JP4857170B2 - Cationic polymer flocculant and sludge treatment method using the same - Google Patents

Cationic polymer flocculant and sludge treatment method using the same Download PDF

Info

Publication number
JP4857170B2
JP4857170B2 JP2007102529A JP2007102529A JP4857170B2 JP 4857170 B2 JP4857170 B2 JP 4857170B2 JP 2007102529 A JP2007102529 A JP 2007102529A JP 2007102529 A JP2007102529 A JP 2007102529A JP 4857170 B2 JP4857170 B2 JP 4857170B2
Authority
JP
Japan
Prior art keywords
cationic
sludge
group
cationic polymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102529A
Other languages
Japanese (ja)
Other versions
JP2008259923A (en
Inventor
信孝 國分
聡 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2007102529A priority Critical patent/JP4857170B2/en
Publication of JP2008259923A publication Critical patent/JP2008259923A/en
Application granted granted Critical
Publication of JP4857170B2 publication Critical patent/JP4857170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、カチオン型高分子凝集剤およびこれを用いた汚泥処理方法に関する。   The present invention relates to a cationic polymer flocculant and a sludge treatment method using the same.

下水処理場やし尿処理場で日常的に発生する汚泥は、現在は高分子凝集剤を使用して凝集処理し、脱水機で脱水した汚泥ケーキを埋立て処分または焼却処分している。無機質を主成分とする土砂と異なり、汚泥は水との親和性が高く、脱水後のケーキ含水率が著しく高い。そのため、汚泥固形物単位質量あたりの運搬コストおよび/または焼却コストが高くなる。また、焼却の場合、ケーキ含水率が高ければ高いほど多量の焼却用燃料を必要とし、地球温暖化の原因となる二酸化炭素の排出量が増す。そこで、含水率の低い脱水ケーキが得られる高性能な高分子凝集剤の開発が求められている。   Sludge that is routinely generated at sewage treatment plants and human waste treatment plants is currently coagulated using a polymer flocculant, and sludge cakes dehydrated by a dehydrator are disposed of in landfills or incinerated. Unlike soil and sand mainly composed of inorganic substances, sludge has a high affinity with water, and the moisture content of the cake after dehydration is extremely high. Therefore, the conveyance cost and / or incineration cost per sludge solid mass unit mass become high. Further, in the case of incineration, the higher the moisture content of the cake, the more incineration fuel is required, and the amount of carbon dioxide that causes global warming increases. Therefore, development of a high-performance polymer flocculant capable of obtaining a dehydrated cake having a low water content is required.

汚泥の凝集に効果的な高分子凝集剤としては、(1)ジメチルアミノエチル(メタ)アクリレート4級塩の単独重合体、(2)ジメチルアミノエチル(メタ)アクリレート4級塩−アクリルアミド共重合体、(3)ポリビニルホルムアミドの塩酸変性体(ポリビニルアミジン系凝集剤)が知られている(例えば、特許文献1参照)。(3)は高い凝集性能を示すものの、他の凝集剤より高価である。そのため、カチオン型高分子凝集剤である(1)および(2)が圧倒的に多く使用されている。
特開昭62−235305号公報
Polymer flocculants effective for sludge aggregation include (1) homopolymer of dimethylaminoethyl (meth) acrylate quaternary salt, (2) dimethylaminoethyl (meth) acrylate quaternary salt-acrylamide copolymer (3) Hydrochloric acid modified polyvinylformamide (polyvinylamidine flocculant) is known (for example, see Patent Document 1). Although (3) shows high aggregation performance, it is more expensive than other aggregating agents. Therefore, the cationic polymer flocculants (1) and (2) are overwhelmingly used.
JP 62-235305 A

しかしながら、(1)および(2)は、対塩のほとんどが塩酸塩から構成されているため、高い親水性を示す。従って、(1)および(2)といった従来広く使用されているカチオン型高分子凝集剤は、それ自体が水を抱え込みやすく、脱水ケーキの含水率を十分に低減させるのが難しかった。ゆえに、これら重合体よりも脱水性能が優れるカチオン型高分子凝集剤の提供が望まれている。   However, (1) and (2) show high hydrophilicity because most of the counter salt is composed of hydrochloride. Therefore, the cationic polymer flocculants widely used in the past such as (1) and (2) are likely to contain water themselves, and it has been difficult to sufficiently reduce the moisture content of the dehydrated cake. Therefore, it is desired to provide a cationic polymer flocculant that has better dewatering performance than these polymers.

本発明は、前記事情に鑑みてなされたものであって、親水性が低く、脱水ケーキの含水率を低減できるカチオン型高分子凝集剤およびこれを用いた汚泥処理方法を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is a cationic polymer flocculant having low hydrophilicity and capable of reducing the moisture content of a dehydrated cake, and a sludge treatment method using the same.

本発明者らは、前記課題を解決するべく鋭意検討した結果、カチオン型高分子凝集剤の単量体組成を塩酸塩からアルキル硫酸塩に変更することにより、その親水性を低くでき、以って前記課題が解決されることを見出して、本発明に至った。
すなわち、本発明のカチオン型高分子凝集剤は、下記一般式(1)で表されるカチオン性単量体と、これと共重合可能な単量体成分との共重合体であり、前記共重合可能な単量体成分が、下記一般式(2)で表されるカチオン性単量体を含むことを特徴とする。
本発明のカチオン型高分子凝集剤は、前記共重合可能な単量体成分が、非イオン性単量体を含むことが好ましい。
As a result of intensive studies to solve the above problems, the present inventors have been able to lower the hydrophilicity by changing the monomer composition of the cationic polymer flocculant from hydrochloride to alkyl sulfate. As a result, the inventors have found that the above problems can be solved, and have reached the present invention.
That is, cationic polymeric flocculant of the present invention, Ri copolymer der of a cationic monomer represented by the following general formula (1), and which is copolymerizable monomer component, wherein The copolymerizable monomer component includes a cationic monomer represented by the following general formula (2) .
In the cationic polymer flocculant of the present invention, the copolymerizable monomer component preferably contains a nonionic monomer.

Figure 0004857170
Figure 0004857170

なお、式(1)中、X1は酸素原子またはNHであり、Y1は炭素数1〜10の直鎖状または分岐状のアルキレン基であり、Z1はアルキル硫酸塩であり、R1は水素原子またはメチル基であり、R2およびR3は各々同一または異なる水素原子、炭素数1〜12の直鎖状または分岐状のアルキル基、シクロアルキル基、フェニル基、置換フェニル基、またはベンジル基であり、R4は水素原子、炭素数1〜12の直鎖状または分岐状のアルキル基である。   In Formula (1), X1 is an oxygen atom or NH, Y1 is a linear or branched alkylene group having 1 to 10 carbon atoms, Z1 is an alkyl sulfate, and R1 is a hydrogen atom or Each of R2 and R3 is the same or different hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, a phenyl group, a substituted phenyl group, or a benzyl group; Is a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.

Figure 0004857170
Figure 0004857170

なお、式(2)中、X2は酸素原子またはNHであり、Z2はCl、Br、1/2SOであり、R5は水素原子またはメチル基であり、R6およびR7は各々同一または異なる水素原子、メチル基またはエチル基であり、R8は水素原子、メチル基、エチル基またはベンジル基であり、nは1〜3の整数である。 In the formula (2), X2 is an oxygen atom or NH, Z2 is Cl, Br, 1 / 2SO 4, R5 is a hydrogen atom or a methyl group, R6 and R7 are each the same or different hydrogen atom , Methyl group or ethyl group, R8 is a hydrogen atom, methyl group, ethyl group or benzyl group, and n is an integer of 1 to 3.

本発明の汚泥処理方法は、前記カチオン型高分子凝集剤を用いて汚泥を処理することを特徴とする。
また、本発明の汚泥処理方法は、前記カチオン型高分子凝集剤と、非イオン型、カチオン型、アニオン型、両性型よりなる群から選ばれる少なくとも1種の高分子凝集剤とを併用して汚泥を処理することを特徴とする。
さらに、本発明の汚泥処理方法は、前記カチオン型高分子凝集剤と、無機凝結剤および/または有機凝結剤とを併用して汚泥を処理することを特徴とする。
The sludge treatment method of the present invention is characterized in that sludge is treated using the cationic polymer flocculant.
The sludge treatment method of the present invention uses the cationic polymer flocculant in combination with at least one polymer flocculant selected from the group consisting of nonionic, cationic, anionic and amphoteric types. It is characterized by treating sludge.
Furthermore, the sludge treatment method of the present invention is characterized in that sludge is treated by using the cationic polymer flocculant together with an inorganic coagulant and / or an organic coagulant.

本発明によれば、親水性が低く、脱水ケーキの含水率を低減できるカチオン型高分子凝集剤およびこれを用いた汚泥処理方法を実現できる。   According to the present invention, it is possible to realize a cationic polymer flocculant that has low hydrophilicity and can reduce the water content of a dehydrated cake, and a sludge treatment method using the same.

本発明のカチオン型高分子凝集剤およびこれを用いた汚泥処理方法について、以下に詳細に説明する。
[カチオン型高分子凝集剤]
本発明のカチオン型高分子凝集剤は、カチオン性単量体の重合体、または前記カチオン性単量体と、これと共重合可能な単量体成分との共重合体である。以下、重合体または共重合体を「(共)重合体」と表す場合がある。
The cationic polymer flocculant of the present invention and the sludge treatment method using the same will be described in detail below.
[Cationic polymer flocculant]
The cationic polymer flocculant of the present invention is a polymer of a cationic monomer or a copolymer of the cationic monomer and a monomer component copolymerizable therewith. Hereinafter, the polymer or copolymer may be represented as “(co) polymer”.

カチオン性単量体は、下記一般式(1)で表され、対塩がアルキル硫酸塩から成るビニル系の(メタ)アクリレート単量体または(メタ)アクリルアミド単量体である。   The cationic monomer is represented by the following general formula (1), and is a vinyl (meth) acrylate monomer or (meth) acrylamide monomer whose counter salt is an alkyl sulfate.

Figure 0004857170
Figure 0004857170

なお、式(1)中、X1は酸素原子またはNHであり、Y1は炭素数1〜10の直鎖状または分岐状のアルキレン基であり、Z1はアルキル硫酸塩であり、特にCHSOまたはCHCHSOが好ましい。R1は水素原子またはメチル基であり、R2およびR3は各々同一または異なる水素原子、炭素数1〜12の直鎖状または分岐状のアルキル基、シクロアルキル基、フェニル基、置換フェニル基、またはベンジル基であり、R4は水素原子、炭素数1〜12の直鎖状または分岐状のアルキル基である。 In the formula (1), X1 is an oxygen atom or NH, Y1 is a linear or branched alkylene group having 1 to 10 carbon atoms, Z1 is an alkyl sulfate, particularly CH 3 SO 4 or CH 3 CH 2 SO 4 are preferable. R1 represents a hydrogen atom or a methyl group, and R2 and R3 each represent the same or different hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, a phenyl group, a substituted phenyl group, or benzyl R4 is a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.

このようなカチオン性単量体としては、例えば、メタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート、メタクリロイルオキシエチルトリメチルアンモニウムエチルサルフェート、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、およびメタクリルアミドプロピルトリメチルアンモニウムエチルサルフェートなどが挙げられる。中でも、対塩にメチル硫酸塩をもつメタクリレート系単量体であるメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェートが好ましい。なお、これらカチオン性単量体は、1種単独で用いてもよく、2種以上を併用してもよい。   Examples of such a cationic monomer include methacryloyloxyethyl trimethylammonium methyl sulfate, methacryloyloxyethyl trimethylammonium ethyl sulfate, methacrylamidopropyltrimethylammonium methyl sulfate, and methacrylamidepropyltrimethylammonium ethyl sulfate. Among them, methacryloyloxyethyltrimethylammonium methyl sulfate, which is a methacrylate monomer having a methyl sulfate salt as a counter salt, is preferable. In addition, these cationic monomers may be used individually by 1 type, and may use 2 or more types together.

本発明のカチオン型高分子凝集剤は、前記式(1)のカチオン性単量体単位を構成成分として含有すれば、このカチオン性単量体を単独で重合させた重合体であっても、このカチオン性単量体と、これと共重合可能な単量体成分とを共重合させた共重合体であってもよい。
なお、前記式(1)のカチオン性単量体の含有量は、カチオン型高分子凝集剤100モル%中、5〜100モル%が好ましく、より好ましくは10〜70モル%である。含有量が5モル%未満であると、このカチオン性単量体の効果が発揮されにくくなり、凝集性能および脱水性能が低下する傾向にある。
If the cationic polymer flocculant of the present invention contains the cationic monomer unit of the above formula (1) as a constituent component, even if it is a polymer obtained by polymerizing this cationic monomer alone, It may be a copolymer obtained by copolymerizing this cationic monomer and a monomer component copolymerizable therewith.
In addition, 5-100 mol% is preferable in 100 mol% of cationic polymer flocculants, and, as for content of the cationic monomer of said Formula (1), More preferably, it is 10-70 mol%. When the content is less than 5 mol%, the effect of the cationic monomer is hardly exhibited, and the aggregation performance and the dehydration performance tend to be lowered.

前記式(1)のカチオン性単量体と共重合可能な単量体成分としては、非イオン性単量体および他のカチオン性単量体が好ましい。
共重合可能な非イオン性単量体としては、アクリルアミド、メタクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−モノメチルアクリルアミド、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、ヒドロキシエチルアクリレート、メトキシエチルアクリレート、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルピロリドン、N−イソプロピルアクリルアミド、およびアクリロニトリルなどが挙げられる。中でも、アクリルアミド、メタクリルアミドが好ましく、アクリルアミドがより好ましい。なお、これら非イオン性単量体は、1種単独で用いてもよく、2種以上を併用してもよい。
As the monomer component copolymerizable with the cationic monomer of the formula (1), nonionic monomers and other cationic monomers are preferable.
Examples of copolymerizable nonionic monomers include acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N-monomethylacrylamide, methyl acrylate, ethyl acrylate, n-butyl acrylate, and hydroxyethyl. Examples include acrylate, methoxyethyl acrylate, N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N-isopropylacrylamide, and acrylonitrile. Of these, acrylamide and methacrylamide are preferable, and acrylamide is more preferable. In addition, these nonionic monomers may be used individually by 1 type, and may use 2 or more types together.

共重合可能な非イオン性単量体の含有量は、カチオン型高分子凝集剤100モル%中、0〜95モル%が好ましく、より好ましくは30〜90モル%である。95モル%を超えると、前記式(1)のカチオン性単量体の効果が発揮されにくくなる。   The content of the copolymerizable nonionic monomer is preferably 0 to 95 mol%, more preferably 30 to 90 mol%, in 100 mol% of the cationic polymer flocculant. When it exceeds 95 mol%, the effect of the cationic monomer of the formula (1) is hardly exhibited.

共重合可能な他のカチオン性単量体としては、下記一般式(2)で表されるものが好ましい。   As another cationic monomer which can be copolymerized, what is represented by following General formula (2) is preferable.

Figure 0004857170
Figure 0004857170

前記式(2)中、X2は酸素原子またはNHであり、Z2はCl、Br、1/2SOであり、R5は水素原子またはメチル基であり、R6およびR7は各々同一または異なる水素原子、メチル基またはエチル基であり、R8は水素原子、メチル基、エチル基またはベンジル基であり、nは1〜3の整数である。 In the formula (2), X2 is an oxygen atom or NH, Z2 is Cl, Br, 1 / 2SO 4, R5 is a hydrogen atom or a methyl group, R6 and R7 are each the same or different hydrogen atom, It is a methyl group or an ethyl group, R8 is a hydrogen atom, a methyl group, an ethyl group or a benzyl group, and n is an integer of 1 to 3.

このようなカチオン性単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、およびジエチルアミノ−2−ヒドロキシプロピル(メタ)アクリレートなどのジアルキルアミノアルキル(メタ)アクリレートの塩酸塩などの3級塩や、ジアルキルアミノアルキル(メタ)アクリレートの塩化メチル付加物などのハロゲン化アルキル付加物、塩化ベンジル付加物などのハロゲン化アリール付加物などの4級塩;ジメチルアミノプロピル(メタ)アクリルアミドなどのジアルキルアミノアルキル(メタ)アクリルアミドの塩酸塩などの3級塩や、ジアルキルアミノアルキル(メタ)アクリルアミドの塩化メチル付加物などのハロゲン化アルキル付加物、塩化ベンジル付加物などのハロゲン化アリール付加物などの4級塩などが挙げられる。中でも、ジメチルアミノエチルメタクリレートの3級塩酸塩が好ましい。なお、これらカチオン性単量体は、1種単独で用いてもよく、2種以上を併用してもよい。   Such cationic monomers include dialkylaminoalkyl (meth) acrylate hydrochlorides such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and diethylamino-2-hydroxypropyl (meth) acrylate. And quaternary salts such as halogenated alkyl adducts such as methyl chloride adducts of dialkylaminoalkyl (meth) acrylates and aryl halide adducts such as benzyl chloride adducts; dimethylaminopropyl (meth) acrylamide Tertiary salts such as dialkylaminoalkyl (meth) acrylamide hydrochloride such as alkyl halides such as methyl chloride adduct of dialkylaminoalkyl (meth) acrylamide, halogenated amines such as benzyl chloride adduct Including quaternary salts, such Lumpur adducts. Of these, tertiary hydrochloride of dimethylaminoethyl methacrylate is preferable. In addition, these cationic monomers may be used individually by 1 type, and may use 2 or more types together.

共重合可能な他のカチオン性単量体の含有量は、前記式(1)のカチオン性単量体の効果を妨げない量であれば特に制限されないが、カチオン型高分子凝集剤100モル%中、0〜30モル%が好ましい。30モル%を超えると、前記式(1)のカチオン性単量体の効果が発揮されにくくなる可能性がある。   The content of the other cationic monomer that can be copolymerized is not particularly limited as long as it does not interfere with the effect of the cationic monomer of the formula (1), but 100 mol% of the cationic polymer flocculant Among them, 0 to 30 mol% is preferable. When it exceeds 30 mol%, the effect of the cationic monomer of the formula (1) may be hardly exhibited.

上述した共重合可能な非イオン性単量体および共重合可能な他のカチオン性単量体は、1種単独で用いてもよく、2種以上を併用してもよい。特に、カチオン性単量体との共重合性、および得られる共重合体の物性を調整できる点で、共重合可能な単量体成分には非イオン性単量体が好ましく、中でもアクリルアミドがより好ましい。   The copolymerizable nonionic monomer and other copolymerizable cationic monomers described above may be used alone or in combination of two or more. In particular, a nonionic monomer is preferable as the copolymerizable monomer component in terms of the ability to adjust the copolymerizability with a cationic monomer and the physical properties of the resulting copolymer, and acrylamide is more preferable. preferable.

本発明のカチオン型高分子凝集剤は、前記式(1)のカチオン性単量体を単独で重合させる、あるいは前記式(1)のカチオン性単量体と、単量体成分とを共重合させることにより得られる。
(共)重合の方法としては、一般的に、(共)重合させる単量体を含む単量体反応液に、熱によって(共)重合を開始するレドックスおよびアゾ系開始剤などの開始剤を添加し、単量体反応液を(共)重合する水溶液断熱重合方法、あるいは重合開始前の単量体反応液をシート状に均一にし、光開始剤を用いて可視光または紫外光を照射して(共)重合を行う水溶液光重合方法の2種類の方法が挙げられる。中でも、水溶液光重合方法が好ましい。水溶液光重合方法は光を重合源とするため、(共)重合速度および(共)重合率を容易に制御しやすい。また、水溶液光重合方法はシート状のため連続生産しやすく、工業的に有利である。
このような(共)重合を経て、前記単量体反応液は、通常、含水ゲル状の(共)重合体、すなわち、カチオン型高分子凝集剤の含水物となる。
The cationic polymer flocculant of the present invention polymerizes the cationic monomer of the formula (1) alone, or copolymerizes the cationic monomer of the formula (1) with a monomer component. Is obtained.
As a (co) polymerization method, generally, a monomer reaction solution containing a monomer to be (co) polymerized with an initiator such as a redox and an azo-based initiator that initiates (co) polymerization by heat. Addition and (co) polymerization of the monomer reaction solution in aqueous solution adiabatic polymerization method, or make the monomer reaction solution before polymerization start uniform in a sheet shape, and irradiate visible light or ultraviolet light using a photoinitiator There are two types of aqueous photopolymerization methods for carrying out (co) polymerization. Among these, the aqueous solution photopolymerization method is preferable. Since the aqueous solution photopolymerization method uses light as a polymerization source, the (co) polymerization rate and the (co) polymerization rate can be easily controlled. Further, the aqueous solution photopolymerization method is industrially advantageous because it is sheet-like and can be easily produced continuously.
Through such (co) polymerization, the monomer reaction solution usually becomes a hydrogel (co) polymer, that is, a hydrated product of a cationic polymer flocculant.

光開始剤としては、例えば、2−ヒドロキシ−2−メチル−1−フェニル−1−プロパノン(商品名:DAROCUR−1173、Ciba社製)などが挙げられる。
光開始剤の添加量は、単量体反応液100質量部に対して0.001〜0.1質量部が好ましい。光開始剤の添加量が0.001質量部未満であると、(共)重合速度および(共)重合率の極端な低下を招き、生産性および品質が低下しやすくなる。一方、0.1質量部を超えると、(共)重合の暴走および(共)重合体の品質低下を招きやすくなる。
Examples of the photoinitiator include 2-hydroxy-2-methyl-1-phenyl-1-propanone (trade name: DAROCUR-1173, manufactured by Ciba).
The addition amount of the photoinitiator is preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the monomer reaction solution. When the addition amount of the photoinitiator is less than 0.001 part by mass, the (co) polymerization rate and the (co) polymerization rate are drastically reduced, and the productivity and quality are easily lowered. On the other hand, when the amount exceeds 0.1 parts by mass, the runaway of the (co) polymerization and the quality deterioration of the (co) polymer tend to be caused.

また、(共)重合を行う際には、必要に応じて連鎖移動剤を添加してもよい。連鎖移動剤としては、例えば、次亜リン酸、ホスホン酸などが挙げられる。中でも次亜リン酸が好ましい。
連鎖移動剤の添加量は、単量体反応液100質量部に対して0.001〜0.1質量部が好ましい。連鎖移動剤の添加量が0.001質量部未満であると、(共)重合体の分子量が増加し、水に溶かした場合、水に不溶性の架橋した(共)重合体が多量に発生しやすくなる。一方、0.1質量部を超えると、(共)重合体の分子量が低下して、脱水性能が低下する傾向にある。
Moreover, when performing (co) polymerization, you may add a chain transfer agent as needed. Examples of the chain transfer agent include hypophosphorous acid and phosphonic acid. Of these, hypophosphorous acid is preferred.
The addition amount of the chain transfer agent is preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the monomer reaction solution. When the amount of chain transfer agent added is less than 0.001 part by mass, the molecular weight of the (co) polymer increases. When dissolved in water, a large amount of crosslinked (co) polymer insoluble in water is generated. It becomes easy. On the other hand, when it exceeds 0.1 parts by mass, the molecular weight of the (co) polymer is lowered and the dehydration performance tends to be lowered.

本発明のカチオン型高分子凝集剤の粘度は、0.5質量%ポリマー水溶液とした際の塩粘度で、10〜300mPa・sが好ましく、より好ましくは20〜200mPa・sである。0.5質量%ポリマー水溶液とした際の塩粘度が10mPa・s未満であると、凝集性能が低下しやすくなる。一方、塩粘度が300mPa・sを超えると、カチオン型高分子凝集剤を水に溶かした場合、架橋構造を有した(共)重合体が多量に発生しやすくなり、この(共)重合体は水に不溶性を示すため好ましくない。ここで、塩粘度とは、4質量%の塩化ナトリウム水溶液に溶解させ、0.5質量%ポリマー水溶液とした際のB型粘度計にて測定した、25℃における粘度のことである。
また、前記の水に不溶性を示す架橋構造を有した(共)重合体は、先の0.5質量%ポリマー水溶液を、例えば、直径20cm、80メッシュの篩で濾過し、篩の上に残った不溶解分を定量することにより、不溶解分量の発生量として求めることができる。
The viscosity of the cationic polymer flocculant of the present invention is preferably 10 to 300 mPa · s, more preferably 20 to 200 mPa · s, as the salt viscosity when a 0.5 mass% polymer aqueous solution is used. When the salt viscosity when the 0.5 mass% polymer aqueous solution is less than 10 mPa · s, the aggregation performance tends to be lowered. On the other hand, when the salt viscosity exceeds 300 mPa · s, when the cationic polymer flocculant is dissolved in water, a (co) polymer having a crosslinked structure is likely to be generated in a large amount. This is not preferable because it is insoluble in water. Here, the salt viscosity is a viscosity at 25 ° C. measured with a B-type viscometer when dissolved in a 4% by mass sodium chloride aqueous solution to obtain a 0.5% by mass polymer aqueous solution.
In addition, the (co) polymer having a crosslinked structure that is insoluble in water is obtained by filtering the previous 0.5% by mass polymer aqueous solution through, for example, a sieve of 20 cm in diameter and 80 mesh, and remaining on the sieve. By quantifying the insoluble matter, it can be determined as the amount of insoluble matter generated.

なお、0.5質量%ポリマー水溶液とした際のカチオン型高分子凝集剤の塩粘度は、カチオン型高分子凝集剤の分子量、イオン性の割合、分子量分布、製造方法、組成分布、親水性度合い、疎水性度合いなどの調整によって制御できる。
例えば、分子量を高くしたり、イオン性の割合を低くしたりすると、塩粘度の値が増加する傾向になる。一方、分子量を低くしたり、イオン性の割合を高くしたりすると、塩粘度の値が減少する傾向になる。
In addition, the salt viscosity of the cationic polymer flocculant when the 0.5 mass% polymer aqueous solution is used is the molecular weight of the cationic polymer flocculant, the ionic ratio, the molecular weight distribution, the production method, the composition distribution, and the degree of hydrophilicity. It can be controlled by adjusting the degree of hydrophobicity.
For example, when the molecular weight is increased or the ionic ratio is decreased, the value of the salt viscosity tends to increase. On the other hand, when the molecular weight is decreased or the ionic ratio is increased, the value of the salt viscosity tends to decrease.

[汚泥処理方法]
次に、本発明のカチオン型高分子凝集剤を用いた汚泥処理方法について説明する。
本発明のカチオン型高分子凝集剤は、種々の汚泥に添加されることにより、フロック強度、濾過速度、脱水ケーキの含水率のバランス性などに優れたフロックを形成することができる。なお、汚泥処理の工程としては、公知の工程を適用できる。その一例としては、まず、本発明のカチオン型高分子凝集剤を汚泥に添加してフロックを形成し、次いで、遠心脱水機、ベルトプレス機、スクリュープレス機、多重円板型脱水機、フィルタープレス機、スクリューデカンター機などの脱水装置を用いてフロックを脱水することにより、汚泥を固形分である脱水ケーキと水分とに固液分離することで汚泥処理を行う。
[Sludge treatment method]
Next, a sludge treatment method using the cationic polymer flocculant of the present invention will be described.
By adding the cationic polymer flocculant of the present invention to various sludges, it is possible to form flocs having excellent floc strength, filtration rate, water content balance of dehydrated cake, and the like. In addition, a well-known process is applicable as a process of a sludge process. As an example, first, the cationic polymer flocculant of the present invention is added to sludge to form a floc, and then a centrifugal dehydrator, a belt press machine, a screw press machine, a multi-disc dehydrator, a filter press Sludge treatment is performed by solid-liquid separation of sludge into dehydrated cake and moisture as solid content by dehydrating flocs using a dehydrating apparatus such as a machine or a screw decanter.

汚泥に対する本発明のカチオン型高分子凝集剤の添加量は、汚泥の質、濃度などによって異なるため、一概には決められないが、大まかな目安としては、汚泥の乾燥固形物に対して0.1〜3.0質量%が好ましく、0.5〜2.0質量%がより好ましい。添加量が0.1質量%未満であると、フロックが形成されにくくなる。一方、添加量が3.0質量%を超えると、カチオン型高分子凝集剤の過剰添加となり、形成されるフロックの粒径が小さくなる、濾過速度が遅くなる、脱水ケーキの含水率が高くなる、といった問題が生じやすくなる。なお、本発明のカチオン型高分子凝集剤は、1種単独で用いてもよく、本発明からなるカチオン型高分子凝集剤を2種以上併用してもよい。   The amount of the cationic polymer flocculant of the present invention to be added to the sludge varies depending on the quality and concentration of the sludge and cannot be determined unconditionally. 1-3.0 mass% is preferable and 0.5-2.0 mass% is more preferable. If the amount added is less than 0.1% by mass, flocs are hardly formed. On the other hand, when the addition amount exceeds 3.0% by mass, the cationic polymer flocculant is excessively added, the floc particle size formed is reduced, the filtration rate is reduced, and the moisture content of the dehydrated cake is increased. , Problems are likely to occur. The cationic polymer flocculant of the present invention may be used alone or in combination of two or more cationic polymer flocculants according to the present invention.

本発明の汚泥処理方法では、本発明のカチオン型高分子凝集剤の他に、汚泥のより効果的な脱水処理を目的として、非イオン型、カチオン型、アニオン型、両性型よりなる群から選ばれる少なくとも1種の高分子凝集剤(その他の高分子凝集剤)を併用してもよい。その他の高分子凝集剤の併用に関しては、処理する汚泥の種類および/または本発明のカチオン型高分子凝集剤を構成する単量体の種類などを鑑みて決定される。   In the sludge treatment method of the present invention, in addition to the cationic polymer flocculant of the present invention, for the purpose of more effective dewatering treatment of sludge, it is selected from the group consisting of nonionic, cationic, anionic and amphoteric types. At least one polymer flocculant (other polymer flocculants) may be used in combination. The combined use of other polymer flocculants is determined in view of the type of sludge to be treated and / or the type of monomer constituting the cationic polymer flocculant of the present invention.

前記非イオン型高分子凝集剤としては、例えば、アクリルアミド重合体などが挙げられる。
前記カチオン型高分子凝集剤としては、例えば、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体などが挙げられる。
前記アニオン型高分子凝集剤としては、例えば、アクリル酸重合体および/またはアクリル酸塩の重合体などが挙げられる。
前記両性型高分子凝集剤としては、例えば、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩−アクリル酸の共重合体および/またはジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩−アクリル酸塩の共重合体、および両性ベタイン単量体である[2−(メタクリロイルオキシ)エチル]−ジメチル−(3−スルホプロピル)−アンモニウムハイドロキシドなどが挙げられる。
本発明のカチオン型高分子凝集剤に対する、前記のようなその他の高分子凝集剤は、1種単独で併用してもよく、2種以上併用してもよい。
Examples of the nonionic polymer flocculant include acrylamide polymers.
Examples of the cationic polymer flocculant include polymers of methyl chloride quaternary salts of dimethylaminoethyl (meth) acrylate.
Examples of the anionic polymer flocculant include acrylic acid polymers and / or acrylate polymers.
Examples of the amphoteric polymer flocculant include a dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt-acrylic acid copolymer and / or dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt-acrylic. Examples thereof include an acid salt copolymer, and [2- (methacryloyloxy) ethyl] -dimethyl- (3-sulfopropyl) -ammonium hydroxide, which is an amphoteric betaine monomer.
Other polymer flocculants as described above for the cationic polymer flocculant of the present invention may be used alone or in combination of two or more.

その他の高分子凝集剤の添加量は、カチオン型高分子凝集剤100質量部に対して、10〜100質量部が好ましい。その他の高分子凝集剤の添加量が10質量部未満であると、汚泥によっては凝集効果が不十分となる。一方、100質量部を超えると、カチオン型高分子凝集剤の効果が発揮されにくくなる。   The addition amount of the other polymer flocculant is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the cationic polymer flocculant. If the amount of the other polymer flocculant added is less than 10 parts by mass, the coagulation effect may be insufficient depending on the sludge. On the other hand, when the amount exceeds 100 parts by mass, the effect of the cationic polymer flocculant is hardly exhibited.

また、本発明においては、無機凝結剤および/または有機凝結剤を併用してもよい。
無機凝結剤としては、硫酸バンド(硫酸アルミニウム)、ポリ塩化アルミニウム、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、およびポリ鉄(ポリ硫酸鉄、ポリ塩化鉄)などが挙げられる。
有機凝結剤としては、ポリアミン、ポリアミジン、およびカチオン性界面活性剤などが挙げられる。
これら無機凝結剤および有機凝結剤を同時に併用した汚泥についても、本発明のカチオン型高分子凝集剤は効果を発揮することができる。
In the present invention, an inorganic coagulant and / or an organic coagulant may be used in combination.
Examples of the inorganic coagulant include a sulfate band (aluminum sulfate), polyaluminum chloride, ferric chloride, ferrous sulfate, ferric sulfate, and polyiron (polyiron sulfate, polyiron chloride).
Examples of the organic coagulant include polyamines, polyamidines, and cationic surfactants.
The cation type polymer flocculant of the present invention can also be effective for sludge in which these inorganic coagulant and organic coagulant are used in combination.

無機凝結剤および/または有機凝結剤の添加量は、カチオン型高分子凝集剤100質量部に対して、5〜3000質量部が好ましい。無機凝結剤および/または有機凝結剤の添加量が5質量部未満であると、無機凝結剤および/または有機凝結剤の併用効果が得られなくなり、汚泥によっては性能が発揮されにくくなる。一方、3000質量部を超えると、特に無機凝結剤では添加量の増加により、脱水後のケーキ中に無機凝結剤由来の金属酸化物量が多く含まれるため、脱水ケーキの含水率が増加する傾向がある。   The amount of the inorganic coagulant and / or organic coagulant is preferably 5 to 3000 parts by mass with respect to 100 parts by mass of the cationic polymer flocculant. When the added amount of the inorganic coagulant and / or organic coagulant is less than 5 parts by mass, the combined effect of the inorganic coagulant and / or organic coagulant cannot be obtained, and the performance is hardly exhibited depending on the sludge. On the other hand, when it exceeds 3000 parts by mass, the amount of metal oxide derived from the inorganic coagulant is included in the cake after dehydration due to the increase in the amount added especially in the inorganic coagulant, so that the moisture content of the dehydrated cake tends to increase. is there.

本発明で処理できる汚泥としては、特に制限はないが、例えば、生活排水処理汚泥、食品工業廃水処理汚泥、化学工業廃水処理汚泥、養豚場廃水処理汚泥、パルプまたは製紙工業廃水処理汚泥などが挙げられる。
なお、本発明のカチオン型高分子凝集剤は、脱水用途だけでなく、凝集沈殿用途にも使用できる。
The sludge that can be treated in the present invention is not particularly limited, and examples thereof include domestic wastewater treatment sludge, food industry wastewater treatment sludge, chemical industry wastewater treatment sludge, pig farm wastewater treatment sludge, and pulp or paper industry wastewater treatment sludge. It is done.
The cationic polymer flocculant of the present invention can be used not only for dehydration but also for aggregation and precipitation.

本発明によれば、カチオン型高分子凝集剤を構成する単量体の対塩をアルキル硫酸塩とすることにより、対塩が塩酸塩から構成されている従来のカチオン型高分子凝集剤に比べて親水性を低くでき、以って汚泥を処理した後の脱水ケーキの含水率を低下させることができるカチオン型高分子凝集剤およびこれを用いた汚泥処理方法を実現できる。   According to the present invention, by using an alkyl sulfate as the counter salt of the monomer constituting the cationic polymer flocculant, compared to the conventional cationic polymer flocculant in which the counter salt is composed of hydrochloride. Thus, it is possible to realize a cationic polymer flocculant capable of lowering the hydrophilicity and thus reducing the moisture content of the dewatered cake after the sludge treatment and a sludge treatment method using the same.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、例中の「%」は、特に断らない限りは質量%を示す。また、得られるカチオン型高分子凝集剤を「(共)重合体」と略す場合がある。
なお、実施例および比較例における、カチオン型高分子凝集剤の0.5%塩粘度、および0.5%不溶解分量の測定値は、粉末状のカチオン型高分子凝集剤を対象に、以下に示す方法で測定することによって得られた。
(0.5%塩粘度の測定)
サンプル2.38gを4%の塩化ナトリウム水溶液に溶解し、0.5%ポリマー水溶液500gを調製した。このポリマー水溶液に対し、B型粘度計(東機産業社製)を用い、温度25℃、回転速度60rpmの条件で、5分後のポリマー水溶液の塩粘度を測定した。
(0.5%不溶解分量の測定)
先に得られた0.5%ポリマー水溶液の全量(500g)を、直径20cm、80メッシュの篩で濾過し、水分を拭き取り、篩の上に残った不溶解分を集め、その質量を測定した。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In the examples, “%” indicates mass% unless otherwise specified. Further, the resulting cationic polymer flocculant may be abbreviated as “(co) polymer”.
In the examples and comparative examples, the measured values of 0.5% salt viscosity and 0.5% insoluble content of the cationic polymer flocculant are as follows for the powdered cationic polymer flocculant: It obtained by measuring by the method shown in.
(Measurement of 0.5% salt viscosity)
2.38 g of the sample was dissolved in a 4% aqueous sodium chloride solution to prepare 500 g of a 0.5% aqueous polymer solution. The salt viscosity of the polymer aqueous solution after 5 minutes was measured for this aqueous polymer solution using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.) at a temperature of 25 ° C. and a rotation speed of 60 rpm.
(Measurement of 0.5% insoluble content)
The total amount (500 g) of the 0.5% aqueous polymer solution obtained above was filtered through a sieve having a diameter of 20 cm and 80 mesh, the moisture was wiped off, the insoluble matter remaining on the sieve was collected, and the mass was measured. .

[試験1:カチオン型高分子凝集剤の製造]
以下に示す方法によって、各実施例および各比較例のカチオン型高分子凝集剤を製造した。なお、カチオン型高分子凝集剤の製造に用いたカチオン性単量体および共重合可能な単量体成分の種類を表1に示す。また、表1および以下の記述におけるカチオン型性単量体および共重合可能な単量体成分の略語の内容は、次に示す通りである。
MOETAS:メタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート(純度99%、MRCユニテック社製)、前記式(1)のカチオン性単量体として使用した。
MAPTAS:メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート(純度99%、MRCユニテック社製)、前記式(1)のカチオン性単量体として使用した。
AAm:アクリルアミド(三菱レイヨン社製)、共重合可能な非イオン性単量体として使用した。
DME:ジメチルアミノエチルアクリレート4級塩酸塩(大阪有機化学工業社製)、共重合可能な他のカチオン性単量体として使用した。
DMC:ジメチルアミノエチルメタクリレート塩化メチル4級塩(大阪有機化学工業社製)、従来のカチオン性単量体として使用した。
[Test 1: Production of cationic polymer flocculant]
Cationic polymer flocculants of each example and each comparative example were produced by the method described below. Table 1 shows the types of cationic monomers and copolymerizable monomer components used in the production of the cationic polymer flocculant. The contents of the abbreviations of the cationic monomer and copolymerizable monomer component in Table 1 and the following description are as follows.
MOETAS: methacryloyloxyethyltrimethylammonium methyl sulfate (purity 99%, manufactured by MRC Unitech Co., Ltd.) was used as the cationic monomer of the formula (1).
MAPTAS: Methacrylamidopropyltrimethylammonium methyl sulfate (purity 99%, manufactured by MRC Unitech Co.) was used as the cationic monomer of the formula (1).
AAm: Acrylamide (manufactured by Mitsubishi Rayon Co., Ltd.), used as a copolymerizable nonionic monomer.
DME: dimethylaminoethyl acrylate quaternary hydrochloride (manufactured by Osaka Organic Chemical Industry Co., Ltd.), used as another cationic monomer that can be copolymerized.
DMC: dimethylaminoethyl methacrylate methyl chloride quaternary salt (manufactured by Osaka Organic Chemical Industry Co., Ltd.), used as a conventional cationic monomer.

参考例1−1>
MOETAS957.6gを2000mL褐色耐熱瓶に投入し、カチオン性単量体濃度79%、総質量1200gになるように蒸留水を加え、pHが4.5になるように1mol/L硫酸で調整し、単量体反応液(MOETAS=100%)を調製した。
さらに、光開始剤としてDAROCUR−1173(以下、「D−1173」と略す。)(Ciba社製)、および連鎖移動剤として次亜リン酸(以下、「HPA」と略す。)(関東化学社製)を、単量体反応液の総質量に対して、それぞれ500ppmおよび15ppmとなるように投入し、これに窒素ガスを30分間吹き込みながら溶液温度を25℃に調節した。その後、単量体反応液をステンレス反応容器に移し、容器の下方から17℃の水を噴霧しながら、表面温度計が45℃になるまでケミカルランプを5W/mの照射強度で照射した。表面温度計が45℃に到達した後は、4W/mの照射強度で30分間照射し、その後2W/mの照射強度で10分間照射した。さらに単量体の残存量を低減させるために照射強度を30W/mにして10分間照射することにより、重合を行った。これにより、含水ゲル状の重合体を得た。
この含水ゲル状の重合体を容器から取り出し、小型ミートチョッパーを使用して解砕した。これを温度60℃で16時間乾燥後、粉砕して粉末状の重合体(A−1)を得た。
< Reference Example 1-1>
MOETAS957.6g was put into a 2000mL brown heat resistant bottle, distilled water was added so that the cationic monomer concentration was 79% and the total mass was 1200g, and the pH was adjusted to 4.5 with 1 mol / L sulfuric acid, A monomer reaction solution (MOETAS = 100%) was prepared.
Furthermore, DAROCUR-1173 (hereinafter abbreviated as “D-1173”) (manufactured by Ciba) as a photoinitiator, and hypophosphorous acid (hereinafter abbreviated as “HPA”) as a chain transfer agent (Kanto Chemical Co., Inc.) Manufactured) was added so as to be 500 ppm and 15 ppm, respectively, with respect to the total mass of the monomer reaction solution, and the temperature of the solution was adjusted to 25 ° C. while blowing nitrogen gas for 30 minutes. Thereafter, the monomer reaction solution was transferred to a stainless steel reaction vessel, and a chemical lamp was irradiated at an irradiation intensity of 5 W / m 2 until the surface thermometer reached 45 ° C. while spraying water at 17 ° C. from below the vessel. After the surface thermometer reached 45 ° C., irradiation was performed at an irradiation intensity of 4 W / m 2 for 30 minutes, and then irradiation was performed at an irradiation intensity of 2 W / m 2 for 10 minutes. Furthermore, in order to reduce the residual amount of the monomer, polymerization was carried out by irradiating with irradiation intensity of 30 W / m 2 for 10 minutes. Thereby, a hydrogel polymer was obtained.
The hydrogel polymer was taken out of the container and crushed using a small meat chopper. This was dried at a temperature of 60 ° C. for 16 hours and then pulverized to obtain a powdery polymer (A-1).

参考例1−2>
前記式(1)のカチオン性単量体をMOETASからMAPTASに変更し(MAPTAS=100%)、HPA量を10ppmに変更した以外は、参考例1−1と同様の操作を行い、重合体(A−2)を得た。
< Reference Example 1-2>
The same procedure as in Reference Example 1-1 was carried out except that the cationic monomer of the formula (1) was changed from MOETAS to MAPTAS (MAPTAS = 100%) and the HPA amount was changed to 10 ppm. A-2) was obtained.

参考例1−3>
MOETAS111.5g、およびAAmの50%水溶液739.2gを2000mL褐色耐熱瓶に投入し、全単量体の濃度40%、総質量1200gになるように蒸留水を加え、pHが3.5になるように1mol/L硫酸で調整し、単量体反応液(MOETAS:AAm=23.0:77.0(%))を調製した。
さらに、HPAをホスホン酸(以下、「PA」と略す。)(関東化学社製)に変更し、PAとD−1173を、単量体反応液の総質量に対してそれぞれ200ppmおよび150ppmとなるように投入した。以下、参考例1−1と同様の操作を行い、共重合体(A−3)を得た。
< Reference Example 1-3>
Add 111.5 g of MOETAS and 739.2 g of 50% aqueous solution of AAm to a 2000 mL brown heat-resistant bottle, add distilled water so that the total monomer concentration is 40% and the total mass is 1200 g, and the pH becomes 3.5 Thus, the monomer reaction liquid (MOETAS: AAm = 23.0: 77.0 (%)) was prepared with 1 mol / L sulfuric acid.
Furthermore, HPA is changed to phosphonic acid (hereinafter abbreviated as “PA”) (manufactured by Kanto Chemical Co., Inc.), and PA and D-1173 become 200 ppm and 150 ppm, respectively, with respect to the total mass of the monomer reaction solution. I put it in. Thereafter, the same operation as in Reference Example 1-1 was performed to obtain a copolymer (A-3).

参考例1−4>
前記式(1)のカチオン性単量体をMOETASからMAPTASに変更し(MAPTAS:AAm=23.0:77.0(%))、PA量を300ppmに変更した以外は、参考例1−3と同様の操作を行い、共重合体(A−4)を得た。
< Reference Example 1-4>
Reference Example 1-3 except that the cationic monomer of formula (1) was changed from MOETAS to MAPTAS (MAPTAS: AAm = 23.0: 77.0 (%)) and the PA amount was changed to 300 ppm. The same operation was performed to obtain a copolymer (A-4).

<実施例1−5>
MOETAS269.1g、AAmの50%水溶液177.6g、およびDMEの79%水溶液674.4gを2000mL褐色耐熱瓶に投入し、全単量体濃度74%、総質量1200gになるように蒸留水を加え、pHが4.5になるように1mol/L硫酸で調整し、単量体反応液(MOETAS:AAm:DME=30.0:10.0:60.0(%))を調製した。
さらに、D−1173およびPAを、単量体反応液の総質量に対してそれぞれ20ppmおよび100ppmとなるように投入した。以下、参考例1−1と同様の操作を行い、共重合体(A−5)を得た。
<Example 1-5>
MOETAS 269.1g, AAm 50% aqueous solution 177.6g, and DME 79% aqueous solution 674.4g are put into a 2000mL brown heat-resistant bottle, and distilled water is added so that the total monomer concentration is 74% and the total mass is 1200g. The monomer reaction solution (MOETAS: AAm: DME = 30.0: 10.0: 60.0 (%)) was prepared with 1 mol / L sulfuric acid so that the pH was 4.5.
Further, D-1173 and PA were added so as to be 20 ppm and 100 ppm, respectively, with respect to the total mass of the monomer reaction solution. Thereafter, the same operation as in Reference Example 1-1 was performed to obtain a copolymer (A-5).

<実施例1−6>
前記式(1)のカチオン性単量体をMOETASからMAPTASに変更し(MAPTAS:AAm:DME=30.0:10.0:60.0(%))、PA量を150ppmに変更した以外は、実施例1−5と同様の操作を行い、共重合体(A−6)を得た。
<Example 1-6>
The cationic monomer of the formula (1) was changed from MOETAS to MAPTAS (MAPTAS: AAm: DME = 30.0: 10.0: 60.0 (%)), and the PA amount was changed to 150 ppm. The same operations as in Example 1-5 were performed to obtain a copolymer (A-6).

<比較例1−1>
MOETASをDMCの80%水溶液1185.0gに変更し(DMC=100%)、HPA量を35ppmに変更した以外は、参考例1−1と同様の操作を行い、重合体(B−1)を得た。
<比較例1−2>
MOETASをDMCの80%水溶液138.0gに変更し(DMC:AAm=23.0:77.0(%))、PA量を230ppmに変更した以外は、参考例1−3と同様の操作を行い、共重合体(B−2)を得た。
<比較例1−3>
MOETASをDMCの80%水溶液333.0gに変更し(DMC:AAm:DME=30.0:10.0:60.0(%))、PA量を140ppmに変更した以外は、実施例1−5と同様の操作を行い、共重合体(B−3)を得た。
<Comparative Example 1-1>
MOETAS was changed to 1185.0 g of an 80% aqueous solution of DMC (DMC = 100%), and the same procedure as in Reference Example 1-1 was performed, except that the amount of HPA was changed to 35 ppm, and the polymer (B-1) was obtained. Obtained.
<Comparative Example 1-2>
MOETAS was changed to 138.0 g of an 80% aqueous solution of DMC (DMC: AAm = 23.0: 77.0 (%)), and the same operation as in Reference Example 1-3 was carried out except that the PA amount was changed to 230 ppm. And a copolymer (B-2) was obtained.
<Comparative Example 1-3>
Example 1 except that MOETAS was changed to 333.0 g of an 80% aqueous solution of DMC (DMC: AAm: DME = 30.0: 10.0: 60.0 (%)) and the PA amount was changed to 140 ppm. Operation similar to 5 was performed and the copolymer (B-3) was obtained.

参考例1−1〜1−4、実施例1−5〜1−6、比較例1−1〜1−3で得られた各(共)重合体について、0.5%塩粘度および0.5%不溶解分量を測定した。結果を表1に示す。 Reference Example 1-1 to 1-4, Example 1-5~1-6, for each (co) polymer obtained in Comparative Example 1 1 1 3 0.5% salted viscosity and 0. The 5% insoluble content was measured. The results are shown in Table 1.

Figure 0004857170
Figure 0004857170

表1より、カチオン型高分子凝集剤の0.5%塩粘度が高くなると、0.5%不溶解分量が増加する傾向にあることが分かった。なお、不溶解分量とは、前述の水に不溶性を示す架橋構造を有した(共)重合体の量のことである。   From Table 1, it was found that as the 0.5% salt viscosity of the cationic polymer flocculant increases, the 0.5% insoluble content tends to increase. The insoluble amount is the amount of the (co) polymer having a crosslinked structure that is insoluble in water.

[試験2:汚泥処理]
参考例2−1〜2−2および比較例2−1>
汚泥のサンプルとして、生活排水処理場から採取した消化汚泥(pH=7.7、浮遊物質または懸濁物質の濃度SS=6600mg/L)を用意し、この消化汚泥300mLを500mLのビーカーに採取した。次いで、表2に示す種類の重合体を蒸留水にて0.3%ポリマー水溶液とし、このポリマー水溶液を表2に示す最適添加量にて消化汚泥に添加した。次いで、この消化汚泥を金属製のスパチュラで30秒間攪拌し、フロックを生成させ、フロックの粒径を目視にて判定した。なお、表2中の最適添加量は、汚泥の乾燥固形物に対する重合体の乾燥質量から求められた。
また、フロック生成後の汚泥を60メッシュのステンレス製濾過管上に注ぎ、10秒後の濾水量をメスシリンダーにて測定した。
さらに、ステンレス製濾過管上に残った汚泥をプレス機にて圧搾脱水(1.0kg/cm、60秒間)して脱水ケーキを得た。この脱水ケーキの含水率を、常法((財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297)により測定した。フロックの粒径、濾水量、および脱水ケーキの含水率を表2に示す。
[Test 2: Sludge treatment]
< Reference Examples 2-1 to 2-2 and Comparative Example 2-1>
Digested sludge (pH = 7.7, suspended solid or suspended substance concentration SS = 6600 mg / L) prepared from a domestic wastewater treatment plant was prepared as a sludge sample, and 300 mL of this digested sludge was collected in a 500 mL beaker. . Subsequently, the polymer of the kind shown in Table 2 was made into a 0.3% polymer aqueous solution with distilled water, and this polymer aqueous solution was added to the digested sludge in the optimum addition amount shown in Table 2. Next, the digested sludge was stirred with a metal spatula for 30 seconds to generate floc, and the particle size of the floc was visually determined. In addition, the optimal addition amount of Table 2 was calculated | required from the dry mass of the polymer with respect to the dry solid substance of sludge.
Moreover, the sludge after floc generation was poured onto a 60-mesh stainless steel filter tube, and the amount of filtrate after 10 seconds was measured with a graduated cylinder.
Further, the sludge remaining on the stainless steel filter tube was squeezed and dehydrated (1.0 kg / cm 2 , 60 seconds) with a press to obtain a dehydrated cake. The water content of the dehydrated cake was measured by a conventional method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 296-297”). Table 2 shows the particle size of flock, the amount of filtered water, and the moisture content of the dehydrated cake.

Figure 0004857170
Figure 0004857170

表2から明らかなように、参考例1−1〜1−2で得られた重合体(カチオン型高分子凝集剤)を用いて汚泥を脱水処理した場合(参考例2−1〜2−2)は、いずれも得られたフロックの粒径が大きく、濾水量が多く、脱水ケーキの含水率が低かった。よって、参考例1−1〜1−2で得られたカチオン型高分子凝集剤は、凝集性能、脱水性能に優れていると確認された。
一方、比較例1−1で得られた重合体を用いた場合(比較例2−1)は、参考例に比べてフロックの粒径が小さく、濾水量が少なく、脱水ケーキの含水率が高かった。よって、比較例1−1で得られた重合体は、参考例に比べて凝集性能、脱水性能共に劣っていた。
As apparent from Table 2, when dehydrated sludge using the polymer obtained in Reference Example 1-1~1-2 a (cationic polymer flocculant) (Reference Example 2-1 to 2-2 ) Had a large particle size of the obtained floc, a large amount of drainage, and a low moisture content of the dehydrated cake. Therefore, it was confirmed that the cationic polymer flocculants obtained in Reference Examples 1-1 to 1-2 were excellent in aggregation performance and dehydration performance.
On the other hand, when the polymer obtained in Comparative Example 1-1 was used (Comparative Example 2-1), the floc particle size was small, the drainage amount was small, and the moisture content of the dehydrated cake was high compared to the reference example. It was. Therefore, the polymer obtained in Comparative Example 1-1 was inferior in aggregation performance and dehydration performance as compared with the reference example.

参考例2−3〜2−4および比較例2−2>
汚泥のサンプルとして、製紙工業廃水処理場から採取した混合汚泥(pH=7.0、浮遊物質または懸濁物質の濃度SS=16500mg/L)を用意し、この混合汚泥300mLを500mLのビーカーに採取した。次いで、表3に示す種類の共重合体10gと、アニオン型の高分子凝集剤としてアクリル酸の重合体(0.5%塩粘度=50.8mPa・s、0.5%不溶解分量=0.5g)2gとを混合し、この混合物を蒸留水にて0.3%ポリマー水溶液とし、このポリマー水溶液を表3に示す最適添加量にて混合汚泥に添加した。次いで、この混合汚泥を金属製のスパチュラで30秒間攪拌し、フロックを生成させ、フロックの粒径を目視にて判定した。なお、表3中の最適添加量は、汚泥の乾燥固形物に対する、共重合体とアクリル酸の重合体との混合物の乾燥質量から求められた。
また、フロック生成後の汚泥を60メッシュのステンレス製濾過管上に注ぎ、10秒後の濾水量をメスシリンダーにて測定した。
さらに、ステンレス製濾過管上に残った汚泥をプレス機にて圧搾脱水(1.0kg/cm、60秒間)して脱水ケーキを得た。この脱水ケーキの含水率を、前述と同じ常法により測定した。フロックの粒径、濾水量、および脱水ケーキの含水率を表3に示す。
< Reference Examples 2-3 to 2-4 and Comparative Example 2-2>
As a sludge sample, mixed sludge (pH = 7.0, suspended solid or suspended substance concentration SS = 16500 mg / L) collected from the paper industry wastewater treatment plant is prepared, and 300 mL of this mixed sludge is collected in a 500 mL beaker. did. Next, 10 g of the type of copolymer shown in Table 3 and a polymer of acrylic acid as an anionic polymer flocculant (0.5% salt viscosity = 50.8 mPa · s, 0.5% insoluble content = 0) 0.5 g) was mixed with 2 g, and this mixture was made into a 0.3% polymer aqueous solution with distilled water, and this polymer aqueous solution was added to the mixed sludge at the optimum addition amount shown in Table 3. Next, the mixed sludge was stirred with a metal spatula for 30 seconds to generate floc, and the particle size of the floc was visually determined. In addition, the optimal addition amount of Table 3 was calculated | required from the dry mass of the mixture of the copolymer and the polymer of acrylic acid with respect to the dry solid substance of sludge.
Moreover, the sludge after floc generation was poured onto a 60-mesh stainless steel filter tube, and the amount of filtrate after 10 seconds was measured with a graduated cylinder.
Further, the sludge remaining on the stainless steel filter tube was squeezed and dehydrated (1.0 kg / cm 2 , 60 seconds) with a press to obtain a dehydrated cake. The moisture content of this dehydrated cake was measured by the same conventional method as described above. Table 3 shows the particle size of floc, the amount of filtered water, and the moisture content of the dehydrated cake.

Figure 0004857170
Figure 0004857170

表3から明らかなように、参考例1−3〜1−4で得られた共重合体(カチオン型高分子凝集剤)とアクリル酸の重合体との混合物を用いて汚泥を脱水処理した場合(参考例2−3〜2−4)は、いずれも得られたフロックの粒径が大きく、濾水量が多く、脱水ケーキの含水率が低かった。よって、参考例1−3〜1−4で得られたカチオン型高分子凝集剤とアニオン型の高分子凝集剤との混合物は、凝集性能、脱水性能に優れていることが確認された。
一方、比較例1−2で得られた共重合体とアクリル酸の重合体との混合物を用いた場合(比較例2−2)は、参考例に比べてフロックの粒径が小さく、濾水量が少なく、脱水ケーキの含水率が高かった。よって、比較例1−2で得られた共重合体とアニオン型の高分子凝集剤との混合物は、参考例に比べて凝集性能、脱水性能共に劣っていた。
As is clear from Table 3, sludge was dehydrated using a mixture of the copolymer (cationic polymer flocculant) obtained in Reference Examples 1-3 to 1-4 and a polymer of acrylic acid. ( Reference Examples 2-3 to 2-4) all had a large floc particle size, a large amount of filtered water, and a low moisture content of the dehydrated cake. Therefore, it was confirmed that the mixture of the cationic polymer flocculant and the anionic polymer flocculant obtained in Reference Examples 1-3 to 1-4 was excellent in the aggregation performance and the dehydration performance.
On the other hand, when a mixture of the copolymer obtained in Comparative Example 1-2 and a polymer of acrylic acid was used (Comparative Example 2-2), the floc particle size was smaller than that of the reference example, and the amount of water drained. There was little, and the moisture content of the dehydrated cake was high. Therefore, the mixture of the copolymer obtained in Comparative Example 1-2 and the anionic polymer flocculant was inferior in aggregation performance and dehydration performance compared to the reference example.

<実施例2−5〜2−6および比較例2−3>
汚泥のサンプルとして、養豚場廃水処理から採取したし尿汚泥(pH=7.2、浮遊物質または懸濁物質の濃度SS=16000mg/L)に、無機凝結剤として硫酸バンドを1500mg/L添加したものを用意し、このし尿汚泥300mLを500mLのビーカーに採取した。次いで、表4に示す種類の共重合体を蒸留水にて0.3%ポリマー水溶液とし、このポリマー水溶液を表4に示す最適添加量にてし尿汚泥に添加した。次いで、このし尿汚泥を金属製のスパチュラで30秒間攪拌し、フロックを生成させ、フロックの粒径を目視にて判定した。なお、表4中の最適添加量は、汚泥の乾燥固形物に対する重合体の乾燥質量から求められた。
また、フロック生成後の汚泥を60メッシュのステンレス製濾過管上に注ぎ、10秒後の濾水量をメスシリンダーにて測定した。
さらに、ステンレス製濾過管上に残った汚泥をプレス機にて圧搾脱水(1.0kg/cm、60秒間)して脱水ケーキを得た。そして、脱水ケーキの含水率を前述と同じ常法により測定した。フロックの粒径、濾水量、および脱水ケーキの含水率を表4に示す。
<Examples 2-5 to 2-6 and Comparative Example 2-3>
As a sludge sample, a urine sludge collected from pig farm wastewater treatment (pH = 7.2, suspended solids or suspended solids concentration SS = 16000 mg / L) added with 1500 mg / L of sulfuric acid band as an inorganic coagulant Was prepared, and 300 mL of the human waste sludge was collected in a 500 mL beaker. Next, the type of copolymer shown in Table 4 was made into a 0.3% polymer aqueous solution with distilled water, and this polymer aqueous solution was added to the urine sludge at the optimum addition amount shown in Table 4. Next, the sewage sludge was stirred with a metal spatula for 30 seconds to generate floc, and the particle size of the floc was visually determined. In addition, the optimal addition amount in Table 4 was calculated | required from the dry mass of the polymer with respect to the dry solid substance of sludge.
Moreover, the sludge after floc generation was poured onto a 60-mesh stainless steel filter tube, and the amount of filtrate after 10 seconds was measured with a graduated cylinder.
Further, the sludge remaining on the stainless steel filter tube was squeezed and dehydrated (1.0 kg / cm 2 , 60 seconds) with a press to obtain a dehydrated cake. Then, the moisture content of the dehydrated cake was measured by the same conventional method as described above. Table 4 shows the particle size of floc, the amount of filtrate, and the moisture content of the dehydrated cake.

Figure 0004857170
Figure 0004857170

表4から明らかなように、実施例1−5〜1−6で得られた共重合体(カチオン型高分子凝集剤)を用いて汚泥を脱水処理した場合(実施例2−5〜2−6)は、いずれも得られたフロックの粒径が大きく、濾水量が多く、脱水ケーキの含水率が低かった。よって、実施例1−5〜1−6で得られたカチオン型高分子凝集剤は、凝集性能、脱水性能に優れていると確認された。
一方、比較例1−3で得られた共重合体を用いた場合(比較例2−3)は、実施例に比べてフロックの粒径が小さく、濾水量が少なく、脱水ケーキの含水率が高かった。よって、比較例1−3で得られた共重合体は、実施例に比べて凝集性能、脱水性能共に劣っていた。
As is apparent from Table 4, when sludge was dehydrated using the copolymer (cationic polymer flocculant) obtained in Examples 1-5 to 1-6 (Examples 2-5 to 2- In all cases 6), the obtained floc had a large particle size, a large amount of filtrate, and a low moisture content of the dehydrated cake. Therefore, it was confirmed that the cationic polymer flocculants obtained in Examples 1-5 to 1-6 were excellent in aggregation performance and dehydration performance.
On the other hand, when the copolymer obtained in Comparative Example 1-3 was used (Comparative Example 2-3), the floc particle size was small, the amount of drainage was small, and the moisture content of the dehydrated cake was smaller than in the Examples. it was high. Therefore, the copolymer obtained in Comparative Example 1-3 was inferior in aggregation performance and dehydration performance as compared with Examples.

以上、詳細に説明したように、本発明によれば、カチオン型高分子凝集剤を構成する単量体の対塩をアルキル硫酸塩とすることにより、対塩が塩酸塩から構成されている従来のカチオン型高分子凝集剤に比べて親水性をより低くでき、以って汚泥を処理した後の脱水ケーキの含水率を低減できるカチオン型高分子凝集剤およびこれを用いた汚泥処理方法を実現できる。   As described above in detail, according to the present invention, the counter salt is composed of a hydrochloride by changing the counter salt of the monomer constituting the cationic polymer flocculant to an alkyl sulfate. Realizes a cationic polymer flocculant that can be made less hydrophilic compared to other cationic polymer flocculants, thus reducing the moisture content of the dewatered cake after sludge treatment, and a sludge treatment method using the same. it can.

Claims (5)

下記一般式(1)で表されるカチオン性単量体と、これと共重合可能な単量体成分との共重合体であり、
前記共重合可能な単量体成分が、下記一般式(2)で表されるカチオン性単量体を含むことを特徴とするカチオン型高分子凝集剤。
Figure 0004857170
式(1)中、X1は酸素原子またはNHであり、Y1は炭素数1〜10の直鎖状または分岐状のアルキレン基であり、Z1はアルキル硫酸塩であり、R1は水素原子またはメチル基であり、R2およびR3は各々同一または異なる水素原子、炭素数1〜12の直鎖状または分岐状のアルキル基、シクロアルキル基、フェニル基、置換フェニル基、またはベンジル基であり、R4は水素原子、炭素数1〜12の直鎖状または分岐状のアルキル基である。
Figure 0004857170
式(2)中、X2は酸素原子またはNHであり、Z2はCl、Br、1/2SOであり、R5は水素原子またはメチル基であり、R6およびR7は各々同一または異なる水素原子、メチル基またはエチル基であり、R8は水素原子、メチル基、エチル基またはベンジル基であり、nは1〜3の整数である。
A cationic monomer represented by the following general formula (1), Ri copolymer der between this and copolymerizable monomer component,
The cationic polymer flocculent, wherein the copolymerizable monomer component includes a cationic monomer represented by the following general formula (2) .
Figure 0004857170
In formula (1), X1 is an oxygen atom or NH, Y1 is a linear or branched alkylene group having 1 to 10 carbon atoms, Z1 is an alkyl sulfate, and R1 is a hydrogen atom or a methyl group. R2 and R3 are each the same or different hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, a phenyl group, a substituted phenyl group, or a benzyl group, and R4 is a hydrogen atom An atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
Figure 0004857170
Wherein (2), X2 is an oxygen atom or NH, Z2 is Cl, Br, 1 / 2SO 4, R5 is a hydrogen atom or a methyl group, each identical or different hydrogen atoms R6 and R7, methyl R8 is a hydrogen atom, methyl group, ethyl group or benzyl group, and n is an integer of 1 to 3.
前記共重合可能な単量体成分が、非イオン性単量体を含むことを特徴とする請求項1に記載のカチオン型高分子凝集剤。  The cationic polymer flocculant according to claim 1, wherein the copolymerizable monomer component contains a nonionic monomer. 請求項1または2に記載のカチオン型高分子凝集剤を用いて汚泥を処理することを特徴とする汚泥処理方法。 Sludge treatment method comprising treating the sludge with cationic polymeric flocculant as claimed in claim 1 or 2. 請求項1または2に記載のカチオン型高分子凝集剤と、非イオン型、カチオン型、アニオン型、両性型よりなる群から選ばれる少なくとも1種の高分子凝集剤とを併用して汚泥を処理することを特徴とする汚泥処理方法。 Processing the cationic polymer flocculating agent according to claim 1 or 2, nonionic, cationic, anionic, sludge in combination with at least one polymeric coagulant selected from the group consisting of amphoteric A sludge treatment method characterized by: 請求項1または2に記載のカチオン型高分子凝集剤と、無機凝結剤および/または有機凝結剤とを併用して汚泥を処理することを特徴とする汚泥処理方法。 Sludge treatment method characterized by treating the cationic polymer flocculating agent of claim 1 or 2, the combination with the sludge an inorganic coagulant and / or an organic coagulant.
JP2007102529A 2007-04-10 2007-04-10 Cationic polymer flocculant and sludge treatment method using the same Expired - Fee Related JP4857170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102529A JP4857170B2 (en) 2007-04-10 2007-04-10 Cationic polymer flocculant and sludge treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102529A JP4857170B2 (en) 2007-04-10 2007-04-10 Cationic polymer flocculant and sludge treatment method using the same

Publications (2)

Publication Number Publication Date
JP2008259923A JP2008259923A (en) 2008-10-30
JP4857170B2 true JP4857170B2 (en) 2012-01-18

Family

ID=39982822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102529A Expired - Fee Related JP4857170B2 (en) 2007-04-10 2007-04-10 Cationic polymer flocculant and sludge treatment method using the same

Country Status (1)

Country Link
JP (1) JP4857170B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427985B2 (en) * 2009-05-13 2014-02-26 三菱レイヨン株式会社 Sludge dewatering agent and sludge dewatering method
JP5700354B2 (en) * 2010-04-15 2015-04-15 三菱レイヨン株式会社 Sludge dewatering agent and sludge dewatering treatment method
JP5501122B2 (en) * 2010-07-02 2014-05-21 三菱レイヨン株式会社 Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JP5709086B2 (en) * 2010-10-25 2015-04-30 三菱レイヨン株式会社 Organic coagulant
JP5728506B2 (en) * 2011-02-10 2015-06-03 水ing株式会社 Sludge aggregation method and apparatus
JP5795728B2 (en) * 2011-09-26 2015-10-14 信越化学工業株式会社 Solid particulate collection method
CN105451850B (en) * 2012-08-22 2017-09-01 Mt奥科高分子株式会社 Polymer coagulant and its manufacture method and the dewatering using its sludge
US9679212B2 (en) 2014-05-09 2017-06-13 Samsung Electronics Co., Ltd. Liveness testing methods and apparatuses and image processing methods and apparatuses
JP6326477B2 (en) * 2015-12-25 2018-05-16 三洋化成工業株式会社 Polymer flocculant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946199A (en) * 1982-09-10 1984-03-15 Mitsui Saianamitsudo Kk Dehydration of sludge
GB8414950D0 (en) * 1984-06-12 1984-07-18 Allied Colloids Ltd Cationic polyelectrolytes
JPH0696603B2 (en) * 1987-05-13 1994-11-30 花王株式会社 Method for producing self-dispersing aqueous vinyl resin
DE4007312C2 (en) * 1990-03-08 2000-04-27 Basf Ag Process for the preparation of finely divided, water-soluble polymers containing vinylamine units
JP3962963B2 (en) * 1997-06-09 2007-08-22 荒川化学工業株式会社 Polymer having quaternary ammonium base and method for producing the same
JP2004255378A (en) * 2003-02-06 2004-09-16 Sanyo Chem Ind Ltd Polymer flocculating agent
WO2004113405A1 (en) * 2003-06-23 2004-12-29 Dia-Nitrix Co., Ltd. Method for producing cationic acrylamide polymer having high quality
JP4689156B2 (en) * 2003-10-31 2011-05-25 ダイヤニトリックス株式会社 Sludge dewatering method

Also Published As

Publication number Publication date
JP2008259923A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4857170B2 (en) Cationic polymer flocculant and sludge treatment method using the same
JP6152108B2 (en) Polymer flocculant, method for producing the same, and sludge dewatering method using the same
JP6378342B2 (en) Organic wastewater treatment method
JP4854432B2 (en) Sludge dewatering method
JP5427985B2 (en) Sludge dewatering agent and sludge dewatering method
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP4868127B2 (en) Organic sludge dewatering method
JP5338550B2 (en) Sludge dewatering agent and dewatering method
JP6486006B2 (en) Polymer flocculant and sludge dewatering method using the same
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP5501122B2 (en) Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP2017100111A (en) Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
JP5709086B2 (en) Organic coagulant
JP2006015209A (en) Dehydration method of digested sewage sludge
JP2017000914A (en) Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
JP2004210986A (en) Composition, polymer coagulant and method of sludge dewatering
JP4175194B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
JP4093128B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer
JP2004209413A (en) Composition, polymer coagulant, and method for dehydrating sludge
JP2001030000A (en) Sludge dehydrating method
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
JP5683219B2 (en) Sludge dewatering agent and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4857170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees