JP2008229612A - Porous membrane for cell suspension filtering - Google Patents

Porous membrane for cell suspension filtering Download PDF

Info

Publication number
JP2008229612A
JP2008229612A JP2007329654A JP2007329654A JP2008229612A JP 2008229612 A JP2008229612 A JP 2008229612A JP 2007329654 A JP2007329654 A JP 2007329654A JP 2007329654 A JP2007329654 A JP 2007329654A JP 2008229612 A JP2008229612 A JP 2008229612A
Authority
JP
Japan
Prior art keywords
resin
membrane
porous membrane
cell suspension
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007329654A
Other languages
Japanese (ja)
Other versions
JP5228474B2 (en
JP2008229612A5 (en
Inventor
Atsushi Okabe
淳 岡部
Tsuguhito Itou
世人 伊藤
Toshio Otake
要生 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007329654A priority Critical patent/JP5228474B2/en
Publication of JP2008229612A publication Critical patent/JP2008229612A/en
Publication of JP2008229612A5 publication Critical patent/JP2008229612A5/ja
Application granted granted Critical
Publication of JP5228474B2 publication Critical patent/JP5228474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the production apparatus of chemical products by a continuous fermentation method stably keeping high productivity over a long period of time with a simple operation condition. <P>SOLUTION: The continuous fermentation apparatus of the present invention separates fermentation cultivation liquid into filtrate and unfiltered liquid by the separation membrane, recovers chemical products being the desired fermentation product, from the filtrate, and holds or circulates the unfiltered liquid to the fermentation cultivation liquid. The porous membrane which has high water permeability and high cell suppressing efficiency, hardly causes clogging, and is negatively charged, is installed in the fermentation tank. While filtering by low pressure difference through the membrane, productivity of the chemical products by fermentation can be stably and greatly enhanced at a low cost. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、飲料水製造、浄水処理、排水処理などの水処理、食品工業分野に好適な細胞浮遊液濾過用多孔質膜に関する。   The present invention relates to a porous membrane for cell suspension filtration suitable for water treatment such as drinking water production, water purification treatment, waste water treatment, and the food industry.

近年、多孔質膜は、飲料水製造、浄水処理、排水処理などの水処理分野、食品工業分野等様々な方面で利用されている。例えば、飲料水製造、浄水処理、排水処理などの水処理分野においては、多孔質膜が、従来の砂濾過、凝集沈殿過程の代替として水中の不純物を除去するために用いられてきている。   In recent years, porous membranes have been used in various fields such as water treatment fields such as drinking water production, water purification, and wastewater treatment, and food industry. For example, in the field of water treatment such as drinking water production, water purification treatment, and wastewater treatment, porous membranes have been used to remove impurities in water as an alternative to conventional sand filtration and coagulation sedimentation processes.

排水処理分野では活性汚泥と呼ばれる微生物集合体から、フロック化した汚泥分と水分とを分離するために多孔質膜を用いる活性汚泥膜濾過処理プロセスが広く用いられている。また、食品工業分野においては、発酵に用いた酵母の分離除去や処理原液の濃縮を目的として、多孔質膜が用いられている。   In the wastewater treatment field, an activated sludge membrane filtration process using a porous membrane is widely used in order to separate flocified sludge content and moisture from a microorganism aggregate called activated sludge. In the food industry field, porous membranes are used for the purpose of separating and removing yeasts used for fermentation and concentrating treatment stock solutions.

しかしこれらの細胞浮遊液濾過用多孔質膜は洗浄操作なしで運転すると、該膜の目詰りによる濾過流量や濾過効率の低下が大きな問題となる。微生物や培養細胞の目詰まりの抑制方法については、分離膜の洗浄や濾過条件の設定などに関する技術がいくつか提案されているが(特許文献1,2,3)、これらの方法では逆洗浄を行うために、空気、窒素などの気体や水、濾過膜透過水などの液体を培養液の中に加えることになるため、微生物や培養細胞の物質生産能力が変化するため培養の状態を最適に維持することが難しいことや、菌体分離のための濾過膜装置が複雑になるという課題があった。   However, when these porous membranes for cell suspension liquid filtration are operated without a washing operation, a reduction in filtration flow rate and filtration efficiency due to clogging of the membrane becomes a serious problem. Several methods have been proposed for the prevention of clogging of microorganisms and cultured cells, such as washing of separation membranes and setting of filtration conditions (Patent Documents 1, 2, and 3). In order to do this, gas such as air and nitrogen, water, and liquid such as filtered membrane permeated water are added to the culture solution, so the substance production capacity of microorganisms and cultured cells changes, so the culture state is optimized. There existed the subject that it was difficult to maintain and the filtration membrane apparatus for microbial cell separation became complicated.

微生物や培養細胞の膜表面への付着を抑制できれば、低エネルギーで高透水量運転が可能になるので処理効率が高まり、物理洗浄工程も簡略化できるので洗浄コストも抑制できる。特許文献4,5,6,7はイオン吸着を避けるため膜を中性付近に帯電させることを試みているが、耐ファウリング性が十分ではない。
特開昭58−47485号公報 特開昭62−138184号公報 特開平6−98758号公報 特開平10−66845号公報 特開平2−90990号公報 特開平11−179176号公報 特開2004−290830号公報
If adhesion of microorganisms or cultured cells to the membrane surface can be suppressed, high water permeability operation can be performed with low energy, so that processing efficiency is increased, and the physical cleaning process can be simplified, so that cleaning costs can be suppressed. Patent Documents 4, 5, 6, and 7 attempt to charge the membrane near neutral in order to avoid ion adsorption, but the fouling resistance is not sufficient.
JP 58-47485 A Japanese Patent Laid-Open No. 62-138184 JP-A-6-98758 Japanese Patent Laid-Open No. 10-66845 JP-A-2-90990 JP-A-11-179176 JP 2004-290830 A

本発明における課題は、細胞浮遊液を固液分離する用途で使用しても、長時間に渡り安定して高生産性を維持し、かつ高透水性を実現することができる細胞浮遊液濾過用多孔質膜を提供することである。   An object of the present invention is to filter cell suspensions that can stably maintain high productivity over a long period of time and achieve high water permeability even when used for solid-liquid separation of cell suspensions. It is to provide a porous membrane.

上記目的を達成するための本発明の細胞浮遊液濾過用多孔質膜は、平均細孔径が0.01μm以上1μm未満の範囲内にあり、かつ、該平均細孔径の標準偏差が0.1μm以下であり、アニオン性樹脂を含んでなることを特徴とするものである。 In order to achieve the above object, the porous membrane for filtering a cell suspension according to the present invention has an average pore diameter in the range of 0.01 μm or more and less than 1 μm, and a standard deviation of the average pore diameter of 0.1 μm or less. It is characterized by including an anionic resin.

本発明によれば、簡便な操作条件のままで、膜の目詰まりを著しく抑制し、長時間にわたり安定して低コストで細胞浮遊液の濾過が可能となる。   According to the present invention, clogging of the membrane is remarkably suppressed with simple operating conditions, and cell suspension can be filtered stably for a long time at low cost.

本発明で使用される膜の平均細孔径は、0.01μm以上1μm未満である。平均細孔径が、この範囲内にあれば、動物細胞、酵母、糸状菌などを用いた場合、目詰まりが少なく、また、細胞の濾液への漏れもなく安定に濾過することが可能である。また、動物細胞、酵母、糸状菌より小さな細菌類を用いた場合は、0.4μm以下の平均細孔であればよりよく、0.2μm以下の平均細孔であればなお好適に実施可能である。平均孔径は、小さすぎると透水量が低下することがあるので、通常は0.02μm以上が好ましく、より好ましくは0.04μm以上である。このように従来の濾過法では平均孔径を制御することにより分離性能と透水量のバランスをとっていた。理論上では、透水量を高くすれば速やかな分離が可能になるが、所望する微生物および培養細胞を選択的に保持するための分離選択性は低くなる。   The average pore diameter of the membrane used in the present invention is 0.01 μm or more and less than 1 μm. When the average pore diameter is within this range, when animal cells, yeast, filamentous fungi, or the like are used, clogging is small, and stable filtration is possible without leakage of cells into the filtrate. When bacteria smaller than animal cells, yeasts, and filamentous fungi are used, the average pore size is 0.4 μm or less, and the average pore size is 0.2 μm or less. is there. If the average pore diameter is too small, the water permeation rate may be lowered, so that it is usually preferably 0.02 μm or more, more preferably 0.04 μm or more. As described above, the conventional filtration method balances the separation performance and the water permeability by controlling the average pore diameter. Theoretically, if the water permeation amount is increased, rapid separation becomes possible, but the separation selectivity for selectively retaining desired microorganisms and cultured cells is lowered.

ここで、平均細孔径は、倍率10,000倍の走査型電子顕微鏡観察における、9.2μm×10.4μmの範囲内で観察できる細孔すべての直径を測定し、平均することにより求めることができる。細孔径の標準偏差σは、0.1μm以下であることが好ましい。細孔径の標準偏差σは、上述の9.2μm×10.4μmの範囲内で観察できる細孔数をNとして、測定した各々の直径をXk、細孔直径の平均をX(ave)とした以下式(1)より算出した。   Here, the average pore diameter can be obtained by measuring and averaging the diameters of all pores that can be observed within a range of 9.2 μm × 10.4 μm in a scanning electron microscope observation at a magnification of 10,000 times. it can. The standard deviation σ of the pore diameter is preferably 0.1 μm or less. The standard deviation σ of the pore diameter is Nk, which is the number of pores that can be observed within the above-mentioned range of 9.2 μm × 10.4 μm, and the measured diameter is Xk, and the average pore diameter is X (ave). It computed from Formula (1) below.

Figure 2008229612
Figure 2008229612

本発明の細胞浮遊液濾過用多孔質膜はアニオン性樹脂を含んでなることを特徴とする。アニオン性樹脂を含むことで本発明の膜はマイナスの荷電が付加されるものである。   The porous membrane for cell suspension liquid filtration of the present invention comprises an anionic resin. By including an anionic resin, the membrane of the present invention is negatively charged.

一般に細胞浮遊液の固形分は微生物の分泌する細胞外高分子物質(バイオポリマー)層で覆われたものであり、水酸基等の中性荷電性の官能基、アミノ基等の正荷電性の官能基とカルボキシル基等の負荷電性の官能基が分散していると考えられていた(大庭真治,竹山宏秋,長瀬洋一, ケミカル・エンジニヤリング 10 (2002) 61-70.)。しかし、本発明で主な分離対象としている微生物および培養細胞は一般的にマイナスに荷電していることに着目し、マイナスに荷電させた膜との反発力で膜表面に目詰まりしにくくすることで、多孔質膜の剥離係数や膜抵抗を低下させることができることを見出した。その結果、荷電性多孔質膜を反応槽内に設置した状態でも、従来に比べ低い膜間差圧上昇速度での連続濾過運転が実施可能となる。   In general, the solid content of the cell suspension is covered with an extracellular polymeric substance (biopolymer) layer secreted by microorganisms. It is a neutrally charged functional group such as a hydroxyl group, or a positively charged functional group such as an amino group. It was thought that negatively charged functional groups such as carboxyl groups and carboxyl groups were dispersed (Shinji Ohba, Hiroaki Takeyama, Yoichi Nagase, Chemical Engineering 10 (2002) 61-70.). However, paying attention to the fact that microorganisms and cultured cells that are the main separation targets in the present invention are generally negatively charged, the membrane surface is less likely to be clogged by the repulsive force with the negatively charged membrane. Thus, it has been found that the peeling coefficient and membrane resistance of the porous membrane can be reduced. As a result, even when the charged porous membrane is installed in the reaction tank, continuous filtration operation can be performed at a lower rate of increase in the transmembrane pressure difference than in the past.

これに加えてマイナスの荷電を付加した本発明の膜は、平均孔径によるサイズ分離能に加え、荷電反発力による分離性の向上を期待することができる。膜表面が荷電している場合には、膜と同じ電荷極性を有する物質は膜に対し反発し、それによって膜細孔を通過することなく発酵反応層内にこのような荷電物質を保持しうる。非荷電膜と比較して高い分離選択性を示す一方、透水性は犠牲となっていない。   In addition to this, the membrane of the present invention to which a negative charge is added can be expected to improve the separability due to the charge repulsion in addition to the size separation ability due to the average pore diameter. When the membrane surface is charged, substances with the same charge polarity as the membrane can repel the membrane, thereby retaining such charged substances in the fermentation reaction layer without passing through the membrane pores. . While showing high separation selectivity compared to uncharged membranes, water permeability is not sacrificed.

本発明で用いられる多孔質膜において、培養液の透過性が重要点の一つであり、透過性の指標として、使用前の多孔質膜の純水透過係数を用いることができる。多孔質膜の純水透過係数が、逆浸透膜による25℃の精製水を用い、ヘッド高さ1mで透水量を測定し算出したとき、2×10−9/m/s/Pa以上であることが好ましく、2×10−9以上6×10−7/m/s/Pa以下であれば、実用的に十分な透過水量が得られる。 In the porous membrane used in the present invention, the permeability of the culture solution is one of the important points, and the pure water permeability coefficient of the porous membrane before use can be used as the permeability index. When the pure water permeability coefficient of the porous membrane was calculated by measuring the water permeability at a head height of 1 m using purified water at 25 ° C. by a reverse osmosis membrane, 2 × 10 −9 m 3 / m 2 / s / Pa It is preferable that it is above, and if it is 2 × 10 −9 or more and 6 × 10 −7 m 3 / m 2 / s / Pa or less, a practically sufficient amount of permeated water can be obtained.

本発明で用いられる多孔質膜の表面粗さは、分離膜の目詰まりに影響を与える因子であり、表面粗さが0.1μm以下の時に分離膜の剥離係数や膜抵抗を低下させることができ、より低い膜間差圧で連続発酵が実施可能である。また、表面粗さが低いことで、微生物、培養細胞の濾過において、膜表面で発生する剪断力を低下させることが期待でき、微生物または培養細胞の破壊が抑制され、多孔質膜の目詰まりも抑制されることにより、長期間安定な濾過が可能になると考えられる。ここで、表面粗さは、以下の原子間力顕微鏡装置(AFM)を使用して以下の条件で測定することができる。   The surface roughness of the porous membrane used in the present invention is a factor that affects the clogging of the separation membrane. When the surface roughness is 0.1 μm or less, the separation coefficient and membrane resistance of the separation membrane may be reduced. And continuous fermentation can be carried out with a lower transmembrane pressure difference. In addition, the low surface roughness can be expected to reduce the shearing force generated on the membrane surface during filtration of microorganisms and cultured cells, the destruction of microorganisms or cultured cells is suppressed, and the porous membrane is clogged. It is considered that stable filtration is possible for a long time by being suppressed. Here, the surface roughness can be measured under the following conditions using the following atomic force microscope (AFM).

装置:原子間力顕微鏡装置(Digital Instruments(株)製Nanoscope IIIa)
条件:探針 SiNカンチレバー(Digital Instruments(株)製)
走査モード コンタクトモード(気中測定)、水中タッピングモード(水中測定)
走査範囲 10μm, 25μm 四方(気中測定)、5μm, 10μm 四方(水中測定)
走査解像度 512×512
試料調製:測定に際し膜サンプルは常温でエタノールに15分浸漬後RO水中に24時間浸漬し洗浄した後風乾し用いた。
Apparatus: Atomic force microscope (Digital Instruments Co., Nanoscope IIIa)
Condition: Probe SiN cantilever (manufactured by Digital Instruments)
Scan mode Contact mode (in-air measurement), underwater tapping mode (underwater measurement)
Scanning range 10 μm, 25 μm square (measurement in air), 5 μm, 10 μm square (measurement in water)
Scanning resolution 512 × 512
Sample preparation: For measurement, the membrane sample was immersed in ethanol at room temperature for 15 minutes, then immersed in RO water for 24 hours, washed, and then air-dried.

膜の表面粗さdroughはAFMにより各ポイントのZ軸方向の高さから以下式(2)より算出した。 The surface roughness d rough of the film was calculated by the following formula (2) from the height in the Z-axis direction at each point by AFM.

Figure 2008229612
Figure 2008229612

本発明における細胞浮遊液濾過用多孔質膜の材質は、アニオン性樹脂を含んでおり、被処理水の水質や用途に応じた分離性能と透水性能が得られれば特に限定はされないが、阻止性能、透水性能や耐汚れ性といった分離性能の点からは多孔性樹脂層を含む多孔質膜であることが必要である。また、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維などの有機繊維を用いてなる織布や不織布や、無機材料からなる多孔質基材と多孔質樹脂層とから形成されたものでも良い。   The material of the porous membrane for cell suspension liquid filtration in the present invention includes an anionic resin, and is not particularly limited as long as separation performance and water permeation performance according to the quality of water to be treated and its use can be obtained. From the viewpoint of separation performance such as water permeation performance and dirt resistance, a porous membrane including a porous resin layer is required. In addition, woven fabrics and non-woven fabrics made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers, and polyethylene fibers, and porous substrates and inorganic resin layers made of inorganic materials But it ’s okay.

本発明を実現するための分離膜として、有機高分子膜を使用することができるが、有機高分子膜は、基本的に有機ポリマー材料から構成される分離膜のことであり、例えば、有機繊維の不織布やマクロポア構造多孔質有機基材と当該多孔質有機基材の孔径より小さな孔径を有する多孔質樹脂層が複合化された構造を持つ場合が多い。ただし、本発明は、この膜の構造に限定されるものではない。   As a separation membrane for realizing the present invention, an organic polymer membrane can be used. The organic polymer membrane is a separation membrane basically composed of an organic polymer material, for example, an organic fiber. In many cases, a non-woven fabric or a macroporous structure porous organic base material and a porous resin layer having a pore size smaller than the pore size of the porous organic base material are combined. However, the present invention is not limited to this film structure.

アニオン性樹脂とは特に限定しないが、エチレン不飽和カルボン酸樹脂やエチレン不飽和スルホン酸樹脂、エチレン不飽和ホスホン酸樹脂があげられる。   Although it does not specifically limit with anionic resin, Ethylene unsaturated carboxylic acid resin, ethylene unsaturated sulfonic acid resin, and ethylene unsaturated phosphonic acid resin are mention | raise | lifted.

エチレン不飽和カルボン酸樹脂としては、例えばアクリル酸樹脂、メタクリル酸樹脂、クロトン酸樹脂、α−メチルクロトン酸樹脂、ヘキセン酸樹脂、イタコン酸樹脂等が挙げられる。   Examples of the ethylenically unsaturated carboxylic acid resin include acrylic acid resin, methacrylic acid resin, crotonic acid resin, α-methylcrotonic acid resin, hexenoic acid resin, and itaconic acid resin.

エチレン不飽和スルホン酸樹脂としては、例えばスチレンスルホン酸樹脂、アクリルスルホン酸樹脂、メタアクリルスルホン酸樹脂、ビニルスルホン酸樹脂、2−アクリルアミド−2−メチルプロパンスルホン酸樹脂等が挙げられる。   Examples of the ethylenically unsaturated sulfonic acid resin include styrene sulfonic acid resin, acrylic sulfonic acid resin, methacryl sulfonic acid resin, vinyl sulfonic acid resin, and 2-acrylamido-2-methylpropane sulfonic acid resin.

エチレン不飽和ホスホン酸樹脂としては、例えばビニルホスホン酸樹脂およびビニルフェニルホスホン酸樹脂等が挙げられる。   Examples of the ethylenically unsaturated phosphonic acid resin include vinyl phosphonic acid resin and vinyl phenyl phosphonic acid resin.

ここで、アニオン性樹脂以外の材質としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、セルロース樹脂、セルローストリアセテート樹脂などからなれば良く、これらの樹脂の混合物であってもよい。   Here, the material other than the anionic resin may be polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene fluoride resin, polysulfone resin, polyether sulfone resin, polyacrylonitrile resin, cellulose resin, cellulose triacetate resin, etc. It may be a mixture of these resins.

中でも好ましくは、物理的耐久性、化学的耐久性に優れたポリフッ化ビニリデン樹脂と、ポリアクリル酸エステル樹脂および或いはポリメタクリル酸エステル樹脂があげられ、さらに好ましくはポリフッ化ビニリデン樹脂である。   Among them, preferred are polyvinylidene fluoride resins excellent in physical durability and chemical durability, and polyacrylate resins and / or polymethacrylate resins, and more preferred are polyvinylidene fluoride resins.

ポリフッ化ビニリデン樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数種類のフッ化ビニリデン共重合体を含有していても構わない。フッ化ビニリデン共重合体としては、フッ化ビニル、四フッ化エチレン、六フッ化プロピレンおよび三フッ化塩化エチレンからなる群から選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。このなかで製膜性、化学的耐久性、コストの点からフッ化ビニリデンホモポリマーがより好ましく用いられる。   The polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and at least one selected from the group consisting of vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and ethylene trifluoride chloride. . Among these, vinylidene fluoride homopolymer is more preferably used from the viewpoint of film forming property, chemical durability, and cost.

アニオン性樹脂としてあげた、アニオン性樹脂のエチレン不飽和カルボン酸樹脂、エチレン不飽和スルホン酸樹脂、エチレン不飽和ホスホン酸樹脂は一般に親水性であり、疎水性樹脂と混合して製膜できたとしても、水中で使用した際に親水性樹脂だけが徐々に溶出し、荷電状態を長期間維持することはできない。   As anionic resin, the anionic resin of ethylene unsaturated carboxylic acid resin, ethylene unsaturated sulfonic acid resin, and ethylene unsaturated phosphonic acid resin are generally hydrophilic and can be formed by mixing with hydrophobic resin. However, when used in water, only the hydrophilic resin is gradually eluted, and the charged state cannot be maintained for a long time.

一方、例えばポリメタクリル酸エステル樹脂はポリフッ化ビニリデン樹脂に対し分子レベルで相溶することが解っており(S.P.Nunes, K.V.Peinemann, Journal of Membrane Science 1992, 73 P25)、荷電性のエチレン不飽和カルボン酸、エチレン不飽和スルホン酸、エチレン不飽和ホスホン酸などともポリフッ化ビニリデン樹脂を容易に共重合させることができる。このことからポリアクリル酸エステル樹脂やポリメタクリル酸エステル樹脂はポリフッ化ビニリデン樹脂中で相溶化剤として働き、アニオン性樹脂は溶出することなく分散しうる。   On the other hand, it is known that, for example, polymethacrylate resin is compatible with polyvinylidene fluoride resin at a molecular level (SP Nunes, KV Peinemann, Journal of Membrane Science 1992, 73 P25). It is possible to easily copolymerize the polyvinylidene fluoride resin with a water-soluble ethylenically unsaturated carboxylic acid, ethylene unsaturated sulfonic acid, ethylene unsaturated phosphonic acid and the like. Therefore, the polyacrylate resin and the polymethacrylate resin function as a compatibilizer in the polyvinylidene fluoride resin, and the anionic resin can be dispersed without being eluted.

すなわち、ポリフッ化ビニリデン樹脂とアニオン性樹脂を相溶化させる樹脂とは、相溶化させれば特に限定されないが、具体的にはポリアクリル酸エステル樹脂やポリメタクリル酸エステル樹脂があげられる。   That is, the resin for compatibilizing the polyvinylidene fluoride resin and the anionic resin is not particularly limited as long as they are compatibilized, and specific examples include polyacrylate resin and polymethacrylate resin.

ポリアクリル酸エステル樹脂とは特に限定しないが例えばメチルアクリレート、エチルアクリレート、n−ブチルアクリレート、iso−ブチルアクリレート、tert−ブチルアクリレート、2−エチルヘキシルアクリレート、グリシジルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレートなどアクリル酸エステルモノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニルモノマーとの共重合体を示す。   Although it does not specifically limit with polyacrylate resin, for example, acrylics, such as methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate A homopolymer of an acid ester monomer, a copolymer thereof, and a copolymer with another copolymerizable vinyl monomer are shown.

ポリメタクリル酸エステル樹脂とは特に限定しないが、例えばメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、iso−ブチルメタクリレート、tert−ブチルメタクリレート、2−エチルヘキシルメタクリレート、グリシジルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレートなどメタクリル酸エステルモノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニルモノマーとの共重合体を示す。これらポリアクリル酸エステル樹脂、ポリメタクリル酸エステル樹脂のなかでポリフッ化ビニリデン樹脂との相溶性、製膜性、コストの点からポリメチルメタクリレートがより好ましく用いられる。   Although it does not specifically limit with polymethacrylate resin, For example, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, etc. A homopolymer of a methacrylic acid ester monomer, a copolymer thereof, and a copolymer with another copolymerizable vinyl monomer are shown. Among these polyacrylic ester resins and polymethacrylic ester resins, polymethyl methacrylate is more preferably used from the viewpoint of compatibility with polyvinylidene fluoride resin, film-forming property, and cost.

ここで、膜内におけるアニオン性樹脂の含有量が高いほど細胞浮遊液に対し目詰まりを抑制できると考えられるが、高すぎる場合にはアニオン性樹脂が水中へ溶出し膜の耐久性および除去性能が低下する。下限についてはアニオン性樹脂の種類にもよるが、アニオン性樹脂が膜中に1重量%以上、好ましくは1.5重量%以上含まれていることで本発明の性能を発現することができる。アニオン性樹脂の含有量とは、製膜後の膜中アニオン性樹脂成分の含有量を仕込み組成から計算したものであり、製膜時に溶出する溶媒、界面活性剤、その他溶媒等は製膜後の膜に含まないものとする。   Here, it is thought that the higher the content of anionic resin in the membrane, the more clogging can be suppressed with respect to the cell suspension, but if it is too high, the anionic resin will elute into the water and the durability and removal performance of the membrane Decreases. Although the lower limit depends on the type of anionic resin, the performance of the present invention can be exhibited when the anionic resin is contained in the film in an amount of 1% by weight or more, preferably 1.5% by weight or more. The anionic resin content is calculated from the charged composition of the anionic resin component in the film after film formation. Solvents, surfactants and other solvents that are eluted during film formation are the values after film formation. It is not included in the film.

本発明の多孔質膜は、平膜であっても中空糸膜であっても良い。平膜の場合、その厚みは用途に応じて選択されるが、例えば、20μm以上5000μm以下、好ましくは50μm以上2000μm以下の範囲で選択される。上述したように、多孔質基材と多孔質樹脂層とから形成されていても良い。その際、多孔質基材に多孔質樹脂層が浸透していても、多孔質基材に多孔質樹脂層が浸透していなくてもどちらでも良く、用途に応じて選択される。多孔質基材の厚みは、50μm以上3000μm以下の範囲で選択される。中空糸膜の場合、内径は200μm以上5000μm以下の範囲で選択され、膜厚は20μm以上2000μm以下の範囲で選択される。また、有機繊維または無機繊維を筒状にした織物や編み物を含んでいても良い。   The porous membrane of the present invention may be a flat membrane or a hollow fiber membrane. In the case of a flat membrane, the thickness is selected according to the application, but for example, it is selected in the range of 20 μm to 5000 μm, preferably 50 μm to 2000 μm. As described above, it may be formed of a porous substrate and a porous resin layer. At that time, either the porous resin layer permeates the porous base material or the porous resin layer does not permeate the porous base material, and it is selected according to the application. The thickness of the porous substrate is selected in the range of 50 μm to 3000 μm. In the case of a hollow fiber membrane, the inner diameter is selected in the range of 200 μm to 5000 μm, and the film thickness is selected in the range of 20 μm to 2000 μm. Moreover, the woven fabric and knitting which made the organic fiber or the inorganic fiber the cylinder shape may be included.

本発明の多孔質膜は、支持体と組み合わせることによって分離膜エレメントとすることができる。多孔質膜エレメントの形態は特に限定されないが、支持体として支持板を用い、該支持板の少なくとも片面に、本発明の多孔質膜を配した多孔質膜エレメントは、本発明の膜エレメントの好適な形態の一つである。この形態では、膜面積を大きくすることが困難なので、透水量を大きくするために、支持板の両面に多孔質膜を配することも好ましい。   The porous membrane of the present invention can be made into a separation membrane element by combining with a support. The form of the porous membrane element is not particularly limited, but a porous membrane element in which a support plate is used as a support and the porous membrane of the present invention is disposed on at least one surface of the support plate is suitable for the membrane element of the present invention. This is one of the forms. In this embodiment, since it is difficult to increase the membrane area, it is also preferable to dispose a porous membrane on both sides of the support plate in order to increase the water permeability.

本発明において、細胞浮遊液を濾過処理する際の膜間差圧は、微生物や細胞および培地成分が容易に目詰まりしない条件であればよいが、膜間差圧を0.1kPa以上20kPa以下の範囲とする。濾過の駆動力としては、細胞浮遊液と多孔質膜処理水の液位差(水頭差)を利用したサイホンにより多孔質膜に膜間差圧を発生させることが可能であり、また、濾過の駆動力として多孔質膜処理水側に吸引ポンプを設置してもよいし、多孔質膜の細胞浮遊液側に加圧ポンプを設置することも可能である。膜間差圧は細胞浮遊液と多孔質膜処理水の液位差を変化させることで制御することができる、またポンプを使用する場合には吸引圧力により制御することができ、更に細胞浮遊液側の圧力を導入する気体または液体の圧力によって制御することができる。これら圧力制御を行う場合には細胞浮遊液側の圧力と多孔質膜処理水側の圧力差をもって膜間差圧とし、膜間差圧の制御に用いることができる。   In the present invention, the transmembrane pressure difference at the time of filtering the cell suspension may be any condition as long as microorganisms, cells and medium components are not easily clogged, but the transmembrane pressure difference is from 0.1 kPa to 20 kPa. Range. As the driving force of filtration, it is possible to generate a transmembrane differential pressure in the porous membrane by siphon using the liquid level difference (water head difference) of cell suspension and porous membrane treated water. As a driving force, a suction pump may be installed on the porous membrane treated water side, or a pressure pump may be installed on the cell suspension side of the porous membrane. The transmembrane pressure can be controlled by changing the liquid level difference between the cell suspension and the porous membrane treated water, and when using a pump, it can be controlled by the suction pressure. The side pressure can be controlled by the gas or liquid pressure introduced. When performing these pressure controls, the pressure difference on the cell suspension side and the pressure difference on the porous membrane treated water side can be used as the transmembrane pressure difference and used to control the transmembrane pressure difference.

以下実施例をもって本発明をさらに具体的に説明する。ただし、本発明はこれにより限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited thereby.

実施例における多孔質膜の膜抵抗は、次のように測定した。   The membrane resistance of the porous membrane in the examples was measured as follows.

基礎濾過実験装置は窒素ガスによりリザーバータンクを加圧し、攪拌式セル(ミリポア(株)製Amicon(登録商標) 8010、有効膜面積4.1cm)から透過する単位時間ごとの透過水を電子天秤により監視する構成である。(Chia−Chi Ho, A.L. Zydney, Journal of Colloid and Interface Science, 2002. 232 P389)。電子天秤はコンピューターと接続し、重量の経時変化から後に膜抵抗を計算する。膜表面は攪拌式セル付属のマグネチックスターラーの回転により膜面流束を与え、攪拌式セルの攪拌速度は常に600rpmに調節し、評価温度は20℃、評価圧力は10kPaとした。 The basic filtration experiment apparatus pressurizes the reservoir tank with nitrogen gas, and the permeated water per unit time permeating from the stirring type cell (Amicon (registered trademark) 8010, effective membrane area 4.1 cm 2 manufactured by Millipore) is electronically balanced. It is the structure monitored by this. (Chia-Chi Ho, AL Zydney, Journal of Colloid and Interface Science, 2002.232 P389). The electronic balance is connected to a computer and the membrane resistance is calculated from the change in weight over time. The membrane surface was given a membrane surface flux by rotation of a magnetic stirrer attached to the stirring cell, the stirring speed of the stirring cell was always adjusted to 600 rpm, the evaluation temperature was 20 ° C., and the evaluation pressure was 10 kPa.

膜抵抗とは、被濾過液を膜によって濾過する際に発生する抵抗のことであり、一般的に、以下式(3)によって定義される。   The membrane resistance is a resistance generated when the liquid to be filtered is filtered through a membrane, and is generally defined by the following formula (3).

R=ΔP/(μJ)‥‥(式3)
R:膜抵抗[1/m]
ΔP:膜濾過圧力[Pa]
μ:膜濾過液の粘度[Pa・s]
J:膜濾過流束[m/s]
ここで、μは膜濾過液の粘度を直接測定してもよいが、以下式(4)に従い、温度から換算してもよい。
R = ΔP / (μJ) (Formula 3)
R: Membrane resistance [1 / m]
ΔP: membrane filtration pressure [Pa]
μ: Viscosity of membrane filtrate [Pa · s]
J: Membrane filtration flux [m / s]
Here, μ may directly measure the viscosity of the membrane filtrate, but may be converted from the temperature according to the following formula (4).

μ×10=F・exp[(1+BT)/(CT+DT)]‥‥(式4)
ここで、F=0.01257187、B=−0.005806436、C=0.001130911、D=−0.000005723952であり、Tは絶対温度[K]である。すなわち、摂氏温度をσ[℃]とすると、T=σ+273.15として表される。
μ × 10 3 = F · exp [(1 + BT) / (CT + DT 2 )] (Formula 4)
Here, F = 0.01257187, B = −0.005806436, C = 0.001130911, D = −0.000005723952, and T is the absolute temperature [K]. That is, when the Celsius temperature is σ [° C.], it is expressed as T = σ + 273.15.

実施例1
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量35.8万)、メタクリル酸メチルとメタクリル酸の共重合体(P(MMA−MAA)、重量平均分子量2.2万、共重合モル比7:3)、N,N−ジメチルホルムアミド(DMF、三菱レーヨン(株)製)、モノステアリン酸ポリオキシエチレンソルビダン(T−60V、三洋化成工業(株)製)、エチレングリコール(EG、和光純薬(株)製)をそれぞれ用い、これらを下記組成で100℃の温度下に十分にて攪拌し混合溶解し、製膜原液を調製した。
Example 1
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 358,000), copolymer of methyl methacrylate and methacrylic acid (P (MMA-MAA), weight average molecular weight 22,000, copolymer molar ratio 7: 3) ), N, N-dimethylformamide (DMF, manufactured by Mitsubishi Rayon Co., Ltd.), polyoxyethylene sorbidan monostearate (T-60V, manufactured by Sanyo Chemical Industries, Ltd.), ethylene glycol (EG, Wako Pure Chemical Industries, Ltd.) Each of these was used, and these were sufficiently stirred and mixed and dissolved at a temperature of 100 ° C. with the following composition to prepare a film forming stock solution.

PVDF :16.0重量%
P(MMA−MAA) : 1.0重量%
T−60V : 8.0重量%
EG : 4.0重量%
DMF :71.0重量%
次に、上記製膜原液を40℃に冷却し、密度が0.48g/cm、厚みが220μmのポリエステル繊維製不織布に塗布し、直ちに25℃の水凝固浴中に5分間浸漬して、多孔性樹脂層が形成された多孔質基材を得た。
PVDF: 16.0% by weight
P (MMA-MAA): 1.0% by weight
T-60V: 8.0% by weight
EG: 4.0% by weight
DMF: 71.0% by weight
Next, the film-forming stock solution is cooled to 40 ° C., applied to a nonwoven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately immersed in a water coagulation bath at 25 ° C. for 5 minutes. A porous substrate on which a porous resin layer was formed was obtained.

この多孔質基材を、95℃の熱水に2分間浸漬してDMFを洗い出し、細胞浮遊液濾過用多孔質膜を得た。作製した上記分離膜について、アニオン性樹脂の含有量は1.76重量%、純水透過係数は54×10−9/m/s/Pa、平均細孔径は0.02μm、膜表面粗さは0.06μm、0.01m濾過時の膜抵抗Rは11.76[1/m]であった。膜抵抗の測定結果を図1に示す。 This porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash out DMF, and a porous membrane for cell suspension liquid filtration was obtained. About the produced said separation membrane, content of anionic resin is 1.76 weight%, a pure water permeability coefficient is 54 * 10 < -9 > m < 3 > / m < 2 > / s / Pa, an average pore diameter is 0.02 micrometer, Membrane surface The roughness was 0.06 μm, and the membrane resistance R during filtration of 0.01 m was 11.76 [1 / m]. The measurement results of the membrane resistance are shown in FIG.

比較例1
実施例1のP(MMA−MAA)を添加せずにPVDFを17.0重量%に変更した以外は、実施例1と同様にした。純水透過係数は44×10−9/m/s/Pa、平均細孔径は0.1μm、膜表面粗さは0.15μm、0.01m濾過時の膜抵抗Rは19.47[1/m]であった。実施例1と同条件で測定した膜抵抗の測定結果を図1に示す。
Comparative Example 1
The same procedure as in Example 1 was conducted except that PVDF was changed to 17.0% by weight without adding P (MMA-MAA) of Example 1. The pure water permeability coefficient is 44 × 10 −9 m 3 / m 2 / s / Pa, the average pore diameter is 0.1 μm, the membrane surface roughness is 0.15 μm, and the membrane resistance R at the time of 0.01 m filtration is 19.47. [1 / m]. The measurement result of the film resistance measured under the same conditions as in Example 1 is shown in FIG.

本発明の荷電性多孔質膜によれば、荷電を有していない従来品(比較例1)と比較して膜抵抗の上昇速度を約2分の1に抑えることができた。   According to the charged porous membrane of the present invention, the rate of increase in membrane resistance could be suppressed to about one half compared to the conventional product (Comparative Example 1) that has no charge.

実施例2
実施例1の原液組成を以下のように変更した以外は、実施例1と同様にした。P(MMA−NaSS)はスチレンスルホン酸ナトリウム(NaSS、和光純薬(株)製)とMMAの共重合体(重量平均分子量3.4万、共重合モル比8:2)である。
Example 2
Example 1 was the same as Example 1 except that the stock solution composition of Example 1 was changed as follows. P (MMA-NaSS) is a copolymer of sodium styrenesulfonate (NaSS, manufactured by Wako Pure Chemical Industries, Ltd.) and MMA (weight average molecular weight 34,000, copolymer molar ratio 8: 2).

PVDF :16.0重量%
P(MMA−NaSS) : 1.0重量%
T−60V : 8.0重量%
EG : 4.0重量%
DMF :71.0重量%
純水透過係数は59×10−9/m/s/Pa、平均細孔径は0.03μm、膜表面粗さは0.2μm、0.01m濾過時の膜抵抗Rは12.83[1/m]であった。
PVDF: 16.0% by weight
P (MMA-NaSS): 1.0% by weight
T-60V: 8.0% by weight
EG: 4.0% by weight
DMF: 71.0% by weight
The pure water permeability coefficient is 59 × 10 −9 m 3 / m 2 / s / Pa, the average pore diameter is 0.03 μm, the membrane surface roughness is 0.2 μm, and the membrane resistance R during filtration of 0.01 m is 12.83. [1 / m].

実施例3
実施例1のP(MMA−MAA)を添加せずにPVDFを16.5重量%、P(MMA−MAA)を1.0重量%に変更した以外は、実施例1と同様にした。純水透過係数は42×10−9/m/s/Pa、平均細孔径は0.1μm、膜表面粗さは0.15μm、0.01m濾過時の膜抵抗Rは18.21[1/m]であった。
Example 3
The same procedure as in Example 1 was carried out except that PVDF was changed to 16.5% by weight and P (MMA-MAA) was changed to 1.0% by weight without adding P (MMA-MAA) in Example 1. The pure water permeability coefficient is 42 × 10 −9 m 3 / m 2 / s / Pa, the average pore diameter is 0.1 μm, the membrane surface roughness is 0.15 μm, and the membrane resistance R at the time of 0.01 m filtration is 18.21. [1 / m].

膜抵抗とファウリングの関係を説明する図である。It is a figure explaining the relationship between film resistance and fouling.

Claims (6)

平均細孔径が0.01μm以上1μm未満の範囲内にあり、かつ、該平均細孔径の標準偏差が0.1μm以下である細胞浮遊液濾過用多孔質膜であって、アニオン性樹脂を含んでなることを特徴とする細胞浮遊液濾過用多孔質膜。 A porous membrane for filtering a cell suspension having an average pore diameter in the range of 0.01 μm or more and less than 1 μm and a standard deviation of the average pore diameter of 0.1 μm or less, comprising an anionic resin A porous membrane for filtering a cell suspension. ポリフッ化ビニリデン樹脂を含み、該ポリフッ化ビニリデン樹脂と前記アニオン性樹脂を相溶化させる樹脂を含む請求項1に記載の細胞浮遊液濾過用多孔質膜。 The porous membrane for cell suspension liquid filtration according to claim 1, comprising a polyvinylidene fluoride resin and a resin that compatibilizes the polyvinylidene fluoride resin and the anionic resin. 前記ポリフッ化ビニリデン樹脂と前記アニオン性樹脂を相溶化させる樹脂がアクリル酸エステル樹脂又はメタクリル酸エステル樹脂である請求項1〜2記載の細胞浮遊液濾過用多孔質膜。 The porous membrane for cell suspension liquid filtration according to claim 1 or 2, wherein the resin for compatibilizing the polyvinylidene fluoride resin and the anionic resin is an acrylate resin or a methacrylate resin. 前記アニオン性樹脂がエチレン不飽和カルボン酸樹脂、エチレン不飽和スルホン酸樹脂、またはエチレン不飽和ホスホン酸樹脂である請求項1〜3のいずれかに記載の細胞浮遊液濾過用多孔質膜。 The porous membrane for cell suspension liquid filtration according to any one of claims 1 to 3, wherein the anionic resin is an ethylene unsaturated carboxylic acid resin, an ethylene unsaturated sulfonic acid resin, or an ethylene unsaturated phosphonic acid resin. 純水透過係数が、2×10−9/m/s/Pa以上6×10−7/m/s/Pa以下である請求項1〜4のいずれかに記載の細胞浮遊液用多孔質膜。 The pure water permeability coefficient is 2 × 10 −9 m 3 / m 2 / s / Pa or more and 6 × 10 −7 m 3 / m 2 / s / Pa or less, or the cell according to claim 1. A porous membrane for suspension. 膜表面粗さが0.1μm以下である請求項1〜5のいずれかに記載の細胞浮遊液濾過用多孔質膜。 The porous membrane for cell suspension liquid filtration according to any one of claims 1 to 5, wherein the membrane surface roughness is 0.1 µm or less.
JP2007329654A 2007-02-22 2007-12-21 Porous membrane for cell suspension filtration Expired - Fee Related JP5228474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329654A JP5228474B2 (en) 2007-02-22 2007-12-21 Porous membrane for cell suspension filtration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007042078 2007-02-22
JP2007042078 2007-02-22
JP2007329654A JP5228474B2 (en) 2007-02-22 2007-12-21 Porous membrane for cell suspension filtration

Publications (3)

Publication Number Publication Date
JP2008229612A true JP2008229612A (en) 2008-10-02
JP2008229612A5 JP2008229612A5 (en) 2011-02-10
JP5228474B2 JP5228474B2 (en) 2013-07-03

Family

ID=39903036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329654A Expired - Fee Related JP5228474B2 (en) 2007-02-22 2007-12-21 Porous membrane for cell suspension filtration

Country Status (1)

Country Link
JP (1) JP5228474B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229613A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Wastewater treatment method
WO2010073958A1 (en) 2008-12-25 2010-07-01 株式会社クラレ Filtration material for filters, and filter cartridge
JP2017000960A (en) * 2015-06-10 2017-01-05 オルガノ株式会社 Membrane cleaning method
WO2017038898A1 (en) * 2015-09-04 2017-03-09 東京応化工業株式会社 Porous film and method for producing same
US9603356B2 (en) 2011-10-24 2017-03-28 Kaneka Corporation Method for producing cell concentrate
KR20170129252A (en) 2015-05-27 2017-11-24 미쯔비시 케미컬 주식회사 Porous film
US10006842B2 (en) 2012-08-30 2018-06-26 Kaneka Corporation Method for producing cell concentrate
WO2020008820A1 (en) * 2018-07-05 2020-01-09 帝人株式会社 Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition
JP7444623B2 (en) 2020-01-30 2024-03-06 東洋クロス株式会社 Porous filter and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267340A (en) * 1986-05-01 1987-11-20 ポ−ル・コ−ポレ−ション Polyvinylidene difluoride structure and its production
JPH03114517A (en) * 1989-07-13 1991-05-15 Akzo Nv Flat or capillary membrane based on homogeneous mixture comprising polyvinylidene fluoride and secondary polymer, method of its manufacture and method of fixing biochemically activated compound
JPH05301034A (en) * 1992-04-23 1993-11-16 Sumitomo Electric Ind Ltd Precision filter membrane for food
JP2001500542A (en) * 1996-08-26 2001-01-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Polymer film having hydrophilic surface, polymer article, and method for producing the same
JP2002066276A (en) * 2000-08-29 2002-03-05 Asahi Kasei Corp Film withstanding organic contamination
JP2006205067A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Porous membrane
JP2007000723A (en) * 2005-06-22 2007-01-11 Toray Ind Inc Porous membrane, solid-liquid separation apparatus and solid-liquid separation method using them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267340A (en) * 1986-05-01 1987-11-20 ポ−ル・コ−ポレ−ション Polyvinylidene difluoride structure and its production
JPH03114517A (en) * 1989-07-13 1991-05-15 Akzo Nv Flat or capillary membrane based on homogeneous mixture comprising polyvinylidene fluoride and secondary polymer, method of its manufacture and method of fixing biochemically activated compound
JPH05301034A (en) * 1992-04-23 1993-11-16 Sumitomo Electric Ind Ltd Precision filter membrane for food
JP2001500542A (en) * 1996-08-26 2001-01-16 マサチューセッツ・インスティチュート・オブ・テクノロジー Polymer film having hydrophilic surface, polymer article, and method for producing the same
JP2002066276A (en) * 2000-08-29 2002-03-05 Asahi Kasei Corp Film withstanding organic contamination
JP2006205067A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Porous membrane
JP2007000723A (en) * 2005-06-22 2007-01-11 Toray Ind Inc Porous membrane, solid-liquid separation apparatus and solid-liquid separation method using them

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229613A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Wastewater treatment method
WO2010073958A1 (en) 2008-12-25 2010-07-01 株式会社クラレ Filtration material for filters, and filter cartridge
KR20110117062A (en) 2008-12-25 2011-10-26 가부시키가이샤 구라레 Filtration material for filters, and filter cartridge
US9603356B2 (en) 2011-10-24 2017-03-28 Kaneka Corporation Method for producing cell concentrate
US10006842B2 (en) 2012-08-30 2018-06-26 Kaneka Corporation Method for producing cell concentrate
US11033864B2 (en) 2015-05-27 2021-06-15 Mitsubishi Chemical Corporation Porous membrane
KR20170129252A (en) 2015-05-27 2017-11-24 미쯔비시 케미컬 주식회사 Porous film
JP2017000960A (en) * 2015-06-10 2017-01-05 オルガノ株式会社 Membrane cleaning method
KR20180050350A (en) * 2015-09-04 2018-05-14 도쿄 오카 고교 가부시키가이샤 Porous film and manufacturing method thereof
CN107922664A (en) * 2015-09-04 2018-04-17 东京应化工业株式会社 Perforated membrane and its manufacture method
JPWO2017038898A1 (en) * 2015-09-04 2018-08-09 東京応化工業株式会社 Porous membrane and method for producing the same
KR102157364B1 (en) * 2015-09-04 2020-09-18 도쿄 오카 고교 가부시키가이샤 Porous membrane and its manufacturing method
WO2017038898A1 (en) * 2015-09-04 2017-03-09 東京応化工業株式会社 Porous film and method for producing same
US11344848B2 (en) 2015-09-04 2022-05-31 Tokyo Ohka Kogyo Co., Ltd. Porous film and method for producing same
WO2020008820A1 (en) * 2018-07-05 2020-01-09 帝人株式会社 Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition
JP7444623B2 (en) 2020-01-30 2024-03-06 東洋クロス株式会社 Porous filter and its manufacturing method

Also Published As

Publication number Publication date
JP5228474B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5228474B2 (en) Porous membrane for cell suspension filtration
Alsalhy et al. A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
Ping Chu et al. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics
Meng et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material
Yu et al. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment
Javadi et al. PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment
Yu et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment
Galiano et al. A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion
JP5309250B2 (en) Polymer water treatment membrane, method for producing the same and water treatment method
JP4600172B2 (en) Porous membrane, solid-liquid separator, and solid-liquid separation method using them
CN110461454B (en) Porous membrane, membrane module, water treatment device, and method for producing porous membrane
AU2006345112A1 (en) Polymer separation membrane and process for producing the same
Tizchang et al. The effects of pristine and silanized nanodiamond on the performance of polysulfone membranes for wastewater treatment by MBR system
JP2008237213A (en) Continuous fermentation apparatus
JP2005111326A (en) Liquid separation membrane and its use
JPWO2008038436A1 (en) Membrane separation method, submerged membrane separation apparatus, and membrane separation process
Sano et al. Direct and indirect effects of membrane pore size on fouling development in a submerged membrane bioreactor with a symmetric chlorinated poly (vinyl chloride) flat-sheet membrane
Jia et al. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance
Xiao et al. Macrofiltration-A leap towards high efficiency microalgal harvesting: A case study using Scenedesmus acuminatus
Wu et al. Fabrication of Tween-20 coated PVDF membranes for wastewater treatment: optimization of preparation parameters, removal and membrane fouling control performance
JP5163152B2 (en) Wastewater treatment method
Eusebio et al. Enhancing filterability of flat-sheet membrane by addition of cationic polymer for sludge thickening system
Al-Bahate et al. Effect of Polyvinyl Pyrrolidone on Polyvinyl Chloride-Graft-Acrylamide Membranes
Etemadi et al. Comparative study between aeration rate and membrane modification effects on antifouling properties of cellulose acetate membrane in membrane bioreactor systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5228474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees