WO2020008820A1 - Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition - Google Patents

Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition Download PDF

Info

Publication number
WO2020008820A1
WO2020008820A1 PCT/JP2019/023159 JP2019023159W WO2020008820A1 WO 2020008820 A1 WO2020008820 A1 WO 2020008820A1 JP 2019023159 W JP2019023159 W JP 2019023159W WO 2020008820 A1 WO2020008820 A1 WO 2020008820A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
water
insoluble copolymer
mass
polyvinylidene fluoride
Prior art date
Application number
PCT/JP2019/023159
Other languages
French (fr)
Japanese (ja)
Inventor
櫻井 博志
西川 聡
優 長尾
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2020008820A1 publication Critical patent/WO2020008820A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a hydrophilic composite membrane, a hydrophilic porous membrane, and a hydrophilic resin composition.
  • Patent Document 1 discloses a hydrophilic polyvinylidene fluoride porous membrane in which after a hydrophobic polyvinylidene fluoride porous membrane is wetted with a solvent, the membrane is brought into contact with a solution containing polyvinylpyrrolidone and a polymerization initiator to crosslink polyvinylpyrrolidone.
  • a method for manufacturing a membrane is disclosed.
  • Patent Literature 2 discloses a hydrophilic porous fluororesin membrane in which a porous fluororesin sheet is coated with a polymer compound having a hydroxyl group, the polymer compound is reacted with an aliphatic dialdehyde, and further reacted with formaldehyde. A manufacturing method is disclosed.
  • Patent Document 3 discloses a hydrophilized porous membrane obtained by dispersing an organized clay, which has been organized with a hydrophilic compound, in a hydrophobic polymer.
  • Patent Document 4 discloses a hydrophilized porous membrane containing a decomposed product of a hydrophilizing agent that generates a hydrophilic chemical species by a decomposition reaction, and a polyvinylidene fluoride-based resin.
  • a first embodiment of the present disclosure has been made under the above situation.
  • a first embodiment of the present disclosure aims to provide a hydrophilic composite membrane having excellent water permeability, and has an object to solve the problem.
  • the hydrophilic porous membrane disclosed in Patent Document 1 or Patent Document 2 is a porous membrane in which a hydrophobic porous membrane is coated with a hydrophilic component, and there is a concern that the hydrophilic component may be detached from the membrane.
  • the hydrophilic porous membrane disclosed in Patent Document 3 there is a concern that the organized clay is detached from the membrane or the hydrophilic compound is detached from the organized clay.
  • the hydrophilic porous membrane disclosed in Patent Document 4 there is a concern that decomposed products of the hydrophilizing agent dispersed and contained in the membrane may be detached from the membrane.
  • a second embodiment of the present disclosure aims to provide a hydrophilic porous membrane in which desorption of a hydrophilic component is unlikely to occur, and has an object to solve the problem.
  • a second embodiment of the present disclosure aims to provide a hydrophilic resin composition in which detachment of a hydrophilic component is unlikely to occur, and has an object to solve the problem.
  • a hydrophilic substrate comprising: a porous substrate; and at least one of a first hydrophilic material and a second hydrophilic material described below, which are present in pores of the porous substrate.
  • Composite membrane a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
  • Second hydrophilic material a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride-based resin in a compatible state.
  • the mass ratio of the water-insoluble copolymer and the polyvinylidene fluoride resin (the water-insoluble copolymer: the polyvinylidene fluoride resin) contained in the second hydrophilic material is from 5:95 to The hydrophilic composite membrane according to any one of [1] to [5], wherein the ratio is 60:40.
  • a hydrophilic porous membrane containing a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit in a compatible state [11] The hydrophilic porous membrane according to [10], wherein the mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass. [12] The hydrophilic porous membrane according to [10] or [11], wherein the acrylic monomer unit includes at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
  • the mass ratio of the polyvinylidene fluoride resin to the water-insoluble copolymer (the polyvinylidene fluoride resin: the water-insoluble copolymer) contained in the hydrophilic porous membrane is 40:60 to 95: 5.
  • the hydrophilic porous membrane according to any one of [10] to [12], which is 5.
  • the hydrophilic resin composition according to [14] wherein a mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
  • the mass ratio of the polyvinylidene fluoride resin to the water-insoluble copolymer (the polyvinylidene fluoride resin: the water-insoluble copolymer) contained in the hydrophilic resin composition is 40:60 to 95.
  • : 5 is the hydrophilic resin composition according to any one of [14] to [16].
  • a hydrophilic composite membrane having excellent water permeability is provided.
  • a hydrophilic porous membrane in which desorption of a hydrophilic component is less likely to occur.
  • a hydrophilic resin composition in which detachment of a hydrophilic component is less likely to occur.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • step is included in the term, not only in an independent step but also in a case where the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps.
  • each component may include a plurality of corresponding substances.
  • the amount of each component in the composition when referring to the amount of each component in the composition, when a plurality of types of substances corresponding to each component are present in the composition, unless otherwise specified, the plurality of types of the components present in the composition are not specified. Means the total amount of the substance.
  • (meth) acryl means at least one of acryl and methacryl
  • “(meth) acrylate” means at least one of acrylate and methacrylate.
  • the “monomer unit” is a constituent element of a polymer, and means a constituent element obtained by polymerizing a monomer.
  • hydrophilic composite membrane is a porous substrate, and present in the pores of the porous substrate, a hydrophilic material of at least one of a first hydrophilic material and a second hydrophilic material described below.
  • First hydrophilic material a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
  • Second hydrophilic material a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride-based resin in a compatible state.
  • a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit is referred to as a water-insoluble copolymer VA.
  • the water-insoluble copolymer VA exhibits hydrophilicity due to the hydroxyl group of the vinyl alcohol unit.
  • the first hydrophilic material and the second hydrophilic material exhibit hydrophilicity by containing the water-insoluble copolymer VA which is hydrophilic. Since the water-insoluble copolymer VA is water-insoluble, it does not easily elute from the first hydrophilic material and the second hydrophilic material into the aqueous medium.
  • the hydrophilic composite membrane of the present disclosure shows excellent hydrophilicity due to the presence of at least one of the first hydrophilic material and the second hydrophilic material that are hydrophilic in the pores of the porous substrate, Excellent water permeability.
  • the contact angle of water measured on one or both surfaces under the following measurement conditions is preferably 60 degrees or less, and the smaller the contact angle of water, the more preferable.
  • the contact angle of water is a value measured by the following measuring method. After leaving the composite membrane in an environment of a temperature of 25 ° C.
  • hydrophilic materials items common to the first hydrophilic material and the second hydrophilic material will be collectively described as hydrophilic materials.
  • Examples of the form of the hydrophilic composite membrane of the present disclosure include, for example, a form in which a part or all of the wall surfaces of pores of a porous substrate are covered with a hydrophilic material, a part of pores of a porous substrate, Examples include a form in which the whole is filled with a hydrophilic material, and a form in which a part of the wall surface of the pores of the porous substrate is covered with the hydrophilic material and a part of the pores is filled with the hydrophilic material.
  • the hydrophilic material when the pores of the porous base material are filled with a hydrophilic material, the hydrophilic material preferably has a porous structure.
  • the porous structure means a structure having a large number of micropores inside, these micropores are connected, and a gas or liquid can pass from one side to the other side. .
  • the hydrophilic composite membrane of the present disclosure is used, for example, for the purpose of separation, purification, concentration, fractionation, and the like of a substance dispersed or dissolved in an aqueous medium.
  • Applications of the hydrophilic composite membrane of the present disclosure include, for example, water purification, sanitization, desalination of seawater, artificial dialysis, pharmaceutical production, food production, protein separation, and the like.
  • the thickness, pore size, and porosity of the hydrophilic composite membrane of the present disclosure are not particularly limited, and may be selected according to the application, structure, or type.
  • the surface of the hydrophilic composite membrane of the present disclosure may be subjected to various surface treatments.
  • the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the porous substrate means a substrate having pores or voids therein.
  • a substrate include a microporous membrane; a porous sheet made of a fibrous material, such as a nonwoven fabric or paper;
  • a microporous film is preferable from the viewpoint of thinning and strength of the hydrophilic composite film.
  • a microporous membrane is a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, so that gas or liquid can pass from one surface to the other. I do.
  • the material of the porous substrate may be either an organic material or an inorganic material.
  • the porous substrate may be either hydrophilic or hydrophobic.
  • the hydrophilic composite membrane of the present disclosure exhibits hydrophilicity even when the porous base material is hydrophobic, because the hydrophilic material is present in the pores of the porous base material, and is excellent in water permeability.
  • the porous substrate includes a porous substrate having an average pore size of 1 nm to 4000 nm.
  • a porous substrate having an average pore size of 4000 nm or less does not easily show water permeability
  • the hydrophilic composite membrane of the present disclosure has a hydrophilic material in pores of the porous substrate, so that the average Even if the pore size is 4000 nm or less, water permeability is easily exhibited.
  • the average pore diameter of the porous substrate is preferably 1 nm or more, more preferably 10 nm or more, from the viewpoint of arranging the hydrophilic material in the pores of the porous substrate.
  • the average pore size of the porous substrate was determined by using a porous substrate having neither the first hydrophilic material nor the second hydrophilic material in the pores as a sample, and using a perm porometer to determine ASTM E1294-89. Is a value obtained by the measurement method described above.
  • the porous substrate includes a porous substrate having a water contact angle of 85 to 130 degrees on one or both surfaces.
  • the porous substrate is hardly wetted by water and does not easily show water permeability
  • the hydrophilic composite membrane of the present disclosure is a porous substrate because a hydrophilic material is present in pores of the porous substrate. Also easily develop water permeability.
  • the contact angle of water on the surface of the porous substrate is measured by the following measurement method using a porous substrate having neither the first hydrophilic material nor the second hydrophilic material in the pores as a sample. Physical properties. After leaving the porous substrate in an environment of a temperature of 25 ° C. and a relative humidity of 60% for 24 hours or more to control the humidity, 1 ⁇ L of ion exchange is performed on the surface of the porous substrate with a syringe under the same temperature and humidity environment. Drops of water are dropped, and the contact angle after 30 seconds is measured by a ⁇ / 2 method using a fully automatic contact angle meter (Kyowa Interface Science Co., Ltd., model number Drop Master DM500).
  • the thickness of the porous substrate is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m from the viewpoint of easiness of disposing the hydrophilic material in the pores of the porous substrate.
  • porous substrate is a microporous membrane containing a polyolefin such as polyethylene or polypropylene (referred to as a polyolefin microporous membrane in the present disclosure).
  • the microporous polyolefin membrane is preferably a microporous membrane containing polypropylene, from the viewpoint of having heat resistance that does not easily break when exposed to high temperatures.
  • microporous polyolefin membrane examples include a microporous polyolefin membrane having a laminated structure of two or more layers, at least one layer containing polyethylene, and at least one layer containing polypropylene.
  • the polyolefin contained in the microporous polyolefin membrane is preferably a polyolefin having a weight average molecular weight (Mw) of 100,000 to 5,000,000.
  • Mw weight average molecular weight
  • the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane.
  • Mw of the polyolefin is 5,000,000 or less, it is easy to form a microporous film.
  • the porous substrate is a porous sheet made of a fibrous material.
  • the fibrous porous sheet include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; and heat resistant materials such as wholly aromatic polyamide, polyamideimide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
  • Porous sheets such as nonwoven fabric and paper made of fibrous materials such as resin; cellulose;
  • the surface of the porous substrate may be subjected to various surface treatments for the purpose of improving the wettability of a coating liquid for disposing the hydrophilic material in the pores of the porous substrate.
  • the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the first hydrophilic material is a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit. In the present disclosure, the first hydrophilic material does not include the second hydrophilic material.
  • the first hydrophilic material exhibits hydrophilicity by containing the water-insoluble copolymer VA.
  • the second hydrophilic material is a hydrophilic material containing the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state.
  • the second hydrophilic material contains the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state, so that the second hydrophilic material exhibits high uniformity and hydrophilicity throughout the second hydrophilic material. .
  • the second hydrophilic material contains the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state, so that the water-insoluble copolymer VA, which is a hydrophilic component, becomes second hydrophilic. Difficult to detach from conductive materials.
  • the second hydrophilic material is excellent in heat resistance, solvent insolubility, chemical resistance and mechanical strength by containing polyvinylidene fluoride resin. Therefore, the hydrophilic composite membrane of the present disclosure having the second hydrophilic material in the pores of the porous substrate has excellent heat resistance, solvent insolubility, chemical resistance, and mechanical strength.
  • the state in which a plurality of types of resins contained in the material present in the pores of the porous base material are compatible means that the material present in the pores of the porous base material is subjected to transmission electron microscopy. When observed at a resolution of 0.2 nm and a magnification of 30,000 times, it means that no discontinuity of the resin phase is observed.
  • the first hydrophilic material and the second hydrophilic material contain a water-insoluble copolymer VA.
  • the water-insoluble copolymer VA has at least a vinyl alcohol unit and an acrylic monomer unit, and is water-insoluble.
  • water-insoluble for a copolymer having a vinyl alcohol unit and an acrylic monomer unit means that the solubility is 3 g / 100 g water or less. Solubility means the mass soluble in 100 g of water at 20 ° C. at 1 atm.
  • water-insoluble copolymer VA examples include a copolymer obtained by saponifying a copolymer of vinyl acetate and an acrylic monomer, and a copolymer obtained by polymerizing an acrylic monomer on partially saponified polyvinyl alcohol.
  • the water-insoluble copolymer VA is a copolymer obtained by polymerizing an acrylic monomer on partially saponified polyvinyl alcohol
  • the degree of polymerization of the partially saponified polyvinyl alcohol is not particularly limited, but is 300 to 800. Is preferred.
  • the degree of saponification of the partially saponified polyvinyl alcohol is not particularly limited, but may be 55 mol. % To 90 mol% is preferred.
  • the degree of saponification of the partially saponified polyvinyl alcohol is 55 mol% or more, the hydrophilicity of the water-insoluble copolymer VA is higher.
  • the degree of saponification of the partially saponified polyvinyl alcohol is more preferably equal to or greater than 60 mol%, and still more preferably equal to or greater than 65 mol%.
  • the degree of saponification of the partially saponified polyvinyl alcohol is 90 mol% or less, the compatibility of the water-insoluble copolymer VA with the polyvinylidene fluoride resin is higher, and the water-insoluble copolymer VA has a higher water solubility. Higher insolubility.
  • the saponification degree of the partially saponified polyvinyl alcohol is more preferably equal to or less than 85 mol%, and still more preferably equal to or less than 80 mol%.
  • the mass ratio of the vinyl alcohol unit in the water-insoluble copolymer VA is preferably from 40% by mass to 90% by mass.
  • the mass ratio of the vinyl alcohol unit is 40% by mass or more, the hydrophilicity of the water-insoluble copolymer VA is higher.
  • the mass ratio of the vinyl alcohol unit is more preferably equal to or greater than 45% by mass, and still more preferably equal to or greater than 50% by mass.
  • the mass ratio of the vinyl alcohol unit is 90% by mass or less, the compatibility of the water-insoluble copolymer VA with the polyvinylidene fluoride resin is higher, and the water-insolubility of the water-insoluble copolymer VA is higher.
  • the mass ratio of the vinyl alcohol unit is more preferably equal to or less than 85% by mass, and still more preferably equal to or less than 80% by mass.
  • the acrylic monomer constituting the acrylic monomer unit includes at least one acrylic monomer selected from the group consisting of (meth) acrylic acid, (meth) acrylate, and (meth) acrylate.
  • Examples of the (meth) acrylate include sodium (meth) acrylate, potassium (meth) acrylate, magnesium (meth) acrylate, and zinc (meth) acrylate.
  • Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic acid.
  • N-hexyl acid 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (meth) acrylic acid Isobornyl, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2- (diethylamino) ethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, etc. Is mentioned.
  • the water-insoluble copolymer VA has higher compatibility with the polyvinylidene fluoride-based resin, and from the viewpoint of higher water-insolubility, from the group consisting of a methacrylate unit and an acrylate unit as an acrylic monomer unit. It preferably has at least one selected from the group, and more preferably has a methacrylate unit.
  • a lower alkyl ester of (meth) acrylic acid (having 1 to 4 carbon atoms in the alkyl group) is preferred, methyl methacrylate or methyl acrylate is more preferred, and methyl methacrylate is still more preferred.
  • the mass ratio of the acrylic monomer unit in the water-insoluble copolymer VA is preferably from 10% by mass to 60% by mass.
  • the mass ratio of the acrylic monomer unit is 10% by mass or more, the compatibility of the water-insoluble copolymer VA with the polyvinylidene fluoride-based resin is higher, and the water-insolubility of the water-insoluble copolymer VA is higher.
  • the mass ratio of the acrylic monomer unit is more preferably equal to or greater than 15% by mass, and still more preferably equal to or greater than 20% by mass.
  • the mass ratio of the acrylic monomer unit is 60% by mass or less, the hydrophilicity of the water-insoluble copolymer VA is higher.
  • the mass ratio of the acrylic monomer unit is more preferably equal to or less than 55% by mass, more preferably equal to or less than 50% by mass, and still more preferably equal to or less than 45% by mass.
  • the total mass ratio of the methyl methacrylate unit and the methyl acrylate unit in the water-insoluble copolymer VA is preferably from 10% by mass to 60% by mass, more preferably from 15% by mass to 55% by mass, 20 to 50% by mass is more preferable, and 20 to 45% by mass is more preferable.
  • a vinyl alcohol unit at least one selected from the group consisting of methacrylic ester units and acrylic ester units, and a group selected from the group consisting of methacrylic acid units and acrylic acid units And at least one of the above.
  • the (meth) acrylate a lower alkyl ester of (meth) acrylic acid (having 1 to 4 carbon atoms in the alkyl group) is preferred, methyl methacrylate or methyl acrylate is more preferred, and methyl methacrylate is still more preferred.
  • the total mass ratio of (meth) acrylate units in the water-insoluble copolymer VA of this embodiment is preferably from 10% by mass to 50% by mass, more preferably from 15% by mass to 45% by mass, and preferably from 20% by mass to 40% by mass. % Is more preferred.
  • the total mass ratio of the (meth) acrylic acid units in the water-insoluble copolymer VA of this embodiment is preferably from 5% by mass to 30% by mass, more preferably from 5% by mass to 25% by mass.
  • the water-insoluble copolymer VA may have other monomer units other than the vinyl alcohol unit and the acrylic monomer unit.
  • styrene-based monomer units are preferred from the viewpoint of balancing the hydrophilicity and water-insolubility of the water-insoluble copolymer VA.
  • styrene monomer examples include styrene, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, meta-tert-butoxystyrene, para-tert-butoxystyrene, palavinyl benzoic acid, and paramethyl- ⁇ -methylstyrene. And the like.
  • styrene monomer styrene, paramethoxystyrene, and paramethyl- ⁇ -methylstyrene are preferable, and styrene is particularly preferable.
  • the mass ratio of the styrene-based monomer in the water-insoluble copolymer VA is preferably 1% by mass to 15% by mass, more preferably 5% by mass to 10% by mass.
  • the mass ratio of the vinyl alcohol unit and the acrylic monomer unit in the water-insoluble copolymer VA is preferably 85% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more.
  • the water-insoluble copolymer VA contained in the hydrophilic material may be one type or two or more types.
  • the weight average molecular weight (Mw) of the water-insoluble copolymer VA is not particularly limited, but is preferably 50,000 to 15,000,000.
  • the content of the water-insoluble copolymer VA with respect to the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin is preferably 5% by mass to 60% by mass.
  • the content of the water-insoluble copolymer VA is 60% by mass or less, the second hydrophilic material is easily made porous when the second hydrophilic material is arranged in the pores of the porous substrate.
  • the content of the water-insoluble copolymer VA based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin is more preferably 55% by mass or less, and more preferably 50% by mass or less.
  • the content of the water-insoluble copolymer VA with respect to the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin is 5% by mass or more. Preferably, it is 15% by mass or more, more preferably 25% by mass or more.
  • the second hydrophilic material contains a polyvinylidene fluoride resin.
  • the polyvinylidene fluoride resin include a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another monomer (polyvinylidene fluoride copolymer); and a mixture thereof.
  • monomers copolymerizable with vinylidene fluoride include, for example, tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, and trichloroethylene. Can be.
  • the mass ratio of vinylidene fluoride (VDF) units in the polyvinylidene fluoride copolymer is not particularly limited, but is preferably 50% by mass to 98% by mass.
  • polyvinylidene fluoride resin exhibits excellent compatibility with (meth) acrylate (particularly methacrylate) and polyvinyl alcohol.
  • a homopolymer of vinylidene fluoride that is, polyvinylidene fluoride
  • VA water-insoluble copolymer
  • the polyvinylidene fluoride resin contained in the second hydrophilic material may be one type or two or more types.
  • the weight average molecular weight (Mw) of the polyvinylidene fluoride resin is not particularly limited, but is preferably 50,000 to 5,000,000.
  • the weight average molecular weight of the polyvinylidene fluoride resin is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the molecular weight was measured by GPC using GPC-900, a GPC device manufactured by JASCO Corporation, using two columns of TSKgel @ SUPER @ AWM-H manufactured by Tosoh Corporation, using N, N-dimethylformamide as a solvent, and heating at a temperature of 40 ° C.
  • the measurement is performed under the conditions of ° C and a flow rate of 10 mL / min, and the molecular weight in terms of polystyrene is determined.
  • the content of the polyvinylidene fluoride resin is preferably 40% by mass to 95% by mass based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin.
  • the content of the polyvinylidene fluoride-based resin is 40% by mass or more, the second hydrophilic material is easily made porous when the second hydrophilic material is arranged in the pores of the porous substrate.
  • the content of the polyvinylidene fluoride resin based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin is more preferably 45% by mass or more, and more preferably 50% by mass or more.
  • the content of the polyvinylidene fluoride resin is 95% by mass or less based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin. Is preferably 85% by mass or less, and more preferably 75% by mass or less.
  • the hydrophilic material may contain other resins other than the water-insoluble copolymer VA and the polyvinylidene fluoride resin, a surfactant, a wetting agent, a defoaming agent, a pH adjuster, a coloring agent, and the like.
  • other resins include polyamides, polyimides, fluorine-based rubber, celluloses, polyvinyl butyral, polyvinyl pyrrolidone, and polyether.
  • the hydrophilic composite membrane of the present disclosure may be configured to further include at least one of the following first hydrophilic coating layer and second hydrophilic coating layer on one or both surfaces of the porous substrate.
  • First hydrophilic coating layer a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
  • Second hydrophilic coating layer a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride resin in a state of being compatible with each other.
  • the first hydrophilic coating layer does not include the second hydrophilic coating layer.
  • the first hydrophilic coating layer is preferably the outermost layer of the hydrophilic composite film on one or both surfaces of the porous substrate.
  • the second hydrophilic coating layer is preferably the outermost layer of the hydrophilic composite film on one or both surfaces of the porous substrate.
  • the hydrophilic composite membrane of the present disclosure has excellent wettability of an aqueous medium by providing at least one of a first hydrophilic coating layer and a second hydrophilic coating layer on one or both surfaces of a porous substrate, Superior in water permeability.
  • the first hydrophilic coating layer and the second hydrophilic coating layer exhibit hydrophilicity by containing the water-insoluble copolymer VA which is hydrophilic. Since the water-insoluble copolymer VA is water-insoluble, it does not easily elute from the first hydrophilic coating layer and the second hydrophilic coating layer into the aqueous medium.
  • the second hydrophilic coating layer contains the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state, so that the second hydrophilic coating layer has high uniformity and hydrophilicity throughout the second hydrophilic coating layer. Is shown.
  • the second hydrophilic coating layer contains the water-insoluble copolymer VA and the polyvinylidene fluoride resin in a compatible state, so that the water-insoluble copolymer VA as the hydrophilic component Hardly detached from the hydrophilic coating layer.
  • the second hydrophilic coating layer is excellent in heat resistance, solvent insolubility, chemical resistance and mechanical strength by containing a polyvinylidene fluoride resin. Therefore, the hydrophilic composite membrane of the present disclosure having the second hydrophilic coating layer on the porous substrate has excellent heat resistance, solvent insolubility, chemical resistance, and mechanical strength.
  • the state in which a plurality of types of resins contained in the hydrophilic coating layer are compatible with each other, when the hydrophilic coating layer is observed at a resolution of 0.2 nm and a magnification of 30,000 times using a transmission electron microscope It means a state in which discontinuity of the resin phase is not recognized.
  • hydrophilic coating layers items common to the first hydrophilic coating layer and the second hydrophilic coating layer will be collectively described as hydrophilic coating layers.
  • the hydrophilic coating layer is preferably a porous layer from the viewpoint of better water permeability.
  • the porous layer means a layer having a large number of micropores inside, these micropores being connected, and allowing gas or liquid to pass from one side to the other side. .
  • the thickness of the hydrophilic coating layer is not particularly limited, but is preferably 0.1 ⁇ m to 10 ⁇ m on one side.
  • Mass of the hydrophilic coating layer per unit area are not particularly limited, one-sided 0.1g / m 2 ⁇ 10g / m 2 is preferred.
  • the porosity of the hydrophilic coating layer is not particularly limited, but is preferably 30% or more from the viewpoint of water permeability, and 80% from the viewpoint of mechanical strength. The following is preferred.
  • the average pore size of the hydrophilic coating layer is not particularly limited, but is preferably from 10 nm to 800 nm.
  • the average pore size of the hydrophilic coating layer is a value determined by a measuring method of ASTM E1294-89 using a palm porometer.
  • the specific form and preferred form of the water-insoluble copolymer VA contained in the hydrophilic coating layer are the same as those described for the above-mentioned hydrophilic material.
  • the specific form and preferred form of the polyvinylidene fluoride resin contained in the second hydrophilic coating layer are the same as those described for the second hydrophilic material.
  • the specific form and preferred form of the combination and mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin contained in the second hydrophilic coating layer are the forms described for the second hydrophilic material described above. Is the same as
  • the hydrophilic coating layer may contain other resins other than the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin, a filler, a surfactant, a wetting agent, a defoaming agent, a pH adjuster, a coloring agent, and the like.
  • other resins include polyamides, polyimides, fluorine-based rubber, celluloses, polyvinyl butyral, polyvinyl pyrrolidone, and polyether.
  • the filler include inorganic fillers such as metal hydroxides, metal oxides, carbonates, sulfates, and clay minerals; and organic fillers such as particles composed of a crosslinked polymer and particles composed of a heat-resistant polymer.
  • the surface of the hydrophilic coating layer may be subjected to various surface treatments.
  • the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the method for producing the hydrophilic composite membrane of the present disclosure is not particularly limited.
  • a general manufacturing method there is a manufacturing method in which a hydrophilic material is arranged in pores of a porous substrate by a wet coating method or a dry coating method.
  • the wet coating method is a method of solidifying a coating layer in a coagulation liquid
  • the dry coating method is a method of drying and solidifying a coating layer.
  • an embodiment of the wet coating method will be described using a hydrophilic composite film including a second hydrophilic material and a second hydrophilic coating layer as an example.
  • a coating solution containing a water-insoluble copolymer VA and a polyvinylidene fluoride resin is applied onto a porous substrate, and the coating layer is immersed in a coagulation solution to solidify the coating layer. This is a method of lifting, washing and drying.
  • the coating liquid for forming the coating layer is prepared by dissolving the water-insoluble copolymer VA and the polyvinylidene fluoride resin in a solvent. If necessary, other components other than the water-insoluble copolymer VA and the polyvinylidene fluoride resin are dissolved or dispersed in the coating liquid.
  • the solvent used for preparing the coating liquid preferably contains a solvent that dissolves the water-insoluble copolymer VA and the polyvinylidene fluoride resin (hereinafter, also referred to as a “good solvent”).
  • good solvents include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide.
  • the solvent used for preparing the coating liquid preferably contains a poor solvent for the resin component from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous. Therefore, the solvent used for preparing the coating liquid is preferably a mixed solvent of a good solvent and a poor solvent for the resin component. It is preferable that the poor solvent is mixed with the good solvent in such an amount that a viscosity suitable for coating can be secured. Examples of the poor solvent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the solvent used for preparing the coating liquid is a mixed solvent of a good solvent and a poor solvent of the resin component from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous, and contains the good solvent in an amount of 60% by mass or more. And a mixed solvent containing 40% by mass or less of a poor solvent. Furthermore, it is preferable to adjust the mixing ratio between the good solvent and the poor solvent from the viewpoint of making it easier to penetrate the coating liquid into the pores of the porous substrate.
  • a surfactant may be added to the coating liquid. The addition of the surfactant lowers the surface tension of the coating liquid and makes it easier for the coating liquid to penetrate into the pores of the porous substrate.
  • the resin concentration of the coating solution is preferably from 1% by mass to 15% by mass, more preferably from 2% by mass to 13% by mass, and more preferably from 3% by mass to 10% from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous. % Is more preferred.
  • the coating liquid is preferably a one-phase liquid in which the water-insoluble copolymer VA and the polyvinylidene fluoride resin are compatible.
  • a coating layer is formed using a one-phase coating liquid, and by solidifying the coating layer, a hydrophilic material in which the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin are compatible with each other; A hydrophilic coating layer is formed.
  • Examples of means for applying the coating liquid to the porous substrate include a Meyer bar, a die coater, a reverse roll coater, a roll coater, and a gravure coater.
  • a Meyer bar In order to impregnate the coating liquid into the pores of the porous substrate, for example, increase the coating amount of the coating liquid, increase the contact pressure of the above-described coating means on the porous substrate, and the like. May be performed.
  • the coating of the coating liquid into the pores of the porous substrate may be performed by immersing the porous substrate in the coating liquid.
  • the solidification of the coating layer is performed by immersing the porous substrate on which the coating layer has been formed in a coagulation liquid to solidify the resin component in the coating layer. Thereby, a composite film composed of the porous substrate, the hydrophilic material, and the hydrophilic coating layer is obtained.
  • the coagulation liquid examples include water; a mixture of water and a good solvent and a poor solvent used in the preparation of the coating liquid. It is preferable from the viewpoint of production that the mixing ratio of the good solvent and the poor solvent is adjusted to the mixing ratio of the mixed solvent used for preparing the coating liquid.
  • the content of water in the coagulation liquid is preferably from 40% by mass to 90% by mass from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous.
  • the temperature of the coagulation liquid is not particularly limited, but is preferably from 20 ° C to 50 ° C.
  • After solidifying the coating layer in the coagulation liquid, pull up the composite film from the coagulation liquid and wash with water.
  • the coagulation liquid is removed from the composite membrane by washing with water.
  • water is removed from the composite membrane by drying. Washing is performed, for example, by transporting the composite membrane in a water bath. Drying is performed, for example, by transporting the composite film in a high-temperature environment, blowing air on the composite film, and bringing the composite film into contact with a heat roll.
  • the drying temperature is preferably from 40 to 120 ° C, more preferably from 55 to 105 ° C.
  • the hydrophilic composite film provided with the first hydrophilic material and the first hydrophilic coating layer can be manufactured by using a coating liquid containing no polyvinylidene fluoride-based resin in the above-mentioned wet coating method.
  • a hydrophilic composite film having no hydrophilic coating layer on a porous substrate can be prepared by reducing the coating amount of the coating liquid on the porous substrate, or after coating the porous substrate. It can be manufactured by removing the coating liquid adhering to the surface.
  • the hydrophilic composite membrane of the present disclosure can also be manufactured by a dry coating method.
  • the dry coating method is a method in which a coating liquid is applied to a porous base material, and the coating layer is dried to evaporate and remove the solvent, thereby solidifying the coating layer.
  • the dry coating method is more preferable than the wet coating method since the coated layer after drying tends to be denser than the wet coating method, so that a good porous structure can be obtained.
  • hydrophilic porous membrane contains a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit (water-insoluble copolymer VA) in a compatible state. Is a hydrophilic porous membrane.
  • a state in which a plurality of types of resins contained in a porous film are compatible with each other means that when the porous film is observed with a transmission electron microscope at a resolution of 0.2 nm and a magnification of 30000 times, the resin phase is incompatible. It means the state where continuation is not recognized.
  • the water-insoluble copolymer VA exhibits hydrophilicity due to the hydroxyl group of the vinyl alcohol unit.
  • the hydrophilic porous membrane of the present disclosure exhibits hydrophilicity by including a water-insoluble copolymer VA that is hydrophilic. Since the hydrophilic porous membrane of the present disclosure contains the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a compatible state, the hydrophilic porous membrane exhibits high uniformity and hydrophilicity throughout.
  • the hydrophilic porous membrane of the present disclosure contains the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a compatible state, desorption of the water-insoluble copolymer VA as a hydrophilic component is prevented. Less likely to occur. Moreover, in the hydrophilic porous membrane of the present disclosure, the hydrophilic component is less likely to elute into the aqueous medium because the water-insoluble copolymer VA is insoluble in water.
  • the contact angle of water measured on one or both sides under the following measurement conditions is preferably 60 degrees or less, and the smaller the contact angle of water, the more preferable.
  • the hydrophilic porous membrane of the present disclosure, on one or both sides, when measuring the contact angle of water under the following measurement conditions, is so hydrophilic that water droplets penetrate into the inside of the porous membrane and cannot be measured. Is more preferred.
  • the method for measuring the contact angle of water is as described above in the first embodiment.
  • the hydrophilic porous membrane of the present disclosure has pores or voids inside.
  • One embodiment of the hydrophilic porous membrane of the present disclosure is a microporous membrane containing a polyvinylidene fluoride-based resin and a water-insoluble copolymer VA in a compatible state.
  • a microporous membrane is a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, so that gas or liquid can pass from one surface to the other. I do.
  • Another embodiment of the hydrophilic porous membrane of the present disclosure includes a woven or nonwoven fabric made of a fibrous material containing a polyvinylidene fluoride resin and a water-insoluble copolymer VA in a compatible state.
  • the hydrophilic porous membrane of the present disclosure is used, for example, for the purpose of separation, purification, concentration, fractionation, and the like of a substance dispersed or dissolved in an aqueous medium.
  • Examples of the structure of the hydrophilic porous membrane of the present disclosure include hollow fiber membranes (hollow fiber type, immersion type, cartridge type), tubular membranes (tubular type, monolith type, immersion type), flat membranes (flat membrane cell, spiral type, Pleat type, plate type) and the like.
  • Examples of the type of the hydrophilic porous membrane according to the present disclosure according to the pore size include a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane.
  • Applications of the hydrophilic porous membrane of the present disclosure include, for example, water purification, sanitization, desalination of seawater, artificial dialysis, pharmaceutical production, food production, protein separation, and the like.
  • the thickness, pore size, and porosity of the hydrophilic porous membrane of the present disclosure are not particularly limited, and may be selected according to the application, structure, or type.
  • hydrophilic porous membrane of the present disclosure includes a hydrophilic porous membrane having a thickness of 5 ⁇ m to 300 ⁇ m.
  • hydrophilic porous membrane of the present disclosure includes a hydrophilic porous membrane having an average pore diameter of 1 nm to 900 nm.
  • hydrophilic porous membrane of the present disclosure includes a hydrophilic porous membrane having a porosity of 4% to 70%.
  • Various surface treatments may be applied to the surface of the hydrophilic porous membrane of the present disclosure.
  • the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the hydrophilic porous membrane of the present disclosure contains a polyvinylidene fluoride resin.
  • the hydrophilic porous membrane of the present disclosure is excellent in heat resistance, solvent insolubility, chemical resistance, and mechanical strength by containing a polyvinylidene fluoride resin.
  • the polyvinylidene fluoride-based resin contained in the hydrophilic porous membrane of the present disclosure may be one type or two or more types.
  • the weight average molecular weight (Mw) of the polyvinylidene fluoride resin is not particularly limited, but is preferably 50,000 to 5,000,000, and more preferably 500,000 to 3,000,000 from the viewpoint of film forming properties.
  • the method for measuring the weight average molecular weight of the polyvinylidene fluoride resin is as described above in the first embodiment.
  • the content of the polyvinylidene fluoride resin is preferably 40% by mass to 95% by mass based on the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA.
  • the content of the polyvinylidene fluoride resin is 40% by mass or more, the film is easily made porous when forming the film.
  • the content of the polyvinylidene fluoride resin based on the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA is more preferably 45% by mass or more, and more preferably 50% by mass or more. Is more preferable, and more preferably 55% by mass or more.
  • the content of the polyvinylidene fluoride resin is not more than 95% by mass with respect to the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA. It is preferably at most 85% by mass, more preferably at most 75% by mass.
  • Water-insoluble copolymer VA has at least a vinyl alcohol unit and an acrylic monomer unit, and is water-insoluble.
  • the water-insoluble copolymer VA contained in the hydrophilic porous membrane of the present disclosure may be one type or two or more types.
  • the weight average molecular weight (Mw) of the water-insoluble copolymer VA is not particularly limited, but is preferably 50,000 to 15,000,000.
  • the content of the water-insoluble copolymer VA is preferably 5% by mass to 60% by mass with respect to the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA.
  • the content of the water-insoluble copolymer VA is 60% by mass or less, the film is easily made porous when the film is formed.
  • the content of the water-insoluble copolymer VA based on the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA is more preferably 55% by mass or less, and is 50% by mass or less. Is more preferably 45% by mass or less.
  • the content of the water-insoluble copolymer VA with respect to the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA is 5% by mass or more. Is preferably 15% by mass or more, more preferably 25% by mass or more.
  • the hydrophilic porous membrane of the present disclosure may contain other components as long as the compatibility between the polyvinylidene fluoride resin and the water-insoluble copolymer VA is not impaired.
  • Other components include other resins and fillers other than the polyvinylidene fluoride resin and the water-insoluble copolymer VA.
  • resins include polyamides, polyimides, fluororubbers, celluloses, polyvinyl butyral, polyvinyl pyrrolidone, polyether and the like.
  • the filler examples include inorganic fillers such as metal hydroxides, metal oxides, carbonates, sulfates, and clay minerals; and organic fillers such as particles made of a crosslinked polymer and particles made of a heat-resistant polymer.
  • inorganic fillers such as metal hydroxides, metal oxides, carbonates, sulfates, and clay minerals
  • organic fillers such as particles made of a crosslinked polymer and particles made of a heat-resistant polymer.
  • the hydrophilic porous membrane of the present disclosure may contain additives such as a surfactant, a wetting agent, an antifoaming agent, a pH adjuster, and a coloring agent.
  • a composite membrane including the hydrophilic porous membrane of the present disclosure a composite membrane including a base material and the hydrophilic porous membrane of the present disclosure disposed on the base material is exemplified.
  • the substrate examples include a porous substrate and a release sheet.
  • the porous substrate is laminated with the hydrophilic porous membrane, for example, for the purpose of reinforcing the strength of the hydrophilic porous membrane.
  • the porous substrate include a microporous film made of a resin; a porous sheet such as a nonwoven fabric and paper;
  • the release sheet is, for example, a sheet used as a base material for producing a hydrophilic porous membrane and separated from the hydrophilic porous membrane when the hydrophilic porous membrane is used.
  • a general production method includes a production method in which a hydrophilic porous membrane is formed on a substrate by a wet coating method or a dry coating method.
  • the wet coating method is a method of solidifying a coating layer in a coagulation liquid
  • the dry coating method is a method of drying and solidifying a coating layer.
  • a coating liquid containing a polyvinylidene fluoride resin and a water-insoluble copolymer VA is coated on a base material, immersed in a coagulation liquid to solidify the coating layer, and then withdrawn from the coagulation liquid and washed with water. And drying.
  • the coating liquid for forming the coating layer is prepared by dissolving a polyvinylidene fluoride resin and a water-insoluble copolymer VA in a solvent.
  • other components other than the polyvinylidene fluoride resin and the water-insoluble copolymer VA are dissolved or dispersed as necessary.
  • the type of solvent, the composition of the solvent, the resin concentration, and the means for applying the coating liquid according to the coating liquid are as described above in the first embodiment.
  • the solidification of the coating layer is performed by immersing the base material on which the coating layer has been formed in a coagulating liquid to solidify the resin component in the coating layer. Thereby, a composite film composed of the base material and the porous film is obtained.
  • the type of the solvent, the composition of the solvent, and the temperature of the solvent relating to the coagulation liquid are as described above in the first embodiment.
  • a composite membrane including the substrate and the hydrophilic porous membrane of the present disclosure is obtained. Further, by peeling the porous membrane from the substrate, the hydrophilic porous membrane of the present disclosure is obtained.
  • the hydrophilic porous membrane of the present disclosure can also be manufactured by a dry coating method.
  • the dry coating method is a method in which a coating liquid is applied to a substrate, and a coating layer is dried to remove a solvent by volatilization, thereby forming a porous film on the substrate.
  • the dry coating method is more preferable than the wet coating method since the coated layer after drying tends to be denser than the wet coating method, so that a good porous structure can be obtained.
  • hydrophilic resin composition contains a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit (water-insoluble copolymer VA) in a state of being compatible with each other.
  • Hydrophilic resin composition is a solid resin composition.
  • hydrophilic resin composition of the present disclosure examples include a hydrophilic porous membrane of the present disclosure.
  • Another embodiment of the hydrophilic resin composition of the present disclosure includes fibers, particles, non-porous films, and the like.
  • the hydrophilic resin composition of the present disclosure exhibits hydrophilicity by containing the water-insoluble copolymer VA which is hydrophilic.
  • the hydrophilic resin composition of the present disclosure includes the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a state of being compatible with each other, so that the hydrophilic resin composition has high uniformity and hydrophilicity throughout. Show.
  • the hydrophilic resin composition of the present disclosure includes the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a state of being compatible with each other, thereby desorbing the water-insoluble copolymer VA as a hydrophilic component. Is less likely to occur. Further, in the hydrophilic resin composition of the present disclosure, since the water-insoluble copolymer VA is water-insoluble, the hydrophilic component hardly elutes in the aqueous medium.
  • Specific and preferred embodiments of the polyvinylidene fluoride-based resin contained in the hydrophilic resin composition of the present disclosure are the same as those described above for the hydrophilic porous membrane of the present disclosure.
  • Specific and preferred embodiments of the water-insoluble copolymer VA contained in the hydrophilic resin composition of the present disclosure are the same as those described above for the hydrophilic porous membrane of the present disclosure.
  • Specific and preferred embodiments of the combination and mixing ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer VA in the hydrophilic resin composition of the present disclosure are the same as those described above for the hydrophilic porous membrane of the present disclosure. It is.
  • the hydrophilic resin composition of the present disclosure includes a resin other than the polyvinylidene fluoride resin and the water-insoluble copolymer VA, a filler, a surfactant, a wetting agent, a defoaming agent, a pH adjuster, a coloring agent, and the like. You may go out. Specific examples of these other components are the same as the specific examples described above for the hydrophilic porous membrane of the present disclosure.
  • the method for producing the hydrophilic resin composition of the present disclosure is not particularly limited.
  • a general production method there is a production method in which a polyvinylidene fluoride resin and a water-insoluble copolymer VA are dissolved in an organic solvent to prepare a resin solution, and then the organic solvent is removed from the resin solution.
  • an organic solvent containing at least the above-mentioned good solvent is preferable.
  • hydrophilic composite membrane of the present disclosure will be more specifically described below with reference to examples. Materials, usage amounts, ratios, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present disclosure. Therefore, the scope of the hydrophilic composite membrane of the present disclosure should not be construed as being limited by the specific examples described below.
  • a microporous polyethylene film (9.0 ⁇ m thick, Gurley value 170 sec / 100 mL, porosity 43%, average pore diameter 45 nm, water contact angle 103 °) was prepared as a porous substrate.
  • the porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution and then pulled up to remove the coating solution adhering to the surface of the porous substrate.
  • This composite membrane had the first hydrophilic material in the pores of the microporous polyethylene membrane.
  • Example 2 A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 3 A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 4 A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 5 A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 6 A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 7 A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 1 The polyethylene microporous membrane used in Example 1 was prepared as a porous substrate.
  • the porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution and then pulled up to remove the coating solution adhering to the surface of the porous substrate. Next, this was dried to obtain a composite membrane.
  • This composite membrane had the first hydrophilic material in the pores of the microporous polyethylene membrane.
  • Example 8-2 A composite film was obtained in the same manner as in Example 8-1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 8-3 A composite film was obtained in the same manner as in Example 8-1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 9 A composite film was obtained in the same manner as in Example 8-1, except that the water-insoluble copolymer VA was changed as follows.
  • Example 1 The polyethylene microporous membrane used in Example 1 was used as the membrane of Comparative Example 1.
  • Example 1 The polyethylene microporous membrane used in Example 1 was prepared as a porous substrate.
  • the porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution, and then lifted up to remove the coating solution adhering to the surface of the porous substrate.
  • Example 11 Composite membrane having first hydrophilic material in pores of porous substrate and having first hydrophilic coating layers on both surfaces of porous substrate
  • the coating liquid and the porous substrate used in Example 1 were used.
  • this was washed with water and dried to obtain a composite film.
  • This composite membrane had the first hydrophilic material in the pores of the microporous polyethylene membrane, and had the first hydrophilic coating layers on both sides of the microporous polyethylene membrane.
  • Example 12 A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 2.
  • Example 13 A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 3.
  • Example 14 A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 4.
  • Example 15 A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 5.
  • Example 16 A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 6.
  • Example 17 A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 7.
  • PVDF resin Vinylidene fluoride-hexafluoropropylene copolymer, hexafluoropropylene (HFP) unit: 12.4% by mass, weight average molecular weight (Mw): 860,000.
  • Example 1 The polyethylene microporous membrane used in Example 1 was prepared as a porous substrate.
  • the porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution and then pulled up to remove the coating solution adhering to the surface of the porous substrate.
  • This composite membrane had the second hydrophilic material in the pores of the polyethylene microporous membrane.
  • Example 22 A composite film was obtained in the same manner as in Example 21, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 4.
  • Example 23 A composite film was obtained in the same manner as in Example 21, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 4.
  • Example 24 A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 2.
  • Example 25 A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 3.
  • Example 26 A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 4.
  • Example 27 A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 5.
  • Example 28 A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 6.
  • Example 29 A composite membrane was obtained in the same manner as in Example 21 except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 7.
  • Example 30 A composite film was obtained in the same manner as in Example 21 except that the polyvinylidene fluoride resin was changed as follows.
  • PVDF resin Vinylidene fluoride homopolymer, weight average molecular weight (Mw): 580,000.
  • Example 3 A composite film was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-soluble polymer used in Comparative Example 2.
  • This composite membrane had a hydrophilic material composed of the water-soluble polymer and PVDF resin in the pores of the polyethylene microporous membrane.
  • Example 31 Composite membrane having second hydrophilic material in pores of porous substrate and second hydrophilic coating layers on both sides of porous substrate
  • the coating liquid and the porous substrate used in Example 21 were used.
  • this was washed with water and dried to obtain a composite film.
  • This composite membrane had the second hydrophilic material in the pores of the microporous polyethylene membrane, and had the second hydrophilic coating layers on both sides of the microporous polyethylene membrane.
  • Example 32 A composite film was obtained in the same manner as in Example 31, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 5.
  • Example 33 A composite film was obtained in the same manner as in Example 31, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 5.
  • Example 34 A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 2.
  • Example 35 A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 3.
  • Example 36 A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 4.
  • Example 37 A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 5.
  • Example 38 A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 6.
  • Example 39 A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 7.
  • Example 40 A composite film was obtained in the same manner as in Example 31, except that the polyvinylidene fluoride resin was changed to the polyvinylidene fluoride resin used in Example 30.
  • the thickness of the composite film was determined by measuring 20 points with a contact-type thickness gauge (LITEMATIC VL-50, Mitutoyo Corporation) and averaging the measured values.
  • the measuring terminal used was a cylindrical terminal having a diameter of 5 mm, and was adjusted so that a load of 0.01 N was applied during the measurement.
  • Gurley value The Gurley value (second / 100 mL) of the composite membrane was measured using a Gurley type densometer (Toyo Seiki Co., Ltd., GB-B2C) according to JIS P8117: 2009.
  • the composite membrane was cut out into a size of 50 mm ⁇ 50 mm, which was used as a sample.
  • the sample was immersed in 100 mL of water at a liquid temperature of 30 ° C., and stirred for 24 hours with a stirring blade. Next, the sample was taken out and vacuum-dried at a temperature of 60 ° C.
  • the mass change of the composite membrane before and after the treatment was calculated according to the following equation.
  • Mass change (%) ⁇ (mass of composite membrane before treatment) ⁇ (mass of composite membrane after treatment) ⁇ (mass of composite membrane before treatment) ⁇ 100
  • ⁇ Second embodiment Preparation of hydrophilic porous membrane>
  • PVDF resin Vinylidene fluoride-hexafluoropropylene copolymer, hexafluoropropylene (HFP) unit: 12.4% by mass, weight average molecular weight (Mw): 860,000.
  • Example 102 A porous membrane was obtained in the same manner as in Example 101, except that the mixing ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer VA was changed as shown in Table 6.
  • Example 103 A porous membrane was obtained in the same manner as in Example 101, except that the mixing ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer VA was changed as shown in Table 6.
  • Example 104 A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
  • Example 105 A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
  • Example 106 A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
  • Example 107 A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
  • Example 108 A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
  • Example 109 A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
  • Example 110 A porous membrane was obtained in the same manner as in Example 101, except that the polyvinylidene fluoride resin was changed as follows.
  • PVDF resin Vinylidene fluoride homopolymer, weight average molecular weight (Mw): 580,000.
  • Example 101 A porous membrane was obtained in the same manner as in Example 101, except that a coating liquid was obtained by dissolving only a polyvinylidene fluoride resin in a mixed solvent without using the water-insoluble copolymer VA.
  • Example 102 A porous membrane was obtained in the same manner as in Example 101 except that the water-insoluble copolymer VA was changed to the following water-soluble polymer.
  • Comparative Example 103 A hydrophilic layer was provided on the polyvinylidene fluoride resin porous film obtained in Comparative Example 101 by the following treatment method.
  • a coating liquid was obtained.
  • This coating liquid was applied to both surfaces of the polyvinylidene fluoride resin obtained in Comparative Example 101 (so that the coating amounts on the front and back sides were equal), and the coagulating liquid was used.
  • Water: DMAc: TPG 62.5: 30: 7.5 [mass ratio], liquid temperature 35 ° C.

Abstract

Provided is a hydrophilic composite membrane comprising a porous substrate and at least one hydrophilic material, among a first hydrophilic material and a second hydrophilic material, present in the pores of the porous substrate. The first hydrophilic material contains a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit. The second hydrophilic material contains, in a compatible state: a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit; and a polyvinylidene fluoride-based resin. Also provided is a hydrophilic porous membrane containing, in a compatible state: a polyvinylidene fluoride-based resin; and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit. Also provided is a hydrophilic resin composition containing, in a compatible state: a polyvinylidene fluoride-based resin; and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.

Description

親水性複合膜、親水性多孔膜及び親水性樹脂組成物Hydrophilic composite membrane, hydrophilic porous membrane and hydrophilic resin composition
 本発明は、親水性複合膜、親水性多孔膜及び親水性樹脂組成物に関する。 The present invention relates to a hydrophilic composite membrane, a hydrophilic porous membrane, and a hydrophilic resin composition.
 特許文献1には、疎水性ポリフッ化ビニリデン多孔質膜を溶剤にて湿潤化した後、ポリビニルピロリドンと重合開始剤とを含む溶液に接触させ、ポリビニルピロリドンを架橋させる、親水性ポリフッ化ビニリデン多孔質膜の製造方法が開示されている。 Patent Document 1 discloses a hydrophilic polyvinylidene fluoride porous membrane in which after a hydrophobic polyvinylidene fluoride porous membrane is wetted with a solvent, the membrane is brought into contact with a solution containing polyvinylpyrrolidone and a polymerization initiator to crosslink polyvinylpyrrolidone. A method for manufacturing a membrane is disclosed.
 特許文献2には、多孔質フッ素樹脂シートを、水酸基を有する高分子化合物で被覆し、該高分子化合物を脂肪族ジアルデヒドと反応させ、さらにホルムアルデヒドと反応させる、親水性多孔質フッ素樹脂膜の製造方法が開示されている。 Patent Literature 2 discloses a hydrophilic porous fluororesin membrane in which a porous fluororesin sheet is coated with a polymer compound having a hydroxyl group, the polymer compound is reacted with an aliphatic dialdehyde, and further reacted with formaldehyde. A manufacturing method is disclosed.
 特許文献3には、親水性化合物で有機化された有機化クレイを疎水性ポリマー中に分散してなる親水化多孔質膜が開示されている。 Patent Document 3 discloses a hydrophilized porous membrane obtained by dispersing an organized clay, which has been organized with a hydrophilic compound, in a hydrophobic polymer.
 特許文献4には、分解反応で親水性化学種を発生させる親水化剤の分解物と、ポリフッ化ビニリデン系樹脂とを含有する親水化多孔質膜が開示されている。 Patent Document 4 discloses a hydrophilized porous membrane containing a decomposed product of a hydrophilizing agent that generates a hydrophilic chemical species by a decomposition reaction, and a polyvinylidene fluoride-based resin.
特開平11-302438号公報JP-A-11-302438 特開2018-28011号公報JP 2018-28011 A 特開2004-352824号公報JP 2004-352824 A 特開2005-296846号公報JP 2005-296846 A
 特許文献1~特許文献4に開示されている親水性多孔質膜は、通水性に改善の余地がある。 親水 The hydrophilic porous membranes disclosed in Patent Documents 1 to 4 have room for improvement in water permeability.
 本開示の第一の実施形態は上記状況のもとになされた。
 本開示の第一の実施形態は、通水性に優れる親水性複合膜を提供することを目的とし、これを解決することを課題とする。
The first embodiment of the present disclosure has been made under the above situation.
A first embodiment of the present disclosure aims to provide a hydrophilic composite membrane having excellent water permeability, and has an object to solve the problem.
 特許文献1又は特許文献2に開示されている親水性多孔膜は、疎水性多孔膜を親水性成分で被覆した多孔膜であり、当該膜から親水性成分が脱離する懸念がある。特許文献3に開示されている親水性多孔膜は、当該膜から有機化クレイが脱離したり、有機化クレイから親水性化合物が脱離したりする懸念がある。特許文献4に開示されている親水性多孔膜は、当該膜に分散して含まれている親水化剤の分解物が、当該膜から脱離する懸念がある。 親水 The hydrophilic porous membrane disclosed in Patent Document 1 or Patent Document 2 is a porous membrane in which a hydrophobic porous membrane is coated with a hydrophilic component, and there is a concern that the hydrophilic component may be detached from the membrane. In the hydrophilic porous membrane disclosed in Patent Document 3, there is a concern that the organized clay is detached from the membrane or the hydrophilic compound is detached from the organized clay. In the hydrophilic porous membrane disclosed in Patent Document 4, there is a concern that decomposed products of the hydrophilizing agent dispersed and contained in the membrane may be detached from the membrane.
 本開示の第二の実施形態は上記状況のもとになされた。
 本開示の第二の実施形態は、親水性成分の脱離が発生しにくい親水性多孔膜を提供することを目的とし、これを解決することを課題とする。
 また、本開示の第二の実施形態は、親水性成分の脱離が発生しにくい親水性樹脂組成物を提供することを目的とし、これを解決することを課題とする。
The second embodiment of the present disclosure has been made under the above situation.
A second embodiment of the present disclosure aims to provide a hydrophilic porous membrane in which desorption of a hydrophilic component is unlikely to occur, and has an object to solve the problem.
In addition, a second embodiment of the present disclosure aims to provide a hydrophilic resin composition in which detachment of a hydrophilic component is unlikely to occur, and has an object to solve the problem.
 前記課題を解決するための具体的手段には、以下の態様が含まれる。 具体 Specific means for solving the above problems include the following aspects.
[1] 多孔質基材と、前記多孔質基材の空孔内に存在する、下記の第一の親水性材料及び第二の親水性材料の少なくとも一方の親水性材料と、を備えた親水性複合膜。
 第一の親水性材料:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性材料。
 第二の親水性材料:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体とポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性材料。
[2] 前記多孔質基材の平均孔径が1nm~4000nmである、[1]に記載の親水性複合膜。
[3] 前記多孔質基材は、片面又は両面において、水の接触角が85度~130度である、[1]又は[2]に記載の親水性複合膜。
[4] 前記水不溶性共重合体における前記ビニルアルコール単位の質量割合が40質量%~90質量%である、[1]~[3]のいずれか1項に記載の親水性複合膜。
[5] 前記アクリル系モノマー単位がメタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を含む、[1]~[4]のいずれか1項に記載の親水性複合膜。
[6] 前記第二の親水性材料に含まれる前記水不溶性共重合体と前記ポリフッ化ビニリデン系樹脂との質量比(前記水不溶性共重合体:前記ポリフッ化ビニリデン系樹脂)が5:95~60:40である、[1]~[5]のいずれか1項に記載の親水性複合膜。
[7] 前記多孔質基材の片面又は両面に設けられた親水性被覆層をさらに備え、前記親水性被覆層が下記の第一の親水性被覆層及び第二の親水性被覆層の少なくとも一方である、[1]~[6]のいずれか1項に記載の親水性複合膜。
 第一の親水性被覆層:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性被覆層。
 第二の親水性被覆層:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体とポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性被覆層。
[8] 前記第一の親水性被覆層又は前記第二の親水性被覆層が多孔質層である、[7]に記載の親水性複合膜。
[9] 前記多孔質基材がポリオレフィン微多孔膜である、[1]~[8]のいずれか1項に記載の親水性複合膜。
[1] A hydrophilic substrate comprising: a porous substrate; and at least one of a first hydrophilic material and a second hydrophilic material described below, which are present in pores of the porous substrate. Composite membrane.
First hydrophilic material: a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
Second hydrophilic material: a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride-based resin in a compatible state.
[2] The hydrophilic composite membrane according to [1], wherein the porous substrate has an average pore size of 1 nm to 4000 nm.
[3] The hydrophilic composite membrane according to [1] or [2], wherein the porous substrate has a water contact angle of 85 ° to 130 ° on one surface or both surfaces.
[4] The hydrophilic composite film according to any one of [1] to [3], wherein a mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
[5] The hydrophilic composite film according to any one of [1] to [4], wherein the acrylic monomer unit includes at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
[6] The mass ratio of the water-insoluble copolymer and the polyvinylidene fluoride resin (the water-insoluble copolymer: the polyvinylidene fluoride resin) contained in the second hydrophilic material is from 5:95 to The hydrophilic composite membrane according to any one of [1] to [5], wherein the ratio is 60:40.
[7] A hydrophilic coating layer provided on one surface or both surfaces of the porous substrate, wherein the hydrophilic coating layer is at least one of a first hydrophilic coating layer and a second hydrophilic coating layer described below. The hydrophilic composite membrane according to any one of [1] to [6], wherein
First hydrophilic coating layer: a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
Second hydrophilic coating layer: a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride resin in a state of being compatible with each other.
[8] The hydrophilic composite membrane according to [7], wherein the first hydrophilic coating layer or the second hydrophilic coating layer is a porous layer.
[9] The hydrophilic composite membrane according to any one of [1] to [8], wherein the porous substrate is a polyolefin microporous membrane.
[10] ポリフッ化ビニリデン系樹脂と、ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体と、が相溶した状態で含まれている親水性多孔膜。
[11] 前記水不溶性共重合体における前記ビニルアルコール単位の質量割合が40質量%~90質量%である、[10]に記載の親水性多孔膜。
[12] 前記アクリル系モノマー単位がメタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を含む、[10]又は[11]に記載の親水性多孔膜。
[13] 前記親水性多孔膜に含まれる前記ポリフッ化ビニリデン系樹脂と前記水不溶性共重合体との質量比(前記ポリフッ化ビニリデン系樹脂:前記水不溶性共重合体)が40:60~95:5である、[10]~[12]のいずれか1項に記載の親水性多孔膜。
[14] ポリフッ化ビニリデン系樹脂と、ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体と、が相溶した状態で含まれている親水性樹脂組成物。
[15] 前記水不溶性共重合体における前記ビニルアルコール単位の質量割合が40質量%~90質量%である、[14]に記載の親水性樹脂組成物。
[16] 前記アクリル系モノマー単位がメタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を含む、[14]又は[15]に記載の親水性樹脂組成物。
[17] 前記親水性樹脂組成物に含まれる前記ポリフッ化ビニリデン系樹脂と前記水不溶性共重合体との質量比(前記ポリフッ化ビニリデン系樹脂:前記水不溶性共重合体)が40:60~95:5である、[14]~[16]のいずれか1項に記載の親水性樹脂組成物。
[10] A hydrophilic porous membrane containing a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit in a compatible state.
[11] The hydrophilic porous membrane according to [10], wherein the mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
[12] The hydrophilic porous membrane according to [10] or [11], wherein the acrylic monomer unit includes at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
[13] The mass ratio of the polyvinylidene fluoride resin to the water-insoluble copolymer (the polyvinylidene fluoride resin: the water-insoluble copolymer) contained in the hydrophilic porous membrane is 40:60 to 95: 5. The hydrophilic porous membrane according to any one of [10] to [12], which is 5.
[14] A hydrophilic resin composition containing a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit in a compatible state.
[15] The hydrophilic resin composition according to [14], wherein a mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
[16] The hydrophilic resin composition according to [14] or [15], wherein the acrylic monomer unit includes at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
[17] The mass ratio of the polyvinylidene fluoride resin to the water-insoluble copolymer (the polyvinylidene fluoride resin: the water-insoluble copolymer) contained in the hydrophilic resin composition is 40:60 to 95. : 5 is the hydrophilic resin composition according to any one of [14] to [16].
 本開示の第一の実施形態によれば、通水性に優れる親水性複合膜が提供される。 According to the first embodiment of the present disclosure, a hydrophilic composite membrane having excellent water permeability is provided.
 本開示の第二の実施形態によれば、親水性成分の脱離が発生しにくい親水性多孔膜が提供される。
 また、本開示の第二の実施形態によれば、親水性成分の脱離が発生しにくい親水性樹脂組成物が提供される。
According to the second embodiment of the present disclosure, there is provided a hydrophilic porous membrane in which desorption of a hydrophilic component is less likely to occur.
Further, according to the second embodiment of the present disclosure, there is provided a hydrophilic resin composition in which detachment of a hydrophilic component is less likely to occur.
 以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。 Hereinafter, embodiments of the present disclosure will be described. These descriptions and examples illustrate the embodiments, and do not limit the scope of the embodiments.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 に お い て In the present disclosure, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the numerical ranges described in stages in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages. . Further, in the numerical range described in the present disclosure, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 に お い て In the present disclosure, the term “step” is included in the term, not only in an independent step but also in a case where the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps.
 本開示において各成分は該当する物質を複数種含んでいてもよい。本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。 に お い て In the present disclosure, each component may include a plurality of corresponding substances. In the present disclosure, when referring to the amount of each component in the composition, when a plurality of types of substances corresponding to each component are present in the composition, unless otherwise specified, the plurality of types of the components present in the composition are not specified. Means the total amount of the substance.
 本開示において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。 に お い て In the present disclosure, “(meth) acryl” means at least one of acryl and methacryl, and “(meth) acrylate” means at least one of acrylate and methacrylate.
 本開示において「単量体単位」とは、重合体の構成要素であって、単量体が重合してなる構成要素を意味する。 に お い て In the present disclosure, the “monomer unit” is a constituent element of a polymer, and means a constituent element obtained by polymerizing a monomer.
<第一の実施形態:親水性複合膜>
 本開示の親水性複合膜は、多孔質基材と、前記多孔質基材の空孔内に存在する、下記の第一の親水性材料及び第二の親水性材料の少なくとも一方の親水性材料と、を備える。
<First embodiment: hydrophilic composite membrane>
The hydrophilic composite membrane of the present disclosure is a porous substrate, and present in the pores of the porous substrate, a hydrophilic material of at least one of a first hydrophilic material and a second hydrophilic material described below. And
 第一の親水性材料:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性材料。
 第二の親水性材料:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体とポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性材料。
First hydrophilic material: a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
Second hydrophilic material: a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride-based resin in a compatible state.
 本開示において、ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を、水不溶性共重合体VAという。 に お い て In the present disclosure, a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit is referred to as a water-insoluble copolymer VA.
 水不溶性共重合体VAは、ビニルアルコール単位が有する水酸基によって親水性を示す。第一の親水性材料及び第二の親水性材料は、親水性である水不溶性共重合体VAを含むことによって親水性を示す。水不溶性共重合体VAは水不溶性であることによって、第一の親水性材料及び第二の親水性材料から水系媒体に溶出しにくい。 The water-insoluble copolymer VA exhibits hydrophilicity due to the hydroxyl group of the vinyl alcohol unit. The first hydrophilic material and the second hydrophilic material exhibit hydrophilicity by containing the water-insoluble copolymer VA which is hydrophilic. Since the water-insoluble copolymer VA is water-insoluble, it does not easily elute from the first hydrophilic material and the second hydrophilic material into the aqueous medium.
 本開示の親水性複合膜は、親水性である第一の親水性材料及び第二の親水性材料の少なくとも一方が多孔質基材の空孔内に存在することによって優れた親水性を示し、通水性に優れる。 The hydrophilic composite membrane of the present disclosure shows excellent hydrophilicity due to the presence of at least one of the first hydrophilic material and the second hydrophilic material that are hydrophilic in the pores of the porous substrate, Excellent water permeability.
 本開示の親水性複合膜は、片面又は両面において、下記の測定条件によって測定する水の接触角が60度以下であることが好ましく、前記水の接触角が小さいほど好ましい。本開示の親水性複合膜は、片面又は両面において、下記の測定条件によって水の接触角を測定しようとしたとき、水滴が複合膜内部に浸透して測定できない状態となるほどの親水性であることがより好ましい。
 ここで水の接触角は、次の測定方法によって測定される値である。複合膜を温度25℃/相対湿度60%の環境に24時間以上放置して調湿した後、同じ温度及び湿度の環境下にて、複合膜の表面に注射器で1μLのイオン交換水の水滴を落とし、全自動接触角計(協和界面科学社、型番Drop Master DM500)を用いてθ/2法により30秒後の接触角を測定する。
In the hydrophilic composite membrane of the present disclosure, the contact angle of water measured on one or both surfaces under the following measurement conditions is preferably 60 degrees or less, and the smaller the contact angle of water, the more preferable. The hydrophilic composite membrane of the present disclosure, on one or both sides, when trying to measure the contact angle of water under the following measurement conditions, it should be so hydrophilic that water droplets penetrate inside the composite membrane and become unmeasurable. Is more preferred.
Here, the contact angle of water is a value measured by the following measuring method. After leaving the composite membrane in an environment of a temperature of 25 ° C. and a relative humidity of 60% for 24 hours or more to control the humidity, under the environment of the same temperature and humidity, a drop of 1 μL of ion-exchanged water was applied to the surface of the composite membrane with a syringe. Using a fully automatic contact angle meter (Kyowa Interface Science Co., Ltd., model number Drop Master DM500), the contact angle after 30 seconds is measured by the θ / 2 method.
 以下、第一の親水性材料と第二の親水性材料とに共通する事項については、親水性材料と総称して説明する。 Hereinafter, items common to the first hydrophilic material and the second hydrophilic material will be collectively described as hydrophilic materials.
 本開示の親水性複合膜の形態としては、例えば、多孔質基材の空孔の壁面の一部若しくは全部を親水性材料が被覆している形態、多孔質基材の空孔の一部若しくは全部を親水性材料が充填している形態、多孔質基材の空孔の壁面の一部を親水性材料が被覆し空孔の一部を親水性材料が充填している形態が挙げられる。 Examples of the form of the hydrophilic composite membrane of the present disclosure include, for example, a form in which a part or all of the wall surfaces of pores of a porous substrate are covered with a hydrophilic material, a part of pores of a porous substrate, Examples include a form in which the whole is filled with a hydrophilic material, and a form in which a part of the wall surface of the pores of the porous substrate is covered with the hydrophilic material and a part of the pores is filled with the hydrophilic material.
 本開示の親水性複合膜において、多孔質基材の空孔を親水性材料が充填している場合、当該親水性材料は、多孔質構造を形成していることが好ましい。ここで多孔質構造とは、内部に多数の微細孔を有し、これら微細孔が連結されており、一方の側から他方の側へと気体あるいは液体が通過可能となっている構造を意味する。 に お い て In the hydrophilic composite membrane of the present disclosure, when the pores of the porous base material are filled with a hydrophilic material, the hydrophilic material preferably has a porous structure. Here, the porous structure means a structure having a large number of micropores inside, these micropores are connected, and a gas or liquid can pass from one side to the other side. .
 本開示の親水性複合膜は、例えば、水系媒体に分散又は溶解している物質の分離、精製、濃縮、分画等の目的に使用される。
 本開示の親水性複合膜の用途としては、例えば、浄水、除菌、海水淡水化、人工透析、医薬品製造、食品製造、タンパク質の分離等が挙げられる。
The hydrophilic composite membrane of the present disclosure is used, for example, for the purpose of separation, purification, concentration, fractionation, and the like of a substance dispersed or dissolved in an aqueous medium.
Applications of the hydrophilic composite membrane of the present disclosure include, for example, water purification, sanitization, desalination of seawater, artificial dialysis, pharmaceutical production, food production, protein separation, and the like.
 本開示の親水性複合膜の膜厚、孔径及び空孔率は、特に制限されるものではなく、用途、構造又は種別に応じて選択してよい。 膜厚 The thickness, pore size, and porosity of the hydrophilic composite membrane of the present disclosure are not particularly limited, and may be selected according to the application, structure, or type.
 本開示の親水性複合膜の表面には、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。 表面 The surface of the hydrophilic composite membrane of the present disclosure may be subjected to various surface treatments. Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
[多孔質基材]
 本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;などが挙げられる。多孔質基材としては、親水性複合膜の薄膜化及び強度の観点から、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
[Porous substrate]
In the present disclosure, the porous substrate means a substrate having pores or voids therein. Examples of such a substrate include a microporous membrane; a porous sheet made of a fibrous material, such as a nonwoven fabric or paper; As the porous substrate, a microporous film is preferable from the viewpoint of thinning and strength of the hydrophilic composite film. A microporous membrane is a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, so that gas or liquid can pass from one surface to the other. I do.
 多孔質基材の材料は、有機材料又は無機材料のいずれでもよい。 材料 The material of the porous substrate may be either an organic material or an inorganic material.
 多孔質基材は、親水性又は疎水性のいずれでもよい。本開示の親水性複合膜は、多孔質基材が疎水性であっても、親水性材料が多孔質基材の空孔内に存在することによって親水性を示し、通水性に優れる。 The porous substrate may be either hydrophilic or hydrophobic. The hydrophilic composite membrane of the present disclosure exhibits hydrophilicity even when the porous base material is hydrophobic, because the hydrophilic material is present in the pores of the porous base material, and is excellent in water permeability.
 多孔質基材の一つの実施形態として、平均孔径が1nm~4000nmである多孔質基材が挙げられる。平均孔径が4000nm以下である多孔質基材は通水性を示しにくいが、本開示の親水性複合膜は多孔質基材の空孔内に親水性材料が存在するので、多孔質基材の平均孔径が4000nm以下であっても通水性を発現しやすい。
 一方で、多孔質基材の空孔内に親水性材料を配置することの容易さの観点から、多孔質基材の平均孔径は1nm以上が好ましく、10nm以上がより好ましい。
One embodiment of the porous substrate includes a porous substrate having an average pore size of 1 nm to 4000 nm. Although a porous substrate having an average pore size of 4000 nm or less does not easily show water permeability, the hydrophilic composite membrane of the present disclosure has a hydrophilic material in pores of the porous substrate, so that the average Even if the pore size is 4000 nm or less, water permeability is easily exhibited.
On the other hand, the average pore diameter of the porous substrate is preferably 1 nm or more, more preferably 10 nm or more, from the viewpoint of arranging the hydrophilic material in the pores of the porous substrate.
 多孔質基材の平均孔径は、空孔内に第一の親水性材料及び第二の親水性材料のいずれも有しない多孔質基材を試料にし、パームポロメーターを用いて、ASTM E1294-89の測定方法にて求められる値である。 The average pore size of the porous substrate was determined by using a porous substrate having neither the first hydrophilic material nor the second hydrophilic material in the pores as a sample, and using a perm porometer to determine ASTM E1294-89. Is a value obtained by the measurement method described above.
 多孔質基材の一つの実施形態として、片面又は両面において、水の接触角が85度~130度である多孔質基材が挙げられる。上記多孔質基材は水に濡れにくく通水性を示しにくいが、本開示の親水性複合膜は多孔質基材の空孔内に親水性材料が存在するので、上記多孔質基材であっても通水性を発現しやすい。 一 つ One embodiment of the porous substrate includes a porous substrate having a water contact angle of 85 to 130 degrees on one or both surfaces. Although the porous substrate is hardly wetted by water and does not easily show water permeability, the hydrophilic composite membrane of the present disclosure is a porous substrate because a hydrophilic material is present in pores of the porous substrate. Also easily develop water permeability.
 多孔質基材の表面における水の接触角は、空孔内に第一の親水性材料及び第二の親水性材料のいずれも有しない多孔質基材を試料にして、次の測定方法によって測定される物性である。
 多孔質基材を温度25℃/相対湿度60%の環境に24時間以上放置して調湿した後、同じ温度及び湿度の環境下にて、多孔質基材の表面に注射器で1μLのイオン交換水の水滴を落とし、全自動接触角計(協和界面科学社、型番Drop Master DM500)を用いてθ/2法により30秒後の接触角を測定する。
The contact angle of water on the surface of the porous substrate is measured by the following measurement method using a porous substrate having neither the first hydrophilic material nor the second hydrophilic material in the pores as a sample. Physical properties.
After leaving the porous substrate in an environment of a temperature of 25 ° C. and a relative humidity of 60% for 24 hours or more to control the humidity, 1 μL of ion exchange is performed on the surface of the porous substrate with a syringe under the same temperature and humidity environment. Drops of water are dropped, and the contact angle after 30 seconds is measured by a θ / 2 method using a fully automatic contact angle meter (Kyowa Interface Science Co., Ltd., model number Drop Master DM500).
 多孔質基材の厚さは、特に制限されるものではないが、多孔質基材の空孔内に親水性材料を配置することの容易さの観点から、1μm~100μmが好ましい。 厚 The thickness of the porous substrate is not particularly limited, but is preferably 1 μm to 100 μm from the viewpoint of easiness of disposing the hydrophilic material in the pores of the porous substrate.
 多孔質基材の一つの実施形態として、ポリエチレン、ポリプロピレン等のポリオレフィンを含む微多孔膜(本開示においてポリオレフィン微多孔膜という。)が挙げられる。 微 One embodiment of the porous substrate is a microporous membrane containing a polyolefin such as polyethylene or polypropylene (referred to as a polyolefin microporous membrane in the present disclosure).
 ポリオレフィン微多孔膜は、高温に曝されたときに容易に破膜しない耐熱性を備える観点から、ポリプロピレンを含む微多孔膜が好ましい。 The microporous polyolefin membrane is preferably a microporous membrane containing polypropylene, from the viewpoint of having heat resistance that does not easily break when exposed to high temperatures.
 ポリオレフィン微多孔膜の形態例として、2層以上の積層構造を備え、少なくとも1層はポリエチレンを含有し、少なくとも1層はポリプロピレンを含有するポリオレフィン微多孔膜が挙げられる。 Examples of the microporous polyolefin membrane include a microporous polyolefin membrane having a laminated structure of two or more layers, at least one layer containing polyethylene, and at least one layer containing polypropylene.
 ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、重量平均分子量(Mw)が10万~500万のポリオレフィンが好ましい。ポリオレフィンのMwが10万以上であると、微多孔膜に十分な力学特性を付与できる。ポリオレフィンのMwが500万以下であると、微多孔膜の成形がしやすい。 ポ リ The polyolefin contained in the microporous polyolefin membrane is preferably a polyolefin having a weight average molecular weight (Mw) of 100,000 to 5,000,000. When the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane. When the Mw of the polyolefin is 5,000,000 or less, it is easy to form a microporous film.
 多孔質基材の一つの実施形態として、繊維状物からなる多孔性シートが挙げられる。繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱樹脂;セルロース;などの繊維状物からなる、不織布、紙等の多孔性シートが挙げられる。 と し て One embodiment of the porous substrate is a porous sheet made of a fibrous material. Examples of the fibrous porous sheet include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; and heat resistant materials such as wholly aromatic polyamide, polyamideimide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. Porous sheets such as nonwoven fabric and paper made of fibrous materials such as resin; cellulose;
 多孔質基材の表面には、多孔質基材の空孔内に親水性材料を配置するための塗工液の濡れ性を向上させる目的で、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。 (4) The surface of the porous substrate may be subjected to various surface treatments for the purpose of improving the wettability of a coating liquid for disposing the hydrophilic material in the pores of the porous substrate. Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
[親水性材料]
 第一の親水性材料は、ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性材料である。本開示において、第一の親水性材料には、第二の親水性材料を含めない。
[Hydrophilic material]
The first hydrophilic material is a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit. In the present disclosure, the first hydrophilic material does not include the second hydrophilic material.
 第一の親水性材料は、水不溶性共重合体VAを含むことによって親水性を示す。 The first hydrophilic material exhibits hydrophilicity by containing the water-insoluble copolymer VA.
 第二の親水性材料は、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性材料である。 The second hydrophilic material is a hydrophilic material containing the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state.
 第二の親水性材料は、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した状態で含まれていることによって、第二の親水性材料の全体にわたって均一性高く親水性を示す。 The second hydrophilic material contains the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state, so that the second hydrophilic material exhibits high uniformity and hydrophilicity throughout the second hydrophilic material. .
 第二の親水性材料は、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した状態で含まれていることによって、親水性成分である水不溶性共重合体VAが第二の親水性材料から脱離しにくい。 The second hydrophilic material contains the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state, so that the water-insoluble copolymer VA, which is a hydrophilic component, becomes second hydrophilic. Difficult to detach from conductive materials.
 第二の親水性材料は、ポリフッ化ビニリデン系樹脂を含有することによって、耐熱性、溶剤不溶性、耐薬品性、機械的強度に優れる。したがって、多孔質基材の空孔内に第二の親水性材料を有する形態の本開示の親水性複合膜は、耐熱性、溶剤不溶性、耐薬品性、機械的強度に優れる。 The second hydrophilic material is excellent in heat resistance, solvent insolubility, chemical resistance and mechanical strength by containing polyvinylidene fluoride resin. Therefore, the hydrophilic composite membrane of the present disclosure having the second hydrophilic material in the pores of the porous substrate has excellent heat resistance, solvent insolubility, chemical resistance, and mechanical strength.
 本開示において、多孔質基材の空孔内に存在する材料に含まれる複数種の樹脂が相溶した状態とは、多孔質基材の空孔内に存在する材料を、透過型電子顕微鏡を用いて分解能0.2nm且つ倍率30000倍にて観察したとき、樹脂相の不連続が認められない状態を意味する。 In the present disclosure, the state in which a plurality of types of resins contained in the material present in the pores of the porous base material are compatible means that the material present in the pores of the porous base material is subjected to transmission electron microscopy. When observed at a resolution of 0.2 nm and a magnification of 30,000 times, it means that no discontinuity of the resin phase is observed.
[水不溶性共重合体VA]
 第一の親水性材料及び第二の親水性材料は、水不溶性共重合体VAを含有する。水不溶性共重合体VAは、少なくともビニルアルコール単位とアクリル系モノマー単位とを有し、水不溶性である。
[Water-insoluble copolymer VA]
The first hydrophilic material and the second hydrophilic material contain a water-insoluble copolymer VA. The water-insoluble copolymer VA has at least a vinyl alcohol unit and an acrylic monomer unit, and is water-insoluble.
 本開示において、ビニルアルコール単位とアクリル系モノマー単位とを有する共重合体について水不溶性とは、溶解度が3g/100g水以下であることを意味する。溶解度は、1気圧において20℃の水100gに溶ける質量を意味する。 に お い て In the present disclosure, the term “water-insoluble” for a copolymer having a vinyl alcohol unit and an acrylic monomer unit means that the solubility is 3 g / 100 g water or less. Solubility means the mass soluble in 100 g of water at 20 ° C. at 1 atm.
 水不溶性共重合体VAとしては、例えば、酢酸ビニルとアクリル系モノマーとの共重合体をケン化した共重合体、部分ケン化ポリビニルアルコールにアクリル系モノマーを重合した共重合体などが挙げられる。 Examples of the water-insoluble copolymer VA include a copolymer obtained by saponifying a copolymer of vinyl acetate and an acrylic monomer, and a copolymer obtained by polymerizing an acrylic monomer on partially saponified polyvinyl alcohol.
 水不溶性共重合体VAが、部分ケン化ポリビニルアルコールにアクリル系モノマーを重合した共重合体である場合、前記部分ケン化ポリビニルアルコールの重合度は、特に制限されるものではないが、300~800が好ましい。 When the water-insoluble copolymer VA is a copolymer obtained by polymerizing an acrylic monomer on partially saponified polyvinyl alcohol, the degree of polymerization of the partially saponified polyvinyl alcohol is not particularly limited, but is 300 to 800. Is preferred.
 水不溶性共重合体VAが、部分ケン化ポリビニルアルコールにアクリル系モノマーを重合した共重合体である場合、前記部分ケン化ポリビニルアルコールのケン化度は、特に制限されるものではないが、55モル%~90モル%が好ましい。前記部分ケン化ポリビニルアルコールのケン化度が55モル%以上であると、水不溶性共重合体VAの親水性がより高い。この観点からは、前記部分ケン化ポリビニルアルコールのケン化度は、60モル%以上がより好ましく、65モル%以上が更に好ましい。一方、前記部分ケン化ポリビニルアルコールのケン化度が90モル%以下であると、ポリフッ化ビニリデン系樹脂に対する水不溶性共重合体VAの相溶性がより高く、また、水不溶性共重合体VAの水不溶性がより高い。この観点からは、前記部分ケン化ポリビニルアルコールのケン化度は、85モル%以下がより好ましく、80モル%以下が更に好ましい。 When the water-insoluble copolymer VA is a copolymer obtained by polymerizing an acrylic monomer on partially saponified polyvinyl alcohol, the degree of saponification of the partially saponified polyvinyl alcohol is not particularly limited, but may be 55 mol. % To 90 mol% is preferred. When the degree of saponification of the partially saponified polyvinyl alcohol is 55 mol% or more, the hydrophilicity of the water-insoluble copolymer VA is higher. In this respect, the degree of saponification of the partially saponified polyvinyl alcohol is more preferably equal to or greater than 60 mol%, and still more preferably equal to or greater than 65 mol%. On the other hand, when the degree of saponification of the partially saponified polyvinyl alcohol is 90 mol% or less, the compatibility of the water-insoluble copolymer VA with the polyvinylidene fluoride resin is higher, and the water-insoluble copolymer VA has a higher water solubility. Higher insolubility. In this respect, the saponification degree of the partially saponified polyvinyl alcohol is more preferably equal to or less than 85 mol%, and still more preferably equal to or less than 80 mol%.
 水不溶性共重合体VAにおけるビニルアルコール単位の質量割合は、40質量%~90質量%であることが好ましい。ビニルアルコール単位の質量割合が40質量%以上であると、水不溶性共重合体VAの親水性がより高い。この観点からは、ビニルアルコール単位の質量割合は、45質量%以上がより好ましく、50質量%以上が更に好ましい。一方、ビニルアルコール単位の質量割合が90質量%以下であると、ポリフッ化ビニリデン系樹脂に対する水不溶性共重合体VAの相溶性がより高く、また、水不溶性共重合体VAの水不溶性がより高い。この観点からは、ビニルアルコール単位の質量割合は、85質量%以下がより好ましく、80質量%以下が更に好ましい。 質量 The mass ratio of the vinyl alcohol unit in the water-insoluble copolymer VA is preferably from 40% by mass to 90% by mass. When the mass ratio of the vinyl alcohol unit is 40% by mass or more, the hydrophilicity of the water-insoluble copolymer VA is higher. In this respect, the mass ratio of the vinyl alcohol unit is more preferably equal to or greater than 45% by mass, and still more preferably equal to or greater than 50% by mass. On the other hand, when the mass ratio of the vinyl alcohol unit is 90% by mass or less, the compatibility of the water-insoluble copolymer VA with the polyvinylidene fluoride resin is higher, and the water-insolubility of the water-insoluble copolymer VA is higher. . In this respect, the mass ratio of the vinyl alcohol unit is more preferably equal to or less than 85% by mass, and still more preferably equal to or less than 80% by mass.
 アクリル系モノマー単位を構成するアクリル系モノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸塩、(メタ)アクリル酸エステルからなる群から選ばれる少なくとも1種のアクリル系モノマーが挙げられる。 ア ク リ ル The acrylic monomer constituting the acrylic monomer unit includes at least one acrylic monomer selected from the group consisting of (meth) acrylic acid, (meth) acrylate, and (meth) acrylate.
 (メタ)アクリル酸塩としては、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸マグネシウム、(メタ)アクリル酸亜鉛等が挙げられる。 Examples of the (meth) acrylate include sodium (meth) acrylate, potassium (meth) acrylate, magnesium (meth) acrylate, and zinc (meth) acrylate.
 (メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-(ジエチルアミノ)エチル、メトキシポリエチレングリコール(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic acid. N-hexyl acid, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (meth) acrylic acid Isobornyl, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2- (diethylamino) ethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, etc. Is mentioned.
 水不溶性共重合体VAは、ポリフッ化ビニリデン系樹脂との相溶性がより高く、また、水不溶性がより高い観点から、アクリル系モノマー単位として、メタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を有することが好ましく、メタクリル酸エステル単位を有することがより好ましい。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸の低級アルキルエステル(アルキル基の炭素数1~4)が好ましく、メタクリル酸メチル又はアクリル酸メチルがより好ましく、メタクリル酸メチルが更に好ましい。 The water-insoluble copolymer VA has higher compatibility with the polyvinylidene fluoride-based resin, and from the viewpoint of higher water-insolubility, from the group consisting of a methacrylate unit and an acrylate unit as an acrylic monomer unit. It preferably has at least one selected from the group, and more preferably has a methacrylate unit. As the (meth) acrylate, a lower alkyl ester of (meth) acrylic acid (having 1 to 4 carbon atoms in the alkyl group) is preferred, methyl methacrylate or methyl acrylate is more preferred, and methyl methacrylate is still more preferred.
 水不溶性共重合体VAにおけるアクリル系モノマー単位の質量割合は、10質量%~60質量%であることが好ましい。アクリル系モノマー単位の質量割合が10質量%以上であると、ポリフッ化ビニリデン系樹脂に対する水不溶性共重合体VAの相溶性がより高く、また、水不溶性共重合体VAの水不溶性がより高い。この観点からは、アクリル系モノマー単位の質量割合は、15質量%以上がより好ましく、20質量%以上が更に好ましい。一方、アクリル系モノマー単位の質量割合が60質量%以下であると、水不溶性共重合体VAの親水性がより高い。この観点からは、アクリル系モノマー単位の質量割合は、55質量%以下がより好ましく、50質量%以下が更に好ましく、45質量%以下が更に好ましい。 質量 The mass ratio of the acrylic monomer unit in the water-insoluble copolymer VA is preferably from 10% by mass to 60% by mass. When the mass ratio of the acrylic monomer unit is 10% by mass or more, the compatibility of the water-insoluble copolymer VA with the polyvinylidene fluoride-based resin is higher, and the water-insolubility of the water-insoluble copolymer VA is higher. In this respect, the mass ratio of the acrylic monomer unit is more preferably equal to or greater than 15% by mass, and still more preferably equal to or greater than 20% by mass. On the other hand, when the mass ratio of the acrylic monomer unit is 60% by mass or less, the hydrophilicity of the water-insoluble copolymer VA is higher. In this respect, the mass ratio of the acrylic monomer unit is more preferably equal to or less than 55% by mass, more preferably equal to or less than 50% by mass, and still more preferably equal to or less than 45% by mass.
 上記の理由により、水不溶性共重合体VAにおけるメタクリル酸メチル単位とアクリル酸メチル単位とを合わせた質量割合は、10質量%~60質量%が好ましく、15質量%~55質量%がより好ましく、20質量%~50質量%が更に好ましく、20質量%~45質量%が更に好ましい。 For the above reasons, the total mass ratio of the methyl methacrylate unit and the methyl acrylate unit in the water-insoluble copolymer VA is preferably from 10% by mass to 60% by mass, more preferably from 15% by mass to 55% by mass, 20 to 50% by mass is more preferable, and 20 to 45% by mass is more preferable.
 水不溶性共重合体VAの好ましい形態の一例として、ビニルアルコール単位と、メタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種と、メタクリル酸単位及びアクリル酸単位からなる群から選ばれる少なくとも1種とを有する形態が挙げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸の低級アルキルエステル(アルキル基の炭素数1~4)が好ましく、メタクリル酸メチル又はアクリル酸メチルがより好ましく、メタクリル酸メチルが更に好ましい。本形態の水不溶性共重合体VAにおける(メタ)アクリル酸エステル単位の合計の質量割合は、10質量%~50質量%が好ましく、15質量%~45質量%がより好ましく、20質量%~40質量%が更に好ましい。本形態の水不溶性共重合体VAにおける(メタ)アクリル酸単位の合計の質量割合は、5質量%~30質量%であることが好ましく、5質量%~25質量%であることがより好ましい。 As an example of a preferred embodiment of the water-insoluble copolymer VA, a vinyl alcohol unit, at least one selected from the group consisting of methacrylic ester units and acrylic ester units, and a group selected from the group consisting of methacrylic acid units and acrylic acid units And at least one of the above. As the (meth) acrylate, a lower alkyl ester of (meth) acrylic acid (having 1 to 4 carbon atoms in the alkyl group) is preferred, methyl methacrylate or methyl acrylate is more preferred, and methyl methacrylate is still more preferred. The total mass ratio of (meth) acrylate units in the water-insoluble copolymer VA of this embodiment is preferably from 10% by mass to 50% by mass, more preferably from 15% by mass to 45% by mass, and preferably from 20% by mass to 40% by mass. % Is more preferred. The total mass ratio of the (meth) acrylic acid units in the water-insoluble copolymer VA of this embodiment is preferably from 5% by mass to 30% by mass, more preferably from 5% by mass to 25% by mass.
 水不溶性共重合体VAは、ビニルアルコール単位及びアクリル系モノマー単位以外のその他のモノマー単位を有していてもよい。その他のモノマー単位としては、水不溶性共重合体VAの親水性と水不溶性のバランスをとる観点から、スチレン系モノマー単位が好ましい。 The water-insoluble copolymer VA may have other monomer units other than the vinyl alcohol unit and the acrylic monomer unit. As other monomer units, styrene-based monomer units are preferred from the viewpoint of balancing the hydrophilicity and water-insolubility of the water-insoluble copolymer VA.
 スチレン系モノマーとしては、例えば、スチレン、メタクロロスチレン、パラクロロスチレン、パラフルオロスチレン、パラメトキシスチレン、メタ-tert-ブトキシスチレン、パラ-tert-ブトキシスチレン、バラビニル安息香酸、パラメチル-α-メチルスチレン等が挙げられる。スチレン系モノマーとしては、スチレン、パラメトキシスチレン、パラメチル-α-メチルスチレンが好ましく、スチレンが特に好ましい。 Examples of the styrene monomer include styrene, metachlorostyrene, parachlorostyrene, parafluorostyrene, paramethoxystyrene, meta-tert-butoxystyrene, para-tert-butoxystyrene, palavinyl benzoic acid, and paramethyl-α-methylstyrene. And the like. As the styrene monomer, styrene, paramethoxystyrene, and paramethyl-α-methylstyrene are preferable, and styrene is particularly preferable.
 水不溶性共重合体VAがスチレン系モノマー単位を有する場合、水不溶性共重合体VAにおけるスチレン系モノマーの質量割合は、1質量%~15質量%が好ましく、5質量%~10質量%がより好ましい。 When the water-insoluble copolymer VA has a styrene-based monomer unit, the mass ratio of the styrene-based monomer in the water-insoluble copolymer VA is preferably 1% by mass to 15% by mass, more preferably 5% by mass to 10% by mass. .
 水不溶性共重合体VAにおけるビニルアルコール単位とアクリル系モノマー単位とを合わせた質量割合は、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。 質量 The mass ratio of the vinyl alcohol unit and the acrylic monomer unit in the water-insoluble copolymer VA is preferably 85% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more.
 親水性材料に含まれる水不溶性共重合体VAは、1種でもよく、2種以上でもよい。 水 The water-insoluble copolymer VA contained in the hydrophilic material may be one type or two or more types.
 水不溶性共重合体VAの重量平均分子量(Mw)は、特に制限されるものではないが、5万~1500万が好ましい。 重量 The weight average molecular weight (Mw) of the water-insoluble copolymer VA is not particularly limited, but is preferably 50,000 to 15,000,000.
 第二の親水性材料においては、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との合計量に対する水不溶性共重合体VAの含有量が5質量%~60質量%であることが好ましい。水不溶性共重合体VAの含有量が60質量%以下であると、第二の親水性材料を多孔質基材の空孔内に配置する際に第二の親水性材料を多孔化しやすい。本観点からは、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との合計量に対する水不溶性共重合体VAの含有量は、55質量%以下であることがより好ましく、50質量%以下であることが更に好ましく、45質量%以下であることが更に好ましい。
 一方、第二の親水性材料の親水性を向上させる観点からは、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との合計量に対する水不溶性共重合体VAの含有量が5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることが更に好ましい。
In the second hydrophilic material, the content of the water-insoluble copolymer VA with respect to the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin is preferably 5% by mass to 60% by mass. When the content of the water-insoluble copolymer VA is 60% by mass or less, the second hydrophilic material is easily made porous when the second hydrophilic material is arranged in the pores of the porous substrate. From this viewpoint, the content of the water-insoluble copolymer VA based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin is more preferably 55% by mass or less, and more preferably 50% by mass or less. Is more preferably 45% by mass or less.
On the other hand, from the viewpoint of improving the hydrophilicity of the second hydrophilic material, the content of the water-insoluble copolymer VA with respect to the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin is 5% by mass or more. Preferably, it is 15% by mass or more, more preferably 25% by mass or more.
[ポリフッ化ビニリデン系樹脂]
 第二の親水性材料は、ポリフッ化ビニリデン系樹脂を含有する。ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他のモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、トリクロロエチレン等が挙げられ、1種又は2種以上を用いることができる。
[Polyvinylidene fluoride resin]
The second hydrophilic material contains a polyvinylidene fluoride resin. Examples of the polyvinylidene fluoride resin include a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another monomer (polyvinylidene fluoride copolymer); and a mixture thereof. . Examples of monomers copolymerizable with vinylidene fluoride include, for example, tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, and trichloroethylene. Can be.
 ポリフッ化ビニリデン共重合体におけるフッ化ビニリデン(VDF)単位の質量割合は、特に制限されるものではないが、50質量%~98質量%が好ましい。 質量 The mass ratio of vinylidene fluoride (VDF) units in the polyvinylidene fluoride copolymer is not particularly limited, but is preferably 50% by mass to 98% by mass.
 ポリフッ化ビニリデン系樹脂は、(メタ)アクリル酸エステル(特にメタクリル酸エステル)及びポリビニルアルコールと優れた相溶性を示すことが知られている。ポリフッ化ビニリデン系樹脂としては、水不溶性共重合体VAとの高い相溶性を担保するために、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン)が好ましい。 It is known that polyvinylidene fluoride resin exhibits excellent compatibility with (meth) acrylate (particularly methacrylate) and polyvinyl alcohol. As the polyvinylidene fluoride resin, a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride) is preferable in order to ensure high compatibility with the water-insoluble copolymer VA.
 第二の親水性材料に含まれるポリフッ化ビニリデン系樹脂は、1種でもよく、2種以上でもよい。 (4) The polyvinylidene fluoride resin contained in the second hydrophilic material may be one type or two or more types.
 ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)は、特に制限されるものではないが、5万~500万が好ましい。 重量 The weight average molecular weight (Mw) of the polyvinylidene fluoride resin is not particularly limited, but is preferably 50,000 to 5,000,000.
 本開示においてポリフッ化ビニリデン系樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定する。GPCによる分子量測定は、日本分光社製のGPC装置であるGPC-900を用い、カラムに東ソー社製TSKgel SUPER AWM-Hを2本用い、溶媒にN,N-ジメチルホルムアミドを使用し、温度40℃、流量10mL/分の条件で測定し、ポリスチレン換算の分子量を求める。 に お い て In the present disclosure, the weight average molecular weight of the polyvinylidene fluoride resin is measured by gel permeation chromatography (GPC). The molecular weight was measured by GPC using GPC-900, a GPC device manufactured by JASCO Corporation, using two columns of TSKgel @ SUPER @ AWM-H manufactured by Tosoh Corporation, using N, N-dimethylformamide as a solvent, and heating at a temperature of 40 ° C. The measurement is performed under the conditions of ° C and a flow rate of 10 mL / min, and the molecular weight in terms of polystyrene is determined.
 第二の親水性材料においては、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との合計量に対するポリフッ化ビニリデン系樹脂の含有量が40質量%~95質量%であることが好ましい。ポリフッ化ビニリデン系樹脂の含有量が40質量%以上であると、第二の親水性材料を多孔質基材の空孔内に配置する際に第二の親水性材料を多孔化しやすい。本観点からは、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との合計量に対するポリフッ化ビニリデン系樹脂の含有量は、45質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、55質量%以上であることが更に好ましい。
 一方、第二の親水性材料の親水性を向上させる観点からは、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との合計量に対するポリフッ化ビニリデン系樹脂の含有量が95質量%以下であることが好ましく、85質量%以下であることがより好ましく、75質量%以下であることが更に好ましい。
In the second hydrophilic material, the content of the polyvinylidene fluoride resin is preferably 40% by mass to 95% by mass based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin. When the content of the polyvinylidene fluoride-based resin is 40% by mass or more, the second hydrophilic material is easily made porous when the second hydrophilic material is arranged in the pores of the porous substrate. From this viewpoint, the content of the polyvinylidene fluoride resin based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin is more preferably 45% by mass or more, and more preferably 50% by mass or more. Is more preferable, and more preferably 55% by mass or more.
On the other hand, from the viewpoint of improving the hydrophilicity of the second hydrophilic material, the content of the polyvinylidene fluoride resin is 95% by mass or less based on the total amount of the water-insoluble copolymer VA and the polyvinylidene fluoride resin. Is preferably 85% by mass or less, and more preferably 75% by mass or less.
 親水性材料は、水不溶性共重合体VA及びポリフッ化ビニリデン系樹脂以外のその他の樹脂、界面活性剤、湿潤剤、消泡剤、pH調整剤、着色剤などを含んでいてもよい。その他の樹脂としては、ポリアミド類、ポリイミド類、フッ素系ゴム、セルロース類、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル等が挙げられる。 (4) The hydrophilic material may contain other resins other than the water-insoluble copolymer VA and the polyvinylidene fluoride resin, a surfactant, a wetting agent, a defoaming agent, a pH adjuster, a coloring agent, and the like. Examples of other resins include polyamides, polyimides, fluorine-based rubber, celluloses, polyvinyl butyral, polyvinyl pyrrolidone, and polyether.
[親水性被覆層]
 本開示の親水性複合膜は、多孔質基材の片面又は両面に、下記の第一の親水性被覆層及び第二の親水性被覆層の少なくとも一方をさらに備える形態であってもよい。
[Hydrophilic coating layer]
The hydrophilic composite membrane of the present disclosure may be configured to further include at least one of the following first hydrophilic coating layer and second hydrophilic coating layer on one or both surfaces of the porous substrate.
 第一の親水性被覆層:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性被覆層。
 第二の親水性被覆層:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体とポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性被覆層。
First hydrophilic coating layer: a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
Second hydrophilic coating layer: a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride resin in a state of being compatible with each other.
 本開示において、第一の親水性被覆層には、第二の親水性被覆層を含めない。 に お い て In the present disclosure, the first hydrophilic coating layer does not include the second hydrophilic coating layer.
 本開示の親水性複合膜が第一の親水性被覆層を有する場合、第一の親水性被覆層は、多孔質基材の片面又は両面において、親水性複合膜の最外層であることが好ましい。
 本開示の親水性複合膜が第二の親水性被覆層を有する場合、第二の親水性被覆層は、多孔質基材の片面又は両面において、親水性複合膜の最外層であることが好ましい。
When the hydrophilic composite film of the present disclosure has a first hydrophilic coating layer, the first hydrophilic coating layer is preferably the outermost layer of the hydrophilic composite film on one or both surfaces of the porous substrate. .
When the hydrophilic composite film of the present disclosure has a second hydrophilic coating layer, the second hydrophilic coating layer is preferably the outermost layer of the hydrophilic composite film on one or both surfaces of the porous substrate. .
 本開示の親水性複合膜は、多孔質基材の片面又は両面に、第一の親水性被覆層及び第二の親水性被覆層の少なくとも一方を備えることによって水系媒体の濡れ性に優れ、したがって通水性により優れる。 The hydrophilic composite membrane of the present disclosure has excellent wettability of an aqueous medium by providing at least one of a first hydrophilic coating layer and a second hydrophilic coating layer on one or both surfaces of a porous substrate, Superior in water permeability.
 第一の親水性被覆層及び第二の親水性被覆層は、親水性である水不溶性共重合体VAを含むことによって親水性を示す。水不溶性共重合体VAは水不溶性であることによって、第一の親水性被覆層及び第二の親水性被覆層から水系媒体に溶出しにくい。 The first hydrophilic coating layer and the second hydrophilic coating layer exhibit hydrophilicity by containing the water-insoluble copolymer VA which is hydrophilic. Since the water-insoluble copolymer VA is water-insoluble, it does not easily elute from the first hydrophilic coating layer and the second hydrophilic coating layer into the aqueous medium.
 第二の親水性被覆層は、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した状態で含まれていることによって、第二の親水性被覆層の全体にわたって均一性高く親水性を示す。 The second hydrophilic coating layer contains the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin in a compatible state, so that the second hydrophilic coating layer has high uniformity and hydrophilicity throughout the second hydrophilic coating layer. Is shown.
 第二の親水性被覆層は、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した状態で含まれていることによって、親水性成分である水不溶性共重合体VAが第二の親水性被覆層から脱離しにくい。 The second hydrophilic coating layer contains the water-insoluble copolymer VA and the polyvinylidene fluoride resin in a compatible state, so that the water-insoluble copolymer VA as the hydrophilic component Hardly detached from the hydrophilic coating layer.
 第二の親水性被覆層は、ポリフッ化ビニリデン系樹脂を含有することによって、耐熱性、溶剤不溶性、耐薬品性、機械的強度に優れる。したがって、多孔質基材上に第二の親水性被覆層を有する形態の本開示の親水性複合膜は、耐熱性、溶剤不溶性、耐薬品性、機械的強度に優れる。 The second hydrophilic coating layer is excellent in heat resistance, solvent insolubility, chemical resistance and mechanical strength by containing a polyvinylidene fluoride resin. Therefore, the hydrophilic composite membrane of the present disclosure having the second hydrophilic coating layer on the porous substrate has excellent heat resistance, solvent insolubility, chemical resistance, and mechanical strength.
 本開示において、親水性被覆層に含まれる複数種の樹脂が相溶した状態とは、親水性被覆層を、透過型電子顕微鏡を用いて分解能0.2nm且つ倍率30000倍にて観察したとき、樹脂相の不連続が認められない状態を意味する。 In the present disclosure, the state in which a plurality of types of resins contained in the hydrophilic coating layer are compatible with each other, when the hydrophilic coating layer is observed at a resolution of 0.2 nm and a magnification of 30,000 times using a transmission electron microscope, It means a state in which discontinuity of the resin phase is not recognized.
 以下、第一の親水性被覆層と第二の親水性被覆層とに共通する事項については、親水性被覆層と総称して説明する。 Hereinafter, items common to the first hydrophilic coating layer and the second hydrophilic coating layer will be collectively described as hydrophilic coating layers.
 本開示の親水性複合膜において親水性被覆層は、通水性により優れる観点から、多孔質層であることが好ましい。ここで多孔質層とは、内部に多数の微細孔を有し、これら微細孔が連結されており、一方の側から他方の側へと気体あるいは液体が通過可能となっている層を意味する。 に お い て In the hydrophilic composite membrane of the present disclosure, the hydrophilic coating layer is preferably a porous layer from the viewpoint of better water permeability. Here, the porous layer means a layer having a large number of micropores inside, these micropores being connected, and allowing gas or liquid to pass from one side to the other side. .
 親水性被覆層の厚さは、特に制限されるものではないが、片面0.1μm~10μmが好ましい。 厚 The thickness of the hydrophilic coating layer is not particularly limited, but is preferably 0.1 μm to 10 μm on one side.
 単位面積当たりの親水性被覆層の質量は、特に制限されるものではないが、片面0.1g/m~10g/mが好ましい。 Mass of the hydrophilic coating layer per unit area, but are not particularly limited, one-sided 0.1g / m 2 ~ 10g / m 2 is preferred.
 親水性被覆層が多孔質層である場合、親水性被覆層の空孔率は、特に制限されるものではないが、通水性の観点から30%以上が好ましく、機械的強度の観点から80%以下が好ましい。 When the hydrophilic coating layer is a porous layer, the porosity of the hydrophilic coating layer is not particularly limited, but is preferably 30% or more from the viewpoint of water permeability, and 80% from the viewpoint of mechanical strength. The following is preferred.
 親水性被覆層が多孔質層である場合、親水性被覆層の平均孔径は、特に制限されるものではないが、10nm~800nmが好ましい。親水性被覆層の平均孔径は、パームポロメーターを用いて、ASTM E1294-89の測定方法にて求められる値である。 場合 When the hydrophilic coating layer is a porous layer, the average pore size of the hydrophilic coating layer is not particularly limited, but is preferably from 10 nm to 800 nm. The average pore size of the hydrophilic coating layer is a value determined by a measuring method of ASTM E1294-89 using a palm porometer.
 親水性被覆層に含まれる水不溶性共重合体VAの具体的な形態及び好ましい形態は、先述の親水性材料について述べた形態と同様である。
 第二の親水性被覆層に含まれるポリフッ化ビニリデン系樹脂の具体的な形態及び好ましい形態は、先述の第二の親水性材料について述べた形態と同様である。
 第二の親水性被覆層に含まれる水不溶性共重合体VAとポリフッ化ビニリデン系樹脂との組合せ及び混合割合の具体的な形態及び好ましい形態は、先述の第二の親水性材料について述べた形態と同様である。
The specific form and preferred form of the water-insoluble copolymer VA contained in the hydrophilic coating layer are the same as those described for the above-mentioned hydrophilic material.
The specific form and preferred form of the polyvinylidene fluoride resin contained in the second hydrophilic coating layer are the same as those described for the second hydrophilic material.
The specific form and preferred form of the combination and mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin contained in the second hydrophilic coating layer are the forms described for the second hydrophilic material described above. Is the same as
 親水性被覆層は、水不溶性共重合体VA及びポリフッ化ビニリデン系樹脂以外のその他の樹脂、フィラー、界面活性剤、湿潤剤、消泡剤、pH調整剤、着色剤などを含んでいてもよい。その他の樹脂としては、ポリアミド類、ポリイミド類、フッ素系ゴム、セルロース類、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル等が挙げられる。フィラーとしては、金属水酸化物、金属酸化物、炭酸塩、硫酸塩、粘土鉱物等の無機フィラー;架橋高分子からなる粒子、耐熱性高分子からなる粒子等の有機フィラー;が挙げられる。 The hydrophilic coating layer may contain other resins other than the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin, a filler, a surfactant, a wetting agent, a defoaming agent, a pH adjuster, a coloring agent, and the like. . Examples of other resins include polyamides, polyimides, fluorine-based rubber, celluloses, polyvinyl butyral, polyvinyl pyrrolidone, and polyether. Examples of the filler include inorganic fillers such as metal hydroxides, metal oxides, carbonates, sulfates, and clay minerals; and organic fillers such as particles composed of a crosslinked polymer and particles composed of a heat-resistant polymer.
 親水性被覆層の表面には、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。 表面 The surface of the hydrophilic coating layer may be subjected to various surface treatments. Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
<第一の実施形態:親水性複合膜の製造方法>
 本開示の親水性複合膜の製造方法は、特に制限されない。一般的な製造方法としては、親水性材料を多孔質基材の空孔内に湿式塗工法又は乾式塗工法で配置する製造方法が挙げられる。本開示において、湿式塗工法とは、塗工層を凝固液中で固化させる方法であり、乾式塗工法とは、塗工層を乾燥させて固化させる方法である。以下に、第二の親水性材料及び第二の親水性被覆層を備えた親水性複合膜を例にして、湿式塗工法の実施形態例を説明する。
<First embodiment: Method for producing hydrophilic composite membrane>
The method for producing the hydrophilic composite membrane of the present disclosure is not particularly limited. As a general manufacturing method, there is a manufacturing method in which a hydrophilic material is arranged in pores of a porous substrate by a wet coating method or a dry coating method. In the present disclosure, the wet coating method is a method of solidifying a coating layer in a coagulation liquid, and the dry coating method is a method of drying and solidifying a coating layer. Hereinafter, an embodiment of the wet coating method will be described using a hydrophilic composite film including a second hydrophilic material and a second hydrophilic coating layer as an example.
 湿式塗工法は、水不溶性共重合体VA及びポリフッ化ビニリデン系樹脂を含有する塗工液を多孔質基材上に塗工し、凝固液に浸漬して塗工層を固化させ、凝固液から引き揚げ水洗及び乾燥を行う方法である。 In the wet coating method, a coating solution containing a water-insoluble copolymer VA and a polyvinylidene fluoride resin is applied onto a porous substrate, and the coating layer is immersed in a coagulation solution to solidify the coating layer. This is a method of lifting, washing and drying.
 塗工層形成用の塗工液は、水不溶性共重合体VA及びポリフッ化ビニリデン系樹脂を溶媒に溶解させて作製する。塗工液には、必要に応じて、水不溶性共重合体VA及びポリフッ化ビニリデン系樹脂以外のその他の成分を溶解又は分散させる。 塗 The coating liquid for forming the coating layer is prepared by dissolving the water-insoluble copolymer VA and the polyvinylidene fluoride resin in a solvent. If necessary, other components other than the water-insoluble copolymer VA and the polyvinylidene fluoride resin are dissolved or dispersed in the coating liquid.
 塗工液の調製に用いる溶媒は、水不溶性共重合体VA及びポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)を含むことが好ましい。良溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。 溶媒 The solvent used for preparing the coating liquid preferably contains a solvent that dissolves the water-insoluble copolymer VA and the polyvinylidene fluoride resin (hereinafter, also referred to as a “good solvent”). Examples of good solvents include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide.
 塗工液の調製に用いる溶媒は、親水性材料又は親水性被覆層を多孔化する観点から、樹脂成分の貧溶媒を含むことが好ましい。したがって、塗工液の調製に用いる溶媒は、樹脂成分の良溶媒と貧溶媒との混合溶媒であることが好ましい。貧溶媒は、塗工に適切な粘度が確保できる範囲の量で良溶媒と混合することが好ましい。貧溶媒としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。 溶媒 The solvent used for preparing the coating liquid preferably contains a poor solvent for the resin component from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous. Therefore, the solvent used for preparing the coating liquid is preferably a mixed solvent of a good solvent and a poor solvent for the resin component. It is preferable that the poor solvent is mixed with the good solvent in such an amount that a viscosity suitable for coating can be secured. Examples of the poor solvent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
 塗工液の調製に用いる溶媒としては、親水性材料又は親水性被覆層を多孔化する観点から、樹脂成分の良溶媒と貧溶媒との混合溶媒であって、良溶媒を60質量%以上含み、貧溶媒を40質量%以下含む混合溶媒が好ましい。さらに、良溶媒と貧溶媒の混合比を、多孔質基材の空孔内へ塗工液を浸み込みやすくする観点から調整することが好ましい。塗工液には界面活性剤を添加してもよい。界面活性剤を添加することにより塗工液の表面張力が低下し、多孔質基材の空孔内へ塗工液が浸み込みやすくなる。 The solvent used for preparing the coating liquid is a mixed solvent of a good solvent and a poor solvent of the resin component from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous, and contains the good solvent in an amount of 60% by mass or more. And a mixed solvent containing 40% by mass or less of a poor solvent. Furthermore, it is preferable to adjust the mixing ratio between the good solvent and the poor solvent from the viewpoint of making it easier to penetrate the coating liquid into the pores of the porous substrate. A surfactant may be added to the coating liquid. The addition of the surfactant lowers the surface tension of the coating liquid and makes it easier for the coating liquid to penetrate into the pores of the porous substrate.
 塗工液の樹脂濃度は、親水性材料又は親水性被覆層を多孔化する観点から、1質量%~15質量%が好ましく、2質量%~13質量%がより好ましく、3質量%~10質量%が更に好ましい。 The resin concentration of the coating solution is preferably from 1% by mass to 15% by mass, more preferably from 2% by mass to 13% by mass, and more preferably from 3% by mass to 10% from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous. % Is more preferred.
 塗工液は、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した一相系の液体であることが好ましい。一相系の塗工液を用いて塗工層を形成し、この塗工層を固化させることにより、水不溶性共重合体VAとポリフッ化ビニリデン系樹脂とが相溶した状態の親水性材料及び親水性被覆層が形成される。 The coating liquid is preferably a one-phase liquid in which the water-insoluble copolymer VA and the polyvinylidene fluoride resin are compatible. A coating layer is formed using a one-phase coating liquid, and by solidifying the coating layer, a hydrophilic material in which the water-insoluble copolymer VA and the polyvinylidene fluoride-based resin are compatible with each other; A hydrophilic coating layer is formed.
 多孔質基材への塗工液の塗工手段としては、マイヤーバー、ダイコーター、リバースロールコーター、ロールコーター、グラビアコーター等が挙げられる。多孔質基材の空孔内へ塗工液を含浸させるために、例えば、塗工液の塗工量を多めにする、多孔質基材への上記塗工手段の接触圧を強めにする等を行ってもよい。多孔質基材の空孔内への塗工液の塗工は、多孔質基材を塗工液に浸漬することによって実施してもよい。 手段 Examples of means for applying the coating liquid to the porous substrate include a Meyer bar, a die coater, a reverse roll coater, a roll coater, and a gravure coater. In order to impregnate the coating liquid into the pores of the porous substrate, for example, increase the coating amount of the coating liquid, increase the contact pressure of the above-described coating means on the porous substrate, and the like. May be performed. The coating of the coating liquid into the pores of the porous substrate may be performed by immersing the porous substrate in the coating liquid.
 塗工層の固化は、塗工層を形成した多孔質基材を凝固液に浸漬し、塗工層において樹脂成分を固化させることで行われる。これにより、多孔質基材と親水性材料と親水性被覆層とからなる複合膜を得る。 固 The solidification of the coating layer is performed by immersing the porous substrate on which the coating layer has been formed in a coagulation liquid to solidify the resin component in the coating layer. Thereby, a composite film composed of the porous substrate, the hydrophilic material, and the hydrophilic coating layer is obtained.
 凝固液としては、例えば、水;塗工液の調製に用いた良溶媒及び貧溶媒と水との混合液;が挙げられる。良溶媒と貧溶媒の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液中の水の含有量は40質量%~90質量%であることが、親水性材料又は親水性被覆層を多孔化する観点から好ましい。凝固液の温度は、特に制限されないが、20℃~50℃が好ましい。 Examples of the coagulation liquid include water; a mixture of water and a good solvent and a poor solvent used in the preparation of the coating liquid. It is preferable from the viewpoint of production that the mixing ratio of the good solvent and the poor solvent is adjusted to the mixing ratio of the mixed solvent used for preparing the coating liquid. The content of water in the coagulation liquid is preferably from 40% by mass to 90% by mass from the viewpoint of making the hydrophilic material or the hydrophilic coating layer porous. The temperature of the coagulation liquid is not particularly limited, but is preferably from 20 ° C to 50 ° C.
 凝固液中で塗工層を固化させた後、複合膜を凝固液から引き揚げ、水洗する。水洗することによって、複合膜から凝固液を除去する。さらに、乾燥することによって、複合膜から水を除去する。水洗は、例えば、複合膜を水浴中で搬送することによって行う。乾燥は、例えば、複合膜を高温環境中で搬送すること、複合膜に風をあてること、複合膜をヒートロールに接触させること等によって行う。乾燥温度は40℃~120℃が好ましく、55~105℃がより好ましい。 後 After solidifying the coating layer in the coagulation liquid, pull up the composite film from the coagulation liquid and wash with water. The coagulation liquid is removed from the composite membrane by washing with water. Furthermore, water is removed from the composite membrane by drying. Washing is performed, for example, by transporting the composite membrane in a water bath. Drying is performed, for example, by transporting the composite film in a high-temperature environment, blowing air on the composite film, and bringing the composite film into contact with a heat roll. The drying temperature is preferably from 40 to 120 ° C, more preferably from 55 to 105 ° C.
 第一の親水性材料及び第一の親水性被覆層を備えた親水性複合膜は、上述の湿式塗工法において、ポリフッ化ビニリデン系樹脂を含有しない塗工液を用いることで製造可能である。 (4) The hydrophilic composite film provided with the first hydrophilic material and the first hydrophilic coating layer can be manufactured by using a coating liquid containing no polyvinylidene fluoride-based resin in the above-mentioned wet coating method.
 多孔質基材上に親水性被覆層を有しない形態の親水性複合膜は、多孔質基材への塗工液の塗工量を少なめに調製すること、又は、塗工後に多孔質基材表面に付着している塗工液を除去することにより製造可能である。 A hydrophilic composite film having no hydrophilic coating layer on a porous substrate can be prepared by reducing the coating amount of the coating liquid on the porous substrate, or after coating the porous substrate. It can be manufactured by removing the coating liquid adhering to the surface.
 本開示の親水性複合膜は、乾式塗工法でも製造し得る。乾式塗工法は、塗工液を多孔質基材に塗工し、塗工層を乾燥させて溶媒を揮発除去することにより、塗工層を固化する方法である。ただし、乾式塗工法は湿式塗工法と比べて乾燥後の塗工層が緻密になりやすいので、良好な多孔質構造を得られる点で湿式塗工法の方が好ましい。 親水 The hydrophilic composite membrane of the present disclosure can also be manufactured by a dry coating method. The dry coating method is a method in which a coating liquid is applied to a porous base material, and the coating layer is dried to evaporate and remove the solvent, thereby solidifying the coating layer. However, the dry coating method is more preferable than the wet coating method since the coated layer after drying tends to be denser than the wet coating method, so that a good porous structure can be obtained.
<第二の実施形態:親水性多孔膜>
 本開示の親水性多孔膜は、ポリフッ化ビニリデン系樹脂と、ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体(水不溶性共重合体VA)と、が相溶した状態で含まれている親水性多孔膜である。
<Second embodiment: hydrophilic porous membrane>
The hydrophilic porous membrane of the present disclosure contains a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit (water-insoluble copolymer VA) in a compatible state. Is a hydrophilic porous membrane.
 本開示において、多孔膜に含まれる複数種の樹脂が相溶した状態とは、多孔膜を、透過型電子顕微鏡を用いて分解能0.2nm且つ倍率30000倍にて観察したとき、樹脂相の不連続が認められない状態を意味する。 In the present disclosure, a state in which a plurality of types of resins contained in a porous film are compatible with each other means that when the porous film is observed with a transmission electron microscope at a resolution of 0.2 nm and a magnification of 30000 times, the resin phase is incompatible. It means the state where continuation is not recognized.
 水不溶性共重合体VAは、ビニルアルコール単位が有する水酸基によって親水性を示す。本開示の親水性多孔膜は、親水性である水不溶性共重合体VAを含むことによって親水性を示す。本開示の親水性多孔膜は、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとが相溶した状態で含まれていることによって、親水性多孔膜が全体にわたって均一性高く親水性を示す。 The water-insoluble copolymer VA exhibits hydrophilicity due to the hydroxyl group of the vinyl alcohol unit. The hydrophilic porous membrane of the present disclosure exhibits hydrophilicity by including a water-insoluble copolymer VA that is hydrophilic. Since the hydrophilic porous membrane of the present disclosure contains the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a compatible state, the hydrophilic porous membrane exhibits high uniformity and hydrophilicity throughout.
 本開示の親水性多孔膜は、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとが相溶した状態で含まれていることによって、親水性成分である水不溶性共重合体VAの脱離が発生しにくい。また、本開示の親水性多孔膜は、水不溶性共重合体VAが水不溶性であることによって親水性成分が水系媒体に溶出しにくい。 Since the hydrophilic porous membrane of the present disclosure contains the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a compatible state, desorption of the water-insoluble copolymer VA as a hydrophilic component is prevented. Less likely to occur. Moreover, in the hydrophilic porous membrane of the present disclosure, the hydrophilic component is less likely to elute into the aqueous medium because the water-insoluble copolymer VA is insoluble in water.
 本開示の親水性多孔膜は、片面又は両面において、下記の測定条件によって測定する水の接触角が60度以下であることが好ましく、前記水の接触角が小さいほど好ましい。本開示の親水性多孔膜は、片面又は両面において、下記の測定条件によって水の接触角を測定しようとしたとき、水滴が多孔膜内部に浸透して測定できない状態となるほどの親水性であることがより好ましい。水の接触角の測定方法は、第一の実施形態において先述したとおりである。 は In the hydrophilic porous membrane of the present disclosure, the contact angle of water measured on one or both sides under the following measurement conditions is preferably 60 degrees or less, and the smaller the contact angle of water, the more preferable. The hydrophilic porous membrane of the present disclosure, on one or both sides, when measuring the contact angle of water under the following measurement conditions, is so hydrophilic that water droplets penetrate into the inside of the porous membrane and cannot be measured. Is more preferred. The method for measuring the contact angle of water is as described above in the first embodiment.
 本開示の親水性多孔膜は、内部に空孔ないし空隙を有する。
 本開示の親水性多孔膜の一つの実施形態として、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとが相溶した状態で含まれている微多孔膜が挙げられる。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 本開示の親水性多孔膜の別の実施形態として、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとが相溶した状態で含まれている繊維状物からなる織布又は不織布が挙げられる。
The hydrophilic porous membrane of the present disclosure has pores or voids inside.
One embodiment of the hydrophilic porous membrane of the present disclosure is a microporous membrane containing a polyvinylidene fluoride-based resin and a water-insoluble copolymer VA in a compatible state. A microporous membrane is a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, so that gas or liquid can pass from one surface to the other. I do.
Another embodiment of the hydrophilic porous membrane of the present disclosure includes a woven or nonwoven fabric made of a fibrous material containing a polyvinylidene fluoride resin and a water-insoluble copolymer VA in a compatible state.
 本開示の親水性多孔膜は、例えば、水系媒体に分散又は溶解している物質の分離、精製、濃縮、分画等の目的に使用される。
 本開示の親水性多孔膜の構造としては、中空糸膜(中空糸型、浸漬型、カートリッジ型)、管状膜(チューブラ型、モノリス型、浸漬型)、平膜(平膜セル、スパイラル型、ブリーツ型、プレート型)等が挙げられる。
 本開示の親水性多孔膜の、孔径の大きさによる種別としては、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜等が挙げられる。
 本開示の親水性多孔膜の用途としては、例えば、浄水、除菌、海水淡水化、人工透析、医薬品製造、食品製造、タンパク質の分離等が挙げられる。
The hydrophilic porous membrane of the present disclosure is used, for example, for the purpose of separation, purification, concentration, fractionation, and the like of a substance dispersed or dissolved in an aqueous medium.
Examples of the structure of the hydrophilic porous membrane of the present disclosure include hollow fiber membranes (hollow fiber type, immersion type, cartridge type), tubular membranes (tubular type, monolith type, immersion type), flat membranes (flat membrane cell, spiral type, Pleat type, plate type) and the like.
Examples of the type of the hydrophilic porous membrane according to the present disclosure according to the pore size include a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane.
Applications of the hydrophilic porous membrane of the present disclosure include, for example, water purification, sanitization, desalination of seawater, artificial dialysis, pharmaceutical production, food production, protein separation, and the like.
 本開示の親水性多孔膜の膜厚、孔径及び空孔率は、特に制限されるものではなく、用途、構造又は種別に応じて選択してよい。 膜厚 The thickness, pore size, and porosity of the hydrophilic porous membrane of the present disclosure are not particularly limited, and may be selected according to the application, structure, or type.
 本開示の親水性多孔膜の一つの実施形態として、膜厚が5μm~300μmである親水性多孔膜が挙げられる。 一 つ One embodiment of the hydrophilic porous membrane of the present disclosure includes a hydrophilic porous membrane having a thickness of 5 μm to 300 μm.
 本開示の親水性多孔膜の一つの実施形態として、平均孔径が1nm~900nmである親水性多孔膜が挙げられる。 一 つ One embodiment of the hydrophilic porous membrane of the present disclosure includes a hydrophilic porous membrane having an average pore diameter of 1 nm to 900 nm.
 本開示の親水性多孔膜の一つの実施形態として、空孔率が4%~70%である親水性多孔膜が挙げられる。 一 つ One embodiment of the hydrophilic porous membrane of the present disclosure includes a hydrophilic porous membrane having a porosity of 4% to 70%.
 本開示の親水性多孔膜の表面には、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。 表面 Various surface treatments may be applied to the surface of the hydrophilic porous membrane of the present disclosure. Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
 以下に、本開示の親水性多孔膜に含まれる成分を説明する。 成分 Hereinafter, components contained in the hydrophilic porous membrane of the present disclosure will be described.
[ポリフッ化ビニリデン系樹脂]
 本開示の親水性多孔膜は、ポリフッ化ビニリデン系樹脂を含有する。本開示の親水性多孔膜は、ポリフッ化ビニリデン系樹脂を含有することによって、耐熱性、溶剤不溶性、耐薬品性、機械的強度に優れる。
[Polyvinylidene fluoride resin]
The hydrophilic porous membrane of the present disclosure contains a polyvinylidene fluoride resin. The hydrophilic porous membrane of the present disclosure is excellent in heat resistance, solvent insolubility, chemical resistance, and mechanical strength by containing a polyvinylidene fluoride resin.
 ポリフッ化ビニリデン系樹脂のモノマー単位、組成、具体例及び好ましい形態は、第一の実施形態において先述したとおりである。 モ ノ マ ー The monomer units, composition, specific examples and preferred embodiments of the polyvinylidene fluoride resin are as described above in the first embodiment.
 本開示の親水性多孔膜に含まれるポリフッ化ビニリデン系樹脂は、1種でもよく、2種以上でもよい。 は The polyvinylidene fluoride-based resin contained in the hydrophilic porous membrane of the present disclosure may be one type or two or more types.
 ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)は、特に制限されるものではないが、5万~500万が好ましく、製膜性の観点から50万~300万がより好ましい。ポリフッ化ビニリデン系樹脂の重量平均分子量の測定方法は、第一の実施形態において先述したとおりである。 重量 The weight average molecular weight (Mw) of the polyvinylidene fluoride resin is not particularly limited, but is preferably 50,000 to 5,000,000, and more preferably 500,000 to 3,000,000 from the viewpoint of film forming properties. The method for measuring the weight average molecular weight of the polyvinylidene fluoride resin is as described above in the first embodiment.
 本開示の親水性多孔膜においては、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの合計量に対するポリフッ化ビニリデン系樹脂の含有量が40質量%~95質量%であることが好ましい。ポリフッ化ビニリデン系樹脂の含有量が40質量%以上であると、成膜する際に膜を多孔化しやすい。本観点からは、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの合計量に対するポリフッ化ビニリデン系樹脂の含有量は、45質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、55質量%以上であることが更に好ましい。
 一方、本開示の親水性多孔膜の親水性を向上させる観点からは、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの合計量に対するポリフッ化ビニリデン系樹脂の含有量が95質量%以下であることが好ましく、85質量%以下であることがより好ましく、75質量%以下であることが更に好ましい。
In the hydrophilic porous membrane of the present disclosure, the content of the polyvinylidene fluoride resin is preferably 40% by mass to 95% by mass based on the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA. When the content of the polyvinylidene fluoride resin is 40% by mass or more, the film is easily made porous when forming the film. From this viewpoint, the content of the polyvinylidene fluoride resin based on the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA is more preferably 45% by mass or more, and more preferably 50% by mass or more. Is more preferable, and more preferably 55% by mass or more.
On the other hand, from the viewpoint of improving the hydrophilicity of the hydrophilic porous membrane of the present disclosure, the content of the polyvinylidene fluoride resin is not more than 95% by mass with respect to the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA. It is preferably at most 85% by mass, more preferably at most 75% by mass.
[水不溶性共重合体VA]
 水不溶性共重合体VAは、少なくともビニルアルコール単位とアクリル系モノマー単位とを有し、水不溶性である。
[Water-insoluble copolymer VA]
The water-insoluble copolymer VA has at least a vinyl alcohol unit and an acrylic monomer unit, and is water-insoluble.
 水不溶性共重合体VAのモノマー単位、組成、具体例及び好ましい形態は、第一の実施形態において先述したとおりである。 モ ノ マ ー The monomer units, composition, specific examples and preferred embodiments of the water-insoluble copolymer VA are as described above in the first embodiment.
 本開示の親水性多孔膜に含まれる水不溶性共重合体VAは、1種でもよく、2種以上でもよい。 は The water-insoluble copolymer VA contained in the hydrophilic porous membrane of the present disclosure may be one type or two or more types.
 水不溶性共重合体VAの重量平均分子量(Mw)は、特に制限されるものではないが、5万~1500万が好ましい。 重量 The weight average molecular weight (Mw) of the water-insoluble copolymer VA is not particularly limited, but is preferably 50,000 to 15,000,000.
 本開示の親水性多孔膜においては、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの合計量に対する水不溶性共重合体VAの含有量が5質量%~60質量%であることが好ましい。水不溶性共重合体VAの含有量が60質量%以下であると、成膜する際に膜を多孔化しやすい。本観点からは、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの合計量に対する水不溶性共重合体VAの含有量は、55質量%以下であることがより好ましく、50質量%以下であることが更に好ましく、45質量%以下であることが更に好ましい。
 一方、本開示の親水性多孔膜の親水性を向上させる観点からは、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの合計量に対する水不溶性共重合体VAの含有量が5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることが更に好ましい。
In the hydrophilic porous membrane of the present disclosure, the content of the water-insoluble copolymer VA is preferably 5% by mass to 60% by mass with respect to the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA. When the content of the water-insoluble copolymer VA is 60% by mass or less, the film is easily made porous when the film is formed. From this viewpoint, the content of the water-insoluble copolymer VA based on the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA is more preferably 55% by mass or less, and is 50% by mass or less. Is more preferably 45% by mass or less.
On the other hand, from the viewpoint of improving the hydrophilicity of the hydrophilic porous membrane of the present disclosure, the content of the water-insoluble copolymer VA with respect to the total amount of the polyvinylidene fluoride resin and the water-insoluble copolymer VA is 5% by mass or more. Is preferably 15% by mass or more, more preferably 25% by mass or more.
[その他の成分]
 本開示の親水性多孔膜は、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの相溶性を妨げない範囲で、その他の成分を含んでいてもよい。その他の成分としては、ポリフッ化ビニリデン系樹脂及び水不溶性共重合体VA以外のその他の樹脂、フィラー等が挙げられる。
[Other ingredients]
The hydrophilic porous membrane of the present disclosure may contain other components as long as the compatibility between the polyvinylidene fluoride resin and the water-insoluble copolymer VA is not impaired. Other components include other resins and fillers other than the polyvinylidene fluoride resin and the water-insoluble copolymer VA.
 その他の樹脂としては、ポリアミド類、ポリイミド類、フッ素系ゴム、セルロース類、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル等が挙げられる。 Other resins include polyamides, polyimides, fluororubbers, celluloses, polyvinyl butyral, polyvinyl pyrrolidone, polyether and the like.
 フィラーとしては、金属水酸化物、金属酸化物、炭酸塩、硫酸塩、粘土鉱物等の無機フィラー;架橋高分子からなる粒子、耐熱性高分子からなる粒子等の有機フィラー;が挙げられる。 Examples of the filler include inorganic fillers such as metal hydroxides, metal oxides, carbonates, sulfates, and clay minerals; and organic fillers such as particles made of a crosslinked polymer and particles made of a heat-resistant polymer.
 本開示の親水性多孔膜は、界面活性剤、湿潤剤、消泡剤、pH調整剤、着色剤などの添加剤を含んでいてもよい。 親水 The hydrophilic porous membrane of the present disclosure may contain additives such as a surfactant, a wetting agent, an antifoaming agent, a pH adjuster, and a coloring agent.
 本開示の親水性多孔膜を備える複合体の一例として、基材と、前記基材上に配置された本開示の親水性多孔膜と、を備える複合膜が挙げられる。 と し て As an example of a composite including the hydrophilic porous membrane of the present disclosure, a composite membrane including a base material and the hydrophilic porous membrane of the present disclosure disposed on the base material is exemplified.
 基材としては、例えば、多孔質基材、剥離シートが挙げられる。
 多孔質基材は、例えば、親水性多孔膜の強度を補強する目的で、親水性多孔膜と積層される。多孔質基材としては、樹脂からなる微多孔膜;不織布、紙等の多孔性シート;などが挙げられる。
 剥離シートは、例えば、親水性多孔膜を製造する際の基材として用いられ、親水性多孔膜を使用する際に親水性多孔膜と分離されるシートである。
Examples of the substrate include a porous substrate and a release sheet.
The porous substrate is laminated with the hydrophilic porous membrane, for example, for the purpose of reinforcing the strength of the hydrophilic porous membrane. Examples of the porous substrate include a microporous film made of a resin; a porous sheet such as a nonwoven fabric and paper;
The release sheet is, for example, a sheet used as a base material for producing a hydrophilic porous membrane and separated from the hydrophilic porous membrane when the hydrophilic porous membrane is used.
<第二の実施形態:親水性多孔膜の製造方法>
 本開示の親水性多孔膜の製造方法は、特に制限されない。本開示の親水性多孔膜が微多孔膜かつ平膜である場合、一般的な製造方法としては、親水性多孔膜を基材上に湿式塗工法又は乾式塗工法で形成する製造方法が挙げられる。本開示において、湿式塗工法とは、塗工層を凝固液中で固化させる方法であり、乾式塗工法とは、塗工層を乾燥させて固化させる方法である。以下に、本開示の親水性多孔膜が微多孔膜かつ平膜である場合の、湿式塗工法の実施形態例を説明する。
<Second embodiment: Method for producing hydrophilic porous membrane>
The method for producing the hydrophilic porous membrane of the present disclosure is not particularly limited. When the hydrophilic porous membrane of the present disclosure is a microporous membrane and a flat membrane, a general production method includes a production method in which a hydrophilic porous membrane is formed on a substrate by a wet coating method or a dry coating method. . In the present disclosure, the wet coating method is a method of solidifying a coating layer in a coagulation liquid, and the dry coating method is a method of drying and solidifying a coating layer. Hereinafter, embodiments of the wet coating method when the hydrophilic porous membrane of the present disclosure is a microporous membrane and a flat membrane will be described.
 湿式塗工法は、ポリフッ化ビニリデン系樹脂及び水不溶性共重合体VAを含有する塗工液を基材上に塗工し、凝固液に浸漬して塗工層を固化させ、凝固液から引き揚げ水洗及び乾燥を行う方法である。 In the wet coating method, a coating liquid containing a polyvinylidene fluoride resin and a water-insoluble copolymer VA is coated on a base material, immersed in a coagulation liquid to solidify the coating layer, and then withdrawn from the coagulation liquid and washed with water. And drying.
 塗工層形成用の塗工液は、ポリフッ化ビニリデン系樹脂及び水不溶性共重合体VAを溶媒に溶解させて作製する。塗工液には、必要に応じて、ポリフッ化ビニリデン系樹脂及び水不溶性共重合体VA以外のその他の成分を溶解又は分散させる。塗工液に係る溶媒の種類、溶媒の組成、樹脂濃度、塗工液の塗工手段は、第一の実施形態において先述したとおりである。 塗 The coating liquid for forming the coating layer is prepared by dissolving a polyvinylidene fluoride resin and a water-insoluble copolymer VA in a solvent. In the coating liquid, other components other than the polyvinylidene fluoride resin and the water-insoluble copolymer VA are dissolved or dispersed as necessary. The type of solvent, the composition of the solvent, the resin concentration, and the means for applying the coating liquid according to the coating liquid are as described above in the first embodiment.
 塗工層の固化は、塗工層を形成した基材を凝固液に浸漬し、塗工層において樹脂成分を固化させることで行われる。これにより、基材と多孔膜とからなる複合膜を得る。凝固液に係る溶媒の種類、溶媒の組成、溶媒の温度は、第一の実施形態において先述したとおりである。 固 The solidification of the coating layer is performed by immersing the base material on which the coating layer has been formed in a coagulating liquid to solidify the resin component in the coating layer. Thereby, a composite film composed of the base material and the porous film is obtained. The type of the solvent, the composition of the solvent, and the temperature of the solvent relating to the coagulation liquid are as described above in the first embodiment.
 凝固液中で塗工層を固化させた後、複合膜を凝固液から引き揚げ、水洗する。水洗することによって、複合膜から凝固液を除去する。さらに、乾燥することによって、複合膜から水を除去する。水洗の方法、乾燥の方法、乾燥条件は、第一の実施形態において先述したとおりである。 後 After solidifying the coating layer in the coagulation liquid, pull up the composite film from the coagulation liquid and wash with water. The coagulation liquid is removed from the composite membrane by washing with water. Furthermore, water is removed from the composite membrane by drying. The washing method, the drying method, and the drying conditions are as described above in the first embodiment.
 以上の工程によって、基材と本開示の親水性多孔膜とを備える複合膜が得られる。さらに、基材から多孔膜を剥がすことによって、本開示の親水性多孔膜が得られる。 複合 Through the above steps, a composite membrane including the substrate and the hydrophilic porous membrane of the present disclosure is obtained. Further, by peeling the porous membrane from the substrate, the hydrophilic porous membrane of the present disclosure is obtained.
 本開示の親水性多孔膜は、乾式塗工法でも製造し得る。乾式塗工法は、塗工液を基材に塗工し、塗工層を乾燥させて溶媒を揮発除去することにより、多孔膜を基材上に形成する方法である。ただし、乾式塗工法は湿式塗工法と比べて乾燥後の塗工層が緻密になりやすいので、良好な多孔質構造を得られる点で湿式塗工法の方が好ましい。 親水 The hydrophilic porous membrane of the present disclosure can also be manufactured by a dry coating method. The dry coating method is a method in which a coating liquid is applied to a substrate, and a coating layer is dried to remove a solvent by volatilization, thereby forming a porous film on the substrate. However, the dry coating method is more preferable than the wet coating method since the coated layer after drying tends to be denser than the wet coating method, so that a good porous structure can be obtained.
<第二の実施形態:親水性樹脂組成物>
 本開示の親水性樹脂組成物は、ポリフッ化ビニリデン系樹脂と、ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体(水不溶性共重合体VA)と、が相溶した状態で含まれている親水性樹脂組成物である。本開示の親水性樹脂組成物は、固体の樹脂組成物である。
<Second embodiment: hydrophilic resin composition>
The hydrophilic resin composition of the present disclosure contains a polyvinylidene fluoride resin and a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit (water-insoluble copolymer VA) in a state of being compatible with each other. Hydrophilic resin composition. The hydrophilic resin composition of the present disclosure is a solid resin composition.
 本開示の親水性樹脂組成物の形態例として、本開示の親水性多孔膜が挙げられる。
 本開示の親水性樹脂組成物の別の形態例として、繊維、粒子、非多孔性の膜等が挙げられる。
Examples of the form of the hydrophilic resin composition of the present disclosure include a hydrophilic porous membrane of the present disclosure.
Another embodiment of the hydrophilic resin composition of the present disclosure includes fibers, particles, non-porous films, and the like.
 本開示の親水性樹脂組成物は、親水性である水不溶性共重合体VAを含むことによって親水性を示す。本開示の親水性樹脂組成物は、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとが相溶した状態で含まれていることによって、親水性樹脂組成物が全体にわたって均一性高く親水性を示す。 親水 The hydrophilic resin composition of the present disclosure exhibits hydrophilicity by containing the water-insoluble copolymer VA which is hydrophilic. The hydrophilic resin composition of the present disclosure includes the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a state of being compatible with each other, so that the hydrophilic resin composition has high uniformity and hydrophilicity throughout. Show.
 本開示の親水性樹脂組成物は、ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとが相溶した状態で含まれていることによって、親水性成分である水不溶性共重合体VAの脱離が発生しにくい。また、本開示の親水性樹脂組成物は、水不溶性共重合体VAが水不溶性であることによって親水性成分が水系媒体に溶出しにくい。 The hydrophilic resin composition of the present disclosure includes the polyvinylidene fluoride resin and the water-insoluble copolymer VA in a state of being compatible with each other, thereby desorbing the water-insoluble copolymer VA as a hydrophilic component. Is less likely to occur. Further, in the hydrophilic resin composition of the present disclosure, since the water-insoluble copolymer VA is water-insoluble, the hydrophilic component hardly elutes in the aqueous medium.
 本開示の親水性樹脂組成物に含まれるポリフッ化ビニリデン系樹脂の具体的な形態及び好ましい形態は、本開示の親水性多孔膜について先述した形態と同様である。
 本開示の親水性樹脂組成物に含まれる水不溶性共重合体VAの具体的な形態及び好ましい形態は、本開示の親水性多孔膜について先述した形態と同様である。
 本開示の親水性樹脂組成物におけるポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとの組合せ及び混合割合の具体的な形態及び好ましい形態は、本開示の親水性多孔膜について先述した形態と同様である。
Specific and preferred embodiments of the polyvinylidene fluoride-based resin contained in the hydrophilic resin composition of the present disclosure are the same as those described above for the hydrophilic porous membrane of the present disclosure.
Specific and preferred embodiments of the water-insoluble copolymer VA contained in the hydrophilic resin composition of the present disclosure are the same as those described above for the hydrophilic porous membrane of the present disclosure.
Specific and preferred embodiments of the combination and mixing ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer VA in the hydrophilic resin composition of the present disclosure are the same as those described above for the hydrophilic porous membrane of the present disclosure. It is.
 本開示の親水性樹脂組成物は、ポリフッ化ビニリデン系樹脂及び水不溶性共重合体VA以外のその他の樹脂、フィラー、界面活性剤、湿潤剤、消泡剤、pH調整剤、着色剤などを含んでいてもよい。これらその他の成分の具体例は、本開示の親水性多孔膜について先述した具体例と同様である。 The hydrophilic resin composition of the present disclosure includes a resin other than the polyvinylidene fluoride resin and the water-insoluble copolymer VA, a filler, a surfactant, a wetting agent, a defoaming agent, a pH adjuster, a coloring agent, and the like. You may go out. Specific examples of these other components are the same as the specific examples described above for the hydrophilic porous membrane of the present disclosure.
 本開示の親水性樹脂組成物の製造方法は、特に制限されない。一般的な製造方法としては、有機溶媒にポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとを溶解して樹脂溶液を調製した後、樹脂溶液から有機溶媒を除去する製造方法が挙げられる。有機溶媒としては、少なくとも先述の良溶媒を含む有機溶媒が好ましい。 製造 The method for producing the hydrophilic resin composition of the present disclosure is not particularly limited. As a general production method, there is a production method in which a polyvinylidene fluoride resin and a water-insoluble copolymer VA are dissolved in an organic solvent to prepare a resin solution, and then the organic solvent is removed from the resin solution. As the organic solvent, an organic solvent containing at least the above-mentioned good solvent is preferable.
 以下に実施例を挙げて、本開示の親水性複合膜をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示の親水性複合膜の範囲は、以下に示す具体例により限定的に解釈されるべきではない。 親水 The hydrophilic composite membrane of the present disclosure will be more specifically described below with reference to examples. Materials, usage amounts, ratios, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present disclosure. Therefore, the scope of the hydrophilic composite membrane of the present disclosure should not be construed as being limited by the specific examples described below.
<第一の実施形態:親水性複合膜の作製>
(1)多孔質基材の空孔内に第一の親水性材料を有する複合膜
[実施例1]
 下記の水不溶性共重合体VAを、樹脂濃度が5.0質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解させ、塗工液を得た。
<First embodiment: Preparation of hydrophilic composite membrane>
(1) Composite membrane having first hydrophilic material in pores of porous substrate [Example 1]
The following water-insoluble copolymer VA was mixed with a mixed solvent of dimethylacetamide (DMAc) and tripropylene glycol (TPG) (DMAc: TPG = 80: 20 [mass ratio]) so that the resin concentration became 5.0% by mass. ) To obtain a coating solution.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルを重合した重合体、重合比(質量基準)=63:37。溶解度:1.8g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 74 mol%), polymerization ratio (mass basis) = 63:37. Solubility: 1.8 g / 100 g water.
 多孔質基材として、ポリエチレン微多孔膜(膜厚9.0μm、ガーレ値170秒/100mL、空孔率43%、平均孔径45nm、水の接触角103度)を用意した。 (4) A microporous polyethylene film (9.0 μm thick, Gurley value 170 sec / 100 mL, porosity 43%, average pore diameter 45 nm, water contact angle 103 °) was prepared as a porous substrate.
 多孔質基材を塗工液に浸漬して多孔質基材の空孔内に塗工液を含浸させたのち引き上げ、多孔質基材表面に付着している塗工液を除去した。次いで、空孔内に塗工液を含む多孔質基材を凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して塗工液を固化させた。次いで、これを水洗し乾燥して、複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に第一の親水性材料を有していた。 (4) The porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution and then pulled up to remove the coating solution adhering to the surface of the porous substrate. Next, the porous substrate containing the coating liquid in the pores is dipped in a coagulating liquid (water: DMAc: TPG = 62.5: 30: 7.5 [mass ratio], liquid temperature 35 ° C.) to perform coating. The liquid solidified. Next, this was washed with water and dried to obtain a composite film. This composite membrane had the first hydrophilic material in the pores of the microporous polyethylene membrane.
[実施例2]
 水不溶性共重合体VAを下記に変更した以外は実施例1と同様にして複合膜を得た。
[Example 2]
A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:75モル%)にメタクリル酸メチルを重合した重合体、重合比(質量基準)=40:60。溶解度:1.2g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 75 mol%), polymerization ratio (mass basis) = 40:60. Solubility: 1.2 g / 100 g water.
[実施例3]
 水不溶性共重合体VAを下記に変更した以外は実施例1と同様にして複合膜を得た。
[Example 3]
A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:75モル%)にメタクリル酸メチルを重合した重合体、重合比(質量基準)=85:15。溶解度:2.0g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 75 mol%), polymerization ratio (mass basis) = 85:15. Solubility: 2.0 g / 100 g water.
[実施例4]
 水不溶性共重合体VAを下記に変更した以外は実施例1と同様にして複合膜を得た。
[Example 4]
A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:72モル%)にメタクリル酸メチルとアクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.6g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and acrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 72 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.6 g / 100 g water.
[実施例5]
 水不溶性共重合体VAを下記に変更した以外は実施例1と同様にして複合膜を得た。
[Example 5]
A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルとスチレンを重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.3g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and styrene on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 74 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.3 g / 100 g water.
[実施例6]
 水不溶性共重合体VAを下記に変更した以外は実施例1と同様にして複合膜を得た。
[Example 6]
A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルとアクリル酸メチルを重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.4g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and methyl acrylate on partially saponified polyvinyl alcohol (polymerization degree: 500, saponification degree: 74 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.4 g / 100 g water.
[実施例7]
 水不溶性共重合体VAを下記に変更した以外は実施例1と同様にして複合膜を得た。
[Example 7]
A composite membrane was obtained in the same manner as in Example 1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルとメタクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.4g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and methacrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 74 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.4 g / 100 g water.
[実施例8-1]
 下記の水不溶性共重合体VAを、樹脂濃度が0.2質量%となるように、水とエタノールの混合溶媒(水:エタノール=50:50[体積比])に溶解させ、塗工液を得た。
[Example 8-1]
The following water-insoluble copolymer VA is dissolved in a mixed solvent of water and ethanol (water: ethanol = 50: 50 [volume ratio]) so that the resin concentration becomes 0.2% by mass, and the coating liquid is prepared. Obtained.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:55モル%)にメタクリル酸メチルとアクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.3g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and acrylic acid on partially saponified polyvinyl alcohol (polymerization degree: 500, saponification degree: 55 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.3 g / 100 g water.
 多孔質基材として、実施例1において用いたポリエチレン微多孔膜を用意した。 ポ リ エ チ レ ン The polyethylene microporous membrane used in Example 1 was prepared as a porous substrate.
 多孔質基材を塗工液に浸漬して多孔質基材の空孔内に塗工液を含浸させたのち引き上げ、多孔質基材表面に付着している塗工液を除去した。次いで、これを乾燥して、複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に第一の親水性材料を有していた。 (4) The porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution and then pulled up to remove the coating solution adhering to the surface of the porous substrate. Next, this was dried to obtain a composite membrane. This composite membrane had the first hydrophilic material in the pores of the microporous polyethylene membrane.
[実施例8-2]
 水不溶性共重合体VAを下記に変更した以外は実施例8-1と同様にして複合膜を得た。
[Example 8-2]
A composite film was obtained in the same manner as in Example 8-1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:60モル%)にメタクリル酸メチルとアクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.4g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and acrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 60 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.4 g / 100 g water.
[実施例8-3]
 水不溶性共重合体VAを下記に変更した以外は実施例8-1と同様にして複合膜を得た。
[Example 8-3]
A composite film was obtained in the same manner as in Example 8-1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:65モル%)にメタクリル酸メチルとアクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.5g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and acrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 65 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.5 g / 100 g water.
[実施例9]
 水不溶性共重合体VAを下記に変更した以外は実施例8-1と同様にして複合膜を得た。
[Example 9]
A composite film was obtained in the same manner as in Example 8-1, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:60モル%)にメタクリル酸メチルとアクリル酸を重合した重合体、重合比(質量基準)=63:15:22。溶解度:1.6g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and acrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 60 mol%), polymerization ratio (by mass) = 63: 15: 22. Solubility: 1.6 g / 100 g water.
[比較例1]
 実施例1において用いたポリエチレン微多孔膜を比較例1の膜とした。
[Comparative Example 1]
The polyethylene microporous membrane used in Example 1 was used as the membrane of Comparative Example 1.
[比較例2]
 下記の水溶性重合体を、樹脂濃度が2.0質量%となるように、DMAcとTPGの混合溶媒(DMAc:TPG=80:20[質量比])に溶解させ、塗工液を得た。
[Comparative Example 2]
The following water-soluble polymer was dissolved in a mixed solvent of DMAc and TPG (DMAc: TPG = 80: 20 [mass ratio]) so that the resin concentration was 2.0% by mass, to obtain a coating liquid. .
・水溶性重合体
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)。溶解度:96g/100g水。
-Water-soluble polymer Partially saponified polyvinyl alcohol (polymerization degree: 500, saponification degree: 74 mol%). Solubility: 96 g / 100 g water.
 多孔質基材として、実施例1において用いたポリエチレン微多孔膜を用意した。 ポ リ エ チ レ ン The polyethylene microporous membrane used in Example 1 was prepared as a porous substrate.
 多孔質基材を塗工液に浸漬して多孔質基材の空孔内に塗工液を含浸させたのち引き上げ、多孔質基材表面に付着している塗工液を除去した。次いで、空孔内に塗工液を含む多孔質基材を凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して塗工液を固化させた。次いで、これを水洗し乾燥して、複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に前記水溶性重合体を有していた。 The porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution, and then lifted up to remove the coating solution adhering to the surface of the porous substrate. Next, the porous substrate containing the coating liquid in the pores is dipped in a coagulation liquid (water: DMAc: TPG = 62.5: 30: 7.5 [mass ratio], liquid temperature 35 ° C.) to perform coating. The liquid solidified. Next, this was washed with water and dried to obtain a composite film. This composite membrane had the water-soluble polymer in pores of the microporous polyethylene membrane.
(2)多孔質基材の空孔内に第一の親水性材料を有し、多孔質基材の両面に第一の親水性被覆層を有する複合膜
[実施例11]
 実施例1において用いた塗工液及び多孔質基材を用いた。塗工液を多孔質基材の両面に塗工し(その際、表裏の塗工量が等量になるように塗工した。)、凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して固化させた。次いで、これを水洗し乾燥して、複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に第一の親水性材料を有し、ポリエチレン微多孔膜の両面に第一の親水性被覆層を有していた。
(2) Composite membrane having first hydrophilic material in pores of porous substrate and having first hydrophilic coating layers on both surfaces of porous substrate [Example 11]
The coating liquid and the porous substrate used in Example 1 were used. The coating liquid was applied to both sides of the porous substrate (at this time, coating was performed so that the coating amounts on the front and back sides were equal), and the coagulating liquid (water: DMAc: TPG = 62.5: 30) : 7.5 [mass ratio], liquid temperature 35 ° C) to be solidified. Next, this was washed with water and dried to obtain a composite film. This composite membrane had the first hydrophilic material in the pores of the microporous polyethylene membrane, and had the first hydrophilic coating layers on both sides of the microporous polyethylene membrane.
[実施例12]
 水不溶性共重合体VAを実施例2において用いた水不溶性共重合体VAに変更した以外は実施例11と同様にして複合膜を得た。
[Example 12]
A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 2.
[実施例13]
 水不溶性共重合体VAを実施例3において用いた水不溶性共重合体VAに変更した以外は実施例11と同様にして複合膜を得た。
Example 13
A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 3.
[実施例14]
 水不溶性共重合体VAを実施例4において用いた水不溶性共重合体VAに変更した以外は実施例11と同様にして複合膜を得た。
[Example 14]
A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 4.
[実施例15]
 水不溶性共重合体VAを実施例5において用いた水不溶性共重合体VAに変更した以外は実施例11と同様にして複合膜を得た。
[Example 15]
A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 5.
[実施例16]
 水不溶性共重合体VAを実施例6において用いた水不溶性共重合体VAに変更した以外は実施例11と同様にして複合膜を得た。
[Example 16]
A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 6.
[実施例17]
 水不溶性共重合体VAを実施例7において用いた水不溶性共重合体VAに変更した以外は実施例11と同様にして複合膜を得た。
[Example 17]
A composite membrane was obtained in the same manner as in Example 11, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 7.
(3)多孔質基材の空孔内に第二の親水性材料を有する複合膜
[実施例21]
 実施例1において用いた水不溶性共重合体VAと下記のポリフッ化ビニリデン系樹脂とを、表4に示す質量割合にて、樹脂濃度が5.0質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解させ、塗工液を得た。
(3) Composite membrane having second hydrophilic material in pores of porous substrate [Example 21]
The water-insoluble copolymer VA used in Example 1 was mixed with the following polyvinylidene fluoride-based resin in dimethylacetamide (DMAc) at a mass ratio shown in Table 4 so that the resin concentration was 5.0 mass%. And tripropylene glycol (TPG) were dissolved in a mixed solvent (DMAc: TPG = 80: 20 [mass ratio]) to obtain a coating liquid.
・ポリフッ化ビニリデン系樹脂(PVDF系樹脂)
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ヘキサフルオロプロピレン(HFP)単位:12.4質量%、重量平均分子量(Mw):86万。
・ Polyvinylidene fluoride resin (PVDF resin)
Vinylidene fluoride-hexafluoropropylene copolymer, hexafluoropropylene (HFP) unit: 12.4% by mass, weight average molecular weight (Mw): 860,000.
 多孔質基材として、実施例1において用いたポリエチレン微多孔膜を用意した。 ポ リ エ チ レ ン The polyethylene microporous membrane used in Example 1 was prepared as a porous substrate.
 多孔質基材を塗工液に浸漬して多孔質基材の空孔内に塗工液を含浸させたのち引き上げ、多孔質基材表面に付着している塗工液を除去した。次いで、空孔内に塗工液を含む多孔質基材を凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して塗工液を固化させた。次いで、これを水洗し乾燥して、複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に第二の親水性材料を有していた。 (4) The porous substrate was immersed in the coating solution to impregnate the pores of the porous substrate with the coating solution and then pulled up to remove the coating solution adhering to the surface of the porous substrate. Next, the porous substrate containing the coating liquid in the pores is dipped in a coagulating liquid (water: DMAc: TPG = 62.5: 30: 7.5 [mass ratio], liquid temperature 35 ° C.) to perform coating. The liquid solidified. Next, this was washed with water and dried to obtain a composite film. This composite membrane had the second hydrophilic material in the pores of the polyethylene microporous membrane.
[実施例22]
 水不溶性共重合体VAとポリフッ化ビニリデン系樹脂の混合割合を表4に示すとおりに変更した以外は実施例21と同様にして複合膜を得た。
[Example 22]
A composite film was obtained in the same manner as in Example 21, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 4.
[実施例23]
 水不溶性共重合体VAとポリフッ化ビニリデン系樹脂の混合割合を表4に示すとおりに変更した以外は実施例21と同様にして複合膜を得た。
[Example 23]
A composite film was obtained in the same manner as in Example 21, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 4.
[実施例24]
 水不溶性共重合体VAを実施例2において用いた水不溶性共重合体VAに変更した以外は実施例21と同様にして複合膜を得た。
[Example 24]
A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 2.
[実施例25]
 水不溶性共重合体VAを実施例3において用いた水不溶性共重合体VAに変更した以外は実施例21と同様にして複合膜を得た。
[Example 25]
A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 3.
[実施例26]
 水不溶性共重合体VAを実施例4において用いた水不溶性共重合体VAに変更した以外は実施例21と同様にして複合膜を得た。
[Example 26]
A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 4.
[実施例27]
 水不溶性共重合体VAを実施例5において用いた水不溶性共重合体VAに変更した以外は実施例21と同様にして複合膜を得た。
[Example 27]
A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 5.
[実施例28]
 水不溶性共重合体VAを実施例6において用いた水不溶性共重合体VAに変更した以外は実施例21と同様にして複合膜を得た。
[Example 28]
A composite membrane was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 6.
[実施例29]
 水不溶性共重合体VAを実施例7において用いた水不溶性共重合体VAに変更した以外は実施例21と同様にして複合膜を得た。
[Example 29]
A composite membrane was obtained in the same manner as in Example 21 except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 7.
[実施例30]
 ポリフッ化ビニリデン系樹脂を下記に変更した以外は実施例21と同様にして複合膜を得た。
[Example 30]
A composite film was obtained in the same manner as in Example 21 except that the polyvinylidene fluoride resin was changed as follows.
・ポリフッ化ビニリデン系樹脂(PVDF系樹脂)
 フッ化ビニリデン単独重合体、重量平均分子量(Mw):58万。
・ Polyvinylidene fluoride resin (PVDF resin)
Vinylidene fluoride homopolymer, weight average molecular weight (Mw): 580,000.
[比較例3]
 水不溶性共重合体VAを比較例2において用いた水溶性重合体に変更した以外は実施例21と同様にして複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に前記水溶性重合体及びPVDF系樹脂からなる親水性材料を有していた。
[Comparative Example 3]
A composite film was obtained in the same manner as in Example 21, except that the water-insoluble copolymer VA was changed to the water-soluble polymer used in Comparative Example 2. This composite membrane had a hydrophilic material composed of the water-soluble polymer and PVDF resin in the pores of the polyethylene microporous membrane.
(4)多孔質基材の空孔内に第二の親水性材料を有し、多孔質基材の両面に第二の親水性被覆層を有する複合膜
[実施例31]
 実施例21において用いた塗工液及び多孔質基材を用いた。塗工液を多孔質基材の両面に塗工し(その際、表裏の塗工量が等量になるように塗工した。)、凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して固化させた。次いで、これを水洗し乾燥して、複合膜を得た。この複合膜は、ポリエチレン微多孔膜の空孔内に第二の親水性材料を有し、ポリエチレン微多孔膜の両面に第二の親水性被覆層を有していた。
(4) Composite membrane having second hydrophilic material in pores of porous substrate and second hydrophilic coating layers on both sides of porous substrate [Example 31]
The coating liquid and the porous substrate used in Example 21 were used. The coating liquid was applied to both sides of the porous substrate (at this time, coating was performed so that the coating amounts on the front and back sides were equal), and the coagulating liquid (water: DMAc: TPG = 62.5: 30) : 7.5 [mass ratio], liquid temperature 35 ° C) to be solidified. Next, this was washed with water and dried to obtain a composite film. This composite membrane had the second hydrophilic material in the pores of the microporous polyethylene membrane, and had the second hydrophilic coating layers on both sides of the microporous polyethylene membrane.
[実施例32]
 水不溶性共重合体VAとポリフッ化ビニリデン系樹脂の混合割合を表5に示すとおりに変更した以外は実施例31と同様にして複合膜を得た。
[Example 32]
A composite film was obtained in the same manner as in Example 31, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 5.
[実施例33]
 水不溶性共重合体VAとポリフッ化ビニリデン系樹脂の混合割合を表5に示すとおりに変更した以外は実施例31と同様にして複合膜を得た。
[Example 33]
A composite film was obtained in the same manner as in Example 31, except that the mixing ratio of the water-insoluble copolymer VA and the polyvinylidene fluoride resin was changed as shown in Table 5.
[実施例34]
 水不溶性共重合体VAを実施例2において用いた水不溶性共重合体VAに変更した以外は実施例31と同様にして複合膜を得た。
[Example 34]
A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 2.
[実施例35]
 水不溶性共重合体VAを実施例3において用いた水不溶性共重合体VAに変更した以外は実施例31と同様にして複合膜を得た。
[Example 35]
A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 3.
[実施例36]
 水不溶性共重合体VAを実施例4において用いた水不溶性共重合体VAに変更した以外は実施例31と同様にして複合膜を得た。
[Example 36]
A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 4.
[実施例37]
 水不溶性共重合体VAを実施例5において用いた水不溶性共重合体VAに変更した以外は実施例31と同様にして複合膜を得た。
[Example 37]
A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 5.
[実施例38]
 水不溶性共重合体VAを実施例6において用いた水不溶性共重合体VAに変更した以外は実施例31と同様にして複合膜を得た。
[Example 38]
A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 6.
[実施例39]
 水不溶性共重合体VAを実施例7において用いた水不溶性共重合体VAに変更した以外は実施例31と同様にして複合膜を得た。
[Example 39]
A composite membrane was obtained in the same manner as in Example 31, except that the water-insoluble copolymer VA was changed to the water-insoluble copolymer VA used in Example 7.
[実施例40]
 ポリフッ化ビニリデン系樹脂を実施例30において用いたポリフッ化ビニリデン系樹脂に変更した以外は実施例31と同様にして複合膜を得た。
[Example 40]
A composite film was obtained in the same manner as in Example 31, except that the polyvinylidene fluoride resin was changed to the polyvinylidene fluoride resin used in Example 30.
<第一の実施形態:親水性複合膜の性能評価>
 実施例及び比較例の各複合膜の物性測定及び性能評価を下記のとおり行った。結果を表1~表5に示す。
<First embodiment: Performance evaluation of hydrophilic composite membrane>
Physical property measurement and performance evaluation of each composite membrane of the example and the comparative example were performed as follows. The results are shown in Tables 1 to 5.
[複合膜における樹脂の状態]
 ポリフッ化ビニリデン系樹脂を使用した実施例及び比較例については、複合膜を、ウルトラミクロトーム装置により厚さ方向に切断し、薄片試料を作製した。薄片試料を25℃のデシケータ内で重金属染色法により24時間染色した。染色した薄片試料を、透過型電子顕微鏡(日本電子株式会社製JEM-1400Plus)を用いて分解能0.2nm且つ倍率30000倍にて観察し、樹脂成分が相溶しているか確認した。
[State of resin in composite membrane]
In Examples and Comparative Examples using a polyvinylidene fluoride resin, the composite membrane was cut in the thickness direction with an ultramicrotome device to produce a thin sample. The slice samples were stained for 24 hours by a heavy metal staining method in a desiccator at 25 ° C. The stained slice sample was observed with a transmission electron microscope (JEM-1400 Plus, manufactured by JEOL Ltd.) at a resolution of 0.2 nm and a magnification of 30,000 to confirm that the resin components were compatible.
[複合膜の厚さ]
 複合膜の厚さは、接触式の厚み計(ミツトヨ社、LITEMATIC VL-50)にて20点を測定し、これを平均することで求めた。測定端子は直径5mmの円柱状の端子を用い、測定中に0.01Nの荷重が印加されるように調整した。
[Thickness of composite membrane]
The thickness of the composite film was determined by measuring 20 points with a contact-type thickness gauge (LITEMATIC VL-50, Mitutoyo Corporation) and averaging the measured values. The measuring terminal used was a cylindrical terminal having a diameter of 5 mm, and was adjusted so that a load of 0.01 N was applied during the measurement.
[ガーレ値]
 複合膜のガーレ値(秒/100mL)は、JIS P8117:2009に従い、ガーレ式デンソメータ(東洋精機社、G-B2C)を用いて測定した。
[Gurle value]
The Gurley value (second / 100 mL) of the composite membrane was measured using a Gurley type densometer (Toyo Seiki Co., Ltd., GB-B2C) according to JIS P8117: 2009.
[質量変化]
 複合膜を50mm×50mmの大きさに切り出し、これを試料とした。試料を液温30℃の水100mLに浸漬し、攪拌翼で24時間攪拌した。次いで、試料を取り出し、温度60℃で真空乾燥させた。処理前後の複合膜の質量変化を下記の式に従い算出した。
[Mass change]
The composite membrane was cut out into a size of 50 mm × 50 mm, which was used as a sample. The sample was immersed in 100 mL of water at a liquid temperature of 30 ° C., and stirred for 24 hours with a stirring blade. Next, the sample was taken out and vacuum-dried at a temperature of 60 ° C. The mass change of the composite membrane before and after the treatment was calculated according to the following equation.
質量変化(%)={(処理前の複合膜の質量)-(処理後の複合膜の質量)}÷(処理前の複合膜の質量)×100 Mass change (%) = {(mass of composite membrane before treatment) − (mass of composite membrane after treatment)} (mass of composite membrane before treatment) × 100
[通水性]
 上下分割式のセパロート(桐山製作所製セパロート55Zセット:濾過面内径38mm)に、50mm×50mmの複合膜を挟み、50mLの蒸留水を吸引濾過した(真空度4kPa)。上記の吸引濾過を10回繰り返し、通水の状況を観察した。
[Water permeability]
A 50 mm × 50 mm composite membrane was sandwiched between an upper and lower split type separator (Kiriyama Separate 55Z set: filtration surface inner diameter 38 mm), and 50 mL of distilled water was suction-filtered (vacuum degree 4 kPa). The above suction filtration was repeated 10 times, and the condition of water flow was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<第二の実施形態:親水性多孔膜の作製>
[実施例101]
 下記のポリフッ化ビニリデン系樹脂と水不溶性共重合体VAとを、表6に示す質量割合にて、樹脂濃度が5.0質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解させ、塗工液を得た。
<Second embodiment: Preparation of hydrophilic porous membrane>
[Example 101]
Dimethylacetamide (DMAc) and tripropylene glycol (TPG) were mixed with the following polyvinylidene fluoride resin and water-insoluble copolymer VA at a mass ratio shown in Table 6 so that the resin concentration became 5.0% by mass. )) (DMAc: TPG = 80: 20 [mass ratio]) to obtain a coating liquid.
・ポリフッ化ビニリデン系樹脂(PVDF系樹脂)
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ヘキサフルオロプロピレン(HFP)単位:12.4質量%、重量平均分子量(Mw):86万。
・ Polyvinylidene fluoride resin (PVDF resin)
Vinylidene fluoride-hexafluoropropylene copolymer, hexafluoropropylene (HFP) unit: 12.4% by mass, weight average molecular weight (Mw): 860,000.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルを重合した重合体、重合比(質量基準)=63:37。溶解度:1.8g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 74 mol%), polymerization ratio (mass basis) = 63:37. Solubility: 1.8 g / 100 g water.
 塗工液を、ドクターブレードフィルムアプリケーターを用いてガラス上に塗工し、凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して固化させた。次いで、これを水洗し乾燥して、ガラス上から剥して多孔膜を得た。 The coating liquid is coated on glass using a doctor blade film applicator, and immersed in a coagulation liquid (water: DMAc: TPG = 62.5: 30: 7.5 [mass ratio], liquid temperature 35 ° C). And solidified. Next, this was washed with water, dried, and peeled off from the glass to obtain a porous film.
[実施例102]
 ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAの混合割合を表6に示すとおりに変更した以外は実施例101と同様にして多孔膜を得た。
[Example 102]
A porous membrane was obtained in the same manner as in Example 101, except that the mixing ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer VA was changed as shown in Table 6.
[実施例103]
 ポリフッ化ビニリデン系樹脂と水不溶性共重合体VAの混合割合を表6に示すとおりに変更した以外は実施例101と同様にして多孔膜を得た。
[Example 103]
A porous membrane was obtained in the same manner as in Example 101, except that the mixing ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer VA was changed as shown in Table 6.
[実施例104]
 水不溶性共重合体VAを下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 104]
A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:75モル%)にメタクリル酸メチルを重合した重合体、重合比(質量基準)=40:60。溶解度:1.2g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 75 mol%), polymerization ratio (mass basis) = 40:60. Solubility: 1.2 g / 100 g water.
[実施例105]
 水不溶性共重合体VAを下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 105]
A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:75モル%)にメタクリル酸メチルを重合した重合体、重合比(質量基準)=85:15。溶解度:2.0g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 75 mol%), polymerization ratio (mass basis) = 85:15. Solubility: 2.0 g / 100 g water.
[実施例106]
 水不溶性共重合体VAを下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 106]
A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:72モル%)にメタクリル酸メチルとアクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.6g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and acrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 72 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.6 g / 100 g water.
[実施例107]
 水不溶性共重合体VAを下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 107]
A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルとスチレンを重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.3g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and styrene on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 74 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.3 g / 100 g water.
[実施例108]
 水不溶性共重合体VAを下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 108]
A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルとアクリル酸メチルを重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.4g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and methyl acrylate on partially saponified polyvinyl alcohol (polymerization degree: 500, saponification degree: 74 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.4 g / 100 g water.
[実施例109]
 水不溶性共重合体VAを下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 109]
A porous membrane was obtained in the same manner as in Example 101, except that the water-insoluble copolymer VA was changed as follows.
・水不溶性共重合体VA
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)にメタクリル酸メチルとメタクリル酸を重合した重合体、重合比(質量基準)=63:30:7。溶解度:1.4g/100g水。
・ Water-insoluble copolymer VA
Polymer obtained by polymerizing methyl methacrylate and methacrylic acid on partially saponified polyvinyl alcohol (degree of polymerization: 500, degree of saponification: 74 mol%), polymerization ratio (mass basis) = 63: 30: 7. Solubility: 1.4 g / 100 g water.
[実施例110]
 ポリフッ化ビニリデン系樹脂を下記に変更した以外は実施例101と同様にして多孔膜を得た。
[Example 110]
A porous membrane was obtained in the same manner as in Example 101, except that the polyvinylidene fluoride resin was changed as follows.
・ポリフッ化ビニリデン系樹脂(PVDF系樹脂)
 フッ化ビニリデン単独重合体、重量平均分子量(Mw):58万。
・ Polyvinylidene fluoride resin (PVDF resin)
Vinylidene fluoride homopolymer, weight average molecular weight (Mw): 580,000.
[比較例101]
 水不溶性共重合体VAを用いずポリフッ化ビニリデン系樹脂のみを混合溶媒に溶解させて塗工液を得た以外は、実施例101と同様にして多孔膜を得た。
[Comparative Example 101]
A porous membrane was obtained in the same manner as in Example 101, except that a coating liquid was obtained by dissolving only a polyvinylidene fluoride resin in a mixed solvent without using the water-insoluble copolymer VA.
[比較例102]
 水不溶性共重合体VAを下記の水溶性重合体に変更した以外は実施例101と同様にして多孔膜を得た。
[Comparative Example 102]
A porous membrane was obtained in the same manner as in Example 101 except that the water-insoluble copolymer VA was changed to the following water-soluble polymer.
・水溶性重合体
 部分ケン化ポリビニルアルコール(重合度:500、ケン化度:74モル%)。溶解度:96g/100g水。
-Water-soluble polymer Partially saponified polyvinyl alcohol (polymerization degree: 500, saponification degree: 74 mol%). Solubility: 96 g / 100 g water.
[比較例103]
 比較例101で得たポリフッ化ビニリデン系樹脂の多孔膜上に、下記の処理方法により、親水性層を設けた。
[Comparative Example 103]
A hydrophilic layer was provided on the polyvinylidene fluoride resin porous film obtained in Comparative Example 101 by the following treatment method.
 実施例101で使用した水不溶性共重合体VAを、樹脂濃度が2.0質量%となるように、DMAcとTPGの混合溶媒(DMAc:TPG=80:20[質量比])に溶解させ、塗工液を得た。この塗工液を、比較例101で得たポリフッ化ビニリデン系樹脂の多孔膜の両面に塗工し(その際、表裏の塗工量が等量になるように塗工した。)、凝固液(水:DMAc:TPG=62.5:30:7.5[質量比]、液温35℃)に浸漬して固化させた。次いで、これを水洗し乾燥して、ポリフッ化ビニリデン系樹脂の多孔膜の両面を水不溶性共重合体VAで被覆した多孔膜を得た。 The water-insoluble copolymer VA used in Example 101 was dissolved in a mixed solvent of DMAc and TPG (DMAc: TPG = 80: 20 [mass ratio]) so that the resin concentration was 2.0% by mass. A coating liquid was obtained. This coating liquid was applied to both surfaces of the polyvinylidene fluoride resin obtained in Comparative Example 101 (so that the coating amounts on the front and back sides were equal), and the coagulating liquid was used. (Water: DMAc: TPG = 62.5: 30: 7.5 [mass ratio], liquid temperature 35 ° C.) to be solidified. Next, this was washed with water and dried to obtain a porous film in which both surfaces of a porous film of polyvinylidene fluoride resin were coated with a water-insoluble copolymer VA.
<第二の実施形態:親水性多孔膜の性能評価>
 実施例101~110及び比較例101~103の各多孔膜の物性測定及び性能評価を、第一の実施形態における物性測定及び性能評価と同じ方法で行った。結果を表6~表7に示す。
<Second embodiment: Performance evaluation of hydrophilic porous membrane>
Physical property measurement and performance evaluation of each of the porous membranes of Examples 101 to 110 and Comparative Examples 101 to 103 were performed in the same manner as the physical property measurement and performance evaluation in the first embodiment. The results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 2018年7月5日に出願された日本国出願番号第2018-128498号の開示は、その全体が参照により本明細書に取り込まれる。2018年7月5日に出願された日本国出願番号第2018-128499号の開示は、その全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2018-128498 filed on July 5, 2018 is incorporated herein by reference in its entirety. The disclosure of Japanese Patent Application No. 2018-128499 filed on Jul. 5, 2018 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (17)

  1.  多孔質基材と、
     前記多孔質基材の空孔内に存在する、下記の第一の親水性材料及び第二の親水性材料の少なくとも一方の親水性材料と、
     を備えた親水性複合膜。
     第一の親水性材料:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性材料。
     第二の親水性材料:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体とポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性材料。
    A porous substrate,
    Present in the pores of the porous substrate, at least one hydrophilic material of the following first hydrophilic material and second hydrophilic material,
    A hydrophilic composite membrane comprising:
    First hydrophilic material: a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
    Second hydrophilic material: a hydrophilic material containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride-based resin in a compatible state.
  2.  前記多孔質基材の平均孔径が1nm~4000nmである、請求項1に記載の親水性複合膜。 親水 The hydrophilic composite membrane according to claim 1, wherein the porous substrate has an average pore size of 1 nm to 4000 nm.
  3.  前記多孔質基材は、片面又は両面において、水の接触角が85度~130度である、請求項1又は請求項2に記載の親水性複合膜。 The hydrophilic composite membrane according to claim 1, wherein the porous substrate has a water contact angle of 85 to 130 degrees on one surface or both surfaces.
  4.  前記水不溶性共重合体における前記ビニルアルコール単位の質量割合が40質量%~90質量%である、請求項1~請求項3のいずれか1項に記載の親水性複合膜。 The hydrophilic composite membrane according to any one of claims 1 to 3, wherein the mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
  5.  前記アクリル系モノマー単位がメタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を含む、請求項1~請求項4のいずれか1項に記載の親水性複合膜。 The hydrophilic composite film according to any one of claims 1 to 4, wherein the acrylic monomer unit contains at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
  6.  前記第二の親水性材料に含まれる前記水不溶性共重合体と前記ポリフッ化ビニリデン系樹脂との質量比(前記水不溶性共重合体:前記ポリフッ化ビニリデン系樹脂)が5:95~60:40である、請求項1~請求項5のいずれか1項に記載の親水性複合膜。 The mass ratio of the water-insoluble copolymer and the polyvinylidene fluoride resin (the water-insoluble copolymer: the polyvinylidene fluoride resin) contained in the second hydrophilic material is 5:95 to 60:40. The hydrophilic composite membrane according to any one of claims 1 to 5, wherein
  7.  前記多孔質基材の片面又は両面に設けられた親水性被覆層をさらに備え、
     前記親水性被覆層が下記の第一の親水性被覆層及び第二の親水性被覆層の少なくとも一方である、請求項1~請求項6のいずれか1項に記載の親水性複合膜。
     第一の親水性被覆層:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体を含む親水性被覆層。
     第二の親水性被覆層:ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体とポリフッ化ビニリデン系樹脂とが相溶した状態で含まれている親水性被覆層。
    Further comprising a hydrophilic coating layer provided on one or both sides of the porous substrate,
    7. The hydrophilic composite film according to claim 1, wherein the hydrophilic coating layer is at least one of a first hydrophilic coating layer and a second hydrophilic coating layer described below.
    First hydrophilic coating layer: a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit.
    Second hydrophilic coating layer: a hydrophilic coating layer containing a water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit and a polyvinylidene fluoride resin in a state of being compatible with each other.
  8.  前記第一の親水性被覆層又は前記第二の親水性被覆層が多孔質層である、請求項7に記載の親水性複合膜。 The hydrophilic composite membrane according to claim 7, wherein the first hydrophilic coating layer or the second hydrophilic coating layer is a porous layer.
  9.  前記多孔質基材がポリオレフィン微多孔膜である、請求項1~請求項8のいずれか1項に記載の親水性複合膜。 The hydrophilic composite membrane according to any one of claims 1 to 8, wherein the porous substrate is a polyolefin microporous membrane.
  10.  ポリフッ化ビニリデン系樹脂と、
     ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体と、
     が相溶した状態で含まれている親水性多孔膜。
    A polyvinylidene fluoride resin;
    A water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit,
    Is a hydrophilic porous membrane that is contained in a compatible state.
  11.  前記水不溶性共重合体における前記ビニルアルコール単位の質量割合が40質量%~90質量%である、請求項10に記載の親水性多孔膜。 11. The hydrophilic porous membrane according to claim 10, wherein the mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
  12.  前記アクリル系モノマー単位がメタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を含む、請求項10又は請求項11に記載の親水性多孔膜。 The hydrophilic porous membrane according to claim 10 or 11, wherein the acrylic monomer unit includes at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
  13.  前記親水性多孔膜に含まれる前記ポリフッ化ビニリデン系樹脂と前記水不溶性共重合体との質量比(前記ポリフッ化ビニリデン系樹脂:前記水不溶性共重合体)が40:60~95:5である、請求項10~請求項12のいずれか1項に記載の親水性多孔膜。 The mass ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer (the polyvinylidene fluoride resin: the water-insoluble copolymer) contained in the hydrophilic porous membrane is 40:60 to 95: 5. The hydrophilic porous membrane according to any one of claims 10 to 12.
  14.  ポリフッ化ビニリデン系樹脂と、
     ビニルアルコール単位及びアクリル系モノマー単位を有する水不溶性共重合体と、
     が相溶した状態で含まれている親水性樹脂組成物。
    A polyvinylidene fluoride resin;
    A water-insoluble copolymer having a vinyl alcohol unit and an acrylic monomer unit,
    Is a hydrophilic resin composition that is contained in a compatible state.
  15.  前記水不溶性共重合体における前記ビニルアルコール単位の質量割合が40質量%~90質量%である、請求項14に記載の親水性樹脂組成物。 15. The hydrophilic resin composition according to claim 14, wherein a mass ratio of the vinyl alcohol unit in the water-insoluble copolymer is from 40% by mass to 90% by mass.
  16.  前記アクリル系モノマー単位がメタクリル酸エステル単位及びアクリル酸エステル単位からなる群から選ばれる少なくとも1種を含む、請求項14又は請求項15に記載の親水性樹脂組成物。 The hydrophilic resin composition according to claim 14 or 15, wherein the acrylic monomer unit contains at least one selected from the group consisting of a methacrylate unit and an acrylate unit.
  17.  前記親水性樹脂組成物に含まれる前記ポリフッ化ビニリデン系樹脂と前記水不溶性共重合体との質量比(前記ポリフッ化ビニリデン系樹脂:前記水不溶性共重合体)が40:60~95:5である、請求項14~請求項16のいずれか1項に記載の親水性樹脂組成物。 The mass ratio of the polyvinylidene fluoride resin and the water-insoluble copolymer (the polyvinylidene fluoride resin: the water-insoluble copolymer) contained in the hydrophilic resin composition is 40:60 to 95: 5. The hydrophilic resin composition according to any one of claims 14 to 16, wherein
PCT/JP2019/023159 2018-07-05 2019-06-11 Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition WO2020008820A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018128499 2018-07-05
JP2018-128499 2018-07-05
JP2018128498 2018-07-05
JP2018-128498 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008820A1 true WO2020008820A1 (en) 2020-01-09

Family

ID=69060072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023159 WO2020008820A1 (en) 2018-07-05 2019-06-11 Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition

Country Status (2)

Country Link
TW (1) TW202006033A (en)
WO (1) WO2020008820A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112122A (en) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol Carbon dioxide separating gelatinous membrane and its production
JP2006205067A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Porous membrane
JP2008229612A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Porous membrane for cell suspension filtering
JP2013166131A (en) * 2012-02-16 2013-08-29 Fujifilm Corp Composite separation membrane, and separation membrane module using the same
JP2014200767A (en) * 2013-04-09 2014-10-27 住友化学株式会社 Gas separator and separation method of acid gas of using the same
JP2017047411A (en) * 2015-09-02 2017-03-09 三菱レイヨン株式会社 Hollow porous film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112122A (en) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol Carbon dioxide separating gelatinous membrane and its production
JP2006205067A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Porous membrane
JP2008229612A (en) * 2007-02-22 2008-10-02 Toray Ind Inc Porous membrane for cell suspension filtering
JP2013166131A (en) * 2012-02-16 2013-08-29 Fujifilm Corp Composite separation membrane, and separation membrane module using the same
JP2014200767A (en) * 2013-04-09 2014-10-27 住友化学株式会社 Gas separator and separation method of acid gas of using the same
JP2017047411A (en) * 2015-09-02 2017-03-09 三菱レイヨン株式会社 Hollow porous film

Also Published As

Publication number Publication date
TW202006033A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
KR101989901B1 (en) Filter media, method for manufacturing thereof and Filter module comprising the same
JP6284818B2 (en) Porous membrane laminate having micropores and handling strength and method for producing the same
AU2015235572B2 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
CN115487695A (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
US9987597B2 (en) Microporous membrane and manufacturing process therefor
KR101989914B1 (en) Filter assembly, method for manufacturing thereof and Filter module comprising the same
JP4939124B2 (en) Fluororesin porous membrane
JPS6217614B2 (en)
AU2014277783A1 (en) Charged porous polymeric membrane with high void volume
WO2014208592A1 (en) Composition, porous polymer membrane and hydrophilic agent
JPH05184891A (en) Polyacrylonitrile copolymer permselective membrane and its production
TW201536406A (en) Composite microporous film, its manufacturing method and filter using the same
KR101494053B1 (en) Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
KR20160026070A (en) Manufacturing method of gas separator membrane
JP2011025110A (en) Separation membrane, and method of producing the same
JP2011101837A (en) Separation membrane, and method of producing the same
JPS6138208B2 (en)
WO2020008820A1 (en) Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition
KR101434184B1 (en) Forward osmosis membrane and manufacturing method thereof
TW200950877A (en) Hollow filament-membrane and preparation methods thereof
JP7255945B2 (en) Hydrophilic composite porous membrane
JPH03284326A (en) Porous hollow fiber membrane
KR101475568B1 (en) Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
JP4015653B2 (en) Method for producing porous separation membrane
JP2013000633A (en) Method for manufacturing porous membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP