JP2005349327A - Method for treating waste water - Google Patents

Method for treating waste water Download PDF

Info

Publication number
JP2005349327A
JP2005349327A JP2004173976A JP2004173976A JP2005349327A JP 2005349327 A JP2005349327 A JP 2005349327A JP 2004173976 A JP2004173976 A JP 2004173976A JP 2004173976 A JP2004173976 A JP 2004173976A JP 2005349327 A JP2005349327 A JP 2005349327A
Authority
JP
Japan
Prior art keywords
wastewater
waste water
membrane
white rot
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004173976A
Other languages
Japanese (ja)
Inventor
Eiji Iritani
英司 入谷
Masayuki Katagiri
誠之 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2004173976A priority Critical patent/JP2005349327A/en
Publication of JP2005349327A publication Critical patent/JP2005349327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a microbe such as white rot fungi function effectively when a persistent substance is treated by using the microbe such as white rot fungi or molds. <P>SOLUTION: This system for treating waste water comprises the steps of: adjusting each of the nitrogen concentration and carbon concentration of waste water 14 beforehand within a preset range in a pretreatment tank 12; subjecting the waste water 14 having the adjusted nitrogen concentration and carbon concentration to membrane treatment using a filtration membrane 15 so that a solid component of the waste water 14 is removed by the filtration membrane 15 and the waste water 30 permeated through the filtration membrane 15 is supplied to a microbe-used treatment tank 26; and treating the waste water 30 with the microbe such as white rot fungi or molds in the microbe-used treatment tank 26. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、産業廃水、下水及びし尿等の廃水の処理方法に関する。詳しくは、白色腐朽菌を利用して廃水中に含まれる難分解性物質(例えば、ダイオキシン類,環境ホルモン等の外因性内分泌撹乱物質,着色原因物質,農薬等)を分解する方法に関する。
なお、本明細書中「白色腐朽菌」とは強力な酸化分解作用を有する微生物を意味し、本来の意味での白色腐朽菌のみならず、白色腐朽菌と同等の酸化分解作用を有する他の糸状菌等をも含む意味で使用する。
The present invention relates to a method for treating wastewater such as industrial wastewater, sewage and human waste. More specifically, the present invention relates to a method for decomposing hardly decomposable substances (for example, exogenous endocrine disrupting substances such as dioxins, environmental hormones, coloring causative substances, agricultural chemicals, etc.) contained in wastewater using white rot fungi.
In the present specification, the term “white rot fungus” means a microorganism having a strong oxidative degradation action, and not only a white rot fungus in the original sense but also other oxidative degradation action equivalent to that of a white rot fungus. Used to include filamentous fungi.

白色腐朽菌等の微生物は強力な酸化作用を有する酵素(例えば、リグニンペルオキシダーゼ、マンガンペルオキシダーゼ、ラッカーゼ等)を放出する。このため、これらの微生物を利用してダイオキシン類を始め、環境ホルモン等の難分解性物質を酸化・分解する技術が研究されている(例えば、特許文献1)。
特許文献1に記載の技術では、微生物処理槽(バイオリアクター)内に白色腐朽菌等の微生物の菌株が固定された担体が配置される。微生物処理槽には廃水が供給され、廃水中の難分解性物質は微生物によって炭酸ガス及び易分解性物質(低分子化合物)に分解される。微生物処理槽から排出される処理水は膜濾過装置に供給される。膜濾過装置によって膜分離された物質のうち高分子成分及び固体成分は、微生物処理槽に還流される。一方、膜濾過装置を透過した処理水は、易分解性物質処理槽(例えば、活性汚泥槽、生物膜処理槽)に供給される。易分解性物質処理槽では、処理水中に含まれる易分解性物質が分解処理される。
特開2003−126883号
Microorganisms such as white-rot fungi release enzymes having a strong oxidizing action (for example, lignin peroxidase, manganese peroxidase, laccase, etc.). For this reason, a technique for oxidizing and decomposing hardly degradable substances such as dioxins and environmental hormones using these microorganisms has been studied (for example, Patent Document 1).
In the technique described in Patent Document 1, a carrier on which a microorganism strain such as white rot fungus is fixed is disposed in a microorganism treatment tank (bioreactor). Wastewater is supplied to the microorganism treatment tank, and the hardly decomposable substance in the wastewater is decomposed into carbon dioxide gas and an easily decomposable substance (low molecular compound) by the microorganisms. The treated water discharged from the microorganism treatment tank is supplied to the membrane filtration device. Among the substances separated by the membrane filtration device, the polymer component and the solid component are returned to the microorganism treatment tank. On the other hand, the treated water which permeate | transmitted the membrane filtration apparatus is supplied to an easily decomposable substance processing tank (for example, activated sludge tank, biofilm processing tank). In the easily decomposable substance treatment tank, the easily decomposable substance contained in the treated water is decomposed.
JP2003-126883A

しかしながら、白色腐朽菌等の微生物が良好に機能するか否かは、これら微生物が配置される環境(微生物処理槽の環境)によって大きく異なる。すなわち、微生物処理槽の環境によっては白色腐朽菌等から有効な酵素が殆ど放出されず、このため廃水中の難分解性物質も殆ど分解することができない。上述の従来技術は、白色腐朽菌等により処理された処理水をさらに処理するための技術(いわゆる、後処理技術)であり、白色腐朽菌等の微生物が有効に機能するために最も重要な前処理に関する検討はなされておらず、白色腐朽菌を有効に機能させるための前処理技術の開発が望まれている。   However, whether or not microorganisms such as white rot bacteria function well depends greatly on the environment in which these microorganisms are placed (the environment of the microorganism treatment tank). That is, depending on the environment of the microbial treatment tank, almost no effective enzyme is released from white rot fungi and the like, and thus hardly decomposable substances in the waste water can be decomposed. The above-mentioned prior art is a technique (so-called post-treatment technique) for further treating the treated water treated with white rot fungi, and is the most important before the microorganisms such as white rot fungi function effectively. There has been no study on treatment, and development of a pretreatment technique for effectively functioning white rot fungi is desired.

本発明は、このような事情に鑑みてなされたものであって、その目的は、白色腐朽菌等の微生物を用いて難分解性物質を処理するに際し、白色腐朽菌等の微生物を有効に機能させるための前処理技術を提供することである。   The present invention has been made in view of such circumstances, and its purpose is to effectively function microorganisms such as white rot fungi when treating hardly decomposable substances using microorganisms such as white rot fungi. It is to provide a pre-processing technique for making it happen.

本発明者らは、白色腐朽菌等の微生物を有効に機能させるためには、廃水の窒素濃度と炭素濃度を制御することが重要であり、また、他の微生物が存在しない略無菌状態とすることが重要であることを見出し、本発明に到達した。すなわち、本発明の処理方法は、廃水中の窒素濃度と炭素濃度を予め設定された濃度範囲内に調整する前処理工程と、前処理工程によって窒素濃度と炭素濃度が調整された廃水を膜濾過する膜濾過工程と、膜濾過工程で膜を透過した廃水を白色腐朽菌で処理する微生物処理工程と、を有する。
この処理方法では、前処理によって廃水中の窒素濃度と炭素濃度が調整され、膜濾過によって固形物と透過水に分離される。したがって、廃水中に含まれる微生物は濾過膜によって取り除かれるため、濾過膜を透過した透過水は略無菌状態となる。このため、窒素濃度及び炭素濃度が調整され、かつ、略無菌状態となった廃水が白色腐朽菌等の微生物によって処理される。この処理方法によると、窒素濃度と炭素濃度が調整され、かつ、略無菌状態となった廃水が白色腐朽菌等の微生物で処理されるため、白色腐朽菌等の微生物が有効に機能し、廃水中の難分解性物質が効果的に分解される。
In order for the present inventors to effectively function microorganisms such as white rot fungi, it is important to control the nitrogen concentration and carbon concentration of the wastewater, and to make a substantially aseptic state in which no other microorganisms exist. And the present invention has been reached. That is, the treatment method of the present invention includes a pretreatment step of adjusting the nitrogen concentration and carbon concentration in wastewater within a preset concentration range, and wastewater whose nitrogen concentration and carbon concentration are adjusted by the pretreatment step is membrane filtered. A membrane filtration step, and a microbial treatment step of treating waste water that has passed through the membrane in the membrane filtration step with white rot fungi.
In this treatment method, the nitrogen concentration and carbon concentration in the wastewater are adjusted by pretreatment, and separated into solids and permeate by membrane filtration. Therefore, since the microorganisms contained in the wastewater are removed by the filtration membrane, the permeated water that has permeated the filtration membrane becomes substantially aseptic. For this reason, the nitrogen concentration and the carbon concentration are adjusted, and the waste water that has become substantially aseptic is treated with microorganisms such as white rot fungi. According to this treatment method, the nitrogen and carbon concentrations are adjusted, and the wastewater that has become substantially aseptic is treated with microorganisms such as white rot fungi. The hard-to-decompose substance is effectively decomposed.

前記前処理工程では、廃水中の窒素濃度が低くなるように処理を行うことが好ましく、さらには廃水中の炭素濃度が適切な濃度となるように処理を行うことが好ましい。廃水中の炭素濃度と窒素濃度を適切な濃度に調整することで、白色腐朽菌がより有効に機能し、廃水中の難分解性物質の分解率を向上させることができる。
なお、前処理工程は、炭素濃度と窒素濃度を制御でき、膜処理との組合せが可能な種々の方法によって行うことができ、例えば、活性汚泥法によって行うことが好ましい。活性汚泥法によって廃水を前処理することで廃水中の固形分が凝集するため、その後の膜濾過によって廃水中の固形分(微生物)を捕集し易くなる。
In the pretreatment step, the treatment is preferably performed so that the nitrogen concentration in the wastewater is low, and further, the treatment is preferably performed so that the carbon concentration in the wastewater is an appropriate concentration. By adjusting the carbon concentration and nitrogen concentration in the wastewater to appropriate concentrations, the white rot fungus functions more effectively, and the degradation rate of the hardly decomposable substance in the wastewater can be improved.
The pretreatment step can be performed by various methods that can control the carbon concentration and the nitrogen concentration and can be combined with the membrane treatment. For example, the pretreatment step is preferably performed by an activated sludge method. Pretreatment of the wastewater by the activated sludge method causes the solids in the wastewater to aggregate, so that it is easy to collect the solids (microorganisms) in the wastewater by subsequent membrane filtration.

また、膜濾過工程で使用される濾過膜の孔径は1〜20μmの範囲であることが好ましい。100μmを超える孔径とすると廃水中の微生物を良好に除去することができず、1μm未満では濾過膜が目詰まりする頻度が高くなるためである。   Moreover, it is preferable that the hole diameter of the filtration membrane used at a membrane filtration process is the range of 1-20 micrometers. If the pore diameter exceeds 100 μm, microorganisms in the wastewater cannot be removed well, and if it is less than 1 μm, the frequency of clogging of the filtration membrane increases.

本発明の一実施形態に係る廃水処理システムについて図面を参照して説明する。図1は本実施形態に係る廃水処理システムの全体構成を示す図である。図1に示すように、本実施形態に係る廃水処理システムは、廃水を前処理するための前処理槽12と、前処理槽12で処理された廃水を微生物処理する微生物処理槽26を備える。   A wastewater treatment system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a wastewater treatment system according to the present embodiment. As shown in FIG. 1, the wastewater treatment system according to this embodiment includes a pretreatment tank 12 for pretreating wastewater, and a microorganism treatment tank 26 for microbially treating the wastewater treated in the pretreatment tank 12.

前処理槽12には廃水10が供給される。廃水10は、産業廃水や下水及びし尿等の廃水であって、廃水10内には難分解性物質が含まれている。廃水10に含まれる難分解性物質としては、例えば、ダイオキシン類を始めとして環境ホルモン等がある。ダイオキシン類とは、ポリ塩化ジベンゾパラジオキシン、ポリ塩化ジベンゾフラン等の総称であり、また、これらの物質と同様の毒性を示すコプラナーPCBsをも含めた概念として取り扱われている。PCBはポリ塩化ビフェニールであり、コプラナーPCBは扁平構造を持つPCBを意味する。環境ホルモンとは、動物の生体内に取り込まれたときに、その生体内で営まれている正常なホルモン作用に影響を及ぼす外因性の物質を意味する。例えば、ダイオキシン類、PCB、ポリ臭化ビフェニール類(PBB)、ヘキサクロロベンゼン(HCB)、ペンタクロロフェノール(PCP)、アミトロール等が環境ホルモンと言われている。   Waste water 10 is supplied to the pretreatment tank 12. The waste water 10 is waste water such as industrial waste water, sewage and human waste, and the waste water 10 contains a hardly decomposable substance. Examples of the hardly decomposable substances contained in the waste water 10 include dioxins and environmental hormones. Dioxins are a general term for polychlorinated dibenzopararadixin, polychlorinated dibenzofuran, and the like, and are treated as concepts including coplanar PCBs that exhibit the same toxicity as these substances. PCB is polychlorinated biphenyl, and coplanar PCB means PCB having a flat structure. The environmental hormone means an exogenous substance that affects the normal hormonal action in the living body when taken into the living body of the animal. For example, dioxins, PCBs, polybrominated biphenyls (PBB), hexachlorobenzene (HCB), pentachlorophenol (PCP), amitrol and the like are said to be environmental hormones.

また、前処理槽12に供給される廃水10を着色廃水とすることもできる。着色廃水は、悪臭と同様に容易に感知でき苦情の対象となり易いにもかかわらず、有効な対策技術が開発されていない。本廃水処理システムは、廃水に含まれる着色成分(難分解性物質)を有効に分解し、無色化することができる。
着色廃水としては、例えば、し尿二次処理水、染色工業廃水、糖蜜廃水、熱処理分離液等がある。し尿二次処理水はし尿処理場で処理された後の廃水であり、染色工業廃水は合成染料が用いられる事業所(例えば、繊維、紙、文房具、化粧品、食品、液晶、カラーフィルター用色素等の製造工場)から排出される廃水である。また、糖蜜廃水は製糖工場で生産される二次生産物である糖蜜から糖分を分離した後の黒褐色の廃水であり、熱処理分離液は下水処理場で生じる余剰汚泥の脱水プロセスで生じる褐色の脱水液である。
Further, the waste water 10 supplied to the pretreatment tank 12 can be colored waste water. Despite the fact that colored wastewater can be easily detected and subject to complaints as well as bad odors, no effective countermeasure technology has been developed. The present wastewater treatment system can effectively decompose a colored component (hardly decomposable substance) contained in the wastewater to make it colorless.
Examples of colored wastewater include human waste secondary treatment water, dyeing industrial wastewater, molasses wastewater, and heat treatment separation liquid. Secondary treatment water for human waste is waste water that has been treated at a human waste treatment plant. Dyeing industrial wastewater is used in offices where synthetic dyes are used (for example, textiles, paper, stationery, cosmetics, foods, liquid crystals, color filter pigments, etc. Wastewater discharged from the manufacturing plant). Molasses wastewater is black-brown wastewater after sugar content is separated from molasses, which is a secondary product produced in sugar mills, and the heat treatment separation liquid is brown dewatering that occurs during the dewatering process of excess sludge generated at sewage treatment plants. It is a liquid.

前処理槽12では、供給された廃水10の窒素濃度と炭素濃度を予め設定された濃度範囲内に調整する処理が行われる。すなわち、廃水10に含まれる窒素成分と炭素成分を除去し、窒素濃度は低く、また炭素濃度は適切な値にする。窒素濃度は200mg/l以下に調整することが好ましく、炭素濃度は500〜2000mg/lの範囲内に調整することが好ましい。窒素濃度がこの値より高いと白色腐朽菌の分解性能が著しく低下するためである。また、炭素濃度がこの範囲より高いと処理水質が悪化し、炭素濃度がこの範囲より低いと白色腐朽菌の分解性能が低下するためである。   In the pretreatment tank 12, a process of adjusting the nitrogen concentration and the carbon concentration of the supplied waste water 10 within a preset concentration range is performed. That is, the nitrogen component and the carbon component contained in the waste water 10 are removed, the nitrogen concentration is low, and the carbon concentration is set to an appropriate value. The nitrogen concentration is preferably adjusted to 200 mg / l or less, and the carbon concentration is preferably adjusted within the range of 500 to 2000 mg / l. This is because when the nitrogen concentration is higher than this value, the degradation performance of white rot fungi is significantly reduced. Moreover, when the carbon concentration is higher than this range, the quality of the treated water is deteriorated, and when the carbon concentration is lower than this range, the degradation performance of the white rot fungus is lowered.

前処理槽12の処理には、活性汚泥法や固定化微生物法や生物膜処理法等を用いることができる。活性汚泥法を採用した場合は、廃水10中の固形成分が凝集し、その後の膜処理で固形成分が除去されやすくなるため好ましい。また、活性汚泥法を採用すると、廃水10中の易分解性有機物を分解して除去することもできる。なお、生物膜処理法を採用する場合は、散水ろ床法、接触曝気法、回転円板法等の種々の方法を用いることができる。   For the treatment of the pretreatment tank 12, an activated sludge method, an immobilized microorganism method, a biofilm treatment method, or the like can be used. When the activated sludge method is adopted, the solid components in the wastewater 10 are aggregated, and the solid components are easily removed by subsequent membrane treatment, which is preferable. In addition, when the activated sludge method is employed, easily decomposable organic substances in the wastewater 10 can be decomposed and removed. In addition, when employ | adopting a biofilm processing method, various methods, such as a trickling filter method, a contact aeration method, and a rotating disc method, can be used.

前処理槽12の処理として活性汚泥法を採用した場合、前処理槽12の底面近傍に曝気装置20を配置することが好ましい。曝気装置20は、空気供給管18aを介してブロア16に接続される。ブロア16が作動すると、曝気装置20から前処理槽12内の廃水14にミクロな空気泡が送られる。これによって、前処理槽12内の活性汚泥(微生物)に酸素が供給されて活性化し、また、廃水14を撹拌することができる。廃水14の酸素量は、活性汚泥(微生物)の活性化に重要な役割を果たすため、廃水14の溶存酸素量(廃水14中に溶け込んだ酸素量)を測定する溶存酸素計(DOメータ)を装備し、この溶存酸素計の計測値に基づいて曝気装置20を制御するようにしてもよい。また、曝気装置20による運転を間欠して行うことで嫌気状態を意図的に作り出し、廃水14中の窒素を減少させるようにしてもよい(脱窒効果)。
なお、活性汚泥法の運転方法としては、回分式活性汚泥法、連続式活性汚泥法のいずれの運転方法を用いることもできる。また、前処理槽12内に凝集剤(例えば、ポリアクリルアミド、PAC(ポリアルミニウムクロライド)等)を投入し、廃水14中に含まれる固形成分を凝集させるようにしてもよい。
When the activated sludge method is adopted as the treatment of the pretreatment tank 12, it is preferable to arrange the aeration apparatus 20 near the bottom surface of the pretreatment tank 12. The aeration apparatus 20 is connected to the blower 16 through the air supply pipe 18a. When the blower 16 is activated, micro air bubbles are sent from the aeration device 20 to the waste water 14 in the pretreatment tank 12. Thereby, oxygen is supplied to the activated sludge (microorganisms) in the pretreatment tank 12 and activated, and the waste water 14 can be stirred. Since the amount of oxygen in the wastewater 14 plays an important role in activating activated sludge (microorganisms), a dissolved oxygen meter (DO meter) that measures the amount of dissolved oxygen in the wastewater 14 (the amount of oxygen dissolved in the wastewater 14) is used. It may be equipped and the aeration apparatus 20 may be controlled based on the measured value of the dissolved oxygen meter. Moreover, you may make it produce the anaerobic state intentionally by performing the operation | movement by the aeration apparatus 20 intermittently, and may make it reduce the nitrogen in the wastewater 14 (denitrification effect).
In addition, as an operation method of the activated sludge method, any one of a batch activated sludge method and a continuous activated sludge method can be used. Further, a flocculant (for example, polyacrylamide, PAC (polyaluminum chloride), etc.) may be introduced into the pretreatment tank 12 to agglomerate solid components contained in the waste water 14.

上述した前処理によって窒素濃度と炭素濃度が調整された廃水14は、濾過膜15によって膜分離処理が施される。すなわち、前処理槽12内には濾過膜15が配置され、前処理槽12内の廃水14は濾過膜15に吸引される。廃水14中の固形成分(微生物等を含む)は濾過膜15を透過できず、この固形成分は濾過膜15により取り除かれる。一方、濾過膜15を透過した廃水30は、微生物処理槽26に供給される。したがって、微生物処理槽26に供給される廃水30は、濾過膜15によって微生物等の固形物が取り除かれて略無菌状態となっている。特に、前処理に活性汚泥法を用いた場合は、廃水14中の微生物が凝集し大径化しているため、濾過膜15によって容易に取り除くことができる。   The wastewater 14 whose nitrogen concentration and carbon concentration are adjusted by the pretreatment described above is subjected to membrane separation treatment by the filtration membrane 15. That is, the filtration membrane 15 is disposed in the pretreatment tank 12, and the waste water 14 in the pretreatment tank 12 is sucked into the filtration membrane 15. Solid components (including microorganisms and the like) in the waste water 14 cannot pass through the filtration membrane 15, and the solid components are removed by the filtration membrane 15. On the other hand, the waste water 30 that has passed through the filtration membrane 15 is supplied to the microorganism treatment tank 26. Therefore, the waste water 30 supplied to the microorganism treatment tank 26 is in a substantially aseptic state in which solid substances such as microorganisms are removed by the filtration membrane 15. In particular, when the activated sludge method is used for the pretreatment, the microorganisms in the wastewater 14 are aggregated and increased in diameter, and therefore can be easily removed by the filtration membrane 15.

濾過膜15の形状及び材質等は廃水14の水質等に応じて適宜決定することができる。したがって、濾過膜15として平膜、スパイラル型、中空糸状等のいずれの形状も採用することができる。また、濾過膜15の孔径は1〜20μmの範囲内とすることが好ましい。濾過膜15の孔径が100μmを超えると廃水14中の微生物が充分に除去されず、また、孔径を1μm未満とすると膜の目詰まりが頻繁に発生するためである。濾過膜15には、例えば精密濾過膜(多孔質中空濾過膜等)を好適に用いることができる。なお、上述した実施形態では、濾過膜15を前処理槽12内に浸漬したが、濾過膜(膜濾過装置)は前処理槽12の外に設置することもできる。   The shape and material of the filtration membrane 15 can be appropriately determined according to the water quality of the waste water 14. Therefore, any shape such as a flat membrane, a spiral type, and a hollow fiber shape can be adopted as the filtration membrane 15. Moreover, it is preferable to make the hole diameter of the filtration membrane 15 into the range of 1-20 micrometers. This is because if the pore size of the filtration membrane 15 exceeds 100 μm, microorganisms in the waste water 14 are not sufficiently removed, and if the pore size is less than 1 μm, clogging of the membrane frequently occurs. As the filtration membrane 15, for example, a microfiltration membrane (such as a porous hollow filtration membrane) can be suitably used. In the above-described embodiment, the filtration membrane 15 is immersed in the pretreatment tank 12, but the filtration membrane (membrane filtration device) can also be installed outside the pretreatment tank 12.

濾過膜15を透過した廃水30が供給される微生物処理槽26内には、白色腐朽菌等の難分解性物質分解菌が浮遊状態又は担体に固定した状態で配置されている。例えば、微細な担体(織物等)に難分解性物質分解菌を固定してその担体を廃水28中に浮遊させて配置してもよく、あるいは、難分解性物質分解菌を固定した担体を微生物処理槽26内に移動不能に配置してもよい。   In the microorganism treatment tank 26 to which the waste water 30 that has passed through the filtration membrane 15 is supplied, a hardly decomposable substance-degrading bacterium such as a white rot fungus is arranged in a floating state or fixed to a carrier. For example, a hardly decomposable substance-degrading bacterium may be fixed on a fine carrier (textile, etc.) and the carrier may be suspended in the waste water 28, or a carrier on which the hardly degradable substance degrading bacterium is fixed may be a microorganism. You may arrange | position in the processing tank 26 so that a movement is impossible.

ここで、一般的に白色腐朽菌とは、担子菌類に属し、木材を腐朽させる担子菌のうちリグニンを強力に分解する能力を持つ担子菌のことである。例えば、トゥラメテス属(Trametes)、ファネロケーテ属(Phanerochaete)等がある。これら白色腐朽菌が放出する酵素には、マンガンペルオキシダーゼ、リグニンペルオキシダーゼ、ラッカーゼ等がある。マンガンペルオキシダーゼ、リグニンペルオキシダーゼは過酸化水素により酸化されて活性状態となり、ダイオキシン類を始め環境ホルモン、色度成分等の難分解性物質を酸化分解する。ラッカーゼはフェノール性水酸基を酸化する酵素で、例えばヒドロキノン、ポリフェノール、p−フェニレンジアミン、アスコルビン酸、ジアニン色素などを酸化する。この酸化作用により、ベンゼン類を切断して分解することができる。したがって、ベンゼン環から構成されるダイオキシン類に対しては顕著な分解効果を発揮する。
白色腐朽菌以外の糸状菌にも同様の性質を示す菌があり、中でもペニシリウム属(Penicillium)、クラドスポリウム属(Cladosporium)の糸状菌は、色度成分などの難分解物質を強力に分解することができ、本処理システムに用いることができる。
Here, white rot fungi generally belong to basidiomycetes and are basidiomycetes having the ability to strongly decompose lignin among basidiomycetes that decay wood. Examples include the genus Trametes and the genus Phanerochaete. Enzymes released by these white rot fungi include manganese peroxidase, lignin peroxidase, laccase and the like. Manganese peroxidase and lignin peroxidase are oxidized by hydrogen peroxide to become active, and oxidize and decompose dioxins, environmental hormones, chromatic components, and other indegradable substances. Laccase is an enzyme that oxidizes phenolic hydroxyl groups, and oxidizes, for example, hydroquinone, polyphenol, p-phenylenediamine, ascorbic acid, dianine dye and the like. By this oxidation action, benzenes can be cleaved and decomposed. Therefore, it exerts a remarkable decomposition effect on dioxins composed of benzene rings.
There are fungi other than white rot fungi that have similar properties. Among them, Penicillium and Cladosporium filamentous fungi strongly decompose difficult-to-decompose substances such as chromaticity components. Can be used in the present processing system.

また、白色腐朽菌は好気性菌であるため、微生物処理槽26の底面近傍には曝気装置24が配置されることが好ましい。曝気装置24は、フィルタ22及び空気供給管18bを介してブロア16に接続することができる。ブロア16が作動すると、ブロア16から送出された空気が曝気装置24よりミクロな空気泡となって微生物処理槽26内に吹き出す。これによって、好気性の難分解性物質分解菌に酸素が供給されて活性化し、廃水28内に含まれる難分解性物質が分解される。曝気装置24から供給される空気は、フィルタ22によって塵等が除去されているため、この空気によって微生物処理槽26内の廃水28が汚染されることはない。
なお、難分解性物質分解菌を活性化するためには、微生物処理槽26内の廃水28の溶存酸素濃度を0.5mg/l以上を維持することが好ましい。また、微生物処理槽26内の廃水28の水温は15〜30℃、好ましくは25〜30℃に維持する。この温度では微生物の活性が高くなり、効果的に分解酵素を産出して分解効率を高めることができる。
Further, since the white rot fungus is an aerobic bacterium, it is preferable that the aeration apparatus 24 is disposed in the vicinity of the bottom surface of the microorganism treatment tank 26. The aeration device 24 can be connected to the blower 16 via the filter 22 and the air supply pipe 18b. When the blower 16 is operated, the air sent from the blower 16 is blown into the microorganism treatment tank 26 as micro air bubbles from the aeration device 24. As a result, oxygen is supplied to the aerobic hardly decomposable substance-degrading bacteria and activated, and the hardly decomposable substance contained in the waste water 28 is decomposed. Since dust and the like are removed from the air supplied from the aeration device 24 by the filter 22, the waste water 28 in the microorganism treatment tank 26 is not contaminated by this air.
In order to activate the hardly decomposable substance-degrading bacteria, it is preferable to maintain the dissolved oxygen concentration of the waste water 28 in the microorganism treatment tank 26 at 0.5 mg / l or more. Moreover, the water temperature of the waste water 28 in the microorganism treatment tank 26 is maintained at 15 to 30 ° C, preferably 25 to 30 ° C. At this temperature, the activity of the microorganism is increased, and the degradation efficiency can be increased by effectively producing a degrading enzyme.

また、微生物処理槽26内の廃水28には、必要に応じて難分解性物質分解菌の栄養源となる有機物を投入するようにしてもよい。投入する有機物としては、例えばグルコース、スクロース、フルクトース等の糖類や、アルコール類、有機酸を所定量添加することが望ましい。さらに、他の雑菌の繁殖を防止するために、廃水28を酸性に設定するpH調整剤を添加するようにしてもよい。pH調整剤としては、塩酸などの強酸や酢酸などの有機酸などの広範囲の酸を利用することができる。   Moreover, you may make it throw into the waste water 28 in the microorganism treatment tank 26 the organic substance used as the nutrient source of a hardly degradable substance decomposing | disassembling bacteria as needed. As the organic substance to be added, it is desirable to add a predetermined amount of sugars such as glucose, sucrose, and fructose, alcohols, and organic acids. Furthermore, in order to prevent the propagation of other germs, a pH adjuster that sets the wastewater 28 to be acidic may be added. A wide range of acids such as strong acids such as hydrochloric acid and organic acids such as acetic acid can be used as the pH adjuster.

上述した難分解性物質分解菌によって分解された廃水28は、処理水32として微生物処理槽26外に排出される。処理水32は、前処理槽12において易分解性物質が分解され、また、微生物処理槽26において難分解性物質が分解されるため、人が触れることが可能な親水用水レベルの再生水とすることができる。また、必要に応じて処理水32をさらに処理するようにしてもよい。   The waste water 28 decomposed by the above-described hardly decomposable substance-degrading bacteria is discharged out of the microorganism treatment tank 26 as treated water 32. The treated water 32 is regenerated water having a hydrophilic water level that can be touched by humans because the easily decomposable substance is decomposed in the pretreatment tank 12 and the hardly decomposed substance is decomposed in the microorganism treatment tank 26. Can do. Moreover, you may make it process the treated water 32 further as needed.

上述した廃水処理システムを用いて着色廃水の処理を行った。微生物処理槽26内には白色腐朽菌〔カワラタケ(Trametes versicolor)IFO−30340株〕を配置し、着色廃水にはメラノイジン含有廃水を用いた。メラノイジンは、糖蜜廃水、熱分解処理液、畜産廃水等の各種着色廃水に含有されている着色原因物質であり、通常の微生物による処理が極めて困難な難分解性物質である。
実験では、まず、メラノイジン含有廃水を前処理槽12において窒素含有量100mg/l,炭素含有量2000mg/lに調整した。前処理層12の処理には活性汚泥法を用いた。次に、窒素濃度及び炭素濃度が調整された廃水を濾過膜によって膜分離し、濾過膜を透過した廃水を白色腐朽菌で処理した。白色腐朽菌で処理した後の処理水の色度変化から脱色率を算出した。
なお、比較例として、前処理を行うことなく濾過膜による膜処理のみを行った廃水(窒素含有量900mg/l,炭素含有量3000mg/l)を白色腐朽菌で処理し、脱色率を算出した(比較例1)。さらに、前処理及び膜処理を行っていない廃水をそのまま白色腐朽菌で処理し、脱色率を算出した(比較例2)。実験の結果を表1に示す。
Colored wastewater was treated using the wastewater treatment system described above. In the microorganism treatment tank 26, white rot fungi (Trametes versicolor IFO-30340 strain) were placed, and melanoidin-containing wastewater was used as the colored wastewater. Melanoidin is a coloring cause substance contained in various colored wastewaters such as molasses wastewater, thermal decomposition treatment liquid, livestock wastewater and the like, and is a hardly decomposable substance that is extremely difficult to treat with ordinary microorganisms.
In the experiment, first, the melanoidin-containing wastewater was adjusted in the pretreatment tank 12 to a nitrogen content of 100 mg / l and a carbon content of 2000 mg / l. An activated sludge method was used for the treatment of the pretreatment layer 12. Next, the wastewater whose nitrogen concentration and carbon concentration were adjusted was membrane-separated with a filtration membrane, and the wastewater that permeated the filtration membrane was treated with white rot fungi. The decolorization rate was calculated from the change in chromaticity of the treated water after being treated with white rot fungi.
In addition, as a comparative example, waste water (nitrogen content 900 mg / l, carbon content 3000 mg / l) which was only subjected to membrane treatment without a pretreatment was treated with white rot fungi, and the decolorization rate was calculated. (Comparative Example 1). Furthermore, the wastewater which has not been subjected to pretreatment and membrane treatment was directly treated with white rot fungi, and the decolorization rate was calculated (Comparative Example 2). The results of the experiment are shown in Table 1.

Figure 2005349327
Figure 2005349327

表1より明らかなように、本実施形態の廃水処理システムによると高い脱色率を得ることができ、本実施形態の処理システムが着色廃水の処理に有効であることが確認された。   As is apparent from Table 1, according to the wastewater treatment system of this embodiment, a high decolorization rate can be obtained, and it was confirmed that the treatment system of this embodiment is effective for the treatment of colored wastewater.

上述の説明から明らかなように、本実施形態の廃水処理システムでは、白色腐朽菌等の微生物によって廃水を処理する前に、廃水の窒素濃度及び炭素濃度が調整され、さらに、廃水の微生物が除去されて略無菌状態となっている。このため、微生物が活発に活動することができ、これによって廃水中に含まれる難分解性物質を効率的に分解することができる。したがって、本実施形態の廃水処理システムによると、難分解性物質が含まれた廃水であっても、人が触れることが可能な親水用水レベルの再生水を得ることができ、「水の循環再利用」を促進することができる。また、微生物の能力を利用しているため、化学的あるいは物理化学的な処理法と比較して低コストで処理することができる。   As is clear from the above description, in the wastewater treatment system of this embodiment, the nitrogen concentration and carbon concentration of the wastewater are adjusted before the wastewater is treated with microorganisms such as white rot fungi, and further the microorganisms of the wastewater are removed. It is almost aseptic. For this reason, microorganisms can actively act, and thereby, the hardly decomposable substance contained in the wastewater can be efficiently decomposed. Therefore, according to the wastewater treatment system of the present embodiment, it is possible to obtain hydrophilic water-level reclaimed water that can be touched by humans even with wastewater containing a hardly decomposable substance. Can be promoted. Moreover, since the ability of microorganisms is utilized, it can process at low cost compared with the chemical or physicochemical processing method.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

本発明の一実施形態に係る廃水処理システムの全体構成を示す図The figure which shows the whole structure of the wastewater treatment system which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

10・・廃水
12・・前処理槽
14・・廃水
15・・濾過膜
16・・ブロア
20・・曝気装置
22・・フィルタ
24・・曝気装置
26・・微生物処理槽
10 .. Waste water 12 ... Pretreatment tank 14 ... Waste water 15 ... Filtration membrane 16 ... Blower 20 ... Aeration device 22 ... Filter 24 ... Aeration device 26 ... Microorganism treatment tank

Claims (5)

廃水中の窒素濃度と炭素濃度を予め設定された濃度範囲内に調整する前処理工程と、
前処理工程によって窒素濃度と炭素濃度が調整された廃水を膜濾過する膜濾過工程と、
膜濾過工程で膜を透過した廃水を白色腐朽菌で処理する微生物処理工程と、を有する廃水処理方法。
A pretreatment step of adjusting the nitrogen concentration and carbon concentration in the wastewater within a preset concentration range;
A membrane filtration step for membrane filtration of wastewater whose nitrogen concentration and carbon concentration are adjusted by the pretreatment step;
A wastewater treatment method comprising treating the wastewater that has passed through the membrane in the membrane filtration step with a white rot fungus.
前処理工程では、廃水中の窒素濃度が低くなるように処理を行うことを特徴とする請求項1に記載の廃水処理方法。   The wastewater treatment method according to claim 1, wherein in the pretreatment step, the treatment is performed so that the nitrogen concentration in the wastewater is low. 前処理工程では、さらに、廃水中の炭素濃度が所定の濃度範囲となるように処理を行うことを特徴とする請求項2に記載の廃水処理方法。   The wastewater treatment method according to claim 2, wherein in the pretreatment step, the treatment is further performed such that the carbon concentration in the wastewater falls within a predetermined concentration range. 前処理工程は活性汚泥法によって行われることを特徴とする請求項2又は3に記載の廃水処理方法。   The wastewater treatment method according to claim 2 or 3, wherein the pretreatment step is performed by an activated sludge method. 膜濾過工程で使用される濾過膜の孔径が1〜20μmの範囲であることを特徴とする請求項4に記載の廃水処理方法。   The wastewater treatment method according to claim 4, wherein the pore size of the filtration membrane used in the membrane filtration step is in the range of 1 to 20 µm.
JP2004173976A 2004-06-11 2004-06-11 Method for treating waste water Pending JP2005349327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173976A JP2005349327A (en) 2004-06-11 2004-06-11 Method for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173976A JP2005349327A (en) 2004-06-11 2004-06-11 Method for treating waste water

Publications (1)

Publication Number Publication Date
JP2005349327A true JP2005349327A (en) 2005-12-22

Family

ID=35584222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173976A Pending JP2005349327A (en) 2004-06-11 2004-06-11 Method for treating waste water

Country Status (1)

Country Link
JP (1) JP2005349327A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281042A (en) * 2005-03-31 2006-10-19 Suminoe Textile Co Ltd Continuous porous molded body immobilizing microbe and method for discoloring dye using this
WO2007125598A1 (en) * 2006-04-28 2007-11-08 Kurita Water Industries Ltd. Method and apparatus for biologically treating organic discharged water
JP2007326017A (en) * 2006-06-07 2007-12-20 Sharp Corp Waste water treatment method and waste water treatment equipment
EP2049444B1 (en) * 2006-07-28 2011-10-19 Universität Kassel Method and apparatus for biological wastewater purification
CN102259986A (en) * 2011-07-21 2011-11-30 绍兴文理学院 Method for rapidly reducing chromaticity of printing and dying wastewater by utilizing white rot fungi
JP2015163389A (en) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 Method and system for wastewater treatment
CN105858913A (en) * 2016-05-16 2016-08-17 南京林业大学 Method of using phanerochaete chrysosporium for bio-augmentation treatment of pulping wastewater
CN112194290A (en) * 2020-06-30 2021-01-08 广州中科建禹环保有限公司 Physicochemical treatment system and method for cosmetic production waste liquid
WO2021033369A1 (en) * 2019-08-21 2021-02-25 株式会社ジェー・フィルズ Treatment equipment for sludge effluent and treatment method for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051884A (en) * 1998-08-12 2000-02-22 Shinko Pantec Co Ltd Method and apparatus for biological treatment of organic waste water
JP2001038165A (en) * 1999-07-29 2001-02-13 Daicel Chem Ind Ltd Filtration process
JP2002223746A (en) * 2001-02-02 2002-08-13 Takuma Co Ltd Microorganism degrading hardly degradable substance and method for treating sewage and wastewater using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051884A (en) * 1998-08-12 2000-02-22 Shinko Pantec Co Ltd Method and apparatus for biological treatment of organic waste water
JP2001038165A (en) * 1999-07-29 2001-02-13 Daicel Chem Ind Ltd Filtration process
JP2002223746A (en) * 2001-02-02 2002-08-13 Takuma Co Ltd Microorganism degrading hardly degradable substance and method for treating sewage and wastewater using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281042A (en) * 2005-03-31 2006-10-19 Suminoe Textile Co Ltd Continuous porous molded body immobilizing microbe and method for discoloring dye using this
WO2007125598A1 (en) * 2006-04-28 2007-11-08 Kurita Water Industries Ltd. Method and apparatus for biologically treating organic discharged water
JP2007326017A (en) * 2006-06-07 2007-12-20 Sharp Corp Waste water treatment method and waste water treatment equipment
EP2049444B1 (en) * 2006-07-28 2011-10-19 Universität Kassel Method and apparatus for biological wastewater purification
US8197690B2 (en) 2006-07-28 2012-06-12 Universitaet Kassel Method and apparatus for biological wastewater purification
CN102259986A (en) * 2011-07-21 2011-11-30 绍兴文理学院 Method for rapidly reducing chromaticity of printing and dying wastewater by utilizing white rot fungi
JP2015163389A (en) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 Method and system for wastewater treatment
CN105858913A (en) * 2016-05-16 2016-08-17 南京林业大学 Method of using phanerochaete chrysosporium for bio-augmentation treatment of pulping wastewater
CN105858913B (en) * 2016-05-16 2018-10-23 南京林业大学 A method of utilizing the biological reinforced processing pulp-making waste-water of Phanerochaete chrysosporium
WO2021033369A1 (en) * 2019-08-21 2021-02-25 株式会社ジェー・フィルズ Treatment equipment for sludge effluent and treatment method for same
CN112194290A (en) * 2020-06-30 2021-01-08 广州中科建禹环保有限公司 Physicochemical treatment system and method for cosmetic production waste liquid

Similar Documents

Publication Publication Date Title
Islam et al. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions
Ajaz et al. Microbial use for azo dye degradation—a strategy for dye bioremediation
Naghdi et al. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes
Nguyen et al. Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi
Hubbe et al. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities
López et al. Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor
Nguyen et al. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor
Nguyen et al. Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor: Complementary role of membrane retention and enzymatic degradation
Mugdha et al. Enzymatic treatment of wastewater containing dyestuffs using different delivery systems
Jafari et al. Biodegradation perspectives of azo dyes by yeasts
Jafari et al. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2-Tio 2/Uv
Collado et al. Biodegradation of dissolved humic substances by fungi
FI96843B (en) Process for treating wastewater containing phenolic compounds
Tran et al. Removal of the insect repellent N, N-diethyl-m-toluamide (DEET) by laccase-mediated systems
Aytar et al. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation
Arca-Ramos et al. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents
CN111018129A (en) Organic industrial tail water treatment method based on ozone oxidation and biodegradation near-field coupling system
Abraham et al. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor
JP2005349327A (en) Method for treating waste water
Hossain et al. Bioremediation and detoxification of the textile wastewater with membrane bioreactor using the white-rot fungus and reuse of wastewater
Habeeb Mohamed et al. Biological treatment of azo dyes on effluent by Neurospora sp isolated and adopted from dye contaminated site
Smaoui et al. A new approach for detoxification of landfill leachate using Trametes trogii
Chaudhari et al. Combinational system for the treatment of textile waste water: a future perspective
Urra et al. Screening of static culture and comparison of batch and continuous culture for the textile dye biological decolorization by Phanerochaete chrysosporium
JP2018065081A (en) Method and device for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510