JP2012005993A - Coagulation treatment method for colored waste water - Google Patents

Coagulation treatment method for colored waste water Download PDF

Info

Publication number
JP2012005993A
JP2012005993A JP2010146254A JP2010146254A JP2012005993A JP 2012005993 A JP2012005993 A JP 2012005993A JP 2010146254 A JP2010146254 A JP 2010146254A JP 2010146254 A JP2010146254 A JP 2010146254A JP 2012005993 A JP2012005993 A JP 2012005993A
Authority
JP
Japan
Prior art keywords
added
flocculant
polymer flocculant
polymer
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010146254A
Other languages
Japanese (ja)
Other versions
JP5843428B2 (en
Inventor
Shigeru Tanabe
茂 田辺
Atsushi Nagamine
温 長嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2010146254A priority Critical patent/JP5843428B2/en
Publication of JP2012005993A publication Critical patent/JP2012005993A/en
Application granted granted Critical
Publication of JP5843428B2 publication Critical patent/JP5843428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coagulation treatment method capable of drastically reducing chromaticity and obtaining good treated water in coagulation treatment of colored waste water.SOLUTION: Inorganic coagulant and amidine-based coagulant are added to and mixed with the colored waste water and pH control to a range of 5.0-7.0 is performed as necessary. Then, polymer coagulant is added to generate coagulation flock. Next, solid-liquid separation of the generated coagulation flock is performed. In this favorable embodiment, the polymer coagulant is anionic or non-ionic polymer coagulant including a sulfonic acid group, and consecutive addition is performed when the polymer coagulant is added to generate the coagulation flock.

Description

本発明は、着色廃水の凝集処理方法に関し、詳しくは、処理水の色度を大幅に低減し得る着色廃水の凝集処理方法に関する。   The present invention relates to a coagulation treatment method for colored wastewater, and more particularly to a coagulation treatment method for colored wastewater that can significantly reduce the chromaticity of the treatment water.

染色廃水、ダストコントロール用品の洗浄廃水、洗濯廃水、その他、様々な工場施設より発生する着色廃水の凝集処理は、一般的に、無機凝集剤を添加後に、更に、アニオン性高分子凝集剤を添加し、凝集フロックを生成させて凝集沈殿又は加圧浮上させるというものである。そして、浄化された処理水は、河川、海域などに放流されるのが一般的である。   In the agglomeration treatment of dyeing wastewater, washing wastewater for dust control products, laundry wastewater, and other colored wastewater generated from various factory facilities, an inorganic polymer flocculant is generally added after adding an inorganic flocculant. , Agglomerating flocs are generated and agglomerated sedimentation or pressurized levitation is performed. The purified treated water is generally discharged into rivers and sea areas.

従来より、放流水質の規制強化に対処するため、処理装置の改良や廃水処理方法の改善により水質の向上が図られてきた。しかし、着色廃水は、BOD、SS等が規制値を満足していても、色度が高い場合が多く、地域住民に著しい汚染感を与えてしまう場合が多い。そのため、色度の規制が設定される場合があり、着色廃水に対する効率的な脱色が強く望まれている。   Conventionally, in order to cope with stricter regulations on the quality of discharged water, water quality has been improved by improving treatment equipment and wastewater treatment methods. However, colored wastewater often has high chromaticity even if BOD, SS, etc. satisfy the regulation values, and often gives a significant sense of contamination to local residents. Therefore, there are cases where chromaticity regulations are set, and there is a strong demand for efficient decolorization of colored wastewater.

一般的に、処理水の水質は、凝集分離で用いる硫酸アルミニウム(以下「バンド」と記す)、ポリ塩化アルミニウム(以下「PAC」と記す)、塩化第二鉄などの無機凝集剤の添加量を増加させると向上する。しかし、色度については、ある程度は無機凝集剤の添加で除去できるが、満足できるレベルまで脱色することは困難な場合が多い。更に、着色の原因物質が多様なこと及び廃水中に共存する種々の物質により凝集効果に影響を受けることから安定した脱色性能を得ることが困難な場合が多い。   In general, the quality of treated water is determined by the amount of inorganic flocculant added, such as aluminum sulfate (hereinafter referred to as “band”), polyaluminum chloride (hereinafter referred to as “PAC”), ferric chloride, and the like used for coagulation and separation. Increase to increase. However, the chromaticity can be removed to some extent by adding an inorganic flocculant, but it is often difficult to decolorize to a satisfactory level. Furthermore, it is often difficult to obtain a stable decolorization performance because the causative substances of coloring are various and the coagulation effect is affected by various substances coexisting in the wastewater.

上記のような状況下、処理水の脱色性の向上を図る目的で水溶性カチオン重合体の一種である有機凝結剤の適用が提案されている。有機凝結剤は、分子内に多数のカチオン基を有する高分子電解質であるため、無機凝集剤と同様に被処理水中の懸濁物質の荷電を中和する目的で用いられる。有機凝結剤は、無機凝集剤よりもカチオンの電荷密度が高いため、その凝結作用は無機凝集剤より遥かに大きいという特徴を持っている。また、有機凝結剤は、懸濁物質を中和するだけでなく、負に帯電しているリグニンスルホン酸、フミン酸などの溶解物質と反応して不溶性塩を形成する作用があり、色度及びCODの減少効果も期待される。   Under the circumstances as described above, application of an organic coagulant, which is a kind of water-soluble cationic polymer, has been proposed for the purpose of improving the decolorization of treated water. Since the organic coagulant is a polyelectrolyte having a large number of cationic groups in the molecule, it is used for the purpose of neutralizing the charge of the suspended substance in the water to be treated in the same manner as the inorganic coagulant. Since the organic coagulant has a higher charge density of the cation than the inorganic coagulant, the coagulant has a feature that it is much larger than the inorganic coagulant. In addition, the organic coagulant not only neutralizes suspended substances but also reacts with negatively charged dissolved substances such as lignin sulfonic acid and humic acid to form insoluble salts. The reduction effect of COD is also expected.

現在用いられている有機凝結剤の代表的なものとしては、アルキルアミン・エピクロルヒドリン縮合物、アルキレンジクロライドとポリアルキレンポリアミンの縮合物、ジシアンジアミド・ホルマリン縮合物、ジメチルジアリルアンモニウムクロライド重合体などの低分子量かつ強カチオン密度の水溶性ポリマーが挙げられる。   Representative organic coagulants currently used include low molecular weights such as alkylamine / epichlorohydrin condensates, alkylene dichloride and polyalkylene polyamine condensates, dicyandiamide / formalin condensates, and dimethyldiallylammonium chloride polymers. Examples include water-soluble polymers having a strong cation density.

上記のような有機凝結剤を用いた脱色処理方法としては、例えば、コーヒー廃水などの色度の高い廃水を生物処理して得られた処理水に無機凝集剤及び有機凝結剤(第2級アミンとエピクロロヒドリンとの縮重合体、ポリジアリルジメチルアンモニウムクロライド、ジシアンジアミド系カチオン性凝結剤、ポリアクリルアミド系カチオン性凝結剤など)を添加後、高分子凝集剤を用いて凝集分離する方法(特許文献1)、染料廃水に無機凝集剤を添加後、ポリビニルアミンを用いて凝集処理する脱色方法(特許文献2)が提案されている。   As a decoloring treatment method using the organic coagulant as described above, for example, an inorganic flocculant and an organic coagulant (secondary amine) are added to treated water obtained by biological treatment of waste water with high chromaticity such as coffee waste water. A method of coagulating and separating using a polymer flocculant after adding a polycondensation polymer of chloroquine and epichlorohydrin, polydiallyldimethylammonium chloride, dicyandiamide cationic coagulant, polyacrylamide cationic coagulant, etc. (patent) Document 1), a decolorization method (Patent Document 2) in which an inorganic flocculant is added to dye wastewater and then agglomeration treatment is performed using polyvinylamine has been proposed.

しかし、何れの方法でも、ある程度の脱色効果が得られるものの、種々の着色廃水に対し満足のいく脱色効果が得られるような凝集処理方法は未だ提案されていない。   However, although any method can obtain a certain degree of decolorization effect, no coagulation treatment method has yet been proposed so that a satisfactory decolorization effect can be obtained for various colored wastewaters.

特開2003−181491号公報JP 2003-181491 A 特開平8−81519号公報Japanese Patent Laid-Open No. 8-81519

本発明は、上記実情に鑑みなされたものであり、その目的は、着色廃水の凝集処理において、処理水の色度を大幅に低減することが出来、見た目にも満足できる脱色効果が得られる凝集処理方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to agglomerate that can greatly reduce the chromaticity of the treated water in the agglomeration treatment of the colored wastewater, and can provide a decoloring effect that is also satisfactory in appearance. It is to provide a processing method.

原理的に、凝集処理による廃水の浄化は、負に帯電した溶解物質(廃水中の懸濁物質、コロイド状物質、BOD及びCOD成分など)と無機凝集剤及び有機凝結剤とが反応し荷電中和されて不溶化した後、凝集分離されることにより達成される。   In principle, purification of wastewater by coagulation treatment is carried out by charging negatively charged dissolved substances (suspended substances, colloidal substances, BOD and COD components, etc. in wastewater) with inorganic coagulants and organic coagulants. This is achieved by adding and insolubilizing and then aggregating and separating.

懸濁物質やコロイド状物質は粒子径が比較的大きい水不溶性粒子なので荷電中和されれば凝結して微細フロックを形成する。しかし、無機凝集剤及び有機凝結剤を添加しても、水に溶解する染料など着色物質は荷電中和されても親水性が高い場合は水に溶解したままであり、水不溶性の微細フロックを形成しない場合がある。そのため、高分子凝集剤を添加して凝集分離しても凝集フロックが形成されず、着色物質が水中に残存し、処理水色度が高いままである場合が多くある。   Suspended substances and colloidal substances are water-insoluble particles having a relatively large particle size, so that they are condensed to form fine flocs when neutralized by charge. However, even if inorganic flocculants and organic coagulants are added, coloring substances such as dyes that dissolve in water will remain dissolved in water if they are highly hydrophilic even if they are neutralized by charge, and water-insoluble fine flocs will not be produced. May not form. For this reason, even when a polymer flocculant is added and agglomerated and separated, agglomerated flocs are not formed, the colored substance remains in water, and the treated water chromaticity often remains high.

本発明者らは、染料など着色物質の不溶化方法について鋭意検討した結果、次のような種々の知見を得た。すなわち、アミジン系凝集剤の添加によれば、染料など着色物質が不溶化して良好な脱色効果が得られる。これは、アミジン系凝集剤の特有の効果であり、負に帯電した溶解性の染料など着色物質と反応し荷電中和すると共に、アミジン系凝集剤が多価陰イオンと反応してコンプレックスを形成し水に不溶化するためと考えられる。そして、水に不溶化した染料など着色物質とアミジン系凝集剤の反応物は水不溶の微細フロックを生成し、高分子凝集剤を添加して凝集分離することにより良好な脱色効果が得られる。更には、高分子凝集剤としてスルホン酸基を含むアニオン性又はノニオン性高分子凝集剤を用いること、また、高分子凝集剤を分割して添加することにより、より効率よく脱色できる。   As a result of intensive studies on methods for insolubilizing coloring substances such as dyes, the present inventors have obtained the following various findings. That is, according to the addition of the amidine-based flocculant, a coloring substance such as a dye is insolubilized and a good decoloring effect is obtained. This is a peculiar effect of amidine-based flocculants, and reacts with colored substances such as negatively charged soluble dyes to neutralize the charge, and the amidine-based flocculants react with polyanions to form complexes. This is considered to be insolubilized in water. A reaction product of a coloring substance such as a dye insolubilized in water and an amidine-based flocculant generates a fine floc that is insoluble in water, and a good decoloring effect can be obtained by adding a polymer flocculant and aggregating and separating. Furthermore, the use of an anionic or nonionic polymer flocculant containing a sulfonic acid group as the polymer flocculant, or by adding the polymer flocculant in portions, enables more efficient decolorization.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、着色廃水に無機凝集剤とアミジン系凝集剤を添加混合し、必要に応じてpH調節した後、高分子凝集剤を加えて凝集フロックを生成させ、次いで、生成した凝集フロックを固液分離することを特徴とする着色廃水の凝集処理方法に存する。そして、本発明の好ましい態様においては、高分子凝集剤がスルホン酸基を含むアニオン性又はノニオン性高分子凝集剤であり、また、高分子凝集剤を加えて凝集フロックを生成させる際に逐次添加する。   The present invention has been completed based on the above findings, and the gist thereof is that an inorganic flocculant and an amidine flocculant are added to and mixed with colored wastewater, and after adjusting the pH as necessary, the polymer flocculant is added. In addition, the present invention resides in a coagulation treatment method for colored wastewater, characterized in that coagulation flocs are generated and then the generated coagulation flocs are subjected to solid-liquid separation. In a preferred embodiment of the present invention, the polymer flocculant is an anionic or nonionic polymer flocculant containing a sulfonic acid group, and is added sequentially when the polymer flocculant is added to form an aggregate floc. To do.

本発明によれば、着色廃水の凝集処理において、脱色効果に優れ、色度の低い処理水を得ることが出来る。   According to the present invention, it is possible to obtain treated water having excellent decoloring effect and low chromaticity in the coagulation treatment of colored wastewater.

以下、本発明を詳細に説明する。本発明の対象となる着色廃水としては、染色廃水、ダストコントロール用品の洗浄廃水、洗濯廃水、その他、様々な工場施設より発生する着色廃水が例示されるが、これらに限定されるものではない。   Hereinafter, the present invention will be described in detail. Examples of the colored wastewater that is the subject of the present invention include, but are not limited to, dyeing wastewater, washing wastewater for dust control products, laundry wastewater, and other colored wastewater generated from various factory facilities.

本発明において、無機凝集剤としては、一般的に市販されているアルミ系ないし鉄系の無機凝集剤が用いられる。アルミ系無機凝集剤として、バンド、PAC、塩化アルミが例示できる。また、鉄系の無機凝集剤としては、塩化第二鉄、ポリ硫酸鉄などが例示できる。無機凝集剤の添加量は、対象となる着色廃水の性状により異なるが、通常500〜3,000mg/Lである。   In the present invention, as the inorganic flocculant, a commercially available aluminum-based or iron-based inorganic flocculant is used. Examples of the aluminum-based inorganic flocculant include band, PAC, and aluminum chloride. Examples of the iron-based inorganic flocculant include ferric chloride and polyiron sulfate. The amount of the inorganic flocculant added is usually 500 to 3,000 mg / L, although it varies depending on the properties of the colored waste water to be treated.

本発明で用いられるアミジン系凝集剤の「繰り返し単位」は以下の化学式で表される。   The “repeat unit” of the amidine-based flocculant used in the present invention is represented by the following chemical formula.

Figure 2012005993
Figure 2012005993

アミジン系凝集剤は、特許第2624089号報に記載された方法によって製造することが出来る。具体的には、N−ビニルホルムアミド及びアクリロニトリルを共重合し、得られた共重合体を、塩酸酸性下に加水分解し、その後に熱処理し、分子内側鎖の一級アミノ基とシアノ基とを環化してアミジン環を形成する。   The amidine-based flocculant can be produced by the method described in Japanese Patent No. 2624089. Specifically, N-vinylformamide and acrylonitrile are copolymerized, and the resulting copolymer is hydrolyzed under hydrochloric acid acidity, and then heat-treated to cyclize the primary amino group and cyano group of the inner chain of the molecule. To form an amidine ring.

アミジン系凝集剤の分子量は、通常10万〜500万、好ましくは100万〜500万である。分子量が10万未満の場合は凝結力が低下し、500万を超える場合は商業ベースで生産することが困難である。   The molecular weight of the amidine-based flocculant is usually 100,000 to 5,000,000, preferably 1,000,000 to 5,000,000. When the molecular weight is less than 100,000, the coagulation force is reduced, and when it exceeds 5 million, it is difficult to produce on a commercial basis.

本発明において高分子凝集剤を添加して凝集する際の廃水のpHは、通常5.0〜7.0、好ましくは5.5〜6.5である。廃水のpH調節は、塩酸、硫酸などの鉱酸、苛性ソーダ、消石灰などのアルカリ剤によって行うことが出来る。   In the present invention, the pH of the waste water when the polymer flocculant is added and agglomerated is usually 5.0 to 7.0, preferably 5.5 to 6.5. The pH of the wastewater can be adjusted with an alkaline agent such as mineral acid such as hydrochloric acid and sulfuric acid, caustic soda and slaked lime.

アミジン系凝集剤の添加量は、着色廃水の水質により変動するが、通常1〜100mg/L、好ましくは10〜60mg/Lである。添加量が余りに少ない場合は凝集性及び脱色効果が劣り100mg/Lを超える場合は処理コストが高くなる。   The addition amount of the amidine-based flocculant varies depending on the quality of the colored wastewater, but is usually 1 to 100 mg / L, preferably 10 to 60 mg / L. When the addition amount is too small, the cohesiveness and decoloring effect are poor, and when it exceeds 100 mg / L, the processing cost becomes high.

前記した無機凝集剤とアミジン系凝集剤の添加順序は、特に制限されないが、無機凝集剤を最初に添加する方法が一般的である。   The order of adding the inorganic flocculant and the amidine flocculant is not particularly limited, but a method of adding the inorganic flocculant first is common.

本発明において、高分子凝集剤としては、アニオン性高分子凝集剤、ノニオン性高分子凝集剤などを用いることが出来る。   In the present invention, as the polymer flocculant, an anionic polymer flocculant, a nonionic polymer flocculant and the like can be used.

アニオン性高分子凝集剤としては、例えば、ポリアクリルアミドの部分加水分解物、アクリルアミドとアクリル酸の共重合物、2−アクリルアミド2−メチルプロパンスルホン酸とアクリルアミドの共重合物、及び2−アクリルアミド2−メチルプロパンスルホン酸とアクリル酸とアクリルアミドの共重合物などが挙げられる。中でも、2−アクリルアミド2−メチルプロパンスルホン酸とアクリルアミドの共重合物、及び2−アクリルアミド2−メチルプロパンスルホン酸とアクリル酸とアクリルアミドの共重合物などスルホン酸基を含む共重合物が好ましく用いられる。また、アニオン性高分子凝集剤は凝集効果に悪影響を及ぼさない他の単量体を共重合させても構わない。一方、ノニオン性高分子凝集剤としては、例えば、アクリルアミドの重合物、他のノニオン性モノマーとの共重合物などが挙げられる。   Examples of the anionic polymer flocculant include a polyacrylamide partial hydrolyzate, a copolymer of acrylamide and acrylic acid, a copolymer of 2-acrylamide 2-methylpropanesulfonic acid and acrylamide, and 2-acrylamide 2- Examples thereof include a copolymer of methylpropanesulfonic acid, acrylic acid, and acrylamide. Among them, a copolymer containing a sulfonic acid group, such as a copolymer of 2-acrylamide 2-methylpropanesulfonic acid and acrylamide and a copolymer of 2-acrylamide 2-methylpropanesulfonic acid, acrylic acid and acrylamide, is preferably used. . The anionic polymer flocculant may be copolymerized with other monomers that do not adversely affect the aggregation effect. On the other hand, examples of nonionic polymer flocculants include polymers of acrylamide and copolymers with other nonionic monomers.

アニオン性高分子凝集剤のアニオン基の共重合割合は、特に制限されないが、通常1〜25重量%である。スルホン酸基を含むアニオン性高分子凝集剤におけるスルホン酸含有単量体の共重合割合は、通常2〜25重量%である。スルホン酸含有単量体の共重合割合が2重量%未満の場合は脱色効果が劣る傾向があり、25重量%を超える場合は、脱色効果は問題ないが、凝集性が劣る傾向がある。アニオン性ないしノニオン性高分子凝集剤の固有粘度は、特に制限されないが、通常15dl/g以上である。   The anionic group copolymerization ratio of the anionic polymer flocculant is not particularly limited, but is usually 1 to 25% by weight. The copolymerization ratio of the sulfonic acid-containing monomer in the anionic polymer flocculant containing a sulfonic acid group is usually 2 to 25% by weight. When the copolymerization ratio of the sulfonic acid-containing monomer is less than 2% by weight, the decoloring effect tends to be inferior. When it exceeds 25% by weight, there is no problem in the decoloring effect, but the cohesiveness tends to be inferior. The intrinsic viscosity of the anionic or nonionic polymer flocculant is not particularly limited, but is usually 15 dl / g or more.

高分子凝集剤の添加量は、対象となる着色廃水のSS濃度などにより異なるが、通常0.1〜50mg/Lである。   The addition amount of the polymer flocculant is usually 0.1 to 50 mg / L, although it varies depending on the SS concentration of the colored waste water to be treated.

アニオン性及びノニオン性高分子凝集剤の重合方法は、沈殿重合、塊状重合、分散重合、水溶液重合などが挙げられるが、特に制限されるものではない。一例として水溶液重合法による製造方法について以下に述べる。   Examples of the polymerization method of the anionic and nonionic polymer flocculants include precipitation polymerization, bulk polymerization, dispersion polymerization, and aqueous solution polymerization, but are not particularly limited. As an example, a manufacturing method using an aqueous solution polymerization method will be described below.

先ず、所定量の2−アクリルアミド−2メチルプロパンスルホン酸、アクリルアミド、イオン交換水を計量し、所定のpH、温度に調節した後、密閉可能な断熱容器に仕込む。次いで、窒素ガスで溶存酸素を置換し、重合開始剤、連載移動剤などの薬品を添加する。重合開始剤としては、公知の一般的なアゾ開始剤、レドックス系開始剤などを用いることが出来る。   First, a predetermined amount of 2-acrylamido-2methylpropanesulfonic acid, acrylamide, and ion exchange water are weighed and adjusted to a predetermined pH and temperature, and then charged into a heat-insulating container that can be sealed. Next, the dissolved oxygen is replaced with nitrogen gas, and chemicals such as a polymerization initiator and a continuous transfer agent are added. As the polymerization initiator, known general azo initiators, redox initiators and the like can be used.

重合の進行に伴い重合温度が上昇するが、温度がピークに達した後に1時間熟成し、反応容器より重合ゲルを取り出す。重合ゲルをミートチョッパー等により細断し、送風乾燥機で80℃の温度で乾燥する。乾燥ポリマーを粉砕機で0.5〜1mm程度の粒径になるよう粉砕し、アニオン性高分子凝集剤を得る。   As the polymerization proceeds, the polymerization temperature rises, but after the temperature reaches the peak, it is aged for 1 hour, and the polymer gel is taken out from the reaction vessel. The polymer gel is chopped with a meat chopper or the like and dried at a temperature of 80 ° C. with a blow dryer. The dried polymer is pulverized with a pulverizer to a particle size of about 0.5 to 1 mm to obtain an anionic polymer flocculant.

高分子凝集剤の廃水への添加方法は、所定量を一度に添加しても全く問題ないが、逐次添加することにより、脱色効果をより一層向上させることが出来る。逐次添加の回数は、特に制限されないが、2回に分けて添加することが好ましい。3回以上に分けて添加しても特に支障はないが、脱色効果の更なる向上はなく、操作が煩雑になる。第一段と第二段との添加量の比率は通常95/5〜50/50である。50/50以下の比率では、一段添加と比較して脱色効果の向上は少ない傾向がある。   The method for adding the polymer flocculant to the waste water is not a problem even if a predetermined amount is added all at once, but the decoloring effect can be further improved by sequential addition. The number of sequential additions is not particularly limited, but is preferably added in two portions. Even if it is added in three or more times, there is no particular problem, but there is no further improvement in the decoloring effect, and the operation becomes complicated. The ratio of the added amount of the first stage and the second stage is usually 95/5 to 50/50. When the ratio is 50/50 or less, there is a tendency that the improvement of the decoloring effect is small as compared with the one-stage addition.

以下、本発明を実施例および比較例によって更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。実施例における各測定方法は、以下の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. Each measuring method in an Example is as follows.

(1)高分子凝集剤の固有粘度:
固有粘度は、1N硝酸ナトリウム水溶液中、温度30℃の条件で、ウベローデ希釈型毛細管粘度計を用い、定法に基づき測定した(高分子学会編,「新版高分子辞典」,朝倉書店,第107頁)。
(1) Intrinsic viscosity of the polymer flocculant:
Intrinsic viscosity was measured based on a conventional method using a Ubbelohde dilution type capillary viscometer in a 1N sodium nitrate aqueous solution at a temperature of 30 ° C. (Edition of Polymer Society, “New Edition Polymer Dictionary”, Asakura Shoten, page 107) ).

(2)フロック径:
凝集フロックのフロック径は、目視により全体の平均を測定した。
(2) Flock diameter:
The average floc diameter of the aggregated floc was measured visually.

(3)沈降時間:
高分子凝集剤の所定量を添加し、所定時間攪拌混合した後に攪拌を停止する。そして、生成した凝集フロックが500mlのビーカーの底に沈降する迄の時間を測定した。
(3) Settling time:
A predetermined amount of the polymer flocculant is added, and after stirring for a predetermined time, stirring is stopped. And the time until the produced | generated aggregation floc settles in the bottom of a 500 ml beaker was measured.

(4)処理水SS:
高分子凝集剤を添加し攪拌停止1分後の処理水中のSS量を目視で測定した。目視で殆どSSを認められない状態を「−」の符号で示し、SSが増加するに従い、「+」、「++」、「+++」、「×」の符号で示した。
(4) Treated water SS:
A polymer flocculant was added and the amount of SS in the treated water 1 minute after stopping stirring was measured visually. A state in which almost no SS was visually recognized was indicated by a symbol “−”, and as SS increased, it was indicated by a symbol “+”, “++”, “++++”, or “x”.

(5)色度:
色度を測定する試料は攪拌停止2分後に表面から深さ3cmの処理水を採取し、工場排水試験法JIS K 0102に基づき、透過光測定法で測定した。測定は420nmの波長で行い、純水の透過率を100(%)として試料の透過率(%)を測定した。
(5) Chromaticity:
As a sample for measuring chromaticity, treated water having a depth of 3 cm was collected from the surface 2 minutes after the stirring was stopped, and measured by the transmitted light measurement method based on the factory drainage test method JIS K 0102. The measurement was performed at a wavelength of 420 nm, and the transmittance (%) of the sample was measured with the transmittance of pure water as 100 (%).

用いた凝結剤及び高分子凝集剤を表1に示す。凝結剤は1.0重量%濃度に溶解し、高分子凝集剤は0.1重量%濃度に溶解して用いた。   Table 1 shows the coagulant and polymer flocculant used. The coagulant was dissolved at a concentration of 1.0% by weight, and the polymer flocculant was dissolved at a concentration of 0.1% by weight.

Figure 2012005993
DMC :ジメチルアミノエチルメタクリレート・メチルクロライド4級塩
DME :ジメチルアミノエチルアクリレート・メチルクロライド4級塩
AAm :アクリルアミド
AMPS:2−アクリルアミド2−メチルプロパンスルホン酸
AA :アクリル酸
Figure 2012005993
DMC: dimethylaminoethyl methacrylate / methyl chloride quaternary salt DME: dimethylaminoethyl acrylate / methyl chloride quaternary salt AAm: acrylamide AMPS: 2-acrylamide 2-methylpropanesulfonic acid AA: acrylic acid

〔実施例1〜5〕
Aダストコントロール用品のリース会社におけるモップ及びマット洗浄廃水を採取し、凝集試験を行った。廃水の性状は、pH=10.5、SS=490mg/L、420nmの透過率=1%であった。
[Examples 1 to 5]
A mop and mat washing waste water from a leasing company for A dust control products was collected and subjected to a coagulation test. The properties of the wastewater were pH = 10.5, SS = 490 mg / L, and transmittance at 420 nm = 1%.

先ず、500mlのビーカーに廃水を500ml採取し、無機凝集剤として塩化アルミを添加し、150rpmの回転数で1分間攪拌して混合した後、表2に示すpHに苛性ソーダを用いて調節した。次いで、表1に示すアミジン系凝集剤(K1)を添加し、更に、150rpmの回転数で1分間攪拌して混合した。次いで、高分子凝集剤を添加し、更に、100rpmの回転数で1分間攪拌して凝集フロックを形成させた。実施例1〜5は、表2に示すように、処理pH、スルホン酸基を含む高分子凝集剤の種類を変え試験を行った。   First, 500 ml of waste water was collected in a 500 ml beaker, aluminum chloride was added as an inorganic flocculant, and the mixture was stirred for 1 minute at a rotation speed of 150 rpm, and then adjusted to the pH shown in Table 2 using caustic soda. Subsequently, the amidine-based flocculant (K1) shown in Table 1 was added, and the mixture was further stirred and mixed for 1 minute at a rotation speed of 150 rpm. Next, a polymer flocculant was added, and further stirred for 1 minute at a rotation speed of 100 rpm to form an agglomerate floc. As shown in Table 2, Examples 1 to 5 were tested by changing the treatment pH and the type of the polymer flocculant containing a sulfonic acid group.

表2に実施例1〜5の結果を示す。いずれの実施例においても、凝集性が良好であり、透過率(色度)が良好であり、見た目にも満足できる処理水を得ることが出来た。   Table 2 shows the results of Examples 1 to 5. In any of the examples, coagulation was good, transmittance (chromaticity) was good, and treated water that was satisfactory in appearance could be obtained.

〔実施例6及び7〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、高分子凝集剤としてスルホン酸基を含まないカルボン酸系のアニオン性高分子凝集剤を用いた。結果を表2に示す。凝集性が良好であり、透過率(色度)の処理水を得ることが出来たが、透過率はスルホン酸基を含む高分子凝集剤を用いた結果より劣っていた。
[Examples 6 and 7]
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, a carboxylic acid anionic polymer flocculant containing no sulfonic acid group was used as the polymer flocculant. The results are shown in Table 2. Although the coagulation property was good and treated water having a transmittance (chromaticity) could be obtained, the transmittance was inferior to the result of using a polymer flocculant containing a sulfonic acid group.

〔実施例8及び9〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、スルホン酸基の含有量が好ましい範囲外の高分子凝集剤を用いた。結果を表2に示す。スルホン酸基を1重量%を含むA5を用いた実施例8は、カルボン酸系のアニオン性高分子凝集剤より色度において良好であるが、実施例3より劣る結果であった。また、実施例9は凝集性能が劣る結果であった。
[Examples 8 and 9]
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, a polymer flocculant having a sulfonic acid group content outside the preferred range was used. The results are shown in Table 2. Example 8 using A5 containing 1% by weight of a sulfonic acid group was better in chromaticity than a carboxylic acid-based anionic polymer flocculant, but was inferior to Example 3. Moreover, Example 9 was a result in which aggregating performance was inferior.

〔実施例10及び11〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、アミジン系凝集剤K1の添加量を変えた。結果を表2に示す。アミジン系凝集剤K1の添加量が10mg/Lである実施例10は、添加量が20mg/Lである実施例3より色度において劣るが、K1を添加しない比較例より良好な色度を示した。また、実施例11に示すように、アミジン系凝集剤K1を40mg/Lと過剰に添加しても更に色度が向上することはなかった。
[Examples 10 and 11]
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, the amount of amidine flocculant K1 added was changed. The results are shown in Table 2. Example 10 in which the addition amount of amidine-based flocculant K1 is 10 mg / L is inferior in chromaticity to Example 3 in which the addition amount is 20 mg / L, but shows better chromaticity than the comparative example in which K1 is not added. It was. Further, as shown in Example 11, even when the amidine flocculant K1 was added in an excessive amount of 40 mg / L, the chromaticity was not further improved.

〔実施例12〜14〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、高分子凝集剤の添加を分割し逐次添加する方法を採用した。結果を表2に示す。実施例12に示すように、2回に分けて逐次添加することにより色度が向上した。但し、実施例13に示すように3分割にしても更なる向上効果は得られなかった。また、実施例14に示した通り、一段目に添加する高分子凝集剤の割合が50%以下になると色度が向上は見られなかった。
[Examples 12 to 14]
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, the method of dividing the addition of the polymer flocculant and adding it sequentially was adopted. The results are shown in Table 2. As shown in Example 12, chromaticity was improved by sequential addition in two steps. However, as shown in Example 13, even if it was divided into three, no further improvement effect was obtained. Further, as shown in Example 14, when the ratio of the polymer flocculant added to the first stage was 50% or less, the chromaticity was not improved.

〔実施例15及び16〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、無機凝集剤の種類を変えた。結果を表2に示す。表2中の「塩鉄」は塩化第二鉄を意味する。実施例15及び16は、凝集性および処理水色度とも実施例3と同様の結果であり良好であった。
Examples 15 and 16
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, the type of inorganic flocculant was changed. The results are shown in Table 2. “Salt iron” in Table 2 means ferric chloride. In Examples 15 and 16, the cohesiveness and treated water chromaticity were the same as those in Example 3 and were good.

〔比較例1及び2〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、比較例1及び2はアミジン系凝集剤K1を併用せず、無機凝集剤と高分子凝集剤の組み合わせで凝集試験を行った。結果を表2に示す。凝集性は良好であったが、処理水の色度が実施例より著しく劣る結果となり、見た目にも茶色に着色し悪い結果であった。また、無機凝集剤添加量を1.5倍に増加させても大きな改善はなかった。
[Comparative Examples 1 and 2]
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, Comparative Examples 1 and 2 did not use the amidine-based flocculant K1, and performed a flocculence test using a combination of an inorganic flocculant and a polymer flocculant. The results are shown in Table 2. The cohesiveness was good, but the chromaticity of the treated water was significantly inferior to that of the examples, and the color was visually brown, which was a bad result. Further, there was no significant improvement even when the amount of inorganic flocculant added was increased 1.5 times.

〔比較例3〜7〕
実施例1〜5と同様の試験条件で凝集試験を行った。但し、凝結剤としてアミジン系凝集剤K1の代わりに市販の各種カチオン性有機凝結剤を用いて凝集処理を行った。結果を表2に示す。比較例3を除き凝集性は問題ないが、処理水の色度はアミジン系凝集剤を用いた実施例より劣る結果であった。比較例3は、凝集性および処理水の色度ともに劣る結果であった。
[Comparative Examples 3 to 7]
The aggregation test was conducted under the same test conditions as in Examples 1-5. However, the aggregation treatment was performed using various commercially available cationic organic coagulants instead of the amidine-based coagulant K1 as a coagulant. The results are shown in Table 2. The cohesiveness was not a problem except for Comparative Example 3, but the chromaticity of the treated water was inferior to that of the example using the amidine-based flocculant. In Comparative Example 3, the cohesiveness and the chromaticity of the treated water were inferior.

Figure 2012005993
Figure 2012005993

表2中、「無機凝集剤種類」欄における略号の意義は次の通りである。すなわち、LAC:塩化アルミニウム、バンド:硫酸アルミニウム、塩鉄:塩化第二鉄を示す。   In Table 2, the meanings of the abbreviations in the “inorganic flocculant type” column are as follows. That is, LAC: aluminum chloride, band: aluminum sulfate, salt iron: ferric chloride.

また、表2中、「高分子凝集剤の添加量」の欄における符号「+」は高分子凝集剤の添加を分割することを示す。例えば「15」は15mg/lを一度に添加すること、「10+5」は10mg/lを添加して混合した後、更に5mg/lを添加して混合すること、「8+5+2」は8mg/l、5mg/l、2mg/lずつ3段階で添加して混合することを意味する。   In Table 2, the sign “+” in the column “Amount of polymer flocculant added” indicates that the addition of the polymer flocculant is divided. For example, “15” is 15 mg / l added at a time, “10 + 5” is 10 mg / l added and mixed, then 5 mg / l is added and mixed, “8 + 5 + 2” is 8 mg / l, It means that 5 mg / l and 2 mg / l are added and mixed in three stages.

Claims (3)

着色廃水に無機凝集剤とアミジン系凝集剤を添加混合し、必要に応じて5.0〜7.0の範囲にpH調節した後、高分子凝集剤を加えて凝集フロックを生成させ、次いで、生成した凝集フロックを固液分離することを特徴とする着色廃水の凝集処理方法。   An inorganic flocculant and an amidine flocculant are added to and mixed with colored wastewater, and after adjusting the pH to a range of 5.0 to 7.0 as necessary, a polymer flocculant is added to generate flocculent flocs, A method for coagulating colored wastewater, comprising solid-liquid separating the produced coagulated floc. 高分子凝集剤がスルホン酸基を含むアニオン性又はノニオン性高分子凝集剤である請求項1に記載の凝集処理方法。   The aggregation treatment method according to claim 1, wherein the polymer flocculant is an anionic or nonionic polymer flocculant containing a sulfonic acid group. 高分子凝集剤を加えて凝集フロックを生成させる際に逐次添加する請求項1又は2に記載の凝集処理方法。   The aggregating treatment method according to claim 1 or 2, wherein the polymer aggregating agent is added sequentially when a polymer flocculant is added to produce agglomerated floc.
JP2010146254A 2010-06-28 2010-06-28 Coagulation treatment method for colored wastewater Active JP5843428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146254A JP5843428B2 (en) 2010-06-28 2010-06-28 Coagulation treatment method for colored wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146254A JP5843428B2 (en) 2010-06-28 2010-06-28 Coagulation treatment method for colored wastewater

Publications (2)

Publication Number Publication Date
JP2012005993A true JP2012005993A (en) 2012-01-12
JP5843428B2 JP5843428B2 (en) 2016-01-13

Family

ID=45537182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146254A Active JP5843428B2 (en) 2010-06-28 2010-06-28 Coagulation treatment method for colored wastewater

Country Status (1)

Country Link
JP (1) JP5843428B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159018A (en) * 2013-02-20 2014-09-04 Mitsubishi Rayon Co Ltd Flocculation method of oil inclusion cleaning waste water
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment
JP2016150312A (en) * 2015-02-18 2016-08-22 三菱レイヨン株式会社 Coagulation treatment agent for waste water, and coagulation treatment method of waste water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117956A (en) * 2005-10-31 2007-05-17 Sanyo Chem Ind Ltd Polymer flocculant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117956A (en) * 2005-10-31 2007-05-17 Sanyo Chem Ind Ltd Polymer flocculant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159018A (en) * 2013-02-20 2014-09-04 Mitsubishi Rayon Co Ltd Flocculation method of oil inclusion cleaning waste water
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment
JP2016150312A (en) * 2015-02-18 2016-08-22 三菱レイヨン株式会社 Coagulation treatment agent for waste water, and coagulation treatment method of waste water

Also Published As

Publication number Publication date
JP5843428B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5621260B2 (en) Wastewater coagulation method
JP4004016B2 (en) Water treatment method
CN104556335B (en) A kind of graft modification natural macromolecule flocculating agent and preparation method and application
JP5364298B2 (en) Dispersant-containing water treatment method
JP5659487B2 (en) Wastewater coagulation method
JP5621256B2 (en) Wastewater coagulation method
JP5621254B2 (en) Oil-containing wastewater treatment method
JP5843428B2 (en) Coagulation treatment method for colored wastewater
JP5145823B2 (en) Organic flocculant and wastewater flocculation treatment method using the chemical
CN112794590A (en) Shale gas well drilling waste oil-based mud curing material
Ghosh et al. High performance polymeric flocculant based on hydrolyzed polyacrylamide grafted tamarind kernel polysaccharide (Hyd. TKP-g-PAM)
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP5560626B2 (en) Amphoteric organic coagulant and wastewater treatment method
JP5952593B2 (en) Wastewater treatment method
JP2020065985A (en) Textile dyeing waste water treatment method and textile dyeing waste water treatment agent kit
JPH0278499A (en) Treatment of sludge
JP5733677B2 (en) Wastewater treatment agent
JP2014158993A (en) Flocculation method of oil inclusion cleaning waste water
JP5709086B2 (en) Organic coagulant
JPH0938700A (en) Treatment of organic sludge
KR101618108B1 (en) Preparation methods of organic and inorganic complex flocculants for food waste waters
JP6919116B2 (en) How to treat rice-washed wastewater
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater
Li et al. Coagulation–flocculation performance and floc properties of composite bioflocculant PAFC-CBF in treating the surface water
JP2017217652A (en) Method for treating rice-washing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141121

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5843428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250