JP5038587B2 - Dewatering method for sewage digested sludge - Google Patents

Dewatering method for sewage digested sludge Download PDF

Info

Publication number
JP5038587B2
JP5038587B2 JP2004194197A JP2004194197A JP5038587B2 JP 5038587 B2 JP5038587 B2 JP 5038587B2 JP 2004194197 A JP2004194197 A JP 2004194197A JP 2004194197 A JP2004194197 A JP 2004194197A JP 5038587 B2 JP5038587 B2 JP 5038587B2
Authority
JP
Japan
Prior art keywords
sludge
meth
flocculant
amphoteric polymer
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004194197A
Other languages
Japanese (ja)
Other versions
JP2006015209A (en
Inventor
嘉男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2004194197A priority Critical patent/JP5038587B2/en
Publication of JP2006015209A publication Critical patent/JP2006015209A/en
Application granted granted Critical
Publication of JP5038587B2 publication Critical patent/JP5038587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、凝集力及び脱水性に優れ、濾過速度が速く、優れたフロックを得ることができるという各種凝集脱水性能に優れる、下水消化汚泥の脱水方法に関するものである。   The present invention relates to a method for dewatering sewage-digested sludge having excellent cohesive strength and dewaterability, high filtration speed, and excellent various coagulation and dewatering performances such that an excellent floc can be obtained.

下水、し尿処理場及び有機性産業排水等より生じる有機質汚泥は、高分子凝集剤を添加して、スクリュープレス、スクリューデカンター及びベルトプレス等の脱水装置を使用して脱水される。
脱水処理後の汚泥ケーキは、埋め立てや焼却処分されるが、汚泥ケーキ中の含水率を1%低下させることで、焼却で使用する燃料の10%程度をコストダウンすることができるため、汚泥ケーキ中の含水率を低下させるために、種々の検討が行われている。
ところで、下水処理場において、汚泥中に含まれる有機分含有量が多い場合には、有機質汚泥に嫌気性処理がなされる。近年において、有機質汚泥を嫌気性処理して得られる消化汚泥は、繊維分が極端に低いことや、腐敗性粘着性物質を含むため、従来の脱水方法では脱水し難い性状となっている。
Organic sludge generated from sewage, human waste treatment plant, organic industrial wastewater, and the like is dehydrated using a dehydrating device such as a screw press, screw decanter or belt press with the addition of a polymer flocculant.
The sludge cake after dehydration is landfilled or incinerated, but reducing the moisture content in the sludge cake by 1% can reduce the cost of about 10% of the fuel used for incineration, so the sludge cake Various studies have been conducted in order to reduce the moisture content therein.
By the way, in a sewage treatment plant, when there is much organic content contained in sludge, anaerobic treatment is made to organic sludge. In recent years, digested sludge obtained by anaerobic treatment of organic sludge has properties that are extremely difficult to dehydrate by conventional dehydration methods because of its extremely low fiber content and containing a septic sticky substance.

消化汚泥の脱水方法としては、例えば、無機凝集剤としてポリ硫酸鉄を用い、これにノニオン、アニオン、又はカチオン性高分子凝集剤を単独で添加してフロックを形成し脱水する方法(特許文献1)や、無機凝集剤を添加後、pHを5〜8に調節し、これに両性高分子凝集剤を添加する方法(特許文献2)があるが、凝集剤を多量に使用する必要があるため、凝集剤の使用コストが高くなったり、汚泥脱水性能が不十分となることがあった。
最近では、消化汚泥の処理方法として、ポリアミジンを使用する方法(特許文献3)や、無機凝集剤とアクリレート系カチオン高分子凝集剤を併用する方法(特許文献4)が知られている。前者のポリアミジンを使用する方法は、ポリアミジンの高いカチオン性により、前記した汚泥脱水方法に対して優れた方法であり、後者の無機凝集剤とアクリレート系カチオン高分子凝集剤を併用する方法も、前記した汚泥脱水方法に対して優れた方法である。しかしながら、得られるフロックが、凝集性及びろ過性の点で不十分で、脱水ケーキの含水率も不十分であり、かつ凝集剤の使用量を多量にせざるを得ないといった問題を有している。
As a method for dewatering digested sludge, for example, polyiron sulfate is used as an inorganic flocculant, and nonionic, anionic, or cationic polymer flocculants are added alone to form a floc for dehydration (Patent Document 1). ) And after adding an inorganic flocculant, there is a method (Patent Document 2) in which the pH is adjusted to 5 to 8 and an amphoteric polymer flocculant is added thereto, but it is necessary to use a large amount of flocculant. In some cases, the cost of using the flocculant becomes high, or the sludge dewatering performance becomes insufficient.
Recently, as a method for treating digested sludge, a method using polyamidine (Patent Document 3) and a method using an inorganic flocculant and an acrylate cationic polymer flocculant in combination (Patent Document 4) are known. The former method using polyamidine is an excellent method for the sludge dewatering method due to the high cationic property of polyamidine, and the latter method using an inorganic flocculant and an acrylate-based cationic polymer flocculant in combination is also described above. It is an excellent method for the sludge dewatering method. However, the obtained floc is insufficient in terms of cohesiveness and filterability, the moisture content of the dehydrated cake is insufficient, and there is a problem that the amount of coagulant used must be increased. .

特開昭58−51998号公報(特許請求の範囲)JP 58-51998 A (Claims) 特開昭63−158200号公報(特許請求の範囲)JP-A-63-158200 (Claims) 特開平5−192513号公報(特許請求の範囲)JP-A-5-192513 (Claims) 特開平7−214100号公報(特許請求の範囲)JP-A-7-214100 (Claims)

本発明者らは、下水消化汚泥に対して、凝集性及びろ過性に優れるフロックを得ることができ、且つ脱水ケーキの含水率を低下させることができる汚泥の脱水方法を見出すため鋭意検討を行ったのである。   The present inventors have intensively studied to find a method for dewatering sludge that can obtain flocs excellent in cohesiveness and filterability and can reduce the moisture content of the dewatered cake with respect to sewage digested sludge. It was.

本発明者は、前記課題を解決するため種々の検討を行った結果、下水消化汚泥に対して、無機凝集剤と、特定のカチオン当量及びアニオン当量を有する両性高分子凝集剤を添加することで、前記課題を解決し得ることを見出し本発明を完成した。
以下に、本発明を詳細に説明する。
尚、本明細書においては、アクリレート又はメタクリレートを(メタ)アクリレートと表し、アクリルアミド又はメタクリルアミドを(メタ)アクリルアミドと表し、アクリル酸又はメタクリル酸を(メタ)アクリル酸と表し、アクリロニトリル又はメタクリロニトリルを(メタ)アクリロニトリルと表す。
As a result of various studies to solve the above problems, the present inventor added an inorganic flocculant and an amphoteric polymer flocculant having a specific cation equivalent and an anion equivalent to sewage digested sludge. The present invention has been completed by finding out that the above problems can be solved.
The present invention is described in detail below.
In this specification, acrylate or methacrylate is represented as (meth) acrylate, acrylamide or methacrylamide is represented as (meth) acrylamide, acrylic acid or methacrylic acid is represented as (meth) acrylic acid, acrylonitrile or methacrylonitrile. Is represented as (meth) acrylonitrile.

本発明は、下水消化汚泥に、無機凝集剤を添加した後、カチオン当量値が3.5meq/g以上でかつアニオン当量値が1.0meq/g以下であり、ジメチルアミノエチル(メタ)アクリレート4級塩単量体単位を80〜99.5モル%(メタ)アクリル酸及びこのアルカリ金属塩又はアンモニウム塩単量体単位を0.5〜15モル%及び(メタ)アクリルアミド単量体単位を0〜19.5モル%を有する両性高分子凝集剤を添加する汚泥の脱水方法に関する。
以下、それぞれの構成要件について説明する。
In the present invention, after adding an inorganic flocculant to sewage digested sludge, the cation equivalent value is 3.5 meq / g or more and the anion equivalent value is 1.0 meq / g or less , and dimethylaminoethyl (meth) acrylate 4 80 to 99.5 mol% of the grade salt monomer unit, 0.5 to 15 mol% of the (meth) acrylic acid and alkali metal salt or ammonium salt monomer unit, and the (meth) acrylamide monomer unit The present invention relates to a sludge dewatering method in which an amphoteric polymer flocculant having 0 to 19.5 mol% is added.
Hereinafter, each component requirement will be described.

1.下水消化汚泥
本発明が適用できる下水消化汚泥としては、下水処理場で発生する有機質汚泥を嫌気性消化処理したものであれば種々の汚泥に適用可能である。有機質汚泥としては特に制限は無く、具体的には、初沈汚泥と余剰汚泥の混合生汚泥を消化処理したもの等が挙げられる。
1. Sewage Digested Sludge The sewage digested sludge to which the present invention can be applied is applicable to various sludges as long as the organic sludge generated at the sewage treatment plant is subjected to anaerobic digestion. There is no restriction | limiting in particular as organic sludge, Specifically, what digested mixed raw sludge of primary sedimentation sludge and excess sludge etc. are mentioned.

2.無機凝集剤
無機凝集剤としては、汚泥の脱水で通常使用されるものを使用することができる。具体的には、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄及び硫酸第一鉄及びポリ硫酸鉄等を挙げることができる。
2. Inorganic flocculant As the inorganic flocculant, those usually used in sludge dewatering can be used. Specific examples include aluminum sulfate, polyaluminum chloride, ferric chloride, ferrous sulfate, and polyiron sulfate.

3.両性高分子凝集剤
本発明において、両性高分子凝集剤としては、カチオン当量値(以下「Cv」という)が3.5meq/g以上でかつアニオン当量値(以下「Av」という)が1.0meq/g以下を有する両性高分子(以下単に両性高分子という)を使用する。
Cvとしては、3.8〜5.5meq/gが好ましく、Avとしては、0.1〜0.9meq/gが好ましい。
Cvが3.5meq/g未満では、汚泥の荷電中和が不十分となるため、脱水が不十分となり、且つフロックの造粒性が不足してしまい、Avが1.0meq/gを超えると、フロックの造粒性が乏しく、両性高分子凝集剤を多量に使用せざるを得なくなってしまう。
3. Amphoteric polymer flocculant In the present invention, the amphoteric polymer flocculant has a cation equivalent value (hereinafter referred to as “Cv”) of 3.5 meq / g or more and an anion equivalent value (hereinafter referred to as “Av”) of 1.0 meq. An amphoteric polymer having a / g or less (hereinafter simply referred to as an amphoteric polymer) is used.
Cv is preferably 3.8 to 5.5 meq / g, and Av is preferably 0.1 to 0.9 meq / g.
If Cv is less than 3.5 meq / g, the charge neutralization of sludge becomes insufficient, dehydration becomes insufficient, and floc granulation is insufficient, and Av exceeds 1.0 meq / g. , Floc granulation is poor, and amphoteric polymer flocculants must be used in large amounts.

尚、本発明において、両性高分子のCv及びAvは、以下に示すコロイド滴定法によって求めた値をいう。   In the present invention, Cv and Av of the amphoteric polymer are values determined by the colloid titration method shown below.

1)Cvの測定
(1)滴定法
コニカルビーカーに脱イオン水90mlをとり、試料500ppm溶液10mlを加え、塩酸水溶液でpHを3.0とし、約1分間攪拌する。次に、トルイジンブルー指示薬を
2〜3滴加え、N/400ポリビニル硫酸カリウム試薬(以下N/400PVSKという)で滴定する。
滴定速度は2ml/分とし、検水が青から赤紫色に変色、10秒間以上保持する時点を終点とする。
1) Cv measurement
(1) Titration method Take 90 ml of deionized water in a conical beaker, add 10 ml of a 500 ppm sample solution, bring the pH to 3.0 with an aqueous hydrochloric acid solution, and stir for about 1 minute. Next, 2-3 drops of toluidine blue indicator is added and titrated with N / 400 potassium potassium sulfate reagent (hereinafter referred to as N / 400 PVSK).
The titration rate is 2 ml / min, and the end point is the time when the sample water changes from blue to magenta for 10 seconds or longer.

(2)試料500ppm水溶液の調製
試料0.2g(乾品換算しない)を精秤し、共栓付三角コルベンにとり、脱イオン水100mlで溶解する。この25mlを100mlメスフラスコにて脱イオン水でメスアツプする。
(2) Preparation of sample 500 ppm aqueous solution 0.2 g (not converted to dry product) of sample is precisely weighed, taken into a triangular corben with a stopper, and dissolved in 100 ml of deionized water. The 25 ml is made up with deionized water in a 100 ml volumetric flask.

(3)計算法 (3) Calculation method

Figure 0005038587
Figure 0005038587

2)Avの測定
(1)滴定法
コニカルビーカーに脱イオン水90mlをとり、試料500ppm溶液10mlを加え、苛性ソーダ水溶液でpHを7.0とし、約1分間攪拌する。次に、トルイジンブルー指示薬を2〜3滴加え、N/400ポリビニル硫酸カリウム試薬(以下N/400PVSKという)で滴定する。
滴定速度は2ml/分とし、検水が青から赤紫色に変色、10秒間以上保持する時点を終点とする。
2) Measurement of Av
(1) Titration method Take 90 ml of deionized water in a conical beaker, add 10 ml of a 500 ppm sample, adjust the pH to 7.0 with aqueous caustic soda, and stir for about 1 minute. Next, 2-3 drops of toluidine blue indicator is added and titrated with N / 400 potassium potassium sulfate reagent (hereinafter referred to as N / 400 PVSK).
The titration rate is 2 ml / min, and the end point is the time when the sample water changes from blue to magenta for 10 seconds or longer.

(2)試料500ppm水溶液の調製
試料0.2g(乾品換算しない)を精秤し、共栓付三角コルベンにとり、脱イオン水100mlで溶解する。この25mlを100mlメスフラスコにて脱イオン水でメスアツプする。
(2) Preparation of sample 500 ppm aqueous solution 0.2 g (not converted to dry product) of sample is precisely weighed, taken into a triangular corben with a stopper, and dissolved in 100 ml of deionized water. The 25 ml is made up with deionized water in a 100 ml volumetric flask.

(3)計算法 (3) Calculation method

Figure 0005038587
Figure 0005038587

両性高分子としては、ジメチルアミノエチル(メタ)アクリレート4級塩単量体単位を80〜99.5モル%(メタ)アクリル酸及びこのアルカリ金属塩又はアンモニウム塩単量体単位を0.5〜15モル%及び(メタ)アクリルアミド単量体単位を0〜19.5モル%を有する両性高分子が使用できる。 As the amphoteric polymer, dimethylaminoethyl (meth) acrylate quaternary salt monomer unit is 80 to 99.5 mol% , (meth) acrylic acid and alkali metal salt or ammonium salt monomer unit is 0.5. Amphoteric polymers having ˜15 mol% and (meth) acrylamide monomer units of 0 to 19.5 mol% can be used.

カチオン性単量体としては、ジメチルアミノエチル(メタ)アクリレート4級塩単量体である。 The cationic monomer is a dimethylaminoethyl (meth) acrylate quaternary salt monomer .

アニオン性単量体としては、(メタ)アクリル酸及びこのナトリウム塩等のアルカリ金属塩又
はアンモニウム塩である。
Examples of the anionic monomer include (meth) acrylic acid and alkali metal salts such as sodium salts or ammonium salts .

両性高分子としては、必要に応じてノニオン性単量体が使用できる。 As the amphoteric polymer, a nonionic monomer can be used as necessary.

両性高分子の製造方法については特に制限はなく、前記した単量体を使用して、一般的な重合方法を採用することができる。例えば、水溶液重合であれば、重合開始剤として過硫酸カリウム、過硫酸アンモニウム、2,2'−アゾビス(2−アミジノプロパン)二塩酸塩や、レドックス系の重合開始剤等を用いて、熱ラジカル重合を行なう方法や、ベンゾイン及びアセトフェノン型の光重合開始剤を用いて紫外線照射により光ラジカル重合を行なうこともできる。又、逆相のエマルション重合であれば、前記重合開始剤以外に、アゾビスイソブチロニトリルや過酸化ベンゾイル等の水不溶性開始剤を用いて重合を行っても良い。 There is no restriction | limiting in particular about the manufacturing method of an amphoteric polymer, A general polymerization method can be employ | adopted using the above-mentioned monomer. For example, in the case of aqueous solution polymerization, thermal radical polymerization using potassium persulfate, ammonium persulfate, 2,2′-azobis (2-amidinopropane) dihydrochloride, a redox polymerization initiator or the like as a polymerization initiator. Or radical photopolymerization by ultraviolet irradiation using a benzoin and acetophenone type photopolymerization initiator. In the case of reverse phase emulsion polymerization, the polymerization may be carried out using a water-insoluble initiator such as azobisisobutyronitrile or benzoyl peroxide in addition to the polymerization initiator.

得られたゲル状の重合体は、その後、公知の方法で切断・細断する。細断した重合体は、バンド式乾燥機、回転式乾燥機、遠赤外線式乾燥機及び振動流動式乾燥機等の乾燥機を
使用し、温度60〜150℃程度で乾燥し、ロール式粉砕機等で粉砕して粉末状の共重合体とされ、粒度調整される。
本発明の両性高分子としては、粉末状品のものが好ましく使用される。
The obtained gel polymer is then cut and chopped by a known method. The chopped polymer is dried at a temperature of about 60 to 150 ° C. using a dryer such as a band dryer, a rotary dryer, a far-infrared dryer, or a vibratory fluid dryer, and a roll mill. Etc. to obtain a powdery copolymer, and the particle size is adjusted.
As the amphoteric polymer of the present invention, a powdery product is preferably used.

本発明における両性高分子は、分子量の指標である0.5%塩粘度が10〜120mPa・sのものが好ましく、安定した脱水処理を達成するためには、15〜90mPa・sがより好ましい。
本発明において0.5%塩粘度とは、4%塩化ナトリウム水溶液に両性高分子を0.5%溶解した試料を25℃で、B型粘度計にて、ローターNo.1又は2を用いて、60rpmで測定した値をいう。
The amphoteric polymer in the present invention preferably has a 0.5% salt viscosity of 10 to 120 mPa · s, which is an index of molecular weight, and more preferably 15 to 90 mPa · s in order to achieve a stable dehydration treatment.
In the present invention, 0.5% salt viscosity means that a sample obtained by dissolving 0.5% of an amphoteric polymer in a 4% sodium chloride aqueous solution at 25 ° C. using a B-type viscometer, rotor No. The value measured at 60 rpm using 1 or 2.

本発明の両性高分子凝集剤としては、前記両性高分子に加え、硫酸水素ナトリウム、硫酸ナトリウム及びスルファミン酸等、脱水処理に悪影響がでないかぎり公知の添加剤と混合して使用しても良い。   As the amphoteric polymer flocculant of the present invention, in addition to the amphoteric polymer, sodium bisulfate, sodium sulfate, sulfamic acid and the like may be mixed with known additives as long as they do not adversely affect the dehydration treatment.

4.汚泥の脱水方法
本発明は、下水消化汚泥に、無機凝集剤を添加した後、前記両性高分子凝集剤を添加する汚泥の脱水方法である。
フロックの形成方法は、公知の方法に従えば良い。
4). TECHNICAL FIELD The present invention is a sludge dewatering method in which an inorganic flocculant is added to sewage digested sludge and then the amphoteric polymer flocculant is added.
The flock formation method may be a known method.

無機凝集剤の汚泥に対する添加割合としては、500〜50,000ppmが好ましく、TSに対しては0.01〜20質量%が好ましい。   As an addition ratio with respect to the sludge of an inorganic flocculant, 500-50,000 ppm is preferable and 0.01-20 mass% is preferable with respect to TS.

本発明においては、無機凝集剤を添加した後、pHを4〜8とすることが、より効果的に汚泥の処理を行うことができるため好ましい。
pHの調整方法としては、無機凝集剤を添加した後、当該pH値を満たす場合は、特にpH調整の必要はないが、本発明で限定する範囲を満たさない場合は、酸又はアルカリを添加して調整する。
酸としては、塩酸、硫酸、酢酸及びスルファミン酸等を挙げることができる。又、アルカリとしては、苛性ソーダ、苛性カリ、消石灰及びアンモニア等が挙げられる。
In the present invention, it is preferable to adjust the pH to 4 to 8 after adding the inorganic flocculant because the sludge can be treated more effectively.
As a method for adjusting pH, after adding an inorganic flocculant, if the pH value is satisfied, pH adjustment is not particularly required, but if the range limited by the present invention is not satisfied, acid or alkali is added. Adjust.
Examples of the acid include hydrochloric acid, sulfuric acid, acetic acid and sulfamic acid. Examples of the alkali include caustic soda, caustic potash, slaked lime, and ammonia.

両性高分子凝集剤の汚泥に対する添加割合としては、50〜1,000ppmが好ましく、TSに対しては0.1〜5質量%が好ましい。両性高分子凝集剤と後記するその他の高分子凝集剤を併用する場合は、全高分子凝集剤の合計量が前記添加割合を満たすことが好ましい。   The addition ratio of the amphoteric polymer flocculant to the sludge is preferably 50 to 1,000 ppm, and preferably 0.1 to 5% by mass with respect to TS. When the amphoteric polymer flocculant and other polymer flocculants described later are used in combination, it is preferable that the total amount of all the polymer flocculants satisfies the addition ratio.

本発明においては、無機凝集剤及び両性高分子凝集剤の他、必要に要に応じて、有機カチオン性化合物、カチオン性高分子凝集剤及びアニオン性高分子凝集剤を併用することができる。   In the present invention, in addition to the inorganic flocculant and the amphoteric polymer flocculant, an organic cationic compound, a cationic polymer flocculant and an anionic polymer flocculant can be used in combination as necessary.

有機カチオン性化合物としては、ポリマーポリアミン、ポリアミジン及びカチオン性界面活性剤等を例示できる。   Examples of organic cationic compounds include polymer polyamines, polyamidines, and cationic surfactants.

カチオン性高分子凝集剤としては、前記したカチオン性単量体の単独重合体及び前記したカチオン性単量体及びノニオン性単量体の共重合体等を挙げることができる。   Examples of the cationic polymer flocculant include a homopolymer of the aforementioned cationic monomer and a copolymer of the aforementioned cationic monomer and nonionic monomer.

アニオン性高分子凝集剤としては、前記したアニオン性単量体の単独重合体及び前記したアニオン性単量体及びノニオン性単量体の共重合体等を挙げることができる。   Examples of the anionic polymer flocculant include a homopolymer of the aforementioned anionic monomer and a copolymer of the aforementioned anionic monomer and nonionic monomer.

汚泥脱水剤を添加した後の攪拌速度及び攪拌時間等は、従来行われている脱水条件に従えば良い。   The stirring speed and stirring time after adding the sludge dehydrating agent may follow the conventional dehydrating conditions.

このようにして形成したフロックは、公知の手段を用いて脱水し、脱水ケーキとする。   The flocs thus formed are dehydrated using a known means to obtain a dehydrated cake.

脱水装置としては、スクリュープレス型脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機及びスクリューデカンター等を例示することができる。   Examples of the dehydrator include a screw press dehydrator, a belt press dehydrator, a filter press dehydrator, a screw decanter, and the like.

又、本発明の汚泥脱水剤は、濾過部を有する造粒濃縮槽を使用する脱水方法にも適用可能である。
具体的には、汚泥に、無機凝集剤を添加し、さらに汚泥脱水剤を添加した後、又は汚泥脱水剤と共に、該汚泥を濾過部を有する造粒濃縮槽に導入し、該濾過部からろ液を取り出すと共に造粒し、この造粒物を脱水機で脱水処理する方法等が挙げられる。
The sludge dewatering agent of the present invention can also be applied to a dewatering method using a granulation concentration tank having a filtration part.
Specifically, after adding an inorganic flocculant to the sludge and further adding a sludge dewatering agent, or together with the sludge dewatering agent, the sludge is introduced into a granulation concentration tank having a filtration part, and filtered from the filtration part. Examples include a method of taking out the liquid and granulating, and dehydrating the granulated product with a dehydrator.

本発明の汚泥の脱水方法によれば、下水消化汚泥に対して、凝集性及びろ過性に優れたフロックを得ることができ、且つ脱水ケーキの含水率を低下させることが可能となる。   According to the sludge dewatering method of the present invention, flocs excellent in cohesiveness and filterability can be obtained with respect to sewage digested sludge, and the water content of the dewatered cake can be reduced.

本発明は、下水消化汚泥に、無機凝集剤を添加した後、前記両性高分子からなる両性高分子凝集剤を添加する汚泥の脱水方法である。 The present invention, in sewage digestion sludge, after adding an inorganic flocculant, Ru dehydration process der sludge adding an amphoteric polymer flocculant comprising the amphoteric polymer.

<実施例1、2及び比較例1、2>
高分子凝集剤としては、下記表1に示す単量体を水溶液重合し、得られたゲル状重合体を切断・細断し、乾燥したものを使用した。
尚、表1のDACはジメチルアミノエチルアクリレートのメチルクロライド4級塩、AAはアクリル酸、AMはアクリルアミドを意味する。
<Examples 1 and 2 and Comparative Examples 1 and 2>
As the polymer flocculant, a monomer shown in Table 1 below was polymerized in an aqueous solution, and the resulting gel polymer was cut, chopped and dried.
In Table 1, DAC means methyl chloride quaternary salt of dimethylaminoethyl acrylate, AA means acrylic acid, and AM means acrylamide.

Figure 0005038587
Figure 0005038587

300mlビーカーに入れた下水消化汚泥(TS=1.8質量%)200mlに対しポリ硫酸鉄1,000ppmを添加して攪拌機を用い150rpmにて30秒間攪拌した。続いて表1に記載の高分子凝集剤の0.2%水溶液を固形分換算で200ppm添加し、同様に180秒間攪拌して汚泥フロックを生成させその粒径を測定した。
その後、80メッシュの網をフィルターとして用い、前記汚泥フロック分散液を重力濾過した。10秒後の濾液容量を測定しこれを濾過速度とした。
得られたケーキをミニベルトプレス機にて圧搾脱水し(面圧0.5kg/cm、3段)、含水率を測定した。これらの結果を表2に示す。
To 200 ml of sewage digested sludge (TS = 1.8 mass%) placed in a 300 ml beaker, 1,000 ppm of polysulfate was added and stirred at 150 rpm for 30 seconds using a stirrer. Subsequently, a 0.2% aqueous solution of a polymer flocculant shown in Table 1 was added at 200 ppm in terms of solid content, and similarly stirred for 180 seconds to produce sludge flocs, and the particle size was measured.
Thereafter, the sludge floc dispersion was gravity filtered using an 80 mesh net as a filter. The filtrate volume after 10 seconds was measured and used as the filtration rate.
The obtained cake was squeezed and dehydrated with a mini belt press (surface pressure 0.5 kg / cm, 3 stages), and the moisture content was measured. These results are shown in Table 2.

Figure 0005038587
Figure 0005038587

実施例と比較例から明らかな様に、いずれの実施例の汚泥脱水方法も、Avが本願発明で規定する範囲を超えるの両性凝集剤を用いた場合(比較例1)、及びアニオン基を有しないカチオン性高分子凝集剤(比較例2)と比較し、フロック粒径が大きく、濾過速度にすぐれ且つ含水率も減少している。 As is clear from the examples and comparative examples, the sludge dewatering method of any of the examples uses an amphoteric flocculant whose Av exceeds the range specified in the present invention (Comparative Example 1) and has an anionic group. Compared with the cationic polymer flocculant that does not (Comparative Example 2), the floc particle size is large, the filtration rate is excellent, and the water content is also reduced.

本発明の汚泥の脱水方法は、下水消化汚泥の脱水方法として有用である。


The sludge dewatering method of the present invention is useful as a method for dewatering sewage digested sludge.


Claims (1)

下水処理場で発生する有機質汚泥を嫌気性消化処理した下水消化汚泥に、無機凝集剤を添加した後、カチオン当量値が3.5meq/g以上でかつアニオン等量値が1.0meq/g以下を有する両性高分子であり、全構成単量体単位を基準として、ジメチルアミノエチル(メタ)アクリレート4級塩単量体単位を80〜99.5モル%、(メタ)アクリル酸及びこのアルカリ金属塩又はアンモニウム塩単量体単位を0.5〜15モル%及び(メタ)アクリルアミド単量体単位を0〜19.5モル%を有する両性高分子からなる両性高分子凝集剤を添加することを特徴とする汚泥の脱水方法。 After adding an inorganic flocculant to the sewage digestion sludge that has been subjected to anaerobic digestion treatment of organic sludge generated at a sewage treatment plant, the cation equivalent value is 3.5 meq / g or more and the anion equivalent value is 1.0 meq / g or less. 80 to 99.5 mol% of dimethylaminoethyl (meth) acrylate quaternary salt monomer units based on all constituent monomer units, (meth) acrylic acid and alkali metals thereof Adding an amphoteric polymer flocculant composed of an amphoteric polymer having a salt or ammonium salt monomer unit of 0.5 to 15 mol% and a (meth) acrylamide monomer unit of 0 to 19.5 mol%. Characterized sludge dewatering method.
JP2004194197A 2004-06-30 2004-06-30 Dewatering method for sewage digested sludge Active JP5038587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194197A JP5038587B2 (en) 2004-06-30 2004-06-30 Dewatering method for sewage digested sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194197A JP5038587B2 (en) 2004-06-30 2004-06-30 Dewatering method for sewage digested sludge

Publications (2)

Publication Number Publication Date
JP2006015209A JP2006015209A (en) 2006-01-19
JP5038587B2 true JP5038587B2 (en) 2012-10-03

Family

ID=35789921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194197A Active JP5038587B2 (en) 2004-06-30 2004-06-30 Dewatering method for sewage digested sludge

Country Status (1)

Country Link
JP (1) JP5038587B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742367B2 (en) * 2006-03-17 2011-08-10 ハイモ株式会社 Deodorant for waste water or sludge and its use
JP5112793B2 (en) * 2007-09-12 2013-01-09 水ing株式会社 Waste liquid treatment method and apparatus for methane fermentation digestive juice
JP5042057B2 (en) * 2008-02-07 2012-10-03 ダイヤニトリックス株式会社 Sludge dewatering method
JP5172372B2 (en) * 2008-02-07 2013-03-27 ダイヤニトリックス株式会社 Sludge dewatering method
JP5211769B2 (en) * 2008-03-11 2013-06-12 栗田工業株式会社 Biological treatment method and treatment apparatus for organic waste liquid
JP5601704B2 (en) * 2010-07-08 2014-10-08 ハイモ株式会社 Sludge dewatering agent and sludge dewatering method
JP5882608B2 (en) * 2011-06-21 2016-03-09 水ing株式会社 Method and apparatus for dewatering organic sludge

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479095B2 (en) * 2000-12-15 2010-06-09 東亞合成株式会社 Polymer flocculant and sludge dewatering method

Also Published As

Publication number Publication date
JP2006015209A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP2018020292A (en) Low acrylamide flocculant composition and method for using low acrylamide flocculant composition
JP5117228B2 (en) Sewage sludge treatment method
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP5038587B2 (en) Dewatering method for sewage digested sludge
JP5172372B2 (en) Sludge dewatering method
JP5042057B2 (en) Sludge dewatering method
JP4868127B2 (en) Organic sludge dewatering method
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP4816374B2 (en) Coagulation method of high water content sludge
JP3906636B2 (en) Amphoteric polymer flocculant and sludge dewatering method
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP3709825B2 (en) Sludge dewatering method
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
JP4161559B2 (en) Composition, amphoteric polymer flocculant and method for dewatering sludge
JPH0231899A (en) Method for dehydrating sludge
JP2004210986A (en) Composition, polymer coagulant and method of sludge dewatering
JP4098415B2 (en) How to use anionic polymer flocculant
JPH0938700A (en) Treatment of organic sludge
JP2004283716A (en) Method for dehydrating sludge
JP7190642B2 (en) Composition for sludge control
JP2002058909A (en) Amphoteric macromolecular flocculating agent and method for dehydrating sludge
JP2004209413A (en) Composition, polymer coagulant, and method for dehydrating sludge
JP2010000425A (en) Sludge dewatering agent composition and sludge dewatering method
JP2004122081A (en) Method for dehydrating sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100429

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100517

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250