚泥中の微生物に酸素を与えることによって廃水の生物処理を行う。
(Step (a))
The wastewater treated in step (b) may be treated in the standard activated sludge treatment device 20 in advance.
In step (a), first, the wastewater stored in a raw water tank (not shown) is supplied to the activated sludge tank 21 of the standard activated sludge treatment device 20 via the wastewater flow path 50.
In the activated sludge tank 21, the blower 23 is operated to introduce air from the air diffuser 22 to give oxygen to the microorganisms in the activated sludge to perform biological treatment of the wastewater.

ついで、活性汚泥槽21にて生物処理された活性汚泥槽混合水を、活性汚泥槽混合水流路53を経て沈殿槽25に移送する。
沈殿槽25においては、活性汚泥槽混合水を、重力沈降によって汚泥と上澄み液とに固液分離する。
Then, the activated sludge tank mixed water biologically treated in the activated sludge tank 21 is transferred to the settling tank 25 via the activated sludge tank mixed water flow path 53.
In the settling tank 25, the activated sludge tank mixed water is solid-liquid separated into sludge and a supernatant liquid by gravity settling.

沈殿槽25の上澄み液は、ステップ(b)において処理される廃水として、上澄み液流路54を経て膜分離活性汚泥処理装置10に移送される。
一方、分離された余剰汚泥は、余剰汚泥流路55を経て排出される。また、余剰汚泥には、微生物が含まれているため、余剰汚泥の一部を、返送汚泥流路56を経て活性汚泥槽21に返送し、再び廃水の生物処理に用いる。
The supernatant liquid of the settling tank 25 is transferred to the membrane separation activated sludge treatment device 10 via the supernatant liquid flow path 54 as waste water to be treated in step (b).
On the other hand, the separated excess sludge is discharged through the excess sludge channel 55. Since the excess sludge contains microorganisms, a part of the excess sludge is returned to the activated sludge tank 21 through the return sludge flow path 56 and used again for biological treatment of wastewater.

(ステップ(b))
廃水処理方法がステップ(a)を有さない場合は、原水槽(図示略)に貯留された廃水を、廃水流路50を経て膜分離活性汚泥処理装置10の膜分離槽11に供給する。
廃水処理方法がステップ(a)を有する場合は、ステップ(a)にて処理された廃水(上澄み液)を、上澄み液流路54を経て膜分離活性汚泥処理装置10の膜分離槽11に供給する。
(Step (b))
When the wastewater treatment method does not include step (a), the wastewater stored in the raw water tank (not shown) is supplied to the membrane separation tank 11 of the membrane separation activated sludge treatment device 10 via the wastewater flow passage 50.
When the wastewater treatment method has step (a), the wastewater (supernatant liquid) treated in step (a) is supplied to the membrane separation tank 11 of the membrane separation activated sludge treatment device 10 via the supernatant liquid flow path 54. To do.

膜分離槽11においては、ブロア13を作動させて散気管12からエアを導入し、活性汚泥中の微生物に酸素を与えることによって廃水の生物処理を行う。
また、膜分離槽11においては、吸引ポンプ18を作動させて膜モジュール15内を減圧にすることによって、混合水を汚泥と処理水(透過水)とに固液分離する。この際、散気管12からエアを膜モジュール15に導入することによって、膜モジュール15の分離膜(例えば中空糸膜など)の表面を洗浄しながら、効率よく固液分離を行うことができる。
In the membrane separation tank 11, the blower 13 is operated to introduce air from the air diffuser 12 to give oxygen to the microorganisms in the activated sludge to perform biological treatment of the wastewater.
Further, in the membrane separation tank 11, the suction pump 18 is operated to reduce the pressure inside the membrane module 15 to perform solid-liquid separation of the mixed water into sludge and treated water (permeated water). At this time, by introducing air from the air diffuser 12 into the membrane module 15, solid-liquid separation can be efficiently performed while cleaning the surface of the separation membrane (for example, hollow fiber membrane) of the membrane module 15.

ステップ(b)では、凝集剤添加手段16により膜分離槽11に凝集剤を添加して廃水を処理する。
凝集剤の添加量は、廃水中の有機物(特に難分解性物質)を凝集できる量であれば特に制限されない。
In step (b), the coagulant is added to the membrane separation tank 11 by the coagulant addition means 16 to treat the wastewater.
The amount of the aggregating agent added is not particularly limited as long as it is an amount capable of aggregating the organic matter (particularly the hardly decomposable substance) in the wastewater.

ステップ(b)では、膜モジュール15を透過した分離膜処理水(透過水)のBOD/CODcrが0.3以下となるように廃水を処理することが好ましく、膜モジュール15を透過した分離膜処理水(透過水)のBOD/CODcrが0.3以下、かつ、SS濃度が25mg/L以下となるように廃水を処理することがより好ましい。
分離膜処理水のBOD/CODcrが0.3以下であれば、ステップ(c)にて生物処理した後の生物膜処理水中の難分解性物質の濃度(CODcr−BOD)がより軽減される。よって、水質のより高い処理水を得ることができる。しかもステップ(d)にて生物膜処理水を濾過処理する場合は、逆浸透膜やナノ濾過膜といった濾過膜の膜閉塞をより抑制できる。
分離膜処理水のSS濃度が25mg/L以下であれば、ステップ(c)での生物処理をより円滑に行うことができる。特に、ステップ(c)において生物活性炭処理法により生物処理を行う場合、分離膜処理水のSS濃度が25mg/L以下であれば活性炭の目詰まりを抑制できので、生物処理をより円滑に行うことができる。
In step (b), it is preferable to treat the wastewater such that the BOD 5 /COD cr of the separation membrane-treated water (permeate) that has permeated the membrane module 15 is 0.3 or less. It is more preferable to treat the wastewater so that the membrane-treated water (permeate) has a BOD 5 /COD cr of 0.3 or less and an SS concentration of 25 mg/L or less.
If the BOD 5 /COD cr of the separation membrane-treated water is 0.3 or less, the concentration of the hardly decomposable substance (COD cr −BOD 5 ) in the biological membrane-treated water after biological treatment in step (c) is higher. Will be reduced. Therefore, treated water with higher water quality can be obtained. Moreover, when the biological membrane-treated water is filtered in step (d), the membrane clogging of the filtration membrane such as the reverse osmosis membrane or the nanofiltration membrane can be further suppressed.
If the SS concentration of the separation membrane-treated water is 25 mg/L or less, the biological treatment in step (c) can be performed more smoothly. In particular, when biological treatment is performed by the biological activated carbon treatment method in step (c), if the SS concentration of the separation membrane-treated water is 25 mg/L or less, clogging of the activated carbon can be suppressed, so the biological treatment should be performed more smoothly. You can

分離膜処理水のBOD/CODcrおよびSS濃度は、膜分離槽11中での滞在時間や凝集剤の添加量によって調整できる。例えば、膜分離槽11中での滞在時間が長くなるほど、また凝集剤の添加量が多くなるほど、分離膜処理水のBOD/CODcrおよびSS濃度は小さくなる傾向にある。また、ステップ(b)の前にステップ(a)を行うことでも、分離膜処理水のBOD/CODcrが小さくなる傾向にある。 The BOD 5 /COD cr and SS concentrations of the separation membrane-treated water can be adjusted by the residence time in the membrane separation tank 11 and the addition amount of the coagulant. For example, the BOD 5 /COD cr and SS concentrations of the separation membrane-treated water tend to decrease as the residence time in the membrane separation tank 11 increases and the amount of the flocculant added increases. Also, by performing step (a) before step (b), the BOD 5 /COD cr of the separation membrane-treated water tends to decrease.

なお、「CODcr」とは、二クロム酸カリウムによる酸素消費量であり、JIS K 0102にしたがって測定する。
また、「BOD」とは、5日間生物化学的酸素要求量であり、JIS K 0102にしたがって測定する。
また、「SS濃度」とは、水中の浮遊物質の濃度であり、JIS K 0102にしたがって測定する。
In addition, "COD cr "is an oxygen consumption amount by potassium dichromate and is measured according to JIS K 0102.
"BOD 5 "is a biochemical oxygen demand for 5 days, which is measured according to JIS K 0102.
The "SS concentration" is the concentration of suspended solids in water and is measured according to JIS K 0102.

ステップ(b)で用いられる凝集剤としては特に限定されないが、高分子凝集剤が好ましい。高分子凝集剤は微小フロックを架橋によって粗大フロックにする作用を有する。また、高分子凝集剤には、凝集剤の有する吸着活性基によって、ノニオン系、アニオン系およびカチオン系などがある。特に、処理効率の観点から、ステップ(b)で用いられる凝集剤としては下記式(1)および/または(2)で表されるアミジン構造単位を有するカチオン性重合体を有効成分として含有するアミジン系凝集剤が好ましい。
なお、本発明において「有効成分」とは、凝集剤100質量%中のカチオン性重合体の含有量を意味し、通常、10〜100質量%含有するのが好ましい。
The aggregating agent used in step (b) is not particularly limited, but a polymer aggregating agent is preferable. The polymer flocculant has a function of converting fine flocs into coarse flocs by crosslinking. Further, the polymer flocculants include nonionic, anionic and cationic types, depending on the adsorption active group of the flocculant. In particular, from the viewpoint of treatment efficiency, as the flocculant used in step (b), an amidine containing a cationic polymer having an amidine structural unit represented by the following formula (1) and/or (2) as an active ingredient. A system flocculant is preferred.
In the present invention, the "active ingredient" means the content of the cationic polymer in 100% by mass of the aggregating agent, and usually 10 to 100% by mass is preferable.

Figure 0006721288
Figure 0006721288

式(1)、(2)中、R〜Rは各々水素原子またはメチル基であり、同一であってもよく、異なっていてもよい。
、Yは各々陰イオンであり、同一であってもよく、異なっていてもよい。陰イオンとしては、例えば、Cl、Br、1/2SO 2−、CH(CO)O、H(CO)Oなどが挙げられる。中でもClが好ましい。
In formulas (1) and (2), R 1 to R 4 are each a hydrogen atom or a methyl group, and may be the same or different.
X and Y are anions, and may be the same or different. Examples of the anion include Cl , Br , 1/2SO 4 2− , CH 3 (CO)O , H(CO)O − and the like. Of these, Cl is preferable.

このようなカチオン性重合体の製造方法としては特に制限されないが、例えば、一級アミノ基または変換反応により一級アミノ基が生成し得る置換アミノ基を有するエチレン性不飽和モノマーと、アクリロニトリルまたはメタアクリロニトリルのニトリル類との共重合体を製造し、酸加水分解後、該共重合体中のシアノ基と一級アミノ基を反応させてアミジン化する方法が挙げられる。 The method for producing such a cationic polymer is not particularly limited, but for example, an ethylenically unsaturated monomer having a primary amino group or a substituted amino group capable of generating a primary amino group by a conversion reaction, and acrylonitrile or methacrylonitrile. A method of producing a copolymer with nitriles, acid hydrolysis, and then reacting a cyano group in the copolymer with a primary amino group to form an amidine is mentioned.

カチオン性重合体は、最も典型的には、N−ビニルホルムアミドとアクリロニトリルとを共重合させ、生成した共重合体を、通常、水懸濁液として塩酸の存在下に加熱して置換アミノ基と隣接するシアノ基からアミジン構造単位を形成させることにより製造されるのが好ましい。そして、共重合に供するN−ビニルホルムアミドとアクリロニトリルとのモル比、及び共重合体のアミジン化条件を選択することにより、各種の組成のカチオン性重合体が得られる。 The cationic polymer is most typically a copolymer of N-vinylformamide and acrylonitrile, and the resulting copolymer is usually heated as an aqueous suspension in the presence of hydrochloric acid to form a substituted amino group. It is preferably prepared by forming an amidine structural unit from adjacent cyano groups. Then, a cationic polymer having various compositions can be obtained by selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to copolymerization and the amidation condition of the copolymer.

カチオン性重合体は、当該カチオン性重合体100モル%中、上記式(1)および/または(2)で表されるアミジン構造単位を繰り返し単位として5〜90モル%含有するのが好ましい。アミジン構造単位の含有率が5モル%未満であると、アミジン構造単位の含有量が少なすぎるため、このカチオン性重合体を凝集剤として使用する際に、使用量が多くなる。一方、アミジン構造単位の含有率が90モル%を超えるものは、上述した方法で製造することが困難である。アミジン構造単位の含有率の下限値は、10モル%以上がより好ましく、15モル%以上がさらに好ましく、20モル%以上が特に好ましい。また、アミジン構造単位の含有率の上限値は、85モル%以下がより好ましく、80モル%以下がさらに好ましい。 The cationic polymer preferably contains 5 to 90 mol% of the amidine structural unit represented by the formula (1) and/or (2) as a repeating unit in 100 mol% of the cationic polymer. When the content of the amidine structural unit is less than 5 mol %, the content of the amidine structural unit is too small, and therefore the amount of the cationic polymer used as an aggregating agent increases. On the other hand, if the content of the amidine structural unit exceeds 90 mol %, it is difficult to produce it by the method described above. The lower limit of the content of the amidine structural unit is more preferably 10 mol% or more, further preferably 15 mol% or more, particularly preferably 20 mol% or more. The upper limit of the content of the amidine structural unit is more preferably 85 mol% or less, further preferably 80 mol% or less.

なお、カチオン性重合体は、上述した方法により製造すると、前記アミジン構造単位以外にも、下記式(3)〜(5)で表される単位を含有する場合がある。 When produced by the above-mentioned method, the cationic polymer may contain units represented by the following formulas (3) to (5) in addition to the amidine structural unit.

Figure 0006721288
Figure 0006721288

式(3)〜(5)中、R、R、Rは各々水素原子またはメチル基であり、同一であってもよく、異なっていてもよい。
は炭素数1〜4のアルキル基または水素原子である。
は陰イオンである。陰イオンとしては、上記式(1)、(2)の説明において先に例示した陰イオンと同様である。
In formulas (3) to (5), R 5 , R 7 , and R 8 are each a hydrogen atom or a methyl group, and may be the same or different.
R 6 is an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
Z is an anion. The anion is the same as the anion exemplified above in the description of the formulas (1) and (2).

カチオン性重合体が上記式(3)〜(5)で表される単位を含有する場合、通常、当該カチオン性重合体100モル%中、上記式(3)で表される繰り返し単位を0〜40モル%、上記式(4)で表される繰り返し単位を0〜70モル%、上記式(5)で表される繰り返し単位を0〜70モル%含有する。 When the cationic polymer contains the units represented by the above formulas (3) to (5), the repeating unit represented by the above formula (3) is usually 0 to 100 mol% in the cationic polymer. 40 mol%, 0 to 70 mol% of the repeating unit represented by the above formula (4), and 0 to 70 mol% of the repeating unit represented by the above formula (5).

上記式(1)および/または(2)で表されるアミジン構造単位、および上記式(3)〜(5)で表される単位の組成は、エチレン性不飽和モノマーとニトリル類との重合モル比や、アミジン化反応の条件(温度や時間)によって調整できる。
また、これらの組成は、カチオン性重合体の13C−NMR(13C−核磁気共鳴)を測定することにより求めることができ、具体的には、各繰り返し単位に対応した13C−NMRスペクトルのピーク(シグナル)の積分値より算出できる。
The composition of the amidine structural units represented by the above formulas (1) and/or (2) and the units represented by the above formulas (3) to (5) is determined by the polymerization mole of the ethylenically unsaturated monomer and the nitriles. It can be adjusted by the ratio and the conditions (temperature and time) of the amidination reaction.
Further, these compositions can be determined by measuring 13 C-NMR ( 13 C-nuclear magnetic resonance) of the cationic polymer, and specifically, 13 C-NMR spectra corresponding to each repeating unit. It can be calculated from the integrated value of the peak (signal).

(ステップ(c))
膜モジュール15を透過した膜分離処理水(透過水)を、膜分離処理水流路51を経て生物膜処理装置70に供給する。
生物膜槽71においては、ブロア73を作動させて散気管72からエアを導入し、担体に付着した微生物に酸素を与えることによって膜分離処理水の生物処理を行う。この生物処理によって、膜分離処理水中の凝集剤や難分解性物質などの有機物が微生物によって分解される。
難分解性物質や凝集剤の分解に優れる点で、生物膜処理装置70として生物活性炭処理装置を用いた生物活性炭処理法により膜分離処理水を生物処理することが好ましい。
(Step (c))
The membrane separation treated water (permeated water) that has permeated the membrane module 15 is supplied to the biofilm treatment device 70 via the membrane separation treated water channel 51.
In the biofilm tank 71, the blower 73 is operated to introduce air from the air diffusing tube 72, and oxygen is given to the microorganisms attached to the carrier to perform the biological treatment of the membrane separation treated water. By this biological treatment, organic substances such as flocculants and persistent substances in the membrane separation treated water are decomposed by microorganisms.
It is preferable to biologically treat the membrane separation treated water by a bioactive carbon treatment method using a bioactive carbon treatment device as the biofilm treatment device 70 because it is excellent in decomposing the hardly decomposable substance and the coagulant.

(ステップ(d))
ステップ(c)において、生物膜槽71にて生物処理された生物膜処理水は、そのまま外部に放流してもよいが、生物膜処理水流路62を経て濾過装置30に移送し、逆浸透膜またはナノ濾過膜によって濾過処理することが好ましい。
濾過装置30において、逆浸透膜またはナノ濾過膜を透過した処理水は精製水となり、精製水流路58から排出される。一方、逆浸透膜またはナノ濾過膜を透過しなかった処理水は、濃縮水となって濃縮水流路59から排出される。
(Step (d))
In step (c), the biofilm-treated water that has been biologically processed in the biofilm tank 71 may be discharged to the outside as it is, but is transferred to the filtration device 30 through the biofilm-treated water channel 62, and the reverse osmosis membrane. Alternatively, it is preferable to perform a filtration treatment with a nanofiltration membrane.
In the filtration device 30, the treated water that has passed through the reverse osmosis membrane or the nanofiltration membrane becomes purified water and is discharged from the purified water flow channel 58. On the other hand, the treated water that has not passed through the reverse osmosis membrane or the nanofiltration membrane becomes concentrated water and is discharged from the concentrated water channel 59.

(ステップ(e))
ステップ(d)において、逆浸透膜またはナノ濾過膜を透過しなかった処理水(濃縮水)は、そのまま外部に放流してもよいが、濃縮水流路59を経て蒸発濃縮装置40に移送し、濃縮処理することが好ましい。
蒸発濃縮装置40において、蒸発器41に送られた濃縮水は、図示略の伝熱器により加熱され蒸発し、水蒸気となる。水蒸気は図示略の冷却器により冷却されて凝縮し、凝縮水となり、凝縮水流路60から排出される。蒸発器41にて濃縮された濃縮水は濃縮廃水として濃縮廃水流路61から排出される。
蒸発濃縮装置40にて濃縮水を濃縮処理するに際して、蒸発濃縮装置40の腐食防止を目的として、濃縮水に水酸化ナトリウム等のアルカリを添加してもよい。
濃縮廃水は、そのまま外部に排出してもよいが、通常は、乾燥して固形物の状態にしてから排出される。
(Step (e))
In step (d), the treated water (concentrated water) that has not permeated the reverse osmosis membrane or the nanofiltration membrane may be discharged to the outside as it is, but it is transferred to the evaporative concentration device 40 via the concentrated water flow channel 59, Concentration treatment is preferable.
In the evaporative concentration device 40, the concentrated water sent to the evaporator 41 is heated by a heat transfer device (not shown) to evaporate and become steam. The water vapor is cooled by a cooler (not shown) and condensed to become condensed water, which is discharged from the condensed water passage 60. The concentrated water concentrated in the evaporator 41 is discharged from the concentrated wastewater flow passage 61 as concentrated wastewater.
When the concentrated water is concentrated by the evaporative concentration device 40, an alkali such as sodium hydroxide may be added to the concentrated water for the purpose of preventing corrosion of the evaporative concentration device 40.
The concentrated wastewater may be discharged to the outside as it is, but it is usually dried and then made into a solid state before being discharged.

(作用効果)
以上説明した本発明の廃水処理方法および廃水処理システムにあっては、MBRにより、凝集剤を添加して廃水を処理した後に、MBRにて固液分離された膜分離処理水を生物膜法によりさらに処理する。よって、凝集剤を過剰に添加した場合や、汚泥の量が凝集剤の量に対して少ない場合などにより凝集剤が膜分離処理水中に残存していても、生物膜法によって凝集剤を膜分離処理水から除去できる。また、生物膜法は、MBRでは分解が困難とされている難分解性物質等の有機物の除去も可能である。したがって、生物膜法にて処理された生物膜処理水はBODやCODcr、難分解性物質の濃度(CODcr−BOD)が低く、水質の高い処理水が得られる。
しかも、生物膜法によって凝集剤や難分解性物質を除去できるので、生物膜処理水を逆浸透膜やナノ濾過膜などによって濾過処理する場合でも、濾過膜の膜閉塞を抑制できる。
(Action effect)
In the wastewater treatment method and the wastewater treatment system of the present invention described above, after treating the wastewater by adding the flocculant by the MBR, the membrane-separated treated water solid-liquid separated by the MBR is treated by the biofilm method. Further processing. Therefore, even if the coagulant remains in the membrane separation treatment water due to excessive addition of the coagulant or the amount of sludge is smaller than the amount of the coagulant, the biofilm method is used to separate the coagulant into the membrane. Can be removed from treated water. The biofilm method can also remove organic substances such as hardly decomposable substances that are difficult to decompose by MBR. Therefore, the biofilm-treated water treated by the biofilm method has a low concentration of BOD 5 , COD cr , and hardly decomposable substances (COD cr −BOD 5 ), and high-quality treated water can be obtained.
Moreover, since the coagulant and the hardly decomposable substance can be removed by the biofilm method, even when the biofilm-treated water is filtered by a reverse osmosis membrane or a nanofiltration membrane, the membrane clogging of the filtration membrane can be suppressed.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(凝集剤)
凝集剤として、ポリアミジン系高分子凝集剤(三菱レイヨン株式会社製、「KP7000」)を用いた。
(Flocculant)
As the coagulant, a polyamidine-based polymer coagulant (“KP7000” manufactured by Mitsubishi Rayon Co., Ltd.) was used.

〔例1〜5〕
難分解性物質を含む廃水として、コークス製造プロセスから排出された廃水を用いた。コークス製造プロセスから排出される廃水(コークス廃水)にはフミン質などが含まれ、一般的に生物処理が困難な難分解性物質を多く含むことが知られている。
本例で用いた廃水のCODcrは3500mg/Lであり、BODは500mg/Lであった。よって、廃水中の難分解性物質の濃度(CODcr−BOD)は3000mg/Lであり、BOD/CODcrは0.14である。なお、CODcrおよびBODはJIS K 0102にしたがって測定した。
[Examples 1 to 5]
The wastewater discharged from the coke manufacturing process was used as the wastewater containing persistent substances. It is known that the wastewater discharged from the coke manufacturing process (coke wastewater) contains humic substances, etc., and generally contains a large amount of persistent substances that are difficult to bioprocess.
The COD cr of the wastewater used in this example was 3500 mg/L, and the BOD 5 was 500 mg/L. Therefore, the concentration of the hardly decomposable substance in the wastewater (COD cr -BOD 5 ) is 3000 mg/L, and the BOD 5 /COD cr is 0.14. COD cr and BOD 5 were measured according to JIS K 0102.

<膜分離活性汚泥法による処理>
(膜分離処理水(I)の調製)
MLSS濃度8000mg/Lに調整した活性汚泥と中空糸膜(三菱レイヨン株式会社製、「ステラポアSADF」)を用いた膜分離活性汚泥法(MBR)により廃水を処理し、膜分離処理水(I)を得た。処理においては中空糸膜の下方より曝気をして好気条件とし、水力学的滞留時間を24時間とした。
得られた膜分離処理水(I)のCODcrおよびBODをJIS K 0102にしたがって測定したところ、CODcrは2000mg/Lであり、BODは50mg/Lであり、難分解性物質の濃度(CODcr−BOD)は1950mg/Lであった。
<Treatment by membrane separation activated sludge method>
(Preparation of Membrane Separation Treated Water (I))
Wastewater is treated by a membrane separation activated sludge method (MBR) using an activated sludge adjusted to an MLSS concentration of 8000 mg/L and a hollow fiber membrane (“Stellapore SADF” manufactured by Mitsubishi Rayon Co., Ltd.), and membrane separation treated water (I) Got In the treatment, aeration was carried out from below the hollow fiber membrane to aerobic conditions, and the hydraulic retention time was set to 24 hours.
When the COD cr and BOD 5 of the obtained membrane-separated water (I) were measured according to JIS K 0102, the COD cr was 2000 mg/L, the BOD 5 was 50 mg/L, and the concentration of the hardly decomposable substance. (COD cr -BOD 5 ) was 1950 mg/L.

(膜分離処理水(II)の調製)
廃水に凝集剤を500mg/Lとなるように連続添加したこと以外は、膜分離処理水(I)の調製と同様の条件で廃水を処理し、膜分離処理水(II)を得た。
得られた膜分離処理水(II)のCODcrおよびBODをJIS K 0102にしたがって測定したところ、CODcrは1500mg/Lであり、BODは50mg/Lであり、難分解性物質の濃度(CODcr−BOD)は1450mg/Lであった。
(Preparation of membrane separation treated water (II))
The wastewater was treated under the same conditions as in the preparation of the membrane separation treated water (I) except that the coagulant was continuously added to the wastewater so that the concentration was 500 mg/L, to obtain a membrane separation treated water (II).
The COD cr and BOD 5 of the obtained membrane-separated water (II) were measured according to JIS K 0102. The COD cr was 1500 mg/L, the BOD 5 was 50 mg/L, and the concentration of the hardly decomposable substance. (COD cr -BOD 5 ) was 1450 mg/L.

<生物膜法による処理>
膜分離処理水(II)(CODcr=1500mg/L、BOD=50mg/L、CODcr−BOD=1450mg/L)と、生活廃水(CODcr=500mg/L、BOD=425mg/L、CODcr−BOD=75mg/L、BOD/CODcr=0.85)と、純水とを混合し、混合原水とした。膜分離処理水(II)、生活廃水、および純水の混合割合は、混合原水中のCODcr、BOD/CODcr、およびSS濃度が表1に示す値となる量とした。混合原水中のBODおよびCODcr−BODも併せて表1に示す。なお、SS濃度はJIS K 0102にしたがって測定した。
<Treatment by the biofilm method>
Membrane separation water and (II) (COD cr = 1500mg / L, BOD 5 = 50mg / L, COD cr -BOD 5 = 1450mg / L), domestic wastewater (COD cr = 500mg / L, BOD 5 = 425mg / L , COD cr −BOD 5 =75 mg/L, BOD 5 /COD cr =0.85) and pure water were mixed to obtain mixed raw water. The mixing ratios of the membrane separation treated water (II), domestic wastewater, and pure water were such that COD cr , BOD 5 /COD cr , and SS concentration in the mixed raw water were the values shown in Table 1. Table 1 also shows BOD 5 and COD cr -BOD 5 in the mixed raw water. The SS concentration was measured according to JIS K 0102.

活性炭(三菱レイヨン株式会社製、「ダイヤマルスSAC」、有効間隙率75%)200mLを充填したカラム(直径50mm、長さ20cm)内を曝気しながら、混合原水を空間速度がSV=0.042/hrの条件で通水した。なお、上記活性炭を充填したカラムは、事前に膜分離処理水(I)を曝気しながら0.021/hrの条件で1ヶ月間通水して、活性炭表面に微生物を付着および増殖をさせて、微生物活性炭(微生物付着担体)となるように十分に馴養をした。
通水開始から240時間経過した後の処理水(生物膜処理水)を採取し、CODcrおよびBODを測定し、生物膜処理水中の難分解性物質の濃度(CODcr−BOD)を求めた。結果を表1に示す。
なお、例1〜は実施例に相当し、例4、5は参考例に相当する。
While aerating the inside of a column (diameter 50 mm, length 20 cm) packed with 200 mL of activated carbon (“DIAMALUS SAC” manufactured by Mitsubishi Rayon Co., Ltd., effective porosity 75%), the space velocity of mixed raw water was SV=0.042. Water was passed under the condition of /hr. The column filled with the above activated carbon was allowed to pass through the membrane separation treated water (I) in advance for 1 month under the condition of 0.021/hr while aerating the membrane separation treated water (I) to attach and grow microorganisms on the surface of the activated carbon. The cells were sufficiently acclimated to become microbial activated carbon (carrier with attached microorganisms).
Treated water (biofilm-treated water) after 240 hours from the start of water flow is collected, COD cr and BOD 5 are measured, and the concentration of the hardly decomposable substance in the biofilm-treated water (COD cr −BOD 5 ) is measured. I asked. The results are shown in Table 1.
Note that Examples 1 to 3 correspond to Examples, and Examples 4 and 5 correspond to Reference Examples .

Figure 0006721288
Figure 0006721288

表1の結果から明らかなように、生物膜法により混合原水を処理することで、混合原水に含まれる難分解性物質を除去することができた。特に、BOD/CODcrが0.3以下の混合原水を用いた場合(例1〜3)は、難分解性物質を大幅に除去することができた。これは、BOD/CODcrが高いことは、混合原水中の易分解性物質の割合が多いことを意味し、BOD/CODcrが高い混合原水を生物膜法により処理すると、易分解性物質の分解が優先されやすい。よって、BOD/CODcrが低い混合原水を生物膜法により処理する場合に比べて、生物膜処理水中の難分解性物質の濃度が高くなるものと考えらえる。 As is clear from the results in Table 1, by treating the mixed raw water by the biofilm method, it was possible to remove the hardly decomposable substance contained in the mixed raw water. In particular, when the mixed raw water with BOD 5 /COD cr of 0.3 or less was used (Examples 1 to 3), the hardly decomposable substance could be largely removed. This means that high BOD 5 /COD cr means that the ratio of easily decomposable substances in the mixed raw water is high, and when the mixed raw water with high BOD 5 /COD cr is treated by the biofilm method, it is easily decomposed. Degradation of substances tends to be prioritized. Therefore, it can be considered that the concentration of the hardly decomposable substance in the biofilm-treated water becomes higher than that in the case where the mixed raw water having a low BOD 5 /COD cr is treated by the biofilm method.

これらの結果より、MBRにより凝集剤を添加して廃水を処理した後、処理水(膜分離処理水)を生物膜法によりさらに処理することで、凝集剤や難分解性物質などの有機物が膜分離処理水から除去され、水質の高い処理水(生物膜処理水)を得ることができるといえる。
一般的に、易分解性物質と難分解性物質が混在する廃水を生物処理する場合には、易分解性物質を分解する微生物が優先的に増殖し、難分解性物質を分解する菌の増殖が抑制される傾向がある。本発明によれば、難分解性物質を相対的に多く含む排水を生物処理する場合には、易分解物質を分解する微生物が優先的に増殖することがなく、難分解性物質を分解する菌が安定して増殖することによって、難分解性物質を安定して処理することができる。
特に、膜分離処理水のBOD/CODcrが0.3以下であれば、難分解性物質が大幅に除去され、水質のより高い処理水を得ることができるといえる。また、得られた生物膜処理水を逆浸透膜やナノ濾過膜などによって濾過処理しても、濾過膜の膜閉塞をより抑制しやすいといえる。
From these results, after the coagulant is added by MBR to treat the wastewater, the treated water (membrane separation treated water) is further treated by the biofilm method so that the organic substances such as the coagulant and the hardly decomposable substance are formed into a membrane. It can be said that it is possible to obtain treated water with high water quality (treated biofilm) by removing it from the separated treated water.
Generally, when biological treatment of wastewater containing easily decomposable substances and hardly decomposable substances, microorganisms that decompose easily decomposable substances grow preferentially, and bacteria that decompose hardly decomposed substances grow. Tend to be suppressed. According to the present invention, when biologically treating wastewater containing a relatively large amount of hardly decomposable substances, microorganisms decomposing easily decomposable substances do not grow preferentially, and microorganisms decomposing hardly decomposable substances are used. The stable growth of the soybean allows stable treatment of the hardly decomposable substance.
In particular, if the BOD 5 /COD cr of the membrane separation treated water is 0.3 or less, it can be said that the hardly decomposable substance is largely removed and the treated water with higher water quality can be obtained. Further, it can be said that even when the obtained biofilm-treated water is subjected to a filtration treatment with a reverse osmosis membrane or a nanofiltration membrane, the membrane clogging of the filtration membrane can be more easily suppressed.

〔例6〜10〕
膜分離処理水(II)(CODcr=1500mg/L、BOD=50mg/L、CODcr−BOD=1450mg/L)と、生活廃水(CODcr=500mg/L、BOD=425mg/L、CODcr−BOD=75mg/L、BOD/CODcr=0.85)と、純水とを混合し、混合原水とした。膜分離処理水(II)、生活廃水、および純水の混合割合は、混合原水中のCODcrが500mg/L、BODが100mg/Lとなる量とした。さらに、混合原水のSS濃度が表2に示す値となるように、活性汚泥を添加した。
[Examples 6 to 10]
Membrane separation water and (II) (COD cr = 1500mg / L, BOD 5 = 50mg / L, COD cr -BOD 5 = 1450mg / L), domestic wastewater (COD cr = 500mg / L, BOD 5 = 425mg / L , COD cr −BOD 5 =75 mg/L, BOD 5 /COD cr =0.85) and pure water were mixed to obtain mixed raw water. The mixing ratio of the membrane separation treated water (II), domestic wastewater, and pure water was such that COD cr in the mixed raw water was 500 mg/L and BOD 5 was 100 mg/L. Further, activated sludge was added so that the SS concentration of the mixed raw water became the value shown in Table 2.

活性炭(三菱レイヨン株式会社製、「ダイヤマルスSAC」、有効間隙率75%)200mLを充填したカラム(直径50mm、長さ20cm)内を曝気しながら、混合原水を空間速度がSV=0.042/hrの条件で通水した。なお、上記活性炭を充填したカラムは、事前に膜分離処理水(I)を曝気しながら0.021/hrの条件で1ヶ月間通水して、活性炭表面に微生物を付着および増殖をさせて、微生物活性炭(微生物付着担体)となるように十分に馴養をした。
カラムにかかる圧力として、カラム内の活性炭の上面から水面までの距離を測定した。この距離が20cmに到達するまでの時間を測定した。結果を表2に示す。
なお、例6、7は実施例に相当し、例8〜10は参考例に相当する。
While aerating the inside of a column (diameter 50 mm, length 20 cm) packed with 200 mL of activated carbon (“DIAMALUS SAC” manufactured by Mitsubishi Rayon Co., Ltd., effective porosity 75%), the space velocity of mixed raw water was SV=0.042. Water was passed under the condition of /hr. The column filled with the above activated carbon was allowed to pass through the membrane separation treated water (I) in advance for 1 month under the condition of 0.021/hr while aerating the membrane separation treated water (I) to attach and grow microorganisms on the surface of the activated carbon. The cells were sufficiently acclimated to become microbial activated carbon (carrier with attached microorganisms).
As the pressure applied to the column, the distance from the upper surface of the activated carbon in the column to the water surface was measured. The time required for this distance to reach 20 cm was measured. The results are shown in Table 2.
Note that Examples 6 and 7 correspond to Examples, and Examples 8 to 10 correspond to Reference Examples .

Figure 0006721288
Figure 0006721288

カラムにかかる圧力が大きくなることは、活性炭の目詰まりが生じていることを意味し、通常であれば逆洗浄などの操作が必要となる。カラム内の活性炭の上面から水面までの距離が20cmに到達するまでの時間が長くなるほど、活性炭が目詰まりすることなく生物膜法による混合原水の処理が円滑に行われていることを意味する。
表2の結果から明らかなように、各例では、生物膜法により混合原水を7時間以上、円滑に処理することができた。特に、SS濃度が25mg/L以下である混合原水を用いた場合(例6、7)は、240時間経過しても活性炭が目詰まりすることなく、安定して混合原水を生物膜法により処理することができた。
The increase in the pressure applied to the column means that the activated carbon is clogged, and an operation such as back washing is usually required. The longer the time it takes for the distance from the upper surface of the activated carbon to the water surface in the column to reach 20 cm, the smoother the treatment of the mixed raw water by the biofilm method without clogging of the activated carbon.
As is clear from the results in Table 2, in each example, the mixed raw water could be smoothly treated by the biofilm method for 7 hours or more. In particular, when mixed raw water having an SS concentration of 25 mg/L or less was used (Examples 6 and 7), the activated carbon was not clogged even after 240 hours, and the mixed raw water was stably treated by the biofilm method. We were able to.

これらの結果より、MBRにより凝集剤を添加して廃水を処理した後、処理水(膜分離処理水)を生物膜法によりさらに処理する際に、膜分離処理水のSS濃度が25mg/L以下であれば、活性炭の目詰まりを効果的に抑制でき、円滑に膜分離処理水を処理できるといえる。 From these results, after treating the wastewater by adding the coagulant by MBR, when the treated water (membrane separation treated water) is further treated by the biofilm method, the SS concentration of the membrane separation treated water is 25 mg/L or less. If so, it can be said that the clogging of activated carbon can be effectively suppressed and the membrane separation treated water can be smoothly treated.

10 膜分離活性汚泥処理装置
11 膜分離槽
15 膜モジュール
16 凝集剤添加手段
20 標準活性汚泥処理装置
30 濾過装置
40 蒸発濃縮装置
70 生物膜処理装置
10 Membrane Separation Activated Sludge Treatment Device 11 Membrane Separation Tank 15 Membrane Module 16 Coagulant Addition Means 20 Standard Activated Sludge Treatment Device 30 Filtration Device 40 Evaporative Concentration Device 70 Biofilm Treatment Device

Claims (6)

活性汚泥中の微生物による生物処理と、分離膜による固液分離処理とを同一の槽内で行う膜分離活性汚泥法により、前記槽に凝集剤を添加して廃水を処理した後、
前記膜分離活性汚泥法にて固液分離して、BOD /COD cr を0.3以下、かつ、SS濃度を25mg/L以下とした膜分離処理水を、カラム内に充填された活性炭に付着した微生物により生物処理を行う生物活性炭処理法である生物膜法によりさらに処理する、廃水処理方法。
Biological treatment by microorganisms in activated sludge, and solid-liquid separation treatment by a separation membrane by the membrane separation activated sludge method performed in the same tank, after treating the wastewater by adding a flocculant to the tank,
Solid-liquid separation by the membrane separation activated sludge method to obtain BOD 5 /COD cr of 0.3 or less and SS concentration of 25 mg/L or less of the membrane-separated treated water into the activated carbon packed in the column. processed by Lisa et biofilm process a biological activated carbon treatment method for performing a biological process by adhering microorganisms, waste water treatment method.
請求項に記載の廃水処理方法によって得られた生物膜処理水を逆浸透膜またはナノ濾過膜によって濾過処理する、廃水処理方法。 A wastewater treatment method, wherein the biofilm-treated water obtained by the wastewater treatment method according to claim 1 is filtered by a reverse osmosis membrane or a nanofiltration membrane. 濾過処理により発生した濃縮水を濃縮処理する、請求項に記載の廃水処理方法。 The wastewater treatment method according to claim 2 , wherein the concentrated water generated by the filtration treatment is concentrated. 活性汚泥中の微生物による廃水の生物処理と、分離膜による固液分離処理とを同一の槽内で行う膜分離活性汚泥処理装置と、
前記膜分離活性汚泥処理装置にて固液分離して、BOD /COD cr を0.3以下、かつ、SS濃度を25mg/L以下とした膜分離処理水を、カラム内に充填された活性炭に付着した微生物により生物処理する生物活性炭処理装置である生物膜処理装置とを具備し、
前記膜分離活性汚泥処理装置は、前記槽に凝集剤を添加する凝集剤添加手段を備える、廃水処理システム。
A membrane separation activated sludge treatment device that performs biological treatment of wastewater with microorganisms in activated sludge and solid-liquid separation treatment with a separation membrane in the same tank,
Solid-liquid separation was carried out in the membrane separation activated sludge treatment device , and the membrane separation treated water having a BOD 5 /COD cr of 0.3 or less and an SS concentration of 25 mg/L or less was filled in the column with activated carbon. And a biofilm treatment device which is a bioactive carbon treatment device for biological treatment with microorganisms attached to
The said membrane separation activated sludge process equipment is a wastewater treatment system provided with the coagulant|flocculant addition means which adds a coagulant|flocculant to the said tank.
生物膜処理装置にて処理された生物膜処理水を濾過処理する逆浸透膜濾過装置またはナノ濾過膜濾過装置をさらに具備する、請求項に記載の廃水処理システム。 The wastewater treatment system according to claim 4 , further comprising a reverse osmosis membrane filtration device or a nanofiltration membrane filtration device that filters the biofilm treatment water treated by the biofilm treatment device. 逆浸透膜濾過装置またはナノ濾過膜濾過装置により発生した濃縮水を濃縮処理する蒸発濃縮装置をさらに具備する、請求項に記載の廃水処理システム。 The wastewater treatment system according to claim 5 , further comprising an evaporative concentration device for concentrating the concentrated water generated by the reverse osmosis membrane filtration device or the nanofiltration membrane filtration device.
JP2014236486A 2014-01-31 2014-11-21 Wastewater treatment method and wastewater treatment system Active JP6721288B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014236486A JP6721288B2 (en) 2014-01-31 2014-11-21 Wastewater treatment method and wastewater treatment system
CN201510041836.0A CN104817222B (en) 2014-01-31 2015-01-27 Wastewater treatment method and wastewater treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014016938 2014-01-31
JP2014016938 2014-01-31
JP2014236486A JP6721288B2 (en) 2014-01-31 2014-11-21 Wastewater treatment method and wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2015163389A JP2015163389A (en) 2015-09-10
JP6721288B2 true JP6721288B2 (en) 2020-07-15

Family

ID=54186579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236486A Active JP6721288B2 (en) 2014-01-31 2014-11-21 Wastewater treatment method and wastewater treatment system

Country Status (1)

Country Link
JP (1) JP6721288B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106186495A (en) * 2016-08-30 2016-12-07 福州善乐机电有限公司 Excreta non-pollution processing equipment
JP2018183725A (en) * 2017-04-25 2018-11-22 三菱ケミカルアクア・ソリューションズ株式会社 Waste water treatment apparatus and waste water treatment method
JP7199685B2 (en) * 2018-05-22 2023-01-06 壽環境機材株式会社 Wastewater treatment equipment and wastewater treatment method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200314B2 (en) * 1994-11-29 2001-08-20 オルガノ株式会社 Organic wastewater treatment equipment
JP2944939B2 (en) * 1996-09-12 1999-09-06 川崎重工業株式会社 Desulfurization wastewater treatment method and apparatus
JP3739188B2 (en) * 1997-08-08 2006-01-25 株式会社クボタ Membrane separation activated sludge method
JP2002306930A (en) * 2001-04-13 2002-10-22 Toray Ind Inc Method for treating water and equipment for water treatment
JP2005349327A (en) * 2004-06-11 2005-12-22 Univ Nagoya Method for treating waste water
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
JP4949742B2 (en) * 2006-06-07 2012-06-13 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP2008086849A (en) * 2006-09-29 2008-04-17 Toray Ind Inc Water treatment method and apparatus
JP2012192367A (en) * 2011-03-17 2012-10-11 Kurita Water Ind Ltd Treatment device for organic waste water containing nitrogen
JP5905283B2 (en) * 2012-02-09 2016-04-20 千代田化工建設株式会社 Plant wastewater treatment method and treatment system
JP6016404B2 (en) * 2012-03-28 2016-10-26 三菱レイヨン株式会社 Waste water treatment system and waste water treatment method

Also Published As

Publication number Publication date
JP2015163389A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
US7875181B2 (en) Water treatment process
US20040168980A1 (en) Combination polymer treatment for flux enhancement in MBR
BRPI0709332A2 (en) hybrid membrane module, system and process for industrial wastewater treatment
TW201121902A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
Abdel-Shafy et al. Membrane technology for water and wastewater management and application in Egypt
WO2008066497A1 (en) Water reclamation without biosludge production
US20220024796A1 (en) Waste water treatment system using aerobic granular sludge gravity-driven membrane system
JP6721288B2 (en) Wastewater treatment method and wastewater treatment system
Golbabaei Kootenaei et al. Removal of Nutrients from Hospital Wastewater by Novel Nano-Filtration Membrane Bioreactor (NF-MBR)
US20220234930A1 (en) Method for Purifying Contaminated Water
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP6467886B2 (en) Waste water treatment method and waste water treatment system
Gupta et al. Submerged membrane bioreactor system for municipal wastewater treatment process: An overview
JP2012206039A (en) Treatment apparatus of organic matter containing wastewater
CN104817166B (en) Wastewater treatment method and wastewater treatment apparatus
WO2015002121A1 (en) Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
JP2012125745A (en) Method and apparatus for treating waste water
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JP5817177B2 (en) Organic wastewater treatment equipment
CN104817222B (en) Wastewater treatment method and wastewater treatment equipment
Pellegrin et al. Membrane processes
Jegatheesan et al. Process fundamentals: from conventional biological wastewater treatment to MBR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190319

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200618

R150 Certificate of patent or registration of utility model

Ref document number: 6721288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150