JP2017047411A - Hollow porous film - Google Patents

Hollow porous film Download PDF

Info

Publication number
JP2017047411A
JP2017047411A JP2016075511A JP2016075511A JP2017047411A JP 2017047411 A JP2017047411 A JP 2017047411A JP 2016075511 A JP2016075511 A JP 2016075511A JP 2016075511 A JP2016075511 A JP 2016075511A JP 2017047411 A JP2017047411 A JP 2017047411A
Authority
JP
Japan
Prior art keywords
porous membrane
film
hollow porous
copolymer
amphiphilic copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016075511A
Other languages
Japanese (ja)
Other versions
JP6805527B2 (en
Inventor
直隆 末永
Naotaka SUENAGA
直隆 末永
誠一朗 守
Seiichiro Mori
誠一朗 守
正和 皆川
Masakazu Minagawa
正和 皆川
真悟 疋田
Shingo Hikita
真悟 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of JP2017047411A publication Critical patent/JP2017047411A/en
Application granted granted Critical
Publication of JP6805527B2 publication Critical patent/JP6805527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hollow porous film having high water-permeable performance.SOLUTION: There is provided a porous film containing a film formation polymer (A) and an amphiphatic copolymer (B) comprising a hydrophobic monomer (b1) and a hydrophilic monomer (b2), in which the peak intensity ratio of FT-IR on a porous film surface is 0.4 or higher and 10 or lower, and which is a hollow fiber-shaped porous film in which a surface aperture ratio of the film surface is 20% or higher and 50% or lower.SELECTED DRAWING: Figure 1

Description

本発明は、高い透水性と表面親水性を有する中空状多孔質膜に関する。   The present invention relates to a hollow porous membrane having high water permeability and surface hydrophilicity.

多孔質膜は、飲料水製造、浄水処理、排水処理等の水処理分野等の様々な分野で利用されている。近年、高い透水性能や親水性等の膜の性能に加え、製造工程の簡略化が望まれている。   Porous membranes are used in various fields such as water treatment fields such as drinking water production, water purification, and wastewater treatment. In recent years, in addition to the performance of membranes such as high water permeability and hydrophilicity, simplification of the manufacturing process has been desired.

親水性に優れた多孔質膜としては、親水性モノマー及び疎水性モノマーからなる共重合体により多孔質基材の表面に親水化処理を行った多孔質膜が知られている。
例えば、ポリフッ化ビニリデン等の疎水性膜形成ポリマー、並びに、親水性モノマー及び疎水性モノマーからなるランダム共重合体を含む多孔質膜が提案されている(例えば、特許文献1)。また、膜形成ポリマー、及び、(メタ)アクリル酸エステルマクロモノマーと、その他のモノマーとを含むモノマー組成物を重合して得られるポリマーから形成される多孔質膜が提案されている(例えば、特許文献2)。
As a porous film excellent in hydrophilicity, a porous film in which the surface of a porous substrate is subjected to a hydrophilic treatment with a copolymer composed of a hydrophilic monomer and a hydrophobic monomer is known.
For example, a porous film including a hydrophobic film-forming polymer such as polyvinylidene fluoride and a random copolymer composed of a hydrophilic monomer and a hydrophobic monomer has been proposed (for example, Patent Document 1). In addition, a porous film formed from a polymer obtained by polymerizing a monomer composition containing a film-forming polymer, a (meth) acrylic acid ester macromonomer, and other monomers has been proposed (for example, patents). Reference 2).

特開2006−239680号公報JP 2006-239680 A 国際公開公報WO2014/142311International Publication No. WO2014 / 142231

しかしながら、特許文献1に記載されている多孔質膜では、透水性能及び膜表面の親水性が低いという課題があった。また、特許文献2に記載されている多孔質膜では、透水性が十分でないという課題があった。   However, the porous membrane described in Patent Document 1 has a problem of low water permeability and membrane surface hydrophilicity. In addition, the porous membrane described in Patent Document 2 has a problem that water permeability is not sufficient.

本願発明の目的は、高い透水性と表面親水性を有する中空糸状の多孔質膜を提供することにある。   An object of the present invention is to provide a hollow fiber-like porous membrane having high water permeability and surface hydrophilicity.

本発明は、以下の態様を有する。
[1] 膜形成ポリマー(A)、並びに、疎水性モノマー(b1)及び親水性モノマー(b2)からなる両親媒性共重合体(B)を含む中空状多孔質膜であって、
前記中空状多孔質膜表面のFT−IRのピーク強度比(1726〜1730cm−1に現れるピークの強度/1398〜1402cm−1に現れるピークの強度)が0.4以上10以下であり、かつ、膜表面の表面開孔率が20%以上50%以下である、中空状多孔質膜。
[2] 前記膜形成ポリマー(A)が、ポリフッ化ビニリデンである、[1]記載の中空状多孔質膜。
[3] 前記親水性モノマー(b2)が、(メタ)アクリルモノマーである、前記[1]又は[2]記載の中空状多孔質膜。
[4] 前記両親媒性共重合体(B)の主成分が、グラフト共重合体である、前記[1]〜[3]の何れか一項に記載の中空状多孔質膜。
[5] 前記両親媒性共重合体(B)が、前記疎水性モノマー(b1)ユニットを5以上99wt%以下含有する、前記[1]〜[4]の何れか一項に記載の中空状多孔質膜。
The present invention has the following aspects.
[1] A hollow porous membrane comprising a film-forming polymer (A) and an amphiphilic copolymer (B) comprising a hydrophobic monomer (b1) and a hydrophilic monomer (b2),
FT-IR peak intensity ratio (peak intensity appearing at 1726 to 1730 cm −1 / peak intensity appearing at 1398 to 1402 cm −1) on the surface of the hollow porous membrane is 0.4 or more and 10 or less, and A hollow porous membrane having a surface porosity of 20% to 50% on the membrane surface.
[2] The hollow porous membrane according to [1], wherein the film-forming polymer (A) is polyvinylidene fluoride.
[3] The hollow porous membrane according to [1] or [2], wherein the hydrophilic monomer (b2) is a (meth) acrylic monomer.
[4] The hollow porous membrane according to any one of [1] to [3], wherein the main component of the amphiphilic copolymer (B) is a graft copolymer.
[5] The hollow shape according to any one of [1] to [4], wherein the amphiphilic copolymer (B) contains 5 to 99 wt% of the hydrophobic monomer (b1) unit. Porous membrane.

本発明は、高い透水性と表面親水性を有する中空状多孔質膜を提供することを可能とする。また、本発明によれば、製品化の際に、親水化工程を省略することが期待できる。   The present invention makes it possible to provide a hollow porous membrane having high water permeability and surface hydrophilicity. Further, according to the present invention, it can be expected that the hydrophilization step is omitted in commercialization.

本発明における多孔質膜表面のFT−IRのピーク強度比の一例である。It is an example of the peak intensity ratio of FT-IR of the porous membrane surface in this invention.

以下、本説明を詳細に説明する。
<中空状多孔質膜>
本発明において、中空状多孔質膜は、膜形成ポリマー(A)、並びに、疎水性モノマー(b1)及び親水性モノマー(b2)からなる両親媒性共重合体(B)を含む中空状多孔質膜であって、下記(1)及び(2)の特徴を有する。これにより、高い透水性と表面親水性を発現することができる。
(1)前記多孔質膜表面のFT−IRのピーク強度比(1726〜1730cm−1に現れるピークの強度/1398〜1402cm−1に現れるピークの強度)が0.4以上10以下
(2)膜表面の表面開孔率が20%以上50%以下
Hereinafter, this description will be described in detail.
<Hollow porous membrane>
In the present invention, the hollow porous membrane is a hollow porous membrane containing a film-forming polymer (A) and an amphiphilic copolymer (B) comprising a hydrophobic monomer (b1) and a hydrophilic monomer (b2). The film has the following characteristics (1) and (2). Thereby, high water permeability and surface hydrophilicity can be expressed.
(1) FT-IR peak intensity ratio (peak intensity appearing at 1726 to 1730 cm −1 / peak intensity appearing at 1398 to 1402 cm −1 ) on the surface of the porous film is 0.4 to 10 (2) Film Surface porosity of the surface is 20% or more and 50% or less

前記中空状多孔質膜は、多孔質膜の孔連通性、親水性及び耐ファウリング性の観点から、前記多孔質膜表面のFT−IRのピーク強度比(1726〜1730cm−1に現れるピークの強度/1398〜1402cm−1に現れるピークの強度)は、0.4以上10以下であることが好ましく、0.45以上8以下であることがより好ましく、0.5以上7以下であることが特に好ましい。
さらに、前記多孔質膜の透水性及び強度の観点から、膜表面の表面開孔率は20%以上50%以下であることが好ましく、25%以上45%以下がより好ましい。
The hollow porous membrane has an FT-IR peak intensity ratio (from 1726 to 1730 cm −1) on the surface of the porous membrane from the viewpoint of pore connectivity, hydrophilicity and fouling resistance of the porous membrane. (Intensity / peak intensity appearing at 1398 to 1402 cm −1 ) is preferably 0.4 or more and 10 or less, more preferably 0.45 or more and 8 or less, and 0.5 or more and 7 or less. Particularly preferred.
Furthermore, from the viewpoint of water permeability and strength of the porous membrane, the surface porosity of the membrane surface is preferably 20% or more and 50% or less, and more preferably 25% or more and 45% or less.

[FT−IRのピーク強度比]
本発明におけるFT−IRのピーク強度比は、赤外全反射吸収スペクトル法(ATR法)により得られた値である。
分析は、60℃のエタノール80%水溶液に4時間浸漬し洗浄した多孔質膜表面について行った。図1に示すように、1726〜1730cm−1の位置に膜形成ポリマー(A
)由来のピーク、1398〜1402cm−1の位置に膜形成ポリマー(A)及び両親媒性共重合体(B)由来のピークを、前記強度比の計算に用いた。尚、このピーク強度比は、洗浄後の多孔質膜表面に存在する両親媒性共重合体(B)の量を示す値である。
[FT-IR peak intensity ratio]
The peak intensity ratio of FT-IR in the present invention is a value obtained by an infrared total reflection absorption spectrum method (ATR method).
The analysis was performed on the surface of the porous membrane which was immersed in an 80% ethanol aqueous solution at 60 ° C. for 4 hours and washed. As shown in FIG. 1, the film-forming polymer to the position of 1726~1730cm -1 (A
The peak derived from the film-forming polymer (A) and the amphiphilic copolymer (B) at the position of 1398 to 1402 cm −1 was used for the calculation of the intensity ratio. This peak intensity ratio is a value indicating the amount of the amphiphilic copolymer (B) present on the surface of the porous membrane after washing.

[表面開孔率]
本発明における表面開孔率は、走査型電子顕微鏡(日本電子(株)製、製品名:JSM−6340F)により観察された膜表面について、Image Proによる画像解析の結果得られた値である。
[Surface open area ratio]
The surface area ratio in the present invention is a value obtained as a result of image analysis by Image Pro on the film surface observed with a scanning electron microscope (manufactured by JEOL Ltd., product name: JSM-6340F).

<膜形成ポリマー(A)>
本発明において、膜形成ポリマー(A)は、中空状多孔質膜(以下、多孔質膜とも言う)の構造を維持させるためのものである。膜形成ポリマー(A)は、多孔質膜に求められる特性に応じて、組成を選択することができる。例えば、膜形成ポリマー(A)として、耐薬品性、耐酸化劣化性及び耐熱性が要求される場合には、ポリフッ化ビニリデン(PVDF)、PVDF−co−ヘキサフルオロプロピレン(HFP)、エチレン−co−クロロトリフルオロエチレン(ECTFE)、ポリフッ化ビニル、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリスチレン誘導体、ポリアミド、ポリウレタン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン及びセルロースアセテートが挙げられる。
また、非溶媒相分離を進める観点から、膜形成ポリマー(A)は、後述の溶剤に溶解可能であり、純水に溶解しないポリマーが好ましい。前述のポリマーの中で、後述する両親媒性共重合体(B)と後述する溶剤(I)への相溶性の観点からPVDFが好ましい。
<Film-forming polymer (A)>
In the present invention, the film-forming polymer (A) is for maintaining the structure of a hollow porous film (hereinafter also referred to as a porous film). The composition of the film-forming polymer (A) can be selected according to the characteristics required for the porous film. For example, when chemical resistance, oxidation deterioration resistance and heat resistance are required as the film-forming polymer (A), polyvinylidene fluoride (PVDF), PVDF-co-hexafluoropropylene (HFP), ethylene-co -Chlorotrifluoroethylene (ECTFE), polyvinyl fluoride, polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), polyethylene, polypropylene, polystyrene, polystyrene derivatives, polyamide, polyurethane, polycarbonate, polysulfone, polyethersulfone and cellulose Acetate is mentioned.
Further, from the viewpoint of promoting non-solvent phase separation, the film-forming polymer (A) is preferably a polymer that can be dissolved in a solvent described later and does not dissolve in pure water. Among the aforementioned polymers, PVDF is preferable from the viewpoint of compatibility with the amphiphilic copolymer (B) described later and the solvent (I) described later.

前記膜形成ポリマー(A)は、多孔質膜の機械的強度及び溶剤への溶解性の観点から、質量平均分子量(以下、「Mw」という)は、100,000〜2,000,000が好ましく、300,000〜1,500,000がより好ましい。   The film-forming polymer (A) preferably has a mass average molecular weight (hereinafter referred to as “Mw”) of 100,000 to 2,000,000 from the viewpoint of the mechanical strength of the porous film and the solubility in a solvent. 300,000 to 1,500,000 are more preferred.

多孔質膜中の膜形成ポリマー(A)の含有量としては、多孔質性及び親水性の観点から、膜形成ポリマー(A)及び両親媒性共重合体(B)の合計量100wt%に対して、20〜95wt%が好ましく、40〜80wt%がより好ましい。
尚、本発明において、「高い親水性」とは、純水に対する接触角が75°以下であることを意味する。
The content of the film-forming polymer (A) in the porous film is based on the total amount of 100 wt% of the film-forming polymer (A) and the amphiphilic copolymer (B) from the viewpoint of porosity and hydrophilicity. 20 to 95 wt% is preferable, and 40 to 80 wt% is more preferable.
In the present invention, “high hydrophilicity” means that the contact angle with respect to pure water is 75 ° or less.

本発明の中空状多孔質膜において、伸縮性、耐久性及び製造コストの観点から、厚みは10μm以上1,000μm以下であることが好ましく、30μm以上800μm以下がsより好ましい。
また、中空状多孔質膜の外径は、糸切れ抑制及び扁平抑制の観点から、20〜2,000μmであることが好ましく、40〜1,500μmがより好ましい。
In the hollow porous membrane of the present invention, the thickness is preferably 10 μm or more and 1,000 μm or less, and more preferably 30 μm or more and 800 μm or less from the viewpoint of stretchability, durability, and production cost.
Further, the outer diameter of the hollow porous membrane is preferably 20 to 2,000 μm, more preferably 40 to 1,500 μm from the viewpoint of yarn breakage suppression and flatness suppression.

<溶剤(I)>
溶剤(I)としては、前記膜形成ポリマー(A)、後述する両親媒性共重合体(B)の溶解性及び取り扱いの容易さの点で、トルエン等の炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;ジクロロメタン、クロロホルム等のハロゲン化炭化水素;アセトン等のケトン;メタノール等のアルコール;アセトニトリル等のニトリル;酢酸エチル等のビニルエステル;エチレンカーボネート等のカーボネート;及び超臨界二酸化炭素が挙げられる。これらの中で、膜形成ポリマー(A)、ポリマー(B)及びビニルピロリドン単位を含むポリマー(C)の溶解性及び取り扱いの容易さの点で、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)及びN−メチルピロリドン(NMP)が好ましい。溶剤(II)は、単独で又は2種以上を組み合わせて使用することができる。
<Solvent (I)>
Examples of the solvent (I) include hydrocarbons such as toluene; diethyl ether, tetrahydrofuran and the like in terms of solubility and ease of handling of the film-forming polymer (A) and the amphiphilic copolymer (B) described later. Ethers; halogenated hydrocarbons such as dichloromethane and chloroform; ketones such as acetone; alcohols such as methanol; nitriles such as acetonitrile; vinyl esters such as ethyl acetate; carbonates such as ethylene carbonate; and supercritical carbon dioxide. Among these, tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl are preferred in terms of solubility and ease of handling of the film-forming polymer (A), the polymer (B) and the polymer (C) containing vinylpyrrolidone units. Acetamide (DMAc), dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP) are preferred. Solvent (II) can be used individually or in combination of 2 or more types.

<両親媒性共重合体(B)>
本発明において、両親媒性共重合体(B)は、疎水性モノマー(b1)及び親水性モノマー(b2)を含むモノマー組成物を重合して得られる。
両親媒性共重合体(B)の数平均分子量(以下、「Mn」という)は、引張強度、引張伸度、曲げ強度及び熱安定性の点から、1,000以上5,000,000以下であることが好ましく、5,000以上300,000以下がより好ましい。
両親媒性共重合体(B)において、膜形成ポリマー(A)中への取り込まれ易さの観点から、疎水性モノマー(b1)ユニットの含有量は5wt%以上99wt%以下が好ましく、20wt%以上98wt%以下がより好ましく、40wt%以上95wt%以下が特に好ましい。
これは、膜形成ポリマー(A)との分子の絡み合いが大きくなるためであり、これにより多孔質膜に連通構造が形成されるためである。
<Amphiphilic copolymer (B)>
In the present invention, the amphiphilic copolymer (B) is obtained by polymerizing a monomer composition containing a hydrophobic monomer (b1) and a hydrophilic monomer (b2).
The number average molecular weight (hereinafter referred to as “Mn”) of the amphiphilic copolymer (B) is 1,000 to 5,000,000 in terms of tensile strength, tensile elongation, bending strength and thermal stability. It is preferable that it is 5,000 or more and 300,000 or less.
In the amphiphilic copolymer (B), from the viewpoint of easy incorporation into the film-forming polymer (A), the content of the hydrophobic monomer (b1) unit is preferably 5 wt% or more and 99 wt% or less, and 20 wt%. It is more preferably 98 wt% or less and particularly preferably 40 wt% or more and 95 wt% or less.
This is because the molecular entanglement with the film-forming polymer (A) is increased, thereby forming a communication structure in the porous film.

前記両親媒性共重合体(B)において、開孔性の観点から、親水性モノマー(b2)ユニットの含有量は1wt%以上95wt%以下が好ましく、2wt%以上80wt%以下がより好ましく、5wt%以上60wt%以下が特に好ましい。   In the amphiphilic copolymer (B), the content of the hydrophilic monomer (b2) unit is preferably 1 wt% or more and 95 wt% or less, more preferably 2 wt% or more and 80 wt% or less, from the viewpoint of openness. % To 60 wt% is particularly preferable.

前記ポリマー(B)の製造方法として、例えば、塊状重合法、溶液重合法、懸濁重合法及び乳化重合法等が挙げられる。このうち、疎水性モノマー(b1)と親水性モノマー(b2)の重合反応性の観点から、溶液重合法が好ましい。   Examples of the method for producing the polymer (B) include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these, the solution polymerization method is preferable from the viewpoint of polymerization reactivity of the hydrophobic monomer (b1) and the hydrophilic monomer (b2).

前記両親媒性共重合体(B)は、中空状多孔質膜への表面親水性付与の観点から、主鎖に親水鎖、側鎖に疎水鎖を持つ構造のグラフト共重合体であることが好ましい。これは、両親媒性共重合体(B)の疎水鎖が、同じく疎水性である膜形成ポリマー(A)との分子同士の絡み合いが強くなるためと推測できる。   From the viewpoint of imparting surface hydrophilicity to the hollow porous membrane, the amphiphilic copolymer (B) is a graft copolymer having a structure having a hydrophilic chain in the main chain and a hydrophobic chain in the side chain. preferable. This can be presumed to be because the entanglement between the molecules of the hydrophobic chain of the amphiphilic copolymer (B) and the film-forming polymer (A), which is also hydrophobic, becomes strong.

<溶剤(II)>
前記両親媒性共重合体(B)を溶液重合法で製造する場合に使用される溶剤(II)としては、例えば、トルエン等の炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;ジクロロメタン、クロロホルム等のハロゲン化炭化水素;アセトン等のケトン;メタノール等のアルコール;アセトニトリル等のニトリル;酢酸エチル等のビニルエステル;エチレンカーボネート等のカーボネート;及び超臨界二酸化炭素が挙げられる。これらの中で、膜形成ポリマー(A)、ポリマー(B)及びビニルピロリドン単位を含むポリマー(C)の溶解性及び取り扱いの容易さの点で、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)及びN−メチルピロリドン(NMP)が好ましい。溶剤(II)は、単独で又は2種以上を組み合わせて使用することができる。
<Solvent (II)>
Examples of the solvent (II) used when the amphiphilic copolymer (B) is produced by a solution polymerization method include hydrocarbons such as toluene; ethers such as diethyl ether and tetrahydrofuran; dichloromethane, chloroform and the like. Examples include halogenated hydrocarbons; ketones such as acetone; alcohols such as methanol; nitriles such as acetonitrile; vinyl esters such as ethyl acetate; carbonates such as ethylene carbonate; and supercritical carbon dioxide. Among these, tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl are preferred in terms of solubility and ease of handling of the film-forming polymer (A), the polymer (B) and the polymer (C) containing vinylpyrrolidone units. Acetamide (DMAc), dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP) are preferred. Solvent (II) can be used individually or in combination of 2 or more types.

[疎水性モノマー(b1)]
本発明において、疎水性モノマー(b1)は、両親媒性共重合体を形成するものである。ここで、「疎水性」という用語は、そのセグメントが水に不溶性である、又は、非分散性であることを意味する。
疎水性モノマー(b1)のうち、有用なエチレン性不飽和モノマーの例としては以下のものが挙げられるが、これらに限定される訳ではない:スチレン、スチレンの疎水性誘導体、共役ジエン、アクリル酸のC1〜30直鎖状、環状、又は分岐状のアルキル及びアリー
ルエステル、メタクリル酸のC1〜30直鎖状、環状、又は分岐状のアルキル及びアリール
エステル、オレフィン、フッ素含有モノマー、並びにケイ素含有モノマー。
入手のし易さ、得られる共重合体の機械物性バランスの観点から、有用なメタクリルモノマーが好ましい。
膜形成ポリマー(A)との分子の絡み合い、溶剤への溶解性の観点から、疎水性ブロックの数平均分子量(以下、「Mn」という)は、500以上120,000以下であることが好ましく、は5,000以上80,000以下であることがより好ましい。
[Hydrophobic monomer (b1)]
In the present invention, the hydrophobic monomer (b1) forms an amphiphilic copolymer. Here, the term “hydrophobic” means that the segment is insoluble or non-dispersible in water.
Among the hydrophobic monomers (b1), examples of useful ethylenically unsaturated monomers include, but are not limited to: styrene, hydrophobic derivatives of styrene, conjugated dienes, acrylic acid C1-30 linear, cyclic, or branched alkyl and aryl esters, methacrylic acid C1-30 linear, cyclic, or branched alkyl and aryl esters, olefins, fluorine-containing monomers, and silicon-containing monomers .
Useful methacrylic monomers are preferred from the standpoint of availability and the balance of mechanical properties of the resulting copolymer.
From the viewpoint of molecular entanglement with the film-forming polymer (A) and solubility in a solvent, the number average molecular weight of the hydrophobic block (hereinafter referred to as “Mn”) is preferably 500 or more and 120,000 or less, Is more preferably 5,000 or more and 80,000 or less.

入手のし易さ、得られる共重合体の機械物性バランスの観点から、有用なメタクリルモノマーの例としては以下のものが挙げられるが、これらに限定される訳ではない:メタクリル酸メチル、メタクリル酸n−ブチル、メタクリル酸ラウリル、メタクリル酸ドデシル、メタクリル酸ステアリル、メタクリル酸2−エチルヘキシル、メタクリル酸グリシジル、メタクリル酸2−ヒドロキシエチル、メタクリル酸4−ヒドロキシブチル、メタクリル酸、ブレンマーPME−100、ブレンマーPME−200及びブレンマーPME−400。
このうち、前記膜形成ポリマー(A)がPVDFである場合、PVDFとの相溶性が良好な点でメタクリル酸メチルが特に好ましい。
Examples of useful methacrylic monomers from the viewpoint of easy availability and mechanical property balance of the resulting copolymer include, but are not limited to, the following: methyl methacrylate, methacrylic acid n-butyl, lauryl methacrylate, dodecyl methacrylate, stearyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl methacrylate, methacrylic acid, Blemmer PME-100, Blemmer PME -200 and Bremmer PME-400.
Among these, when the film-forming polymer (A) is PVDF, methyl methacrylate is particularly preferable from the viewpoint of good compatibility with PVDF.

<溶剤(III)>
前述の疎水性モノマー(b1)を溶液重合法で得る際に使用される溶剤(III)としては、例えば、トルエン等の炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;ジクロロメタン、クロロホルム等のハロゲン化炭化水素;アセトン等のケトン;メタノール等のアルコール;アセトニトリル等のニトリル;酢酸エチル等のビニルエステル;エチレンカーボネート等のカーボネート;及び超臨界二酸化炭素が挙げられる。これらは、単独で又は2種以上を組み合わせて使用することができる。
<Solvent (III)>
Examples of the solvent (III) used for obtaining the above-mentioned hydrophobic monomer (b1) by solution polymerization include hydrocarbons such as toluene; ethers such as diethyl ether and tetrahydrofuran; halogenated carbonization such as dichloromethane and chloroform. Examples include hydrogen; ketones such as acetone; alcohols such as methanol; nitriles such as acetonitrile; vinyl esters such as ethyl acetate; carbonates such as ethylene carbonate; and supercritical carbon dioxide. These can be used alone or in combination of two or more.

[親水性モノマー(b2)]
本発明において、親水性モノマー(b2)は、両親媒性共重合体を形成するものである。
ここで、「親水性」という用語は、そのセグメントが、水溶性若しくは水分散性、又は、一般的に水を吸収並びに/若しくは透過することが可能であるということを意味する。
親水性モノマー(b2)のうち、有用なエチレン性不飽和モノマーとしては、以下のものが挙げられるが、これらに限定される訳ではない:アクリル酸、メタクリル酸、並びにメタクリル酸及びアクリル酸の塩、エステル、無水物及びアミド;ジカルボン酸無水物;アクリル酸カルボキシエチル;アクリレートの親水性誘導体;スチレンの親水性誘導体;並びにアクリルアミド。
入手のし易さ、得られる共重合体の機械物性バランスの観点から、有用なアクリレートの親水性誘導体が好ましい。入手のし易さ、得られる共重合体の機械物性バランスの観点から、有用なアクリルモノマーの例としては以下のものが挙げられるが、これらに限定される訳ではない:アクリル酸メチル、アクリル酸n−ブチル、アクリル酸ラウリル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2−エチルヘキシル、アクリル酸グリシジル、アクリル酸2−ヒドロキシエチル、アクリル酸4−ヒドロキシブチル、アクリル酸。
また、親水性及び溶剤への溶解性の観点から、親水性ブロックのMnは、1,000〜160,000が好ましく、5,000〜60,000が好ましい。
[Hydrophilic monomer (b2)]
In the present invention, the hydrophilic monomer (b2) forms an amphiphilic copolymer.
Here, the term “hydrophilic” means that the segment is water soluble or water dispersible or generally capable of absorbing and / or transmitting water.
Among the hydrophilic monomers (b2), useful ethylenically unsaturated monomers include, but are not limited to: acrylic acid, methacrylic acid, and salts of methacrylic acid and acrylic acid Esters, anhydrides and amides; dicarboxylic anhydrides; carboxyethyl acrylate; hydrophilic derivatives of acrylates; hydrophilic derivatives of styrene;
From the viewpoint of easy availability and the balance of mechanical properties of the copolymer obtained, useful hydrophilic derivatives of acrylates are preferred. Examples of useful acrylic monomers include, but are not limited to, the following from the viewpoint of easy availability and the balance of mechanical properties of the resulting copolymer: methyl acrylate, acrylic acid n-butyl, lauryl acrylate, dodecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate, acrylic acid.
Further, from the viewpoint of hydrophilicity and solubility in a solvent, the Mn of the hydrophilic block is preferably 1,000 to 160,000, more preferably 5,000 to 60,000.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to this.

(FT−IR測定方法)
FT−IRのピーク強度比は、Varian UMA600を用い、赤外全反射吸収スペクトル法(ATR法)により測定した。尚、測定は、60℃のエタノール80%水溶液に4時間浸漬し洗浄した多孔質膜表面について行った。
(FT-IR measurement method)
The peak intensity ratio of FT-IR was measured by an infrared total reflection absorption spectrum method (ATR method) using Varian UMA600. The measurement was performed on the surface of the porous membrane which was immersed in an 80% ethanol aqueous solution at 60 ° C. for 4 hours and washed.

(表面開孔率測定方法)
表面開孔率及び平均表面孔径は、走査型電子顕微鏡(日本電子(株)製、製品名:JSM−6340F)により観察された膜表面について、Image Proによる画像解析により算出した値である。
(Surface open area measurement method)
The surface open area ratio and the average surface pore diameter are values calculated by image analysis using Image Pro for the film surface observed with a scanning electron microscope (manufactured by JEOL Ltd., product name: JSM-6340F).

(透水量測定方法)
多孔質膜の片端をウレタン樹脂(日本ポリウレタン(株)、コロネート4403、ニッポラン4221)によりポッティングし、圧力タンクにつないだホースにポッティングしていない側から入れた。圧力タンクに100kPa、10kPaの圧力をかけ、ポッティング側から出てきた水の量を測定した。その水の量を、有効膜面積、測定時間、測定圧力で除すことで透水量を算出した。
(Water permeability measurement method)
One end of the porous membrane was potted with a urethane resin (Nippon Polyurethane Co., Ltd., Coronate 4403, Nippon Run 4221), and inserted into the hose connected to the pressure tank from the side not potted. A pressure of 100 kPa and 10 kPa was applied to the pressure tank, and the amount of water coming out from the potting side was measured. The water permeability was calculated by dividing the amount of water by the effective membrane area, measurement time, and measurement pressure.

(Mn、Mw/Mnの測定方法)
両親媒性共重合体(B)のMn及びMw/Mnは、GPC(東ソー(株)製、「HLC−8220」(商品名))を使用して以下の条件で求めた。
カラム:TSK GUARD COLUMN SUPER HZ−L(4.6×35mm)と2本のTSK−GEL SUPER HZM−N(6.0×150mm)を直列に接続
溶離液:クロロホルム、DMF又はTHF
測定温度:40℃
流速:0.6mL/分
尚、Mw及びMnは、Polymer Laboratories製のポリメタクリル酸メチル(Mp(ピークトップ分子量)が141,500、55,600、10,290及び1,590の4種)を用いて作成した検量線を使用して求めた。
(Measurement method of Mn, Mw / Mn)
Mn and Mw / Mn of the amphiphilic copolymer (B) were determined under the following conditions using GPC (“HLC-8220” (trade name) manufactured by Tosoh Corporation).
Column: TSK GUARD COLUMN SUPER HZ-L (4.6 × 35 mm) and two TSK-GEL SUPER HZM-N (6.0 × 150 mm) connected in series Eluent: Chloroform, DMF or THF
Measurement temperature: 40 ° C
Flow rate: 0.6 mL / min In addition, Mw and Mn are polymethyl methacrylate (Mp (peak top molecular weight) 141,500, 55,600, 10,290, and 1,590) manufactured by Polymer Laboratories). It was obtained using a calibration curve prepared using

(合成例1;コバルト連鎖移動剤CoBF−1の合成)
撹拌装置を備えた反応装置中に、窒素雰囲気下で、酢酸コバルト(II)四水和物(和光純薬(株)製、和光特級)1.00g、ジフェニルグリオキシム(東京化成(株)製、EPグレード)1.93g及び予め窒素バブリングにより脱酸素したジエチルエーテル(関東化学(株)製、特級)80mlを入れ、室温で30分間攪拌した。次いで、三フッ化ホウ素ジエチルエーテル錯体(東京化成(株)製、EPグレード)10mlを加え、更に6時間攪拌した。混合物をろ過し、固体をジエチルエーテル(関東化学(株)製、特級)で洗浄し、15時間真空乾燥して、赤褐色固体であるコバルト連鎖移動剤CoBF−1を2.12g得た。
(Synthesis Example 1; Synthesis of Cobalt Chain Transfer Agent CoBF-1)
In a reactor equipped with a stirrer, 1.00 g of cobalt acetate (II) tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd., Wako Special Grade), diphenylglyoxime (manufactured by Tokyo Chemical Industry Co., Ltd.) under a nitrogen atmosphere. , EP grade) 1.93 g and 80 ml of diethyl ether (special grade, manufactured by Kanto Chemical Co., Ltd.) previously deoxygenated by nitrogen bubbling were added and stirred at room temperature for 30 minutes. Next, 10 ml of boron trifluoride diethyl ether complex (manufactured by Tokyo Chemical Industry Co., Ltd., EP grade) was added, and the mixture was further stirred for 6 hours. The mixture was filtered, and the solid was washed with diethyl ether (manufactured by Kanto Chemical Co., Ltd., special grade) and dried in vacuo for 15 hours to obtain 2.12 g of a cobalt chain transfer agent CoBF-1 as a reddish brown solid.

(合成例2;分散剤1の合成)
撹拌機、冷却管及び温度計を備えた反応装置中に、17%水酸化カリウム水溶液61.6wt%、メタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)19.1wt%及び脱イオン水19.3wt%を仕込んだ。次いで、反応装置内の液を室温にて撹拌し、発熱ピークを確認した後、更に4時間撹拌した。この後、反応装置中の反応液を室温まで冷却してメタクリル酸カリウム水溶液を得た。
次いで、撹拌機、冷却管及び温度計を備えた重合装置中に、脱イオン水900wt%、42%メタクリル酸2−スルホエチルナトリウム水溶液(三菱レイヨン(株)製、商品名:アクリエステルSEM−Na)70wt%、上記のメタクリル酸カリウム水溶液16wt%及びメタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)7wt%を入れて撹拌し、重合装置内を窒素置換しながら、50℃に昇温した。その中に、重合開始剤として2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(和光純薬工業(株)製、商品名:V−50)0.053wt%を添加し、更に60℃に昇温した。重合開始剤の投入後、15分毎にメタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)1.4wt%を計5回、分割添加した。この後、重合装置内の液を撹拌しながら60℃で6時間保持した後、室温に冷却して、透明な水溶液である固形分8%の分散剤1を得た。
(Synthesis Example 2; Synthesis of Dispersant 1)
In a reactor equipped with a stirrer, a condenser tube and a thermometer, 61.6 wt% of 17% potassium hydroxide aqueous solution, 19.1 wt% of methyl methacrylate (trade name: Acryester M manufactured by Mitsubishi Rayon Co., Ltd.) and Charged 19.3 wt% of deionized water. Subsequently, the liquid in the reaction apparatus was stirred at room temperature, and after confirming an exothermic peak, it was further stirred for 4 hours. Thereafter, the reaction solution in the reaction apparatus was cooled to room temperature to obtain a potassium methacrylate aqueous solution.
Next, in a polymerization apparatus equipped with a stirrer, a condenser tube and a thermometer, deionized water 900 wt%, 42% aqueous 2-sulfoethyl sodium methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester SEM-Na) ) 70 wt%, potassium methacrylate aqueous solution 16 wt% and methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M) 7 wt% were added and stirred. The temperature was raised to. In the mixture, 2,2′-azobis (2-methylpropionamidine) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-50) as a polymerization initiator was added in an amount of 0.053 wt%. The temperature was raised to 60 ° C. After the introduction of the polymerization initiator, 1.4 wt% of methyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acryester M) was added in 15 portions every 15 minutes. Thereafter, the liquid in the polymerization apparatus was kept at 60 ° C. for 6 hours while stirring, and then cooled to room temperature, whereby Dispersant 1 having a solid content of 8% was obtained as a transparent aqueous solution.

(合成例3;疎水性モノマー(b1)の合成)
冷却管付フラスコに、メタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)100wt%、脱イオン水150wt%、硫酸ナトリウム1.39wt%、分散剤1、1.53wt%、CoBF−1、0.00075wt%を仕込んだ。フラスコ内の液を70℃に加温した状態で、CoBF−1を溶解させ、窒素バブリングにより内wt%を窒素置換した。次いで、AIBN、1質量wt%を加えた後、内温を70℃に保った状態で、6時間保持し、重合を完結させた。この後、重合反応物を室温まで冷却し、更にろ過して重合体を回収した。得られた重合体を水洗後、50℃で一晩真空乾燥することにより疎水性モノマー(b1)を得た。疎水性モノマー(b1)のMnは7,000、Mw/Mnは3.0であった。疎水性モノマー(b1)の末端二重結合の導入率はほぼ100%であった。疎水性モノマー(b1)は、前記の式(1)において、Rはメチル基であった。
(Synthesis Example 3; Synthesis of hydrophobic monomer (b1))
In a flask with a condenser tube, methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M) 100 wt%, deionized water 150 wt%, sodium sulfate 1.39 wt%, dispersant 1, 1.53 wt%, CoBF −1, 0.00075 wt% was charged. In a state where the liquid in the flask was heated to 70 ° C., CoBF-1 was dissolved, and the inner wt% was replaced with nitrogen by nitrogen bubbling. Subsequently, after adding AIBN and 1 mass%, it hold | maintained for 6 hours in the state which maintained internal temperature at 70 degreeC, and superposition | polymerization was completed. Thereafter, the polymerization reaction product was cooled to room temperature and further filtered to recover the polymer. The obtained polymer was washed with water and then vacuum-dried at 50 ° C. overnight to obtain a hydrophobic monomer (b1). Mn of the hydrophobic monomer (b1) was 7,000, and Mw / Mn was 3.0. The introduction rate of the terminal double bond of the hydrophobic monomer (b1) was almost 100%. In the hydrophobic monomer (b1), R in the formula (1) was a methyl group.

(合成例4;両親媒性共重合体(B−1)の合成)
冷却管付フラスコに、疎水性モノマーとしてメタクリル酸メチル(三菱レイヨン(株)製)(65wt%)、親水性モノマー(b2)としてHEA(アクリル酸2−ヒドロキシエチル(和光純薬(株)製、和光一級))35wt%及び溶剤としてDMAc(N,N−ジメチルアセトアミド、和光純薬(株)製、和光特級)150wt%を含有するモノマー組成物を投入し、窒素バブリングにより内wt%を窒素置換した。次いで、モノマー組成物を加温して内温を70℃に保った状態で、ラジカル重合開始剤としてAIBN0.1wt%(和光純薬(株)、和光特級)をモノマー組成物に加えた後、4時間保持し、次いで80℃に昇温して30分間保持し、重合を完結させ、重合反応物を得た。この後、重合反応物を室温まで冷却し、脱イオン水で再沈殿させた。再沈殿によって析出したポリマーを回収し、50℃及び50mmHg(6.67kPa)以下の条件で一晩真空乾燥して、グラフト共重合体である両親媒性共重合体(B−1)(PMMA−g−PHEA)を得た。得られた両親媒性共重合体(B−1)の収率は、ほぼ100%であった。両親媒性共重合体(B−1)のMnは71,000であり、Mw/Mnは3.0であった。
(Synthesis Example 4; Synthesis of Amphiphilic Copolymer (B-1))
In a flask with a condenser tube, methyl methacrylate (Mitsubishi Rayon Co., Ltd.) (65 wt%) as a hydrophobic monomer, HEA (2-hydroxyethyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrophilic monomer (b2), First, a monomer composition containing 35 wt% and DMAc (N, N-dimethylacetamide, manufactured by Wako Pure Chemical Industries, Ltd., Wako Special Grade) 150 wt% as a solvent was added, and the inner wt% was replaced with nitrogen by nitrogen bubbling. did. Next, after heating the monomer composition and maintaining the internal temperature at 70 ° C., AIBN 0.1 wt% (Wako Pure Chemical Industries, Ltd., Wako Special Grade) was added to the monomer composition as a radical polymerization initiator, It was held for 4 hours, then heated to 80 ° C. and held for 30 minutes to complete the polymerization, and a polymerization reaction product was obtained. Thereafter, the polymerization reaction product was cooled to room temperature and reprecipitated with deionized water. The polymer precipitated by reprecipitation was collected and dried under vacuum overnight at 50 ° C. and 50 mmHg (6.67 kPa) or less to obtain an amphiphilic copolymer (B-1) (PMMA-) as a graft copolymer. g-PHEA) was obtained. The yield of the obtained amphiphilic copolymer (B-1) was almost 100%. Mn of the amphiphilic copolymer (B-1) was 71,000, and Mw / Mn was 3.0.

(合成例5;両親媒性共重合体(B’−1)の合成)
疎水性モノマー(b1)としてメタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)50wt%、親水性モノマー(b2)としてHEA(アクリル酸2−ヒドロキシエチル(和光純薬(株)製、和光一級))50wt%、トルエン(和光純薬(株)製、試薬特級)150wt%の条件で、ランダム共重合体である両親媒性共重合体(B’−1)(PMMA−r−PHEA)を得た。両親媒性共重合体(B’−1)のMnは89,000であり、Mw/Mnは6.8であった。
(Synthesis Example 5; Synthesis of Amphiphilic Copolymer (B′-1))
Hydrophobic monomer (b1) methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M) 50 wt%, hydrophilic monomer (b2) HEA (2-hydroxyethyl acrylate (Wako Pure Chemical Industries, Ltd.) Manufactured by Wako No. 1)) 50 wt%, toluene (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) 150 wt%, amphiphilic copolymer (B′-1) (PMMA-r) which is a random copolymer -PHEA). Mn of the amphiphilic copolymer (B′-1) was 89,000, and Mw / Mn was 6.8.

(合成例6;両親媒性共重合体(B’−2)の合成)
疎水性モノマー(b1)としてメタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)70wt%、親水性モノマー(b2)としてHEMA(メタクリル酸2−ヒドロキシエチル(三菱レイヨン(株)製)30wt%を使用する以外は合成例5と同様にランダム共重合体である両親媒性共重合体(B’−2)(PMMA−r−HEMA)を得た。両親媒性共重合体(B’−1)のMnは105,000であり、Mw/Mnは3.0であった。
(Synthesis Example 6; Synthesis of Amphiphilic Copolymer (B′-2))
Methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M) 70 wt% as the hydrophobic monomer (b1), and HEMA (2-hydroxyethyl methacrylate (Mitsubishi Rayon Co., Ltd.) as the hydrophilic monomer (b2) ) An amphiphilic copolymer (B′-2) (PMMA-r-HEMA), which is a random copolymer, was obtained in the same manner as in Synthesis Example 5 except that 30 wt% was used. The Mn of B′-1) was 105,000, and Mw / Mn was 3.0.

(合成例7;両親媒性共重合体(B’−3)の合成)
疎水性モノマー(b1)(メタクリル酸メチル)70wt%、親水性モノマー(b2)としてHEA(アクリル酸2−ヒドロキシエチル(和光純薬(株)製、和光一級))30wt%を使用する以外は合成例4と同様に、グラフト共重合体である両親媒性共重合体(B’−3)(PMMA−g−HEMA)を得た。両親媒性共重合体(B’−3)のMnは20,000であり、Mw/Mnは1.7であった。
(Synthesis Example 7; Synthesis of Amphiphilic Copolymer (B′-3))
Synthesis except that 70 wt% of the hydrophobic monomer (b1) (methyl methacrylate) and 30 wt% of HEA (2-hydroxyethyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd., Wako First Grade)) as the hydrophilic monomer (b2) are used. In the same manner as in Example 4, an amphiphilic copolymer (B′-3) (PMMA-g-HEMA), which is a graft copolymer, was obtained. Mn of the amphiphilic copolymer (B′-3) was 20,000, and Mw / Mn was 1.7.

(合成例8;両親媒性共重合体(B−2)の合成)
疎水性モノマー(b1)としてメタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)50wt%、親水性モノマー(b2)としてHEMA(メタクリル酸2−ヒドロキシエチル(三菱レイヨン(株)製)50wt%を使用する以外は合成例5と同様にランダム共重合体である両親媒性共重合体(B’−2)(PMMA−r−HEMA)を得た。両親媒性共重合体(B’−1)のMnは260,000であり、Mw/Mnは4.2であった。
(Synthesis Example 8; Synthesis of Amphiphilic Copolymer (B-2))
Methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M) 50 wt% as the hydrophobic monomer (b1), and HEMA (2-hydroxyethyl methacrylate (Mitsubishi Rayon Co., Ltd.) as the hydrophilic monomer (b2) ) An amphiphilic copolymer (B′-2) (PMMA-r-HEMA), which is a random copolymer, was obtained in the same manner as in Synthesis Example 5 except that 50 wt% was used. The Mn of B′-1) was 260,000, and Mw / Mn was 4.2.

(合成例9;両親媒性共重合体(B’−4)の合成)
疎水性モノマー(b1)としてメタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)50wt%、親水性モノマー(b2)としてHEMA(メタクリル酸2−ヒドロキシエチル(三菱レイヨン(株)製)50wt%を使用する以外は合成例5と同様にランダム共重合体である両親媒性共重合体(B’−2)(PMMA−r−HEMA)を得た。両親媒性共重合体(B’−1)のMnは129,000であり、Mw/Mnは3.2であった。
(Synthesis Example 9; Synthesis of Amphiphilic Copolymer (B′-4))
Methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M) 50 wt% as the hydrophobic monomer (b1), and HEMA (2-hydroxyethyl methacrylate (Mitsubishi Rayon Co., Ltd.) as the hydrophilic monomer (b2) ) An amphiphilic copolymer (B′-2) (PMMA-r-HEMA), which is a random copolymer, was obtained in the same manner as in Synthesis Example 5 except that 50 wt% was used. The Mn of B′-1) was 129,000 and Mw / Mn was 3.2.

表中の略号は以下の化合物を示す。
MMA:メタクリル酸メチル(三菱レイヨン(株)製、商品名:アクリエステルM)
HEA:アクリル酸2−ヒドロキシエチル(和光純薬(株)製、和光一級)
HEMA:メタクリル酸2−ヒドロキシエチル(三菱レイヨン(株)製、商品名:亜クリエステルHOMA)
PME−400(日本油脂(株)製、ブレンマーPME−400(商品名))
The abbreviations in the table indicate the following compounds.
MMA: Methyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acryester M)
HEA: 2-hydroxyethyl acrylate (Wako Pure Chemical Industries, Ltd., Wako first grade)
HEMA: 2-hydroxyethyl methacrylate (Mitsubishi Rayon Co., Ltd., trade name: Acrylic ester HOMA)
PME-400 (Nippon Yushi Co., Ltd., Bremer PME-400 (trade name))

[実施例1]
膜形成ポリマー(A)としてKynar761A(アルケマ社製、PVDFホモポリマー、商品名、Mw=550,000)を15wt%、両親媒性共重合体(B)として前記共重合体(B−1)を10wt%、溶剤としてNMP(関東化学(株)製、特級)を75wt%含むポリマー溶液を、75℃に加温した状態で編み紐上に塗布し、常温の純水中に浸漬し、中空状多孔質膜を作製した。
得られた中空状多孔質膜について、FT−IR、表面開孔率、表面平均孔径及び透水量を測定した。結果を表1に示す。
[Example 1]
15 wt% of Kynar 761A (manufactured by Arkema, PVDF homopolymer, trade name, Mw = 550,000) as the film-forming polymer (A), and the copolymer (B-1) as the amphiphilic copolymer (B) A polymer solution containing 10 wt% and 75 wt% NMP (manufactured by Kanto Chemical Co., Ltd., special grade) as a solvent is applied on a braided string while being heated to 75 ° C., immersed in pure water at room temperature, and hollow A porous membrane was prepared.
About the obtained hollow porous membrane, FT-IR, the surface opening rate, the surface average pore diameter, and the water permeation amount were measured. The results are shown in Table 1.

[実施例2]
両親媒性共重合体(B)として前記共重合体(B−2)を使用する以外は、実施例1と同様に中空状多孔質膜を作製した。
得られた中空状多孔質膜について、FT−IR、表面開孔率、表面平均孔径及び透水量を測定した。結果を表1に示す。
[Example 2]
A hollow porous membrane was produced in the same manner as in Example 1 except that the copolymer (B-2) was used as the amphiphilic copolymer (B).
About the obtained hollow porous membrane, FT-IR, the surface opening rate, the surface average pore diameter, and the water permeation amount were measured. The results are shown in Table 1.

[比較例1]
両親媒性共重合体(B)として前記共重合体(B’−1)を使用する以外は、実施例1と同様に中空状多孔質膜を作製した。
得られた中空状多孔質膜について、FT−IR、表面開孔率、表面平均孔径及び透水量を測定した。結果を表1に示す。
[Comparative Example 1]
A hollow porous membrane was produced in the same manner as in Example 1 except that the copolymer (B′-1) was used as the amphiphilic copolymer (B).
About the obtained hollow porous membrane, FT-IR, the surface opening rate, the surface average pore diameter, and the water permeation amount were measured. The results are shown in Table 1.

[比較例2]
両親媒性共重合体(B)として前記共重合体(B’−2)を使用する以外は、実施例1と同様に中空状多孔質膜を作製した。
得られた中空状多孔質膜について、FT−IR、表面開孔率、表面平均孔径及び透水量を測定した。結果を表1に示す。
[Comparative Example 2]
A hollow porous membrane was produced in the same manner as in Example 1 except that the copolymer (B′-2) was used as the amphiphilic copolymer (B).
About the obtained hollow porous membrane, FT-IR, the surface opening rate, the surface average pore diameter, and the water permeation amount were measured. The results are shown in Table 1.

[比較例3]
両親媒性共重合体(B)として前記共重合体(B’−3)を使用する以外は、実施例1と同様に中空状多孔質膜を作製した。
得られた中空状多孔質膜について、FT−IR、表面開孔率、表面平均孔径及び透水量を測定した。結果を表1に示す。
[Comparative Example 3]
A hollow porous membrane was produced in the same manner as in Example 1 except that the copolymer (B′-3) was used as the amphiphilic copolymer (B).
About the obtained hollow porous membrane, FT-IR, the surface opening rate, the surface average pore diameter, and the water permeation amount were measured. The results are shown in Table 1.

[比較例4]
両親媒性共重合体(B)として前記共重合体(B’−4)を使用する以外は、実施例1と同様に中空状多孔質膜を作製した。
得られた中空状多孔質膜について、FT−IR、表面開孔率、表面平均孔径及び透水量を測定した。結果を表1に示す。
[Comparative Example 4]
A hollow porous membrane was produced in the same manner as in Example 1 except that the copolymer (B′-4) was used as the amphiphilic copolymer (B).
About the obtained hollow porous membrane, FT-IR, the surface opening rate, the surface average pore diameter, and the water permeation amount were measured. The results are shown in Table 1.

表1より、多孔質膜表面のFT−IRのピーク強度比(1726〜1730cm−1に現れるピークの強度/1398〜1402cm−1に現れるピークの強度)が0.4以上10以下である多孔質膜であり、かつ、表面開孔率が20%以上50%以下である実施例1、2は、測定圧力100kPa、10kPaともに高い透水性能を発現した。多孔質膜の実使用圧力である3〜30kPaにおいても、実施例1及び2は十分な透水量を示した。
一方、前記ピーク強度比が前記範囲外の比較例1、2及び4、並びに、表面開孔率が前記範囲外の比較例3は、測定圧力100kPa、10kPaでの透水性量が低く、特に10kPaでの透水性能が低かった。
From Table 1, the porous FT-IR peak intensity ratio of the porous membrane surface (the intensity of the peak appearing in the intensity peak / 1398~1402cm -1 appearing in 1726~1730cm -1) is 0.4 to 10 Examples 1 and 2 which are membranes and have a surface porosity of 20% or more and 50% or less exhibited high water permeability at both measurement pressures of 100 kPa and 10 kPa. Even at 3 to 30 kPa, which is the actual use pressure of the porous membrane, Examples 1 and 2 showed sufficient water permeability.
On the other hand, Comparative Examples 1, 2 and 4 where the peak intensity ratio is outside the range, and Comparative Example 3 where the surface porosity is outside the range have a low water permeability at a measurement pressure of 100 kPa and 10 kPa, particularly 10 kPa. The water permeability in was low.

Claims (5)

膜形成ポリマー(A)並びに、疎水性モノマー(b1)及び親水性モノマー(b2)からなる両親媒性共重合体(B)を含む中空状多孔質膜であって、
前記多孔質膜表面のFT−IRのピーク強度比(1726〜1730cm−1に現れるピークの強度/1398〜1402cm−1に現れるピークの強度)が0.4以上10以下である多孔質膜であり、かつ、表面開孔率が20%以上50%以下である、中空状多孔質膜。
A hollow porous membrane comprising a film-forming polymer (A) and an amphiphilic copolymer (B) comprising a hydrophobic monomer (b1) and a hydrophilic monomer (b2),
FT-IR peak intensity ratio (peak intensity appearing at 1726 to 1730 cm −1 / peak intensity appearing at 1398 to 1402 cm −1) on the porous film surface is 0.4 to 10 A hollow porous membrane having a surface porosity of 20% or more and 50% or less.
膜形成ポリマー(A)がポリフッ化ビニリデンである、請求項1記載の中空状多孔質膜。   The hollow porous membrane according to claim 1, wherein the film-forming polymer (A) is polyvinylidene fluoride. 前記親水性モノマー(b2)が(メタ)アクリルモノマーである、請求項1又は2記載の中空状多孔質膜。   The hollow porous membrane according to claim 1 or 2, wherein the hydrophilic monomer (b2) is a (meth) acrylic monomer. 前記両親媒性共重合体(B)の主成分がグラフト共重合体である、請求項1〜3の何れか一項に記載の中空状多孔質膜。   The hollow porous membrane according to any one of claims 1 to 3, wherein a main component of the amphiphilic copolymer (B) is a graft copolymer. 前記疎水性モノマー(b1)ユニットが5wt%以上99wt%以下である、請求項1〜4の何れか一項に記載の中空状多孔質膜。   The hollow porous membrane according to any one of claims 1 to 4, wherein the hydrophobic monomer (b1) unit is 5 wt% or more and 99 wt% or less.
JP2016075511A 2015-09-02 2016-04-05 Hollow porous membrane Active JP6805527B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015172562 2015-09-02
JP2015172562 2015-09-02

Publications (2)

Publication Number Publication Date
JP2017047411A true JP2017047411A (en) 2017-03-09
JP6805527B2 JP6805527B2 (en) 2020-12-23

Family

ID=58278355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075511A Active JP6805527B2 (en) 2015-09-02 2016-04-05 Hollow porous membrane

Country Status (1)

Country Link
JP (1) JP6805527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172077A1 (en) * 2018-03-07 2019-09-12 旭化成株式会社 Hollow-fiber membrane and method for producing hollow-fiber membrane
WO2020008820A1 (en) * 2018-07-05 2020-01-09 帝人株式会社 Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284326A (en) * 1990-03-29 1991-12-16 Kuraray Co Ltd Porous hollow fiber membrane
JP2010104984A (en) * 2008-09-30 2010-05-13 Toray Ind Inc Polysulfone-based hollow fiber membrane module and method of manufacturing the same
JP2011173115A (en) * 2010-01-29 2011-09-08 Toray Ind Inc Hollow fiber membrane and method for producing hollow fiber membrane
JP2012506772A (en) * 2008-10-28 2012-03-22 アーケマ・インコーポレイテッド Moisture flowable polymer membrane
WO2014139977A1 (en) * 2013-03-13 2014-09-18 Polymem Copolymer having amphiphilic blocks, and use thereof for manufacturing polymer filtration membranes
WO2015008668A1 (en) * 2013-07-18 2015-01-22 株式会社クラレ Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284326A (en) * 1990-03-29 1991-12-16 Kuraray Co Ltd Porous hollow fiber membrane
JP2010104984A (en) * 2008-09-30 2010-05-13 Toray Ind Inc Polysulfone-based hollow fiber membrane module and method of manufacturing the same
JP2012506772A (en) * 2008-10-28 2012-03-22 アーケマ・インコーポレイテッド Moisture flowable polymer membrane
JP2011173115A (en) * 2010-01-29 2011-09-08 Toray Ind Inc Hollow fiber membrane and method for producing hollow fiber membrane
WO2014139977A1 (en) * 2013-03-13 2014-09-18 Polymem Copolymer having amphiphilic blocks, and use thereof for manufacturing polymer filtration membranes
WO2015008668A1 (en) * 2013-07-18 2015-01-22 株式会社クラレ Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172077A1 (en) * 2018-03-07 2019-09-12 旭化成株式会社 Hollow-fiber membrane and method for producing hollow-fiber membrane
JP7095072B2 (en) 2018-03-07 2022-07-04 旭化成株式会社 Hollow fiber membrane and method for manufacturing hollow fiber membrane
WO2020008820A1 (en) * 2018-07-05 2020-01-09 帝人株式会社 Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition

Also Published As

Publication number Publication date
JP6805527B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP5858154B2 (en) Resin composition for porous membrane, membrane-forming stock solution, method for producing porous membrane, method for producing porous membrane for hollow fiber membrane, method for producing porous membrane for water treatment device, production of porous membrane for electrolyte support Method and method for producing porous membrane for separator
US9844759B2 (en) Polymer composition and porous membrane
CN107759753B (en) Fluoropolymer and film (II) comprising fluoropolymer
AU2016202721B2 (en) Self-wetting porous membranes (I)
KR102526940B1 (en) Porous membrane, membrane module, water treatment device, and method for producing porous membrane
JP6524806B2 (en) Method of manufacturing porous membrane
JP6805527B2 (en) Hollow porous membrane
CN104558452B (en) Preparation method of polyvinylidene fluoride-polyvinylpyrrolidone (PVDF-PVP) block copolymer
CN110894250B (en) Anionic chlorine-containing amphiphilic polymer and preparation method thereof
TW201813984A (en) Fluoropolymers and membranes comprising fluoropolymers (III)
JP2018069115A (en) Method for producing porous membrane
CN110894258A (en) Nonionic chlorine-containing amphiphilic polymer and separation membrane containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6805527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151