JP6098239B2 - Sludge dewatering agent and sludge treatment method - Google Patents

Sludge dewatering agent and sludge treatment method Download PDF

Info

Publication number
JP6098239B2
JP6098239B2 JP2013045052A JP2013045052A JP6098239B2 JP 6098239 B2 JP6098239 B2 JP 6098239B2 JP 2013045052 A JP2013045052 A JP 2013045052A JP 2013045052 A JP2013045052 A JP 2013045052A JP 6098239 B2 JP6098239 B2 JP 6098239B2
Authority
JP
Japan
Prior art keywords
sludge
mass
acrylamide
cationic polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045052A
Other languages
Japanese (ja)
Other versions
JP2013212501A (en
Inventor
和美 磯部
和美 磯部
小林 孝行
孝行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2013045052A priority Critical patent/JP6098239B2/en
Publication of JP2013212501A publication Critical patent/JP2013212501A/en
Application granted granted Critical
Publication of JP6098239B2 publication Critical patent/JP6098239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、汚泥脱水剤および汚泥の処理方法に関し、詳しくは、特に下水消化汚泥の処理に好適な汚泥脱水剤および当該汚泥脱水剤を用いた汚泥の処理方法に関する。   The present invention relates to a sludge dewatering agent and a sludge treatment method, and more particularly to a sludge dewatering agent particularly suitable for treatment of sewage digested sludge and a sludge treatment method using the sludge dewatering agent.

従来、下水やし尿処理場および諸種の産業で発生する有機性産業排水などより生じる有機質汚泥の脱水処理には、汚泥の性状及び脱水機の種類に合わせ、適切な凝集フロックが得られるように、カチオン性高分子、アニオン性高分子、両性高分子を単独または適宜組み合わせて使用している。   Conventionally, in the dewatering treatment of organic sludge generated from organic industrial wastewater generated in sewage and human waste treatment plants and various industries, suitable coagulation flocs can be obtained according to the nature of the sludge and the type of dehydrator. Cationic polymers, anionic polymers and amphoteric polymers are used alone or in appropriate combination.

これら高分子の多くは、構成単位にアクリルアミドを含有しているが、現在、アクリルアミドモノマーは、発がん性および変異原性の高懸念物質として、大量に使用した場合の安全性が問題視されている。すなわち、アクリルアミド重合体は安全であるが、製造の際に少量ではあるが残存モノマーが残る懸念がある。また、アクリルアミドモノマーがREACH規制の認可対照候補物質リストへ登録されているため、アクリルアミドモノマーを含有する心配の無い非アクリルアミド系高分子からなる汚泥脱水剤へのニーズが高まりつつある。   Many of these polymers contain acrylamide in their structural units, but acrylamide monomers are currently regarded as a problem when they are used in large quantities as highly carcinogenic and mutagenic substances. . That is, the acrylamide polymer is safe, but there is a concern that a residual monomer may remain in a small amount during the production. In addition, since acrylamide monomers are registered in the list of approved control candidates for REACH regulations, there is an increasing need for sludge dehydrating agents composed of non-acrylamide polymers that do not contain acrylamide monomers.

非アクリルアミド系高分子としては、アミジン系カチオン性高分子、アクリレート4級アンモニウム塩の単独重合体からなるカチオン性高分子、3級アミノアクリレートの単独重合体からなるカチオン性高分子、ビニルアミン系カチオン性高分子などが知られている。   Non-acrylamide polymers include amidine-based cationic polymers, cationic polymers composed of homopolymers of acrylate quaternary ammonium salts, cationic polymers composed of homopolymers of tertiary aminoacrylate, and vinylamine-based cationic properties. Polymers are known.

しかし、これら非アクリルアミド系高分子は、カチオン密度が高いことから、荷電中和力は優れているが、一般に高分子量品が得られ難いことから、単独使用では強固なフロックの形成が難しく、汚泥種や脱水機の種類によっては十分な汚泥の脱水効果を得ることが難しい。   However, these non-acrylamide polymers have a high cation density, so they have excellent charge neutralization power, but generally it is difficult to obtain high molecular weight products. Depending on the type of seed and dehydrator, it is difficult to obtain a sufficient sludge dewatering effect.

中でも、下水消化汚泥は、一般的に、浮遊固定物(SS)の粒子径が小さく且つ凝集フロックの核になる砂分や繊維分が少ないため、比較的分子量が低い上記の汚泥脱水剤では特に強固なフロックに成長させるのが困難である場合が多い。   Among them, sewage digested sludge generally has a small particle size of suspended solids (SS) and a small amount of sand and fibers which are the core of the aggregated flocs. Often it is difficult to grow into a strong floc.

従来より、各種の単独重合体および/または共重合体を適宜組み合せた汚泥脱水剤が提案されている。それらの中には、原料の一部としてアクリルアミドの使用を排除してはいないものの、幅広い高分子の組み合わせの中でたまたま非アクリルアミド系高分子の組み合わせが挙げられている。例えば、(1)アミジン系カチオン性高分子とアミノアルキル(メタ)アクリレート系カチオン性高分子1種を組み合わせた処方(特許文献1)、(2)アミジン系カチオン性高分子とアミノアルキル(メタ)アクリレート系カチオン性高分子2種を組み合わせた処方(特許文献2)、(3)アミジン系カチオン性高分子とビニルアミン系カチオン性高分子を組み合わせた処方(特許文献3)が提案されている。   Conventionally, a sludge dehydrating agent in which various homopolymers and / or copolymers are appropriately combined has been proposed. Among them, although it does not exclude the use of acrylamide as a part of the raw material, a combination of non-acrylamide polymers happens to occur among a wide range of polymer combinations. For example, (1) a combination of an amidine cationic polymer and an aminoalkyl (meth) acrylate cationic polymer (Patent Document 1), (2) an amidine cationic polymer and an aminoalkyl (meth) Formulations combining two acrylate-based cationic polymers (Patent Document 2) and (3) formulations combining amidine-based cationic polymers and vinylamine-based cationic polymers (Patent Document 3) have been proposed.

特開平6−218400号公報JP-A-6-218400 特開2007−117956号公報JP 2007-117956 A 特開2004−059747号公報JP 2004-059747 A

しかしながら、上記の提案は、何れも、安全性への配慮から非アクリルアミド系高分子の中で幅広い用途に対応することを目指したものではない。特に、高分子量の汚泥脱水剤で処理される消化汚泥の処理において、使用可能な非アクリルアミド系高分子処を示したものはない。加えて、アミジン系カチオン性高分子及びビニルアミン系カチオン性高分子を必須条件として、他の非アクリルアミド系高分子を組み合わせる点に着目した例はない。   However, none of the above proposals aims to deal with a wide range of uses among non-acrylamide polymers from the viewpoint of safety. In particular, none of the non-acrylamide polymer treatments that can be used in the treatment of digested sludge treated with a high-molecular-weight sludge dewatering agent has been shown. In addition, there is no example that focuses on combining other non-acrylamide polymers with an amidine cationic polymer and a vinylamine cationic polymer as essential conditions.

本発明の目的は、非アクリルアミド系高分子の組み合わせで処理を行いたいというユーザーのニーズ、特に通常高分子量の汚泥脱水剤で処理される消化汚泥を含む幅広い汚泥種の処理で前記ニーズを有するユーザーに応える凝集剤を提供することにある。   The object of the present invention is to meet the needs of users who want to perform treatment with a combination of non-acrylamide polymers, particularly those who have such needs in the treatment of a wide range of sludge species including digested sludge that is usually treated with a high molecular weight sludge dewatering agent It is to provide a flocculant that meets the requirements.

すなわち、本発明の第1の要旨は、アミジン系カチオン性高分子:40〜75質量%、ビニルアミン系カチオン性高分子:12.5〜30質量%、ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体:12.5〜30質量%およびジアルキルアミノエチル(メタ)アクリレート単独重合体:0〜25質量%(全成分の合計は100質量%)の非アクリルアミド系高分子からなることを特徴とする汚泥脱水剤に存する。   That is, the first gist of the present invention is amidine-based cationic polymer: 40 to 75% by mass, vinylamine-based cationic polymer: 12.5 to 30% by mass, dialkylaminoethyl (meth) acrylate methyl chloride quaternary. Salt homopolymer: 12.5-30% by mass and dialkylaminoethyl (meth) acrylate homopolymer: 0-25% by mass (total of all components is 100% by mass) It exists in sludge dehydrating agent.

そして、本発明の第2の要旨は、上記の汚泥脱水剤と汚泥とを混合した後に得られたフロックを脱水することを特徴とする汚泥の処理方法に存する。   And the 2nd summary of this invention exists in the processing method of the sludge characterized by dehydrating the floc obtained after mixing said sludge dehydrating agent and sludge.

本発明の汚泥脱水剤は、重合原料にアクリルアミドモノマーを使用しない非アクリルアミド系のカチオン系高分子であり、脱水処理の難しい下水消化汚泥に対しても、脱水機の種類を問わず十分な脱水効果を発揮する。本発明の汚泥脱水剤は、消化の進行具合に関係なく消化汚泥に対して特に有効であるが、さらには、混合生汚泥、余剰汚泥及びこれらと消化汚泥の混合物にも有効である。   The sludge dewatering agent of the present invention is a non-acrylamide cationic polymer that does not use an acrylamide monomer as a polymerization raw material, and is capable of sufficient dewatering effect on sewage digested sludge that is difficult to dewater regardless of the type of dehydrator. Demonstrate. The sludge dehydrating agent of the present invention is particularly effective for digested sludge regardless of the progress of digestion, but is also effective for mixed raw sludge, surplus sludge and a mixture of these and digested sludge.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<汚泥脱水剤>
本発明の汚泥脱水剤は、アミジン系カチオン性高分子、ビニルアミン系カチオン性高分子、ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体を必須成分とし、ジアルキルアミノエチル(メタ)アクリレート単独重合体を任意成分とする非アクリルアミド系高分子からなる。
<Sludge dewatering agent>
The sludge dewatering agent of the present invention comprises an amidine cationic polymer, a vinylamine cationic polymer, a dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt homopolymer as essential components, and a dialkylaminoethyl (meth) acrylate alone. It consists of a non-acrylamide polymer with a polymer as an optional component.

(アミジン系カチオン性高分子)
アミジン系カチオン性高分子は、下記構造式(1)又は(2)で表されるアミジン環を有する構成単位を含有する高分子である。この高分子中におけるアミジン環含有構成単位の含有量は全構成単位に対し、通常20モル%以上、好ましくは30モル%以上、より好ましくは35モル%以上であり、通常95モル%以下、好ましくは90モル%以下、より好ましくは80モル%以下である。アミジン環含有構成単位の含有量が、20モル%未満では、pHが中性から弱アルカリの汚泥に対しての効果が低くなる傾向があり、含有量が95モル%を超えてもそれ以上の効果が期待できない。また、アミジン系カチオン性高分子の分子量としては、通常10万〜500万、好ましくは100万〜500万である。10万未満では凝集力が低下し、500万を超える分子量の高分子は生産性が悪い。
(Amidine-based cationic polymer)
The amidine-based cationic polymer is a polymer containing a structural unit having an amidine ring represented by the following structural formula (1) or (2). The content of the amidine ring-containing structural unit in the polymer is usually at least 20 mol%, preferably at least 30 mol%, more preferably at least 35 mol%, and usually at most 95 mol%, preferably with respect to all structural units. Is 90 mol% or less, more preferably 80 mol% or less. If the content of the amidine ring-containing structural unit is less than 20 mol%, the pH tends to be less effective against neutral to weakly alkaline sludge, and even if the content exceeds 95 mol%, it is more than that. The effect cannot be expected. The molecular weight of the amidine-based cationic polymer is usually 100,000 to 5,000,000, preferably 1,000,000 to 5,000,000. If the molecular weight is less than 100,000, the cohesive force is lowered, and a polymer having a molecular weight exceeding 5 million has poor productivity.

Figure 0006098239
式(1)、(2)中のXは陰イオンである。
Figure 0006098239
X in the formulas (1) and (2) is an anion.

アミジン系カチオン性高分子の水溶液粘度は、通常2〜15mPa・s、好ましくは3〜12mPa・sである。この値は、B型粘度計(東機産業社製)を用い、温度25℃の条件下、4質量%食塩水中の0.5%高分子濃度の水溶液として測定した値であり、以下に記載(実施例を含む)の他の高分子の水溶液粘度についても同じである。   The aqueous solution viscosity of the amidine-based cationic polymer is usually 2 to 15 mPa · s, preferably 3 to 12 mPa · s. This value is a value measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.) at a temperature of 25 ° C. as a 0.5% polymer aqueous solution in 4% by mass saline. The same applies to aqueous solution viscosities of other polymers (including examples).

(ビニルアミン系カチオン性高分子)
ビニルアミン系カチオン性高分子は、下記構造式(3)で表されるビニルアミン単位を有するカチオン性高分子であって、N−ビニルアミドの高分子の加水分解物である。N−ビニルアミドの好ましい代表例としてはN−ビニルホルムアミドが挙げられるが、N−ビニルアセトアミド、N−ビニルプロピオンアミド、N−ビニルブチルアミド、N−ビニルバレルアミド、N−ビニルコハク酸イミド等であってもよい。これらの単量体を単独もしくは共重合し、酸性もしくは塩基性条件下で(部分)加水分解することにより得られる。
(Vinylamine cationic polymer)
The vinylamine-based cationic polymer is a cationic polymer having a vinylamine unit represented by the following structural formula (3), and is a hydrolyzate of a polymer of N-vinylamide. Preferable representative examples of N-vinylamide include N-vinylformamide, N-vinylacetamide, N-vinylpropionamide, N-vinylbutyramide, N-vinyl barrelamide, N-vinylsuccinimide and the like. Also good. These monomers can be obtained by single or copolymerization and (partial) hydrolysis under acidic or basic conditions.

Figure 0006098239
式(3)中、Rは水素原子又はメチル基であり、Xは陰イオンである。
Figure 0006098239
In formula (3), R 1 is a hydrogen atom or a methyl group, and X is an anion.

ビニルアミン系カチオン性高分子の水溶液粘度は、通常1〜20mPa・s、好ましくは2〜15mPa・sである。   The aqueous solution viscosity of the vinylamine-based cationic polymer is usually 1 to 20 mPa · s, preferably 2 to 15 mPa · s.

(ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体)
単量体であるジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩は、ジアルキルアミノエチル(メタ)アクリレートを塩化メチルと反応させることにより得られる。
(Dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt homopolymer)
The monomer dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt is obtained by reacting dialkylaminoethyl (meth) acrylate with methyl chloride.

ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体の水溶液粘度は、通常1〜60mPa・s、好ましくは2〜55mPa・s、更に好ましくは7〜55mPa・s、特に好ましくは20〜55mPa・sである。   The aqueous solution viscosity of the dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt homopolymer is usually 1 to 60 mPa · s, preferably 2 to 55 mPa · s, more preferably 7 to 55 mPa · s, particularly preferably 20 to 55 mPa. -S.

(ジアルキルアミノエチル(メタ)アクリレート単独重合体)
単量体は好ましくはジアルキルアミノエチル(メタ)アクリレート水溶性酸塩であり、その代表例は、ジメチルアミノエチル(メタ)アクリレート硫酸塩であるが、塩酸塩や他の酸の塩であっても差し支えない。
(Dialkylaminoethyl (meth) acrylate homopolymer)
The monomer is preferably a dialkylaminoethyl (meth) acrylate water-soluble acid salt, and a typical example thereof is dimethylaminoethyl (meth) acrylate sulfate, but even a hydrochloride or other acid salt may be used. There is no problem.

ジアルキルアミノエチル(メタ)アクリレート単独重合体の水溶液粘度は、通常5〜60mPa・s、好ましくは10〜50mPa・sである。   The aqueous solution viscosity of the dialkylaminoethyl (meth) acrylate homopolymer is usually 5 to 60 mPa · s, preferably 10 to 50 mPa · s.

前記の各高分子(重合体)の割合は、アミジン系カチオン性高分子:40〜75質量%(好ましくは50〜65質量%)、ビニルアミン系カチオン性高分子:12.5〜30質量%、ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体:12.5〜30質量%、ジアルキルアミノエチル(メタ)アクリレート単独重合体:0〜25質量%である。   The ratio of each polymer (polymer) is amidine-based cationic polymer: 40 to 75% by mass (preferably 50 to 65% by mass), vinylamine-based cationic polymer: 12.5 to 30% by mass, Dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt homopolymer: 12.5 to 30% by mass, dialkylaminoethyl (meth) acrylate homopolymer: 0 to 25% by mass.

本発明の汚泥脱水剤は、その他の非アクリルアミド系の水溶性の高分子を組み合わせて用いても差し支えない。例えば、カチオン系であればポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド等が例示され、アニオン系であればポリアクリル酸が例示される。さらにキトサンや多糖類等の天然系高分子を併用しても差し支えない。   The sludge dehydrating agent of the present invention may be used in combination with other non-acrylamide water-soluble polymers. For example, polyethyleneimine, polydiallyldimethylammonium chloride and the like are exemplified for the cationic system, and polyacrylic acid is exemplified for the anionic system. Furthermore, natural polymers such as chitosan and polysaccharides may be used in combination.

また、本発明においては、汚泥脱水剤に加えて、無機凝結剤及び/又は有機凝結剤(以下、これらをまとめて単に「凝結剤」という)を併用しても良い。前記の汚泥脱水剤は、凝結剤と併用しても、汚泥に対する脱水効果を十分に発揮できる。無機凝結剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、ポリ鉄(ポリ硫酸鉄、ポリ塩化鉄等)が挙げられる。有機凝結剤としては、例えば、ポリアミン、ポリジアリルジメチルアンモニウムクロライド、カチオン性界面活性剤が挙げられる。   In the present invention, an inorganic coagulant and / or an organic coagulant (hereinafter collectively referred to simply as “coagulant”) may be used in combination with the sludge dewatering agent. Even when the sludge dehydrating agent is used in combination with a coagulant, it can sufficiently exert a dewatering effect on the sludge. Examples of the inorganic coagulant include sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate, ferric sulfate, polyiron (polyiron sulfate, polyiron chloride, etc.). Examples of the organic coagulant include polyamine, polydiallyldimethylammonium chloride, and a cationic surfactant.

<汚泥の処理方法>
本発明に係る汚泥の処理方法は、前記の汚泥脱水剤と汚泥とを混合した後に脱水することを特徴とする。
<Sludge treatment method>
The sludge treatment method according to the present invention is characterized in that the sludge dewatering agent and the sludge are mixed and then dehydrated.

本発明の汚泥脱水剤で処理する汚泥は、特に制限されないが、消化汚泥、即ち、混合生汚泥、余剰汚泥等を嫌気性処理して得られた汚泥に対して好適である。   The sludge to be treated with the sludge dehydrating agent of the present invention is not particularly limited, but is suitable for digested sludge, that is, sludge obtained by anaerobic treatment of mixed raw sludge, excess sludge and the like.

汚泥脱水剤は水溶液にして汚泥と混合する。水溶液の濃度は、通常0.01〜2質量%、好ましくは0.05〜0.5質量%である。汚泥脱水剤の添加量は、汚泥中固形分に対し、通常0.01〜5質量%、好ましくは0.05〜4質量%である。   Sludge dewatering agent is made into an aqueous solution and mixed with sludge. The density | concentration of aqueous solution is 0.01-2 mass% normally, Preferably it is 0.05-0.5 mass%. The added amount of the sludge dehydrating agent is usually 0.01 to 5 mass%, preferably 0.05 to 4 mass%, based on the solid content in the sludge.

脱水剤の水溶液を汚泥に混合した後、攪拌を行い、凝集させ、フロックを形成する。フロックを形成した後は、脱水機を用いてフロックを脱水し、脱水ケーキを作成することにより汚泥処理を完了することができる。攪拌は通常の凝集処理に用いられる凝集攪拌槽がそのまま用いられる。さらに遠心脱水機の機内薬注等の公知の方法をそのまま用いることができる。脱水機の形式は、例えば、フィルタープレス型脱水機、スクリュープレス型脱水機、圧入式スクリュープレス型脱水機、真空型脱水機、ベルトプレス型脱水機、遠心型脱水機、多重円板型脱水機等が挙げられるが特にこれに限られるものではない。   After the aqueous solution of the dehydrating agent is mixed with the sludge, the mixture is stirred and aggregated to form a floc. After the flocs are formed, the sludge treatment can be completed by dehydrating the flocs using a dehydrator and creating a dehydrated cake. For agitation, a flocculation agitation tank used for a normal flocculation process is used as it is. Furthermore, known methods such as in-flight drug injection of a centrifugal dehydrator can be used as they are. The types of dehydrators are, for example, filter press dehydrators, screw press dehydrators, press-fit screw press dehydrators, vacuum dehydrators, belt press dehydrators, centrifugal dehydrators, and multi-disc dehydrators. However, the present invention is not limited to this.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明はその要旨を超えない限り以下の記載によって限定されるものではない。なお、本実施例における「%」は特に断りのない限り「質量%」を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited by the following description, unless the summary is exceeded. Note that “%” in this example represents “% by mass” unless otherwise specified.

<使用汚泥>
A下水処理場、B浄化センター、C浄化センター、D下水処理場、E浄化センターにおいて採取された5種の消化汚泥(以下、A、B、C、DおよびEと記載する)を用いて、汚泥脱水剤の脱水処理性能の試験を行った。上記5種の汚泥について、それぞれ下記の物性測定方法により分析した結果を表1に示す。
<Used sludge>
Using five types of digested sludge (hereinafter referred to as A, B, C, D, and E) collected at the A sewage treatment plant, B purification center, C purification center, D sewage treatment plant, and E purification center, A test of the dewatering performance of the sludge dewatering agent was conducted. Table 1 shows the results of analyzing the above five types of sludge by the following physical property measurement methods.

Figure 0006098239
Figure 0006098239

<汚泥の物性測定方法>
・TS(Total Solid):定法に基づき測定した(財団法人日本下水道協会編、「下水試験方法上巻1997年版」、平成9年8月25日発行、p.116)。
・Mアルカリ度:定法に基づき測定した(財団法人日本下水道協会編、「下水道試験法上巻1997年度版」p.300)。
<Sludge physical property measurement method>
TS (Total Solid): Measured according to a standard method (edited by the Japan Sewerage Association, “Sewage Test Method, Vol. 1997,” August 25, 1997, p. 116).
-M alkalinity: Measured based on a standard method (edited by the Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 300”).

<汚泥脱水剤>
実施例および比較例に使用した汚泥脱水剤を表2〜表6−3に示す。表中の数値は、汚泥脱水剤中の以下に記載の高分子(A)(B)(C)(D)の配合比率を%で表したものである。
<Sludge dewatering agent>
The sludge dehydrating agents used in Examples and Comparative Examples are shown in Tables 2 to 6-3. The numerical values in the table represent the blending ratio of the polymers (A), (B), (C), and (D) described below in the sludge dewatering agent in%.

[(A):アミジン系カチオン性高分子]
ダイヤニトリックス社製「KP7000」(水溶液粘度:7mPa・s)
[(A): Amidine-based cationic polymer]
“KP7000” manufactured by Daianitrix (water solution viscosity: 7 mPa · s)

[(B):ビニルアミン系カチオン性高分子]
N−ビニルホルムアミド重合体(平均分子量200万)を5%水溶液にし、対N−ビニルホルムアミドユニット40モル%の塩酸を加え、60℃、30分間攪拌し、加水分解率40モル%のN−ビニルホルムアミド重合体部分加水分解物を得た(水溶液粘度:7mPa・s)。
[(B): Vinylamine-based cationic polymer]
N-vinylformamide polymer (average molecular weight 2 million) is made into 5% aqueous solution, hydrochloric acid with 40 mol% of N-vinylformamide unit is added and stirred at 60 ° C. for 30 minutes, and N-vinyl with a hydrolysis rate of 40 mol%. A formamide polymer partial hydrolyzate was obtained (aqueous solution viscosity: 7 mPa · s).

[(C):ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体]
(C1):ジメチルアミノエチルメタクリレートメチルクロライド4級塩単独重合体(ダイヤニトリックス社製「KP201H」、水溶液粘度:40mPa・s)
(C2):ジメチルアミノエチルアクリレートメチルクロライド4級塩単独重合体(ダイヤニトリックス社製「KM200B」、水溶液粘度:13mPa・s)
[(C): Dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt homopolymer]
(C1): Dimethylaminoethyl methacrylate methyl chloride quaternary salt homopolymer (“KP201H” manufactured by Dianitics, aqueous solution viscosity: 40 mPa · s)
(C2): Dimethylaminoethyl acrylate methyl chloride quaternary salt homopolymer ("KM200B" manufactured by Dianitricks, aqueous solution viscosity: 13 mPa · s)

[(D):ジアルキルアミノエチル(メタ)アクリレート単独重合体]
ジメチルアミノエチルメタクリレート単独重合体(ダイヤニトリックス社製「KP000M1」、水溶液粘度:25mPa・s)
[(D): Dialkylaminoethyl (meth) acrylate homopolymer]
Dimethylaminoethyl methacrylate homopolymer (“KP000M1” manufactured by Dianitics, Inc., aqueous solution viscosity: 25 mPa · s)

上記に加え、本発明の汚泥脱水剤とアクリルアミド系高分子の脱水性能を比較するため、アクリルアミド系カチオン性高分子(E)を使用した。アクリルアミド系カチオン性高分子(E)の詳細は下記の通りである。   In addition to the above, in order to compare the dewatering performance of the sludge dewatering agent of the present invention and the acrylamide polymer, an acrylamide cationic polymer (E) was used. The details of the acrylamide-based cationic polymer (E) are as follows.

[(E):アクリルアミド系カチオン性高分子]
アクリルアミド・ジメチルアミノエチルアクリレートメチルクロライド4級塩の共重合体(ダイヤニトリックス社製「KP1200H」、水溶液粘度:46mPa・s)
[(E): Acrylamide-based cationic polymer]
Copolymer of acrylamide / dimethylaminoethyl acrylate methyl chloride quaternary salt ("KP1200H" manufactured by Daianitrix, Inc., aqueous solution viscosity: 46 mPa.s)

<凝集試験方法>
[フロック粒径]
汚泥脱水剤は表2〜表6−3に示す比率で混合し、脱塩水に0.3%濃度に溶解した。そして、汚泥300mlを500mlビーカーにとり、所定の汚泥脱水剤を添加し、櫂十字翼を装備した攪拌機を用いて1000rpmで30秒攪拌し、フロックを形成し、そのフロック径を測定した。フロックを形成したものに関しては48メッシュのナイロン濾布で濾過し、濾液の濁度を目視で判断した。濾液のにごりは以下の基準で判定した。
<Aggregation test method>
[Flock particle size]
Sludge dehydrating agents were mixed at the ratios shown in Tables 2 to 6-3 and dissolved in demineralized water at a concentration of 0.3%. Then, 300 ml of sludge was placed in a 500 ml beaker, a predetermined sludge dehydrating agent was added, and the mixture was stirred at 1000 rpm for 30 seconds using a stirrer equipped with a crosshair blade to form a floc, and the floc diameter was measured. The floc formed was filtered through a 48 mesh nylon filter cloth, and the turbidity of the filtrate was judged visually. The turbidity of the filtrate was determined according to the following criteria.

−:ろ過水がほとんど透き通っており、浮遊物はほぼ見られない(SS量目安:50ppm未満)。
+:ろ過水に一部濁りが見られ、浮遊物がわずかに存在する(SS量目安:50ppm
以上100ppm未満)。
++:ろ過水に部分的に濁りが見られ、浮遊物がところどころ存在する(SS量目安:100ppm以上200ppm未満)。
+++:ろ過水に多数の濁りが見られ、浮遊物が全体的に存在する(SS量目安:200ppm以上500ppm未満)。
++++:ろ過水に全体的に多数の濁りが見られ、浮遊物が全体的に存在し、一部粗大な大きさで存在する(SS量目安:500ppm以上1000ppm未満)。
×:ろ過水が完全に濁り、粗大な浮遊物が多数存在する(SS量目安:1000ppm以上)。
-: Filtrated water is almost transparent, and suspended matter is hardly seen (SS guideline: less than 50 ppm).
+: Some turbidity is seen in the filtered water, and there is a slight amount of suspended matter (SS amount guideline: 50 ppm)
Or more and less than 100 ppm).
++: Partly turbidity is observed in the filtered water, and suspended matter is present in some places (SS amount guideline: 100 ppm or more and less than 200 ppm).
++++ Many turbidity is seen in filtered water, and there exists a suspended substance as a whole (SS amount standard: 200 ppm or more and less than 500 ppm).
++++: Many turbidities are observed in the filtered water as a whole, and suspended matter is present as a whole, and a part thereof is coarse (SS amount guideline: 500 ppm or more and less than 1000 ppm).
X: The filtered water is completely turbid and there are many coarse suspended matters (SS amount guideline: 1000 ppm or more).

[フロック強度、脱水ケーキの含水率]
さらに濾布上で汚泥を50回転がし、団粒試験を行い、フロック強度(団粒性)を判定した。団粒性は以下の基準で評価した。
[Flock strength, moisture content of dehydrated cake]
Furthermore, 50 rotations of sludge was carried out on the filter cloth, the aggregate test was done, and the flock strength (aggregate property) was determined. Aggregability was evaluated according to the following criteria.

◎:ろ布上で転がすことにより水が切れ、フロックが数個の団子状になる。
○:ろ布上で転がすことにより水が切れ、フロックが一塊状になる。
△:ろ布上で転がすことにより水が切れるが、フロックが崩れ塊状にならない。
×:ろ布上で転がすことにより、凝集汚泥が崩れて流れ、ドロドロになる。
A: Water is cut off by rolling on the filter cloth, and the floc becomes a dumpling.
○: Water is cut off by rolling on the filter cloth, and flocs are formed in a lump.
Δ: Water is cut by rolling on the filter cloth, but the floc is broken and does not form a lump.
X: By rolling on a filter cloth, the coagulated sludge flows and becomes muddy.

団粒性が認められたものに関しては、0.1mPaの圧力でプレス脱水し、脱水ケーキを作成した。その後、脱水ケーキの含水率を測定した。含水率の測定方法は、財団法人日本下水道協会編、「下水道試験法上巻1997年度版」p.296−297に従い測定した。   For those with aggregated properties, press dehydration was performed at a pressure of 0.1 mPa to prepare a dehydrated cake. Thereafter, the moisture content of the dehydrated cake was measured. The method for measuring the moisture content is described in the Japan Sewerage Association, “Sewerage Test Method, Vol. 1997 edition” p. Measured according to 296-297.

実施例および比較例における各試験結果を表2〜表6−3に示す。   The test results in the examples and comparative examples are shown in Tables 2 to 6-3.

<試験汚泥A>

Figure 0006098239
<Test sludge A>
Figure 0006098239

本発明の汚泥脱水剤を用いた実施例1〜8では比較例1〜6に比べ特にフロック強度が向上していることがわかる。また、アクリルアミド系カチオン性高分子を使用した比較例7と比較すると、実施例1〜8は凝集フロックの強度に優れ、脱水ケーキの含水率が非常に低かった。   In Examples 1 to 8 using the sludge dehydrating agent of the present invention, it can be seen that the floc strength is particularly improved as compared with Comparative Examples 1 to 6. Moreover, compared with the comparative example 7 using an acrylamide type cationic polymer, Examples 1-8 were excellent in the intensity | strength of the aggregation floc, and the moisture content of the dewatering cake was very low.

<試験汚泥B>

Figure 0006098239
<Test sludge B>
Figure 0006098239

試験汚泥Bに関しては、使用した汚泥脱水剤すべてにおいてフロック強度が良かったが、実施例9〜12においては濾液濁度及び含水率に関し本発明の汚泥脱水剤の効果が確認できる。比較例8の組み合わせにおいても効果はあるが、実施例9〜12に比べ脱水ケーキの含水率が高い。   Regarding the test sludge B, the floc strength was good in all the sludge dewatering agents used, but in Examples 9 to 12, the effect of the sludge dewatering agent of the present invention on the filtrate turbidity and water content can be confirmed. The combination of Comparative Example 8 is also effective, but the moisture content of the dehydrated cake is higher than in Examples 9-12.

試験汚泥Aと同様にアクリルアミド系カチオン性高分子を使用した比較例9と比較すると、特に脱水ケーキの含水率が低下することが確認される。   It is confirmed that the moisture content of the dehydrated cake is reduced particularly when compared with Comparative Example 9 using an acrylamide-based cationic polymer as in the test sludge A.

<試験汚泥C>

Figure 0006098239
<Test sludge C>
Figure 0006098239

比較例10〜14に比べ、実施例13〜15では脱水ケーキの含水率が非常に低下しており、汚泥種を変えても本発明の汚泥脱水剤の効果が確認される。   Compared with Comparative Examples 10-14, in Examples 13-15, the moisture content of the dewatered cake was greatly reduced, and the effect of the sludge dehydrating agent of the present invention was confirmed even when the sludge species was changed.

<試験汚泥D>

Figure 0006098239
<Test sludge D>
Figure 0006098239

Figure 0006098239
Figure 0006098239

Figure 0006098239
Figure 0006098239

比較例15〜18と比べ、実施例16〜19においてもフロック強度および脱水ケーキの含水率に関し本発明の効果が確認できる。実施例18、19および比較例18に関してはC1をC2に置き換えた試験であることから、ジアルキルアミノエチルメタクリレートメチルクロライド4級塩単独重合体およびジアルキルアミノエチルアクリレートメチルクロライド4級塩単独重合体のどちらを適用しても本発明の効果が発揮されることがわかる。   Compared with Comparative Examples 15-18, also in Examples 16-19, the effect of this invention can be confirmed regarding the floc strength and the moisture content of the dehydrated cake. Since Examples 18 and 19 and Comparative Example 18 were tests in which C1 was replaced with C2, either dialkylaminoethyl methacrylate methyl chloride quaternary salt homopolymer or dialkylaminoethyl acrylate methyl chloride quaternary salt homopolymer was used. It can be seen that the effect of the present invention can be exhibited even if the method is applied.

また、実施例16〜19ではアクリルアミド系カチオン性高分子を単独使用した比較例19に比べ濾液濁度、フロック強度、含水率の面で優れた効果が得られた。さらに(C)と(E)を置き換えた比較例20〜22では実施例16〜19と比較して脱水ケーキの含水率が高い結果となった。   In Examples 16 to 19, excellent effects in terms of filtrate turbidity, floc strength, and moisture content were obtained as compared with Comparative Example 19 in which an acrylamide-based cationic polymer was used alone. Furthermore, in Comparative Examples 20-22 in which (C) and (E) were replaced, the moisture content of the dehydrated cake was higher than in Examples 16-19.

<試験汚泥E>

Figure 0006098239
<Test sludge E>
Figure 0006098239

Figure 0006098239
Figure 0006098239

Figure 0006098239
Figure 0006098239

比較例23〜27と比べ実施例20〜22の含水率が低下していることから、本発明の汚泥脱水剤の効果が確認できる。また、試験汚泥Dと同様に、(E)を単独使用した比較例28および(C)と(E)を置き換えた比較例29、30については実施例20〜22に比べ含水率が高い結果となった。   Since the moisture content of Examples 20-22 is falling compared with Comparative Examples 23-27, the effect of the sludge dehydrating agent of this invention can be confirmed. Moreover, like the test sludge D, the comparative example 28 which used (E) independently, and the comparative examples 29 and 30 which replaced (C) and (E) have a high moisture content compared with Examples 20-22. became.

本発明によれば、従来高分子量のアクリルアミド系高分子を使わねば処理できなかった汚泥、特に消化汚泥を非アクリルアミド系高分子の組み合わせで処理することができる。従って、本発明の工業的価値は高い。   According to the present invention, it is possible to treat sludge, particularly digested sludge, which could not be treated with conventional high molecular weight acrylamide polymers, with a combination of non-acrylamide polymers. Therefore, the industrial value of the present invention is high.

Claims (3)

アミジン系カチオン性高分子:40〜75質量%、ビニルアミン系カチオン性高分子:12.5〜30質量%、ジアルキルアミノエチル(メタ)アクリレートメチルクロライド4級塩単独重合体:12.5〜30質量%およびジアルキルアミノエチル(メタ)アクリレート単独重合体:0〜25質量%(全成分の合計は100質量%)の非アクリルアミド系高分子からなることを特徴とする汚泥脱水剤。   Amidine-based cationic polymer: 40 to 75% by mass, vinylamine-based cationic polymer: 12.5 to 30% by mass, dialkylaminoethyl (meth) acrylate methyl chloride quaternary salt homopolymer: 12.5 to 30% by mass % And dialkylaminoethyl (meth) acrylate homopolymer: 0 to 25% by mass (total of all components is 100% by mass) non-acrylamide polymer, 請求項1に記載の汚泥脱水剤と汚泥とを混合した後に得られたフロックを脱水することを特徴とする汚泥の処理方法。   A method for treating sludge, comprising dewatering flocs obtained after mixing the sludge dewatering agent according to claim 1 and sludge. 汚泥が下水消化汚泥である請求項2に記載の汚泥の処理方法。   The method for treating sludge according to claim 2, wherein the sludge is sewage digested sludge.
JP2013045052A 2012-03-07 2013-03-07 Sludge dewatering agent and sludge treatment method Active JP6098239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045052A JP6098239B2 (en) 2012-03-07 2013-03-07 Sludge dewatering agent and sludge treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012050870 2012-03-07
JP2012050870 2012-03-07
JP2013045052A JP6098239B2 (en) 2012-03-07 2013-03-07 Sludge dewatering agent and sludge treatment method

Publications (2)

Publication Number Publication Date
JP2013212501A JP2013212501A (en) 2013-10-17
JP6098239B2 true JP6098239B2 (en) 2017-03-22

Family

ID=49586277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045052A Active JP6098239B2 (en) 2012-03-07 2013-03-07 Sludge dewatering agent and sludge treatment method

Country Status (1)

Country Link
JP (1) JP6098239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113371976B (en) * 2021-06-08 2024-02-02 中交上海航道勘察设计研究院有限公司 Sludge dewatering curing agent and recycling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405554A (en) * 1990-02-08 1995-04-11 Cytec Technology Corp. High performance dewatering aids
US6610209B1 (en) * 1994-12-27 2003-08-26 Ondeo Nalco Company Use of polymers containing vinylamine/vinylformamide for the treatment of food processing wastewater
JP3697701B2 (en) * 1995-02-15 2005-09-21 栗田工業株式会社 Sludge dewatering agent
JP2004059747A (en) * 2002-07-30 2004-02-26 Hymo Corp Water-soluble polymer emulsion and method for using the same
JP2008006382A (en) * 2006-06-29 2008-01-17 Nalco Japan Kk Method of treating oil-containing waste water
JP5700354B2 (en) * 2010-04-15 2015-04-15 三菱レイヨン株式会社 Sludge dewatering agent and sludge dewatering treatment method

Also Published As

Publication number Publication date
JP2013212501A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP2018020292A (en) Low acrylamide flocculant composition and method for using low acrylamide flocculant composition
WO2016190388A1 (en) Wastewater treatment method
AU2001289803B2 (en) Polymeric compositions for dewatering sewage sludges
JP5427985B2 (en) Sludge dewatering agent and sludge dewatering method
JP5700354B2 (en) Sludge dewatering agent and sludge dewatering treatment method
JP5117228B2 (en) Sewage sludge treatment method
JP5042057B2 (en) Sludge dewatering method
JP5172372B2 (en) Sludge dewatering method
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP6098239B2 (en) Sludge dewatering agent and sludge treatment method
JP5961934B2 (en) Sludge dewatering method
JP2013094739A (en) Sludge dehydrating agent and method of dehydrating organic sludge using the same
JP2009056397A (en) Organic coagulant and waste water coagulation method using the same
JP5501122B2 (en) Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JP5038587B2 (en) Dewatering method for sewage digested sludge
JP2020025939A (en) Sludge dewatering method
JP3064878B2 (en) Organic sludge treatment
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
JP6028826B2 (en) Flocculant for waste water treatment and waste water agglomeration method
JP6931209B2 (en) Method of reforming organic waste
JP5709086B2 (en) Organic coagulant
JP2019111496A (en) Method and apparatus for treating water to be treated
WO2015162187A1 (en) Dewatering of sludge
JP6550782B2 (en) Flocculating agent for wastewater and flocculation method for wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6098239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250