JP4854432B2 - Sludge dewatering method - Google Patents

Sludge dewatering method Download PDF

Info

Publication number
JP4854432B2
JP4854432B2 JP2006238727A JP2006238727A JP4854432B2 JP 4854432 B2 JP4854432 B2 JP 4854432B2 JP 2006238727 A JP2006238727 A JP 2006238727A JP 2006238727 A JP2006238727 A JP 2006238727A JP 4854432 B2 JP4854432 B2 JP 4854432B2
Authority
JP
Japan
Prior art keywords
polymer compound
sludge
structural unit
soluble polymer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006238727A
Other languages
Japanese (ja)
Other versions
JP2008055391A (en
Inventor
和男 鹿島
寿章 込堂
温 長嶺
康治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2006238727A priority Critical patent/JP4854432B2/en
Publication of JP2008055391A publication Critical patent/JP2008055391A/en
Application granted granted Critical
Publication of JP4854432B2 publication Critical patent/JP4854432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は高分子凝集剤を用いた含水汚泥の処理方法、より詳しくは腐敗汚泥のような繊維分の含有量が少ない難脱水処理汚泥の脱水処理方法に関する。   The present invention relates to a method for treating hydrous sludge using a polymer flocculant, and more particularly, to a method for dewatering difficult-to-dehydrate sludge having a low fiber content such as septic sludge.

廃水処理等の際に生じる含水汚泥の脱水処理に関しては、その性状により、各種凝集剤を必要に応じて組み合わせて使用することは知られており、特に有機汚泥の場合には、通常カチオン系、アニオン系又は両性系の凝集剤を単独又は適宜組み合わせて使用されている。
例えば、複数の高分子凝集剤を組み合わせた汚泥の脱水方法としては、両性高分子凝集剤とアクリレート系カチオン性の高分子凝集剤の組み合わせ(特許文献1参照)、アミジン系の高分子凝集剤と両性高分子凝集剤の組み合わせ(特許文献2参照)、アミジン系の凝集剤とカチオン系の凝集剤の組み合わせ(特許文献3参照)、2種の両性系凝集剤の組み合わせ(特許文献4参照)、2種のアクリレート系カチオン性高分子凝集剤の組み合わせ(特許文献5参照)が知られており、これらの組み合わせからなる凝集剤は通常の状態の汚泥に対しては有効である。
Regarding the dewatering treatment of hydrous sludge that occurs during wastewater treatment, etc., it is known that various flocculants are used in combination according to the nature, especially in the case of organic sludge, Anionic or amphoteric flocculants are used alone or in appropriate combination.
For example, the sludge dewatering method combining a plurality of polymer flocculants includes a combination of an amphoteric polymer flocculant and an acrylate cationic polymer flocculant (see Patent Document 1), an amidine polymer flocculant, A combination of amphoteric polymer flocculants (see Patent Document 2), a combination of an amidine flocculant and a cationic flocculant (see Patent Document 3), a combination of two amphoteric flocculants (see Patent Document 4), A combination of two acrylate-based cationic polymer flocculants (see Patent Document 5) is known, and flocculants composed of these combinations are effective for sludge in a normal state.

しかしながら、一方で、有機汚泥は変質し易く、特に夏場等の高温多湿条件では腐敗によりその性状が変化し、特に有機物濃度の高い汚泥が微生物分解などによって腐敗すると、汚泥の繊維分が減少し、圧密性が悪くなることが知られている。
汚泥中の繊維分は、汚泥の凝集時に凝集粒(以下、フロックと呼ぶ)を強化する効果があるが、これが減少するとフロックの強度が弱く圧搾時にフロックが潰れ、水の通り道が確保できず汚泥の脱水性が悪化する。また、圧搾性が悪くなると汚泥は絞り難くなる。ここで、該圧密性とは、通常、汚泥を遠心沈降させその沈降体積の全体に対する比容積(汚泥容量指数)SVI3000といった指数で比較される。
However, on the other hand, organic sludge is easy to change, especially in high temperature and high humidity conditions such as summer, its properties change due to rot, especially when sludge with high organic matter concentration rots due to microbial decomposition etc. It is known that the compactness becomes worse.
The fiber content in the sludge has the effect of strengthening the agglomerated grains (hereinafter referred to as flocs) when the sludge is agglomerated. The dehydration of is worsened. Moreover, sludge becomes difficult to squeeze if the squeezability deteriorates. Here, the compaction property is usually compared by an index such as a specific volume (sludge capacity index) SVI 3000 with respect to the entire sedimentation volume after centrifugal sedimentation of the sludge.

このように、有機汚泥が腐敗すると凝集処理の際の脱水性が低下する問題があることが知られており、その場合、通常よりも多量の凝集剤を使用する必要がある上、汚泥の焼却コストの増加といった問題が生じている。
また、近年、下水汚泥の処理の分野においては、特に都市部で汚泥の処理が集中処理方式へと移行されてきており、従来よりも汚泥が処理に付されるまでの時間が長くなったり、処理規模の増大による処理槽内での滞留時間の長時間化もあいまって、特に上記のような汚泥の腐敗による脱水性能の悪化の問題が顕著となってきている。
このような腐敗汚泥の脱水処理に関しては、高分子量のアミジン系凝集剤を用いた例が知られているが(特許文献6参照)、このような特殊な高分子化合物はコストが高いため改良が望まれていた。
特許登録第2933627号公報 特開平6−218399号公報 特開平6−218400号公報 特開2002−177706号公報 特開2003−251105号公報 特開平11−19408号公報
Thus, it is known that when organic sludge is spoiled, there is a problem that the dewaterability during the agglomeration treatment is reduced, and in that case, it is necessary to use a larger amount of flocculant than usual, and incineration of sludge Problems such as increased costs have arisen.
Moreover, in recent years, in the field of sewage sludge treatment, sludge treatment has been shifted to a centralized treatment method, particularly in urban areas, and the time until sludge is treated is longer than before, Along with the increase in the residence time in the treatment tank due to the increase in the treatment scale, the problem of deterioration of the dewatering performance due to the above-mentioned sludge decay has become particularly prominent.
Regarding such dewatering treatment of septic sludge, an example using a high molecular weight amidine-based flocculant is known (see Patent Document 6), but such a special polymer compound is improved because of its high cost. It was desired.
Patent Registration No. 29333627 JP-A-6-218399 JP-A-6-218400 JP 2002-177706 A JP 2003-251105 A Japanese Patent Laid-Open No. 11-19408

本発明は、特に腐敗が進行し、繊維分の含有量が少なく、脱水時の含水率を下げるのが困難な、いわゆる難脱水処理汚泥と言われる汚泥を比較的低コストで有効に処理する方法を提供することにある。   The present invention is a method for effectively treating sludge, so-called hardly dewatering-treated sludge, which is particularly rotted, has a low fiber content, and is difficult to reduce the water content during dewatering, at a relatively low cost. Is to provide.

本発明者らは上記課題を解決すべく鋭意検討した結果、少なくとも、解離度の異なる2種のカチオン系水溶性高分子化合物と両性系水溶性高分子化合物とを組み合わせて用いることにより、上記課題を解決できることを見出し、本発明を完成するに到った。
すなわち、本発明の要旨は、下記(A)で表されるカチオン系水溶性高分子化合物と下記(B)で表される両性系水溶性高分子化合物とを含有する高分子凝集剤を用いて繊維分が15重量%以下である有機汚泥を脱水する方法において、高分子凝集剤が、さらに、下記(C)で表される両性系水溶性高分子化合物又は(D)で表されるアミジン系カチオン性高分子化合物を含有し、且つ高分子凝集剤全重量に対し(A)で表されるカチオン系水溶性高分子化合物を10〜80重量%、(B)で表される両性系水溶性高分子化合物を10〜60重量%、及び(C)で表される両性系水溶性高分子化合物又は(D)で表されるアミジン系カチオン性高分子化合物を10〜80重量%含有することを特徴とする汚泥の脱水方法に存する。

As a result of intensive studies to solve the above problems, the present inventors have used at least two kinds of cationic water-soluble polymer compounds having different degrees of dissociation and amphoteric water-soluble polymer compounds in combination. As a result, the present invention has been completed.
That is, the gist of the present invention is to use a polymer flocculant containing a cationic water-soluble polymer compound represented by (A) below and an amphoteric water-soluble polymer compound represented by (B) below. In the method for dehydrating organic sludge having a fiber content of 15% by weight or less , the polymer flocculant is further an amphoteric water-soluble polymer compound represented by (C) below or an amidine system represented by (D): 10-80% by weight of the cationic water-soluble polymer compound represented by (A) based on the total weight of the polymer flocculant containing the cationic polymer compound, and the amphoteric water-soluble compound represented by (B) 10 to 60% by weight of the polymer compound and 10 to 80% by weight of the amphoteric water-soluble polymer compound represented by (C) or the amidine cationic polymer compound represented by (D). The characteristic is sludge dehydration.

(A) 下記構造式(1)で表される構成単位と下記構造式(2)で表される構成単位からなる共重合体であるカチオン系水溶性高分子化合物
(B) 下記構造式(1)で表される構成単位、下記構造式(2)で表される構成単位、及び下記構造式(3)で表される構成単位からなる共重合体である両性系水溶性高分子化合物
(C) 下記構造式(1)で表される構成単位、下記構造式(3)で表される構成単位、及び下記構造式(4)で表される構成単位からなる共重合体である両性系水溶性高分子化合物
(D) 下記構造式(5−a)又は(5―b)で表される構成単位を含有するアミジン系カチオン性高分子化合物
(A) Cationic water-soluble polymer compound which is a copolymer comprising a structural unit represented by the following structural formula (1) and a structural unit represented by the following structural formula (2) (B) The following structural formula (1) ), A structural unit represented by the following structural formula (2), and a structural unit represented by the following structural formula (3), an amphoteric water-soluble polymer compound (C ) Amphoteric aqueous solution which is a copolymer comprising a structural unit represented by the following structural formula (1), a structural unit represented by the following structural formula (3), and a structural unit represented by the following structural formula (4) (D) Amidine-based cationic polymer compound containing a structural unit represented by the following structural formula (5-a) or (5-b)

(上記構造式(1)〜(4)、(5−a)及び(5−b)において、R、R及びRはそれぞれ独立して、メチル基、エチル基又はベンジル基を表し、Rは水素原子又はメチル基を表し、XはCl、Br又は1/2SO 2−を示す。) (In the structural formulas (1) to (4), (5-a) and (5-b), R 1 , R 2 and R 3 each independently represents a methyl group, an ethyl group or a benzyl group, R 4 represents a hydrogen atom or a methyl group, and X represents Cl , Br or 1 / 2SO 4 2− ).

本発明の汚泥の脱水処理方法は、腐敗汚泥のような繊維分の少ない難脱水処理汚泥、特には夏場の腐敗が進行した都市下水汚泥に対しても低コストで簡便且つ効率的に脱水を行うことができるものであり、これにより年間を通しての安定した汚泥の脱水処理を行うことができる。   The sludge dewatering method of the present invention performs low-cost, simple and efficient dewatering even for sludge-reduced sludge with low fiber content such as septic sludge, especially urban sewage sludge that has been rotted in summer. This makes it possible to perform stable sludge dewatering throughout the year.

以下に、本発明を更に詳細に説明するが、本発明の範囲はこれらの記載に限定されるものではない。
本発明の汚泥脱水方法に用いられる高分子凝集剤は、上記の如く(A)で表されるカチオン系水溶性高分子化合物及び(B)で表される両性系水溶性高分子化合物に、更に(C)で表される両性系水溶性高分子化合物又は(D)で表されるアミジン系カチオン性高分子化合物を含有することを必須とするものである。
Hereinafter, the present invention will be described in more detail, but the scope of the present invention is not limited to these descriptions.
The polymer flocculant used in the sludge dewatering method of the present invention includes the cationic water-soluble polymer compound represented by (A) and the amphoteric water-soluble polymer compound represented by (B) as described above. It is essential to contain the amphoteric water-soluble polymer compound represented by (C) or the amidine-based cationic polymer compound represented by (D).

<(A):カチオン系水溶性高分子化合物>
(A)で表されるカチオン系水溶性高分子化合物は、上記構造式(1)で表される構成単位と上記構造式(2)で表される構成単位からなる共重合体である。具体的には、(1)で表される構成単位のアクリルアミド単量体と(2)で表される構成単位の(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩単量体との共重合体である。(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩は、ジアルキルアミノエチル(メタ)アクリル酸を4級化剤、例えば塩化メチル、塩化ベンジル等のハロゲン化アルキル等と反応させることにより得られ、代表例は塩化メチル4級化塩である。
構造式(2)の(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩単量体において、R,R及びRが、全てメチル基、或いはR,Rがメチル基、Rがベンジル基であるのが好ましく、特に全てメチル基であるのが好ましい。また、XはClが好ましく、Rは水素原子とメチル基のいずれでもよい。
<(A): Cationic water-soluble polymer compound>
The cationic water-soluble polymer compound represented by (A) is a copolymer comprising a structural unit represented by the structural formula (1) and a structural unit represented by the structural formula (2). Specifically, a copolymer of the acrylamide monomer of the structural unit represented by (1) and the (meth) acryloyloxyethyltri (alkyl) ammonium salt monomer of the structural unit represented by (2) It is. (Meth) acryloyloxyethyl tri (alkyl) ammonium salt is obtained by reacting dialkylaminoethyl (meth) acrylic acid with a quaternizing agent such as alkyl halide such as methyl chloride and benzyl chloride. Is a methyl chloride quaternized salt.
In the (meth) acryloyloxyethyltri (alkyl) ammonium salt monomer of the structural formula (2), R 1 , R 2 and R 3 are all methyl groups, or R 1 and R 2 are methyl groups, and R 3 is It is preferably a benzyl group, particularly preferably all methyl groups. Also, X is Cl - preferably, R 4 may be either a hydrogen atom and a methyl group.

(A)のカチオン系水溶性高分子化合物における(1)及び(2)で表される構成単位の含有割合は、特に限定されないが、(2)で表される構成単位はカチオン系水溶性高分子化合物として必須成分であり、その含有割合は、該高分子化合物の全構成単位に対し、通常5モル%以上、好ましくは10モル%以上、更に好ましくは20モル%以上であり、通常99モル%以下、好ましくは90モル%以下である。
本発明において使用する(A)カチオン性水溶性高分子化合物は、該高分子化合物中における(2)で表される構成単位の含有量が、上記範囲内であれば、(1)で表されるアクリルアミド単量体単位に加え、少量の他の単量体単位、例えばアクリルアミドのアルキル誘導体などを含有していてもよい。その場合、他の単量体単位は、該高分子化合物の全構成単位に対し、10モル%以下とする。
Although the content rate of the structural unit represented by (1) and (2) in the cationic water-soluble polymer compound of (A) is not particularly limited, the structural unit represented by (2) is highly cationic water-soluble. It is an essential component as a molecular compound, and the content thereof is usually 5 mol% or more, preferably 10 mol% or more, more preferably 20 mol% or more, and usually 99 mol% with respect to all structural units of the polymer compound. % Or less, preferably 90 mol% or less.
The cationic water-soluble polymer compound (A) used in the present invention is represented by (1) if the content of the structural unit represented by (2) in the polymer compound is within the above range. In addition to the acrylamide monomer unit, it may contain a small amount of other monomer units, such as alkyl derivatives of acrylamide. In that case, other monomer units are made into 10 mol% or less with respect to all the structural units of this high molecular compound.

また、(A)カチオン性水溶性高分子化合物は、4重量%塩水中における、該高分子化合物の0.5重量%溶液の粘度が、通常10mPa・s以上であり、180mPa・s以下、好ましくは140mPa・s以下である。粘度がこの範囲を超えて高すぎると粘性が増し取り扱い難く、低すぎると十分な強度のフロックが得られにくい。
本明細書中、高分子化合物の粘度は、高分子化合物の4重量%塩水(NaCl水溶液)中における0.5重量%溶液を調製し、B型粘度計を使用し、25℃で測定した値を意味する。
In addition, (A) the cationic water-soluble polymer compound has a viscosity of a 0.5% by weight solution of the polymer compound in 4% by weight salt water of usually 10 mPa · s or more, preferably 180 mPa · s or less, preferably Is 140 mPa · s or less. If the viscosity exceeds this range and is too high, the viscosity increases and is difficult to handle. If it is too low, it is difficult to obtain a floc having a sufficient strength.
In this specification, the viscosity of the polymer compound is a value measured at 25 ° C. using a B-type viscometer after preparing a 0.5 wt% solution of the polymer compound in 4 wt% salt water (NaCl aqueous solution). Means.

本発明のカチオン性水溶性高分子化合物(A)は、公知の一般的な重合方法により製造することができる。例えば、上記(1)のアクリルアミド単量体と(2)の(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩単量体とを、要すれば他の単量体と共に、重合開始剤の存在下、公知の重合方法により共重合する。重合開始剤としては、例えば、過硫酸カリウム、過硫酸2,2‘−アゾビズ−2−アミジノプロパン塩酸塩等のラジカル開始剤が挙げられる。重合方法としては、特に制限されず、通常、水溶液重合、光重合、懸濁重合、エマルション重合等の方法によって製造される。   The cationic water-soluble polymer compound (A) of the present invention can be produced by a known general polymerization method. For example, the acrylamide monomer (1) and the (meth) acryloyloxyethyltri (alkyl) ammonium salt monomer (2), if necessary, together with other monomers in the presence of a polymerization initiator. The copolymerization is carried out by a known polymerization method. Examples of the polymerization initiator include radical initiators such as potassium persulfate and 2,2′-azobiz-2-amidinopropane hydrochloride. The polymerization method is not particularly limited and is usually produced by a method such as aqueous solution polymerization, photopolymerization, suspension polymerization, emulsion polymerization or the like.

<(B):両性系水溶性高分子化合物(I)>
(B)で表される両性水溶性高分子化合物は、上記構造式(1)で表される構成単位、上記構造式(2)で表される構成単位、及び上記構造式(3)で表される構成単位からなる共重合体である。具体的には、(1)で表される構成単位のアクリルアミド単量体、(2)で表される構成単位の(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩単量体、及び(3)で表される構成単位の(メタ)アクリル酸単量体の共重合体である。ここで、(2)の構成単位である(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩は、上記と同様ジアルキルアミノエチル(メタ)アクリル酸を4級化剤、例えば塩化メチル、塩化ベンジル等のハロゲン化アルキル等と反応させることにより得られ、代表例は塩化メチル4級化塩である。
<(B): Amphoteric water-soluble polymer compound (I)>
The amphoteric water-soluble polymer compound represented by (B) is represented by the structural unit represented by the structural formula (1), the structural unit represented by the structural formula (2), and the structural formula (3). It is a copolymer composed of structural units. Specifically, the acrylamide monomer of the structural unit represented by (1), the (meth) acryloyloxyethyltri (alkyl) ammonium salt monomer of the structural unit represented by (2), and (3) It is a copolymer of the (meth) acrylic acid monomer of the structural unit represented by these. Here, the (meth) acryloyloxyethyltri (alkyl) ammonium salt which is the structural unit of (2) is a quaternizing agent such as methyl chloride, benzyl chloride, etc. It is obtained by reacting with alkyl halide or the like, and a typical example is methyl chloride quaternized salt.

本発明の両性水溶性高分子化合物(I)は水に溶解すれば良く、該高分子化合物中における(1)、(2)及び(3)で表される構成単位の含有割合は特に制限はないが、カチオン基としての(2)で表される構成単位、即ち(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩単量体の含有割合は、該高分子化合物の全構成単位に対し、通常5モル%以上、好ましくは10モル%以上であり、通常90モル%以下、好ましくは60モル%以下、更に好ましくは50モル%以下である。
アニオン基としての(3)で表される構成単位、(メタ)アクリル酸単量体は、該高分子化合物の全構成単位に対し通常5モル%以上、50モル%以下である。また、(1)で表される構成単位のアクリルアミド単量体の含有割合は、該高分子化合物の全構成単位に対し、通常5モル%以上、好ましくは30モル%以上、通常90モル%以下、好ましくは〜85モル%以下である。
The amphoteric water-soluble polymer compound (I) of the present invention may be dissolved in water, and the content of the structural units represented by (1), (2) and (3) in the polymer compound is not particularly limited. However, the content of the structural unit represented by (2) as a cationic group, that is, the (meth) acryloyloxyethyltri (alkyl) ammonium salt monomer is usually based on the total structural unit of the polymer compound. It is 5 mol% or more, preferably 10 mol% or more, usually 90 mol% or less, preferably 60 mol% or less, and more preferably 50 mol% or less.
The structural unit represented by (3) as the anionic group and the (meth) acrylic acid monomer are usually 5 mol% or more and 50 mol% or less with respect to all the structural units of the polymer compound. The content of the acrylamide monomer in the structural unit represented by (1) is usually 5 mol% or more, preferably 30 mol% or more, and usually 90 mol% or less, based on all the structural units of the polymer compound. , Preferably ˜85 mol% or less.

また、(B)両性系水溶性高分子化合物は、4重量%塩水中における、該高分子化合物の0.5重量%溶液の粘度が通常10mPa・s以上、好ましくは15Pa・s以上であり、通常140mPa・s以下、好ましくは120mPa・s以下である。粘度がこの範囲を超えると汚泥への吸着が遅くなり、低すぎると充分な強度のフロックが出来ない。   In addition, (B) the amphoteric water-soluble polymer compound has a viscosity of a 0.5 wt% solution of the polymer compound in 4 wt% salt water of usually 10 mPa · s or more, preferably 15 Pa · s or more, Usually, it is 140 mPa · s or less, preferably 120 mPa · s or less. If the viscosity exceeds this range, the adsorption to the sludge becomes slow, and if it is too low, a floc with sufficient strength cannot be formed.

本発明の両性系水溶性高分子化合物(B)は、上記(A)のカチオン性水溶性高分子化合物の製造と同様に、(1)のアクリルアミド単量体と(2)の(メタ)アクリロイルオキシエチルトリ(アルキル)アンモニウム塩単量体と(3)の(メタ)アクリル酸を、重合開始剤の存在下、公知の重合方法により共重合することにより製造される。   The amphoteric water-soluble polymer compound (B) of the present invention comprises the acrylamide monomer (1) and the (meth) acryloyl (2) as in the production of the cationic water-soluble polymer compound (A). It is produced by copolymerizing an oxyethyltri (alkyl) ammonium salt monomer and (3) (meth) acrylic acid by a known polymerization method in the presence of a polymerization initiator.

<(C):両性系水溶性高分子化合物(II)>
(C)で表される両性水溶性高分子化合物(II)は、上記構造式(1)で表される構成単位、上記構造式(3)で表される構成単位、及び上記構造式(4)で表される構成単位からなる共重合体である。具体的には、(1)で表される構成単位のアクリルアミド単量体と、(3)で表される構成単位の(メタ)アクリル酸単量体と、(4)で表される3級アミノ基を有するジアルキルアミノエチル(メタ)アクリレート酸塩単量体との共重合体である。ここで、(4)の構成単位であるジアルキルアミノエチル(メタ)アクリレート水溶性酸塩としての好ましい代表例は、ジメチルアミノエチル(メタ)アクリレート硫酸塩であるが、塩酸塩や他の酸の塩であっても差し支えない。
<(C): Amphoteric water-soluble polymer compound (II)>
The amphoteric water-soluble polymer compound (II) represented by (C) has a structural unit represented by the structural formula (1), a structural unit represented by the structural formula (3), and the structural formula (4). ). Specifically, the acrylamide monomer of the structural unit represented by (1), the (meth) acrylic acid monomer of the structural unit represented by (3), and the tertiary class represented by (4) It is a copolymer with a dialkylaminoethyl (meth) acrylate monomer having an amino group. Here, a preferred representative example of the dialkylaminoethyl (meth) acrylate water-soluble acid salt which is the constituent unit of (4) is dimethylaminoethyl (meth) acrylate sulfate, but hydrochloride and other acid salts It doesn't matter.

本発明の両性水溶性高分子化合物(II)は水に溶解すれば良く、該高分子化合物中における(1)、(3)及び(4)で表される構成単位の含有割合は特に制限はないが、カチオン基としての3級アミノ基を有する(4)で表されるジアルキルアミノエチル(メタ)アクリレート酸塩単量体の含有量は、該高分子化合物の全構成単位に対し、通常5モル%以上、好ましくは10モル%以上、更に好ましくは15モル%以上であり、通常90モル%以下、好ましくは80モル%以下、更に好ましくは70モル%以下である。アニオン基としての(3)で表される(メタ)アクリル酸単量体の含有量は、該高分子化合物の全構成単位に対し、5モル%以上であり、50モル%以下、好ましくは40モル%以下であり、残余は(1)で表されるアクリルアミドである。(1)で表される構成単位のアクリルアミド単量体の含有割合は、該高分子化合物の全構成単位に対し、5モル%以上であり、90モル%以下、好ましくは80モル%以下である。   The amphoteric water-soluble polymer compound (II) of the present invention may be dissolved in water, and the content ratio of the structural units represented by (1), (3) and (4) in the polymer compound is not particularly limited. However, the content of the dialkylaminoethyl (meth) acrylate monomer represented by (4) having a tertiary amino group as a cationic group is usually 5 with respect to all structural units of the polymer compound. It is at least 10 mol%, preferably at least 10 mol%, more preferably at least 15 mol%, usually at most 90 mol%, preferably at most 80 mol%, more preferably at most 70 mol%. The content of the (meth) acrylic acid monomer represented by (3) as an anionic group is 5 mol% or more, 50 mol% or less, preferably 40 mol%, based on all structural units of the polymer compound. The remaining amount is acrylamide represented by (1). The content of the acrylamide monomer in the structural unit represented by (1) is 5 mol% or more, 90 mol% or less, preferably 80 mol% or less, based on all the structural units of the polymer compound. .

また、(C)の両性系水溶性高分子化合物(II)は、4重量%塩水中における、該高分子化合物の0.5重量%溶液の粘度が5mPa・s以上であり、100 mPa・s以下、好ましくは80mPa・s以下、より好ましくは60mPa・s以下である。粘度がこの範囲を超えると汚泥への吸着が遅くなり、低すぎると充分な強度のフロックが出来ない。   In addition, the amphoteric water-soluble polymer compound (II) (C) has a viscosity of 5 mPa · s or more in a 0.5 wt% solution of the polymer compound in 4 wt% salt water, and is 100 mPa · s. Hereinafter, it is preferably 80 mPa · s or less, more preferably 60 mPa · s or less. If the viscosity exceeds this range, the adsorption to the sludge becomes slow, and if it is too low, a floc with sufficient strength cannot be formed.

本発明の(C)の両性系水溶性高分子化合物(II)は、上記(A)のカチオン性水溶性高分子化合物の製造と同様に、(1)のアクリルアミド単量体と(3)の(メタ)アクリル酸と(4)のジアルキルアミノエチル(メタ)アクリレート酸塩とを、重合開始剤の存在下、公知の重合方法により共重合することにより製造される。   The amphoteric water-soluble polymer compound (II) of (C) of the present invention is prepared from the acrylamide monomer of (1) and (3) in the same manner as the production of the cationic water-soluble polymer compound of (A). It is produced by copolymerizing (meth) acrylic acid and (4) dialkylaminoethyl (meth) acrylate in the presence of a polymerization initiator by a known polymerization method.

<(D):アミジン系カチオン性高分子化合物>
(D)で表されるアミジン系カチオン性高分子化合物は、前記構造式(5−a)又は(5―b)で表されるアミジン環を有する構成単位を含有する高分子化合物である。該カチオン性高分子化合物中におけるアミジン環含有構成単位の含有量は、該カチオン性高分子化合物の全構成単位に対し、通常20モル%以上、好ましくは30モル%以上、より好ましくは35モル%以上であり、通常95モル%以下、好ましくは90モル%以下、より好ましくは80モル%以下である。アミジン環含有構成単位の含有量が、20モル%未満では、pHが中性から弱アルカリの汚泥にたいしての効果が低くなる傾向があり、含有量が95モル%を超えてもそれ以上の効果が期待できない。
<(D): Amidine-based cationic polymer compound>
The amidine-based cationic polymer compound represented by (D) is a polymer compound containing a structural unit having an amidine ring represented by the structural formula (5-a) or (5-b). The content of the amidine ring-containing structural unit in the cationic polymer compound is usually 20 mol% or more, preferably 30 mol% or more, more preferably 35 mol%, based on all the structural units of the cationic polymer compound. These are usually 95 mol% or less, preferably 90 mol% or less, and more preferably 80 mol% or less. If the content of the amidine ring-containing structural unit is less than 20 mol%, the pH tends to be low for neutral to weakly alkaline sludge, and even if the content exceeds 95 mol%, the effect is higher. I can't expect it.

該カチオン性高分子化合物は、アクリロニトリルとN−ビニルホルムアミドとの共重合体を酸により変性(加水分解)して、1級アミノ基を生成させ、次いで加熱することによって1級アミノ基とニトリル基とを反応させアミジン環を形成することにより製造することが出来る。共重合するN−ビニルホルムアミド(a)とアクリロニトリル(b)の割合(a):(b)は、モル比で、通常20:80〜95:5であり、好ましくは30:70〜90:10、更に好ましくは40:60〜80:20である。共重合体の変性反応は、酸の変性剤を、共重合体中の所望の1級アミノ基に対し、通常0.1〜2倍モル、好ましくは0.2〜1.5倍モル使用し、反応温度30〜130℃、好ましくは40〜110℃で行われる。また、変性後の共重合体は、通常70〜130℃、好ましくは80〜110℃で加熱され、アミジン環を有する高分子化合物を形成する。   The cationic polymer compound is obtained by modifying (hydrolyzing) a copolymer of acrylonitrile and N-vinylformamide with an acid to form a primary amino group, and then heating to form a primary amino group and a nitrile group. To form an amidine ring. The ratio (a) :( b) of N-vinylformamide (a) and acrylonitrile (b) to be copolymerized is usually 20:80 to 95: 5, preferably 30:70 to 90:10, in molar ratio. More preferably, it is 40: 60-80: 20. In the copolymer modification reaction, an acid modifier is usually used in an amount of 0.1 to 2 moles, preferably 0.2 to 1.5 moles per mole of the desired primary amino group in the copolymer. The reaction temperature is 30 to 130 ° C, preferably 40 to 110 ° C. The copolymer after modification is usually heated at 70 to 130 ° C., preferably 80 to 110 ° C., to form a polymer compound having an amidine ring.

また、(D)アミジン系カチオン性高分子化合物は、4重量%塩水中における、該高分子化合物の0.5重量%溶液の粘度が通常1mPa・s以上、好ましくは2mPa・s以上であり、通常20mPa・s以下、好ましくは15mPa・s以下、より好ましくは10mPa・s以下である。粘度がこの範囲を超えると汚泥への吸着が遅くなり、低すぎると充分な強度のフロックが出来ない。   The (D) amidine-based cationic polymer compound has a viscosity of 0.5% by weight solution of the polymer compound in 4% by weight salt water, usually 1 mPa · s or more, preferably 2 mPa · s or more, Usually, it is 20 mPa · s or less, preferably 15 mPa · s or less, more preferably 10 mPa · s or less. If the viscosity exceeds this range, the adsorption to the sludge becomes slow, and if it is too low, a floc with sufficient strength cannot be formed.

本発明の汚泥の脱水に使用する高分子凝集剤は、上記の如く(A)で表されるカチオン系水溶性高分子化合物及び(B)で表される両性系水溶性高分子化合物に、更に(C)で表される両性系水溶性高分子化合物、又は(D)で表されるアミジン系カチオン性高分子化合物を含有することを必須とするものである。すなわち、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライドを構成単位として含むことを必須とする4級アンモニウム塩基を有するカチオン系水溶性高分子重合体(A)と(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリル酸、及びアクリルアミドの3種の単量体を必須成分とする4級アンモニウム基を有する両性系水溶性高分子化合物(B)の2種に、更に第三成分として3級アミノ基を有するジメチルアミノエチル(メタ)アクリレート酸塩、(メタ)アクリル酸、及びアクリルアミドの3種の単量体を必須成分とする両性系水溶性高分子化合物(C)、或いはアミジン基を有するポリアミジン系高分子化合物(D)を含有する高分子凝集剤である。   The polymer flocculant used for the dewatering of the sludge of the present invention includes the cationic water-soluble polymer compound represented by (A) and the amphoteric water-soluble polymer compound represented by (B) as described above. It is essential to contain the amphoteric water-soluble polymer compound represented by (C) or the amidine-based cationic polymer compound represented by (D). That is, a cationic water-soluble polymer (A) having a quaternary ammonium base that must contain (meth) acryloyloxyethyltrimethylammonium chloride as a structural unit, and (meth) acryloyloxyethyltrimethylammonium chloride ( Two types of amphoteric water-soluble polymer compound (B) having a quaternary ammonium group containing three types of monomers (meth) acrylic acid and acrylamide as essential components, and a tertiary amino group as a third component. Amphiphilic water-soluble polymer compound (C) containing three kinds of monomers, ie, dimethylaminoethyl (meth) acrylate, methacrylic acid, and acrylamide as essential components, or a polyamidine-based polymer having an amidine group A polymer flocculant containing the molecular compound (D).

本発明で使用する高分子凝集剤中における(A)〜(D)で表されるこれらの高分子化合物の混合割合は、処理する汚泥により異なるが、通常、高分子凝集剤全重量に対し(A)のカチオン系水溶性高分子化合物10重量%〜80重量%、好ましくは10重量%〜70重量%、(B)の両性系水溶性高分子化合物10重量%〜60重量%、(C)の両性系水溶性高分子化合物又は(D)のアミジン系高分子化合物10重量%〜80重量%、好ましくは10重量%〜70重量%である。
第三成分として3級アミノ基を有するジメチルアミノエチル(メタ)アクリレートを必須成分とする両性系水溶性高分子化合物を採用する場合、アミジン系高分子化合物よりも比較的安価で、かつ本組み合わせにより良好な脱水性能が得られる利点がある。一方アミジン系高分子化合物は、腐敗汚泥に対し比較的効果があり、特に高分子量であればその効果は大きくなるが添加量が多くなり、かつ価格が高いためコストがかかる。本発明における組み合わせで用いることにより、本願におけるような繊維分の少ない性状の有機汚泥に対しても単独使用以上の効果が得られ、しかもコストの大きな低減が図れる利点がある。
The mixing ratio of these polymer compounds represented by (A) to (D) in the polymer flocculant used in the present invention varies depending on the sludge to be treated, but is usually ( A) cationic water-soluble polymer compound of 10% by weight to 80% by weight, preferably 10% by weight to 70% by weight, amphoteric water-soluble polymer compound of (B) 10% by weight to 60% by weight, (C) The amphoteric water-soluble polymer compound (D) or the amidine polymer compound (D) is 10 wt% to 80 wt%, preferably 10 wt% to 70 wt%.
When an amphoteric water-soluble polymer compound having a tertiary amino group-containing dimethylaminoethyl (meth) acrylate as an essential component is adopted as a third component, it is relatively cheaper than an amidine polymer compound, and this combination There is an advantage that good dewatering performance can be obtained. On the other hand, amidine-based polymer compounds are relatively effective against septic sludge. In particular, if the molecular weight is high, the effect is increased, but the amount added is large and the cost is high because of the high price. By using it in combination in the present invention, there is an advantage that an effect more than single use can be obtained even for organic sludge having a low fiber content as in the present application, and the cost can be greatly reduced.

本発明の脱水方法において処理する汚泥は有機汚泥であり、腐敗があまり進行していない混合生汚泥や余剰汚泥も処理し得るが、特に本発明方法は腐敗が進行し難脱水汚泥となった汚泥に対しより効果的である。
本発明の脱水方法は、通常、繊維分が15重量%以下の有機汚泥に適用することができ、またSVI3000が13ml/g以上の有機汚泥に対してもより効果的に適用できる。
通常、汚泥に含まれる有機物質成分、即ち炭水化物や繊維分は生物分解による腐敗を受けやすく、腐敗が進行すると繊維分が減少し、更に圧密性も低下する。汚泥の繊維分が減少すると、汚泥の凝集時におけるフロックの強度が低下し、また、圧密性の低下は汚泥が絞り難い性状となり脱水効率が悪化する。
The sludge to be treated in the dehydration method of the present invention is organic sludge, and mixed raw sludge and surplus sludge that have not progressed so much can be treated. Is more effective.
The dehydration method of the present invention can be generally applied to organic sludge having a fiber content of 15% by weight or less, and more effectively to organic sludge having SVI 3000 of 13 ml / g or more.
Usually, organic substance components contained in sludge, that is, carbohydrates and fiber components, are susceptible to decay due to biodegradation, and as the decay progresses, the fiber content decreases and the compaction also decreases. When the sludge fiber content decreases, the floc strength at the time of sludge aggregation decreases, and the decrease in compactness makes it difficult for the sludge to be squeezed and the dewatering efficiency deteriorates.

汚泥の性状は、処理場に流入する水質や腐敗状況等により変化し、通常の都市下水処理場の混合生汚泥の繊維分の量(200メッシュの篩いで汚泥を濾過した際の濾物中の有機分)が固形分(TS)に対し15重量%〜20重量%であるのに対し、腐敗汚泥では10重量%以下、甚だしい場合は5重量%以下となる。汚泥の圧密性は汚泥容量指標SVI3000(3000rpmで10分汚泥を遠心沈降した際の汚泥の沈降体積を乾燥重量で除したもの)で表されるが、通常の汚泥のSVI3000は10〜12.5ml/g程度が中心の値であるのに対し、腐敗汚泥では16ml/g以上、腐敗が甚だしい場合は18ml/g以上、特に甚だしい場合は20ml/g以上になる。このような性状の汚泥の場合、通常のカチオン性凝集剤では処理できないか、あるいは凝集させることができても凝集フロックの強度が弱いため、例えば遠心脱水機などで汚泥に力がかかった際、水の通り道が確保できず脱水率が上がらない。本発明方法は、このような難脱水性の汚泥に対し、特定の構成単位を有する複数の高分子凝集剤を組み合わせて用いることにより、強固なフロックを形成し、効率良く脱水をなし得るのである。 Sludge properties vary depending on the quality of the water flowing into the treatment plant and the septic conditions, etc., and the amount of mixed raw sludge fibers in a normal municipal sewage treatment plant (the sludge is filtered when sludge is filtered through a 200-mesh sieve). The organic content is 15% to 20% by weight with respect to the solid content (TS), whereas it is 10% by weight or less for septic sludge, and 5% by weight or less for severe cases. Although consolidation of the sludge is expressed in sludge volume index SVI 3000 (3000 rpm in a sedimentation volume of sludge upon centrifugation for 10 minutes sludge divided by the dry weight), SVI 3000 normal sludge 10-12 While the central value is about 5 ml / g, it is 16 ml / g or more for septic sludge, 18 ml / g or more when it is severely spoiled, and 20 ml / g or more when it is particularly severe. In the case of sludge with such properties, it is not possible to treat with a normal cationic flocculant, or even if it can be agglomerated, the strength of the agglomeration floc is weak, so when the sludge is forced with a centrifugal dehydrator, for example, The passage of water cannot be secured and the dehydration rate does not increase. The method of the present invention can form a strong flock and efficiently perform dehydration by using a combination of a plurality of polymer flocculants having specific structural units for such hardly dewatering sludge. .

本発明方法における高分子凝集剤として、従来知られたカチオン系凝集剤と両性系凝集剤との併用と共に、第三成分として3級カチオン基を有する両性系水溶性高分子化合物又はアミジン基を有する高分子化合物を使用することにより、汚泥の脱水性が向上する理由についての詳細はさだかではないが、汚泥の腐敗が進行すると汚泥中に微生物や天然物由来の水溶性高分子成分等が増加し、この水溶性高分子成分が汚泥の処理時に添加される凝集剤と多価イオンコンプレックスを形成することによって凝集阻害を引き起こすものと推測され、本発明の所定の高分子化合物の組み合わせからなる凝集剤は、腐敗汚泥中のこれら成分によって凝集阻害され難く、凝集剤としての機能を奏するためであろうと思われる。しかしながら、本願発明の高分子凝集剤に含まれる所定の構成単位からなる水溶性高分子化合物であっても、これらの高分子化合物(凝集剤)単独では濾水速度や汚泥の変動時への対応、コストの点等で充分満足できるものではなく、通常のカチオン系凝集剤−両性系凝集剤の組み合わせに加えて、上記第三成分としての高分子化合物(凝集剤)を用いることで最低限のコスト増加で難脱水汚泥に対し高い脱水効果を上げることができるのである。   As a polymer flocculant in the method of the present invention, a combination of a conventionally known cationic flocculant and an amphoteric flocculant, and an amphoteric water-soluble polymer compound having a tertiary cation group or an amidine group as a third component The details about why the dewaterability of sludge is improved by using a polymer compound is not clear, but as sludge decays, microorganisms and water-soluble polymer components derived from natural products increase in the sludge. The water-soluble polymer component is presumed to cause aggregation inhibition by forming a polyvalent ion complex with the flocculant added at the time of sludge treatment, and the flocculant comprising the predetermined polymer compound combination of the present invention Is considered to be because it is difficult to inhibit aggregation by these components in the septic sludge and to function as a flocculant. However, even if it is a water-soluble polymer compound comprising a predetermined structural unit contained in the polymer flocculant of the present invention, these polymer compounds (flocculating agents) alone can cope with fluctuations in drainage rate and sludge. In addition to the combination of a normal cationic flocculant and an amphoteric flocculant, the polymer compound (flocculating agent) as the third component is used to minimize the cost. A high dehydration effect can be achieved for difficult-to-dehydrate sludge by increasing costs.

また、本発明の脱水方法に使用する高分子凝集剤における所定物性の高分子化合物である(A)と(B)とに(C)又は(D)を加える組み合わせは、解離度の高い4級カチオン基と解離度が異なる3級カチオン基もしくはアミジン型カチオン基の組み合わせになっている。解離度の高い4級カチオン基は汚泥粒子の表面荷電を効果的に中和するが、過剰に存すると解離したカチオン基が凝集汚泥に存在し、荷電密度が増すことになり、含水率を下げ難くする場合がある。これに対し3級カチオン基、或いはアミジン基は凝集後汚泥の疎水性が高く、効果的に含水率を下げられる。本発明における高分子凝集剤では、4級カチオン基を有する高分子化合物と、3級カチオン基等を有する高分子化合物を用いることで、これらのカチオン基が相互にバランス良く機能を奏し、それによって効率よく脱水効果を上げるのである。   Further, the combination of adding (C) or (D) to (A) and (B), which is a polymer compound having predetermined physical properties in the polymer flocculant used in the dehydration method of the present invention, is a quaternary compound having a high degree of dissociation. It is a combination of a tertiary cation group or an amidine type cation group having a dissociation degree different from that of the cation group. Quaternary cationic groups with a high degree of dissociation effectively neutralize the surface charge of the sludge particles, but if they exist in excess, the dissociated cationic groups are present in the aggregated sludge, increasing the charge density and reducing the water content. It may be difficult. On the other hand, the tertiary cation group or amidine group has high hydrophobicity of the sludge after aggregation, and the water content can be effectively reduced. In the polymer flocculant in the present invention, by using a polymer compound having a quaternary cation group and a polymer compound having a tert-cation group, these cation groups function in a balanced manner. It effectively increases the dehydration effect.

本発明の脱水方法において、高分子凝集剤を汚泥に添加する方法は特に制限されるものではない。高分子凝集剤に含まれる上記(A)と(B)と(C)或いは(A)と(B)と(D)の各高分子化合物は、通常水溶液で添加されるが、これらの各高分子化合物は一液に溶解して添加しても良いし個別に溶解して添加してもよい。また両性系高分子化合物の溶解を促すため、通常行われている酸物質の添加を行ってもよく、添加される酸の種類は問わないがスルファミン酸が通常用いられる。   In the dehydration method of the present invention, the method for adding the polymer flocculant to the sludge is not particularly limited. Each of the polymer compounds (A), (B), (C) or (A), (B), and (D) contained in the polymer flocculant is usually added in an aqueous solution. The molecular compound may be added after being dissolved in one solution, or may be added after being dissolved individually. Further, in order to promote dissolution of the amphoteric polymer compound, a usual acid substance may be added, and sulfamic acid is usually used regardless of the kind of acid to be added.

本発明の高分子凝集剤の汚泥に対する添加量は、汚泥の性状等により異なり特に制限されないが、通常、高分子凝集剤の総添加量は、汚泥中の総固形分に対し通常0.1重量%以上、好ましくは0.2重量%以上、通常3重量%以下、好ましくは2重量%以下である。添加量が少ない場合は、十分な凝集性能が得られず、多い場合も期待する効果は得られない。
更に、本発明の効果を損なわない限り、この他に他の高分子を添加してもよく、また本発明の高分子凝集剤を用いる際に無機系の薬剤による汚泥の調質を併用してもよい。無機系の薬剤としてはポリ塩化アルミ、硫酸バンド、ポリ塩化第一鉄等が使われる。
The amount of the polymer flocculant of the present invention added to the sludge differs depending on the properties of the sludge and is not particularly limited. Usually, the total amount of the polymer flocculant is usually 0.1 wt.% With respect to the total solid content in the sludge. % Or more, preferably 0.2% by weight or more, usually 3% by weight or less, preferably 2% by weight or less. When the addition amount is small, sufficient aggregation performance cannot be obtained, and when it is large, the expected effect cannot be obtained.
Furthermore, as long as the effects of the present invention are not impaired, other polymers may be added, and when using the polymer flocculant of the present invention, sludge refining with an inorganic chemical is used in combination. Also good. Examples of inorganic chemicals include polyaluminum chloride, sulfuric acid band, and ferrous chloride.

本発明の高分子凝集剤を用いた脱水方法では、通常、汚泥に該凝集剤を添加し、それによって汚泥の凝集フロックを形成させるが、具体的には、該凝集剤と汚泥は混和槽で混合されフロックを形成した後、脱水機で固液分離される。脱水機の形式は特に制限されるものではないが、通常ベルトプレス脱水機、遠心デカンター脱水機、フィルタープレス脱水機、等が称揚される。 In the dehydration method using the polymer flocculant of the present invention, the flocculant is usually added to sludge, thereby forming sludge flocculation. Specifically, the flocculant and sludge are mixed in a mixing tank. After mixing to form a floc, solid-liquid separation is performed with a dehydrator. The form of the dehydrator is not particularly limited, but usually a belt press dehydrator, a centrifugal decanter dehydrator, a filter press dehydrator, etc. are named.

以下に、本発明を実施例により具体的に説明するが、本発明はその要旨を超えない限り本実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.

1.使用汚泥
ある下水処理場において、5月及び8月に採取された2種の汚泥(A及びB)を用いて脱水処理性能の試験を行った。
上記2種の汚泥について、それぞれ下記の物性測定方法により分析した結果を表1に示す。
1. Used sludge At a certain sewage treatment plant, two kinds of sludge (A and B) collected in May and August were used to test the dewatering performance.
Table 1 shows the results of analyzing the above two types of sludge by the following physical property measurement methods.

2.汚泥の物性測定方法
i) 総固形分量(TS)汚泥100gを秤量し、これを水浴で加熱し、蒸発乾固させた。その後さらに105℃で2時間加熱乾燥させ、残渣の重量の元の汚泥の量に対する重量%で表した。
ii)繊維分
汚泥100mlを200メッシュの篩いで濾過し、濾物を充分洗浄した後、105℃で12時間乾燥し秤量する。その後600℃で2時間加熱し、灰化後、秤量する。105℃乾燥後の値から灰化後の値を引いた値が汚泥中繊維量であり、汚泥中の総固形分量(汚泥をそのまま105℃で2時間乾燥した残量)に対する比率(重量%)で表す。
iii)汚泥容量指標(SVI3000
汚泥を遠心分離器により3000rpmで10分遠心沈降させ、上澄みを捨てて残った沈降分の体積を、沈降分を105℃で12時間乾燥して得た乾燥後重量で除して得た値(ml/g)で表す。
2. Method for measuring physical properties of sludge i) 100 g of total solid content (TS) sludge was weighed and heated in a water bath to evaporate to dryness. Thereafter, the mixture was further dried by heating at 105 ° C. for 2 hours, and the weight of the residue was expressed as% by weight relative to the original amount of sludge.
ii) Fiber content 100 ml of sludge is filtered through a 200-mesh sieve, the filtrate is thoroughly washed, dried at 105 ° C. for 12 hours, and weighed. Thereafter, the mixture is heated at 600 ° C. for 2 hours, ashed, and weighed. The value obtained by subtracting the value after ashing from the value after drying at 105 ° C is the fiber amount in sludge, and the ratio (wt%) to the total solid content in the sludge (the remaining amount of sludge dried at 105 ° C for 2 hours) Represented by
iii) Sludge capacity index (SVI 3000 )
The sludge was centrifugally settled at 3000 rpm for 10 minutes using a centrifuge, and the volume of the sediment remaining after discarding the supernatant was obtained by dividing the sediment by the weight after drying obtained by drying the sediment at 105 ° C. for 12 hours ( ml / g).

3.凝集剤
実施例及び比較例に使用した凝集剤を下記に示す。
<凝集剤(イ):実施例1、2>
カチオン系水溶性高分子化合物(A1)/アミジン系カチオン性高分子化合物(D1)/両性系水溶性高分子化合物(B1)=1/1/1(重量比)
<凝集剤(ロ):実施例3>
カチオン系水溶性高分子化合物(A1)/両性系水溶性高分子化合物(B1)/両性系水溶性高分子化合物(C1)=50/40/10(重量比)
<凝集剤(ハ):比較例1、2>
カチオン系水溶性高分子化合物(A1)/両性系水溶性高分子化合物(B1)=1/1(重量比)
<凝集剤(ニ):比較例3>
カチオン系水溶性高分子化合物(A1)/アミジン系カチオン性高分子化合物(D1)=1/1(重量比)
<凝集剤(ホ):比較例4>
カチオン系水溶性高分子化合物(A1)/両性系水溶性高分子化合物(C1)=1/1(重量比)
<凝集剤(ヘ):比較例5>
両性系水溶性高分子化合物(B1)/アミジン系カチオン性高分子化合物(D1)=1/1(重量比)
<凝集剤(ト):比較例6>
両性系水溶性高分子化合物(C1)/アミジン系カチオン性高分子化合物(D1)=1/1(重量比)
3. Flocculant The flocculant used in Examples and Comparative Examples is shown below.
<Flocculant (I): Examples 1 and 2>
Cationic water-soluble polymer compound (A1) / amidine-based cationic polymer compound (D1) / amphoteric water-soluble polymer compound (B1) = 1/1/1 (weight ratio)
<Flocculant (b): Example 3>
Cationic water-soluble polymer compound (A1) / amphoteric water-soluble polymer compound (B1) / amphoteric water-soluble polymer compound (C1) = 50/40/10 (weight ratio)
<Flocculant (C): Comparative Examples 1 and 2>
Cationic water-soluble polymer compound (A1) / amphoteric water-soluble polymer compound (B1) = 1/1 (weight ratio)
<Flocculant (d): Comparative Example 3>
Cationic water-soluble polymer compound (A1) / amidine-based cationic polymer compound (D1) = 1/1 (weight ratio)
<Flocculant (e): Comparative Example 4>
Cationic water-soluble polymer compound (A1) / amphoteric water-soluble polymer compound (C1) = 1/1 (weight ratio)
<Flocculant (f): Comparative Example 5>
Amphoteric water-soluble polymer compound (B1) / amidine cationic polymer compound (D1) = 1/1 (weight ratio)
<Flocculant (g): Comparative Example 6>
Amphoteric water-soluble polymer compound (C1) / amidine cationic polymer compound (D1) = 1/1 (weight ratio)

上記凝集剤(イ)〜(ト)を構成する高分子化合物
カチオン系水溶性高分子化合物(A1):
アクリルアミド/アクリロイルオキシエチルトリメチルアンモニウムクロライド(重量比:20/80)共重合体
4重量%塩水中、共重合体の0.5重量%濃度の粘度:100mPa・s
アミジン系カチオン性高分子化合物(D1)
4重量%塩水中、凝集剤の0.5重量%濃度の粘度:7mPa・s
両性系水溶性高分子化合物(B1)
アクリルアミド/アクリロイルオキシエチルトリメチルアンモニウムクロライド/メタアクリロイルオキシエチルトリメチルアンモニウムクロライド/アクリル酸(重量比:22.1/49.4/2.0/26.5)共重合体
4重量%塩水中、共重合体の0.5重量%濃度の粘度:40mPa・s
両性系水溶性高分子化合物(C1)
アクリルアミド/ジメチルアミノエチルメタクリレート硫酸塩/アクリル酸(重量比:47.3/47.3/5.4)共重合体
4重量%塩水中、共重合体の0.5重量%濃度の粘度:22mPa・s
Polymer compounds constituting the flocculants (a) to (g)
Cationic water-soluble polymer compound (A1):
Acrylamide / acryloyloxyethyltrimethylammonium chloride (weight ratio: 20/80) Copolymer 4% by weight Viscosity of 0.5% by weight of copolymer in brine: 100 mPa · s
Amidine-based cationic polymer compound (D1) :
Viscosity of 0.5% by weight of flocculant in 4% by weight salt water: 7 mPa · s
Amphoteric water-soluble polymer compound (B1) :
Acrylamide / acryloyloxyethyltrimethylammonium chloride / methacryloyloxyethyltrimethylammonium chloride / acrylic acid (weight ratio: 22.1 / 49.4 / 2.0 / 26.5) copolymer 4% by weight in salt water Viscosity at a concentration of 0.5% by weight of the coalescence: 40 mPa · s
Amphoteric water-soluble polymer compound (C1) :
Acrylamide / dimethylaminoethyl methacrylate sulfate / acrylic acid (weight ratio: 47.3 / 47.3 / 5.4) Copolymer Viscosity at a concentration of 0.5% by weight of the copolymer in 4% by weight salt water: 22 mPa・ S

上記高分子化合物(A1)、(B1)及び(C1)の合成例を以下に示す。
なお、アミジン系カチオン性高分子化合物(D1)としては、ダイヤニトリックス社製 KP7000を用いた。
Synthesis examples of the polymer compounds (A1), (B1) and (C1) are shown below.
As the amidine-based cationic polymer compound (D1), KP7000 manufactured by Dianitricks was used.

1)カチオン性水溶性重合体(A1)の合成
<合成例1>
1リットル三角フラスコにアクリロイルオキシエチルトリメチルアンモニウムクロリド80重量%、アクリルアミド20重量モル%、全単量体濃度60質量%、の水溶液に亜リン酸を加えpH4.5に調整した単量体水溶液957gに、遮光下で2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン55ppmを単量体水溶液に加え、三角フラスコを10℃の恒温水槽に入れ、そのまま30分間窒素ガスで水溶液中の溶存酸素を置換し、重合性単量体水溶液を得た。
1) Synthesis of cationic water-soluble polymer (A1) <Synthesis Example 1>
To a 1 liter Erlenmeyer flask was added 957 g of an aqueous monomer solution adjusted to pH 4.5 by adding phosphorous acid to an aqueous solution of 80% by weight of acryloyloxyethyltrimethylammonium chloride, 20% by weight of acrylamide and a total monomer concentration of 60% by weight. Then, add 55 ppm 2-hydroxy-2-methyl-1-phenylpropan-1-one to the aqueous monomer solution in the dark, place the Erlenmeyer flask in a 10 ° C. constant temperature water bath, and dissolve in the aqueous solution with nitrogen gas for 30 minutes. Oxygen was substituted to obtain a polymerizable monomer aqueous solution.

厚さ1mmのステンレス板の周縁に、該ステンレス板の内底面が200×200mmの正方形になるように断面の一辺が24mmのゴム棒を貼り付けてある容器を用意した。この容器の内側に厚さ16μmの光透過性フィルム(厚さ12μmのポリエチレンテレフタレートおよび厚さ4μmのポリ塩化ビニリデンからなる積層フィルム)を敷き、このフィルム上に上記重合性単量体水溶液を供給した。水溶液の上面を、水溶液と接するように上記と同種の光透過性フィルムで覆った。単量体水溶液からなる層の厚さは22.5mmであった。また、ステンレス板の裏側を、単量体水溶液を供給する前から10℃の水を吹き付け冷却し、ステンレス板の温度を10℃に調節した。さらに、重合終了まで10℃の水を吹き付けることを継続した。   A container was prepared in which a rubber rod having a side of a cross section of 24 mm was attached to the periphery of a stainless steel plate having a thickness of 1 mm so that the inner bottom surface of the stainless steel plate was a 200 × 200 mm square. A light-transmitting film having a thickness of 16 μm (a laminated film composed of polyethylene terephthalate having a thickness of 12 μm and polyvinylidene chloride having a thickness of 4 μm) was laid on the inside of the container, and the polymerizable monomer aqueous solution was supplied onto the film. . The upper surface of the aqueous solution was covered with a light transmissive film of the same kind as described above so as to be in contact with the aqueous solution. The thickness of the layer made of the monomer aqueous solution was 22.5 mm. Further, the back side of the stainless steel plate was cooled by spraying water at 10 ° C. before supplying the monomer aqueous solution, and the temperature of the stainless steel plate was adjusted to 10 ° C. Furthermore, spraying water at 10 ° C. was continued until the polymerization was completed.

単量体水溶液の供給された容器の上方に、20W型蛍光ケミカルランプを設置した。あらかじめ水溶液表面で照射強度が5W/m2 となるように調整した蛍光ケミカルランプを3分間点灯した。次に、水溶液表面で照射強度が0.5W/m2となるように調整した蛍光ケミカルランプを25分間点灯した。さらに、水溶液表面で照射強度が45W/m2 となるように調整した蛍光ケミカルランプを15分間点灯し、重合を完結させ、ゲル状水溶性重合体シートを得た。
得られたゲル状水溶性重合体シートをはさみで200×5×1.5mmの大きさに細断し、60℃で通風乾燥し、粉砕してカチオン性水溶性重合体(A1)の粉末を得た。
A 20 W fluorescent chemical lamp was installed above the container to which the aqueous monomer solution was supplied. A fluorescent chemical lamp that had been adjusted in advance so that the irradiation intensity was 5 W / m 2 on the surface of the aqueous solution was lit for 3 minutes. Next, a fluorescent chemical lamp adjusted to have an irradiation intensity of 0.5 W / m 2 on the surface of the aqueous solution was lit for 25 minutes. Further, a fluorescent chemical lamp adjusted to have an irradiation intensity of 45 W / m 2 on the surface of the aqueous solution was lit for 15 minutes to complete the polymerization, and a gel-like water-soluble polymer sheet was obtained.
The obtained gel-like water-soluble polymer sheet is shredded to 200 × 5 × 1.5 mm with scissors, dried by ventilation at 60 ° C., and pulverized to obtain a powder of the cationic water-soluble polymer (A1). Obtained.

両性系高分子化合物(B1)の合成
<合成例2>
1リットル三角フラスコにアクリル酸26.5重量%、アクリロイルオキシエチルトリメチルアンモニウムクロリド49.4重量%、メタクリロイルオキシエチルトリメチルアンモニウムクロライド2.0重量%、アクリルアミド22.1重量%、全単量体濃度45.5質量%、の水溶液に亜リン酸を加えpH2.5に調整した単量体水溶液に遮光下で2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン70ppmを加え、三角フラスコを10℃の恒温水槽に入れ、そのまま30分間窒素ガスで水溶液中の溶存酸素を置換し、重合性単量体水溶液を得た。
Synthesis of amphoteric polymer compound (B1) <Synthesis Example 2>
In a 1 liter Erlenmeyer flask, acrylic acid 26.5% by weight, acryloyloxyethyltrimethylammonium chloride 49.4% by weight, methacryloyloxyethyltrimethylammonium chloride 2.0% by weight, acrylamide 22.1% by weight, total monomer concentration 45 To a monomer aqueous solution adjusted to pH 2.5 by adding phosphorous acid to a 5% by mass aqueous solution, 70 ppm of 2-hydroxy-2-methyl-1-phenylpropan-1-one was added under shading. The solution was placed in a constant temperature water bath at 10 ° C., and the dissolved oxygen in the aqueous solution was replaced with nitrogen gas for 30 minutes as it was to obtain a polymerizable monomer aqueous solution.

厚さ1mmのステンレス板の周縁に、該ステンレス板の内底面が200×200mmの正方形になるように断面の一辺が24mmのゴム棒を貼り付けてある容器を用意した。この容器の内側に厚さ16μmの光透過性フィルム(厚さ12μmのポリエチレンテレフタレートおよび厚さ4μmのポリ塩化ビニリデンからなる積層フィルム)を敷き、このフィルム上に上記重合性単量体の水溶液を供給した。水溶液の上面を、水溶液と接するように上記と同種の光透過性フィルムで覆った。単量体水溶液からなる層の厚さは22mmであった。また、ステンレス板の裏側を、単量体水溶液を供給する前から10℃の水を吹き付け冷却し、ステンレス板の温度を10℃に調節した。さらに、重合終了まで10℃の水を吹き付けることを継続した。   A container was prepared in which a rubber rod having a side of a cross section of 24 mm was attached to the periphery of a stainless steel plate having a thickness of 1 mm so that the inner bottom surface of the stainless steel plate was a 200 × 200 mm square. A 16 μm thick light transmissive film (laminated film made of 12 μm thick polyethylene terephthalate and 4 μm thick polyvinylidene chloride) is laid on the inside of the container, and an aqueous solution of the above polymerizable monomer is supplied onto this film. did. The upper surface of the aqueous solution was covered with a light transmissive film of the same kind as described above so as to be in contact with the aqueous solution. The thickness of the layer made of the monomer aqueous solution was 22 mm. Further, the back side of the stainless steel plate was cooled by spraying water at 10 ° C. before supplying the monomer aqueous solution, and the temperature of the stainless steel plate was adjusted to 10 ° C. Furthermore, spraying water at 10 ° C. was continued until the polymerization was completed.

単量体水溶液の供給された容器の上方に、20W型蛍光ケミカルランプを設置した。あらかじめ水溶液表面で照射強度が5W/m2 となるように調整した蛍光ケミカルランプを3分間点灯した。次に、水溶液表面で照射強度が0.5W/m2となるように調整した蛍光ケミカルランプを30分間点灯した。さらに、水溶液表面で照射強度が45W/m2 となるように調整した蛍光ケミカルランプを15分間点灯し、重合を完結させ、ゲル状水溶性重合体シートを得た。
得られたゲル状水溶性重合体シートをはさみで200×5×1.5mmの大きさに細断し、60℃で通風乾燥、粉砕し、両性系高分子化合物(B1)の粉末を得た。
A 20 W fluorescent chemical lamp was installed above the container to which the aqueous monomer solution was supplied. A fluorescent chemical lamp that had been adjusted in advance so that the irradiation intensity was 5 W / m 2 on the surface of the aqueous solution was lit for 3 minutes. Next, a fluorescent chemical lamp adjusted to have an irradiation intensity of 0.5 W / m 2 on the surface of the aqueous solution was lit for 30 minutes. Further, a fluorescent chemical lamp adjusted to have an irradiation intensity of 45 W / m 2 on the surface of the aqueous solution was lit for 15 minutes to complete the polymerization, and a gel-like water-soluble polymer sheet was obtained.
The obtained gel-like water-soluble polymer sheet was shredded into 200 × 5 × 1.5 mm in size with scissors, dried by ventilation at 60 ° C. and pulverized to obtain an amphoteric polymer compound (B1) powder. .

両性系高分子化合物C1の合成
<合成例3>
1リットル三角フラスコにアクリル酸5.4重量%、ジメチルアミノエチルメタアクリレート47.3重量%、アクリルアミド47.3重量%、全単量体濃度47.5質量%、の水溶液に亜リン酸を加えpH2.5に調整した単量体水溶液に遮光下で2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン150ppmを加え、三角フラスコを10℃の恒温水槽に入れ、そのまま30分間窒素ガスで水溶液中の溶存酸素を置換し、重合性単量体水溶液を得た。
Synthesis of amphoteric polymer compound C1 <Synthesis Example 3>
Phosphorous acid was added to an aqueous solution containing 5.4% by weight acrylic acid, 47.3% by weight dimethylaminoethyl methacrylate, 47.3% by weight acrylamide, and a total monomer concentration of 47.5% by weight in a 1-liter Erlenmeyer flask. To a monomer aqueous solution adjusted to pH 2.5, 150 ppm of 2-hydroxy-2-methyl-1-phenylpropan-1-one was added under light shielding, and the Erlenmeyer flask was placed in a constant temperature water bath at 10 ° C., and nitrogen gas was added for 30 minutes. The substituted oxygen in the aqueous solution was replaced with a polymerizable monomer aqueous solution.

厚さ1mmのステンレス板の周縁に、該ステンレス板の内底面が200×200mmの正方形になるように断面の一辺が24mmのゴム棒を貼り付けてある容器を用意した。この容器の内側に厚さ16μmの光透過性フィルム(厚さ12μmのポリエチレンテレフタレートおよび厚さ4μmのポリ塩化ビニリデンからなる積層フィルム)を敷き、このフィルム上に重合性単量体の水溶液を供給した。重合性単量体水溶液の上面を、水溶液と接するように上記と同種の光透過性フィルムで覆った。重合性単量体水溶液からなる層の厚さは22mmであった。また、ステンレス板の裏側を、重合性単量体水溶液を供給する前から10℃の水を吹き付け冷却し、ステンレス板の温度を10℃に調節した。さらに、重合終了まで10℃の水を吹き付けることを継続した。   A container was prepared in which a rubber rod having a side of a cross section of 24 mm was attached to the periphery of a stainless steel plate having a thickness of 1 mm so that the inner bottom surface of the stainless steel plate was a 200 × 200 mm square. A light-transmitting film having a thickness of 16 μm (a laminated film made of polyethylene terephthalate having a thickness of 12 μm and polyvinylidene chloride having a thickness of 4 μm) was laid on the inside of the container, and an aqueous solution of a polymerizable monomer was supplied onto the film. . The upper surface of the polymerizable monomer aqueous solution was covered with a light transmissive film of the same kind as described above so as to be in contact with the aqueous solution. The thickness of the layer made of the polymerizable monomer aqueous solution was 22 mm. Further, the back side of the stainless steel plate was cooled by spraying water at 10 ° C. before supplying the polymerizable monomer aqueous solution, and the temperature of the stainless steel plate was adjusted to 10 ° C. Furthermore, spraying water at 10 ° C. was continued until the polymerization was completed.

重合性単量体水溶液の供給された容器の上方に、20W型蛍光ケミカルランプを設置した。あらかじめ水溶液表面で照射強度が5W/m2 となるように調整した蛍光ケミカルランプを3分間点灯した。次に、水溶液表面で照射強度が0.5W/m2となるように調整した蛍光ケミカルランプを30分間点灯した。さらに、水溶液表面で照射強度が45W/m2 となるように調整した蛍光ケミカルランプを15分間点灯し、重合を完結させ、ゲル状水溶性重合体シートを得た。得られたゲル状水溶性重合体シートをはさみで200×5×1.5mmの大きさに細断し、60℃で通風乾燥、粉砕し、両性系高分子化合物(C1)の粉末を得た。 A 20 W fluorescent chemical lamp was installed above the container supplied with the polymerizable monomer aqueous solution. A fluorescent chemical lamp that had been adjusted in advance so that the irradiation intensity was 5 W / m 2 on the surface of the aqueous solution was lit for 3 minutes. Next, a fluorescent chemical lamp adjusted to have an irradiation intensity of 0.5 W / m 2 on the surface of the aqueous solution was lit for 30 minutes. Further, a fluorescent chemical lamp adjusted to have an irradiation intensity of 45 W / m 2 on the surface of the aqueous solution was lit for 15 minutes to complete the polymerization, and a gel-like water-soluble polymer sheet was obtained. The obtained gel water-soluble polymer sheet was shredded into 200 × 5 × 1.5 mm in size with scissors, dried by ventilation at 60 ° C., and pulverized to obtain an amphoteric polymer compound (C1) powder. .

実施例1
凝集剤として、上記凝集剤(イ)を用いて汚泥の脱水処理を行った。
上記汚泥A(300ml)に対し、ポリ塩化アルミを0.83g(=汚泥総固形分に対し6.4重量%)添加して調質した後、0.2重量%濃度の凝集剤(イ)水溶液を65cc(=汚泥総固形分に対して凝集剤純分で1.0重量%)添加し、翼径6cmの櫂型十字翼を付けた撹拌モーターにて3000rpm、10秒間撹拌して汚泥を凝集させた。生成した凝集汚泥(フロック)を濾取し、その物性を評価した。
以下の方法により、フロック団粒性及び脱水性についての評価をおこなった。その結果を表2に示す。
Example 1
Sludge was dehydrated using the above flocculant (I) as the flocculant.
To the above sludge A (300 ml), 0.83 g of polyaluminum chloride (= 6.4% by weight based on the total solid content of the sludge) was added and tempered. Add 65cc of aqueous solution (= 1.0% by weight of flocculant pure with respect to the total solid content of sludge) and stir at 3000rpm for 10 seconds with a stirring motor equipped with a vertical cruciform blade with a blade diameter of 6cm. Aggregated. The produced agglomerated sludge (floc) was collected by filtration, and its physical properties were evaluated.
The following methods were used to evaluate the floc aggregate and dewaterability. The results are shown in Table 2.

フロック団粒性
濾取したフロックを、濾布上に転がして形状を目視で確認し、以下の基準で評価した。形状がより球状で転がり性が容易であるものは団粒性が良好である。
◎:豆粒状になり転がるもの
○:丸い固まりになり転がるもの
△:水分の切れが悪く固まりが崩れながら転がる
×:水分が切れず形状が崩れ転がらない
The flocs collected by the floc aggregate filtration were rolled on a filter cloth, the shape was visually confirmed, and the following criteria were evaluated. Those that are more spherical and easy to roll have good aggregate properties.
◎: Beans become rolling and rolled ○: Rounded and rolled △: Moisture does not cut well and rolls while crumpling collapses ×: Moisture does not break and shape does not collapse and roll

脱水性
脱水性は、凝集汚泥(フロック)の含水率をもって評価した。凝集汚泥(フロック)を濾布に挟み、卓上プレス脱水機を用いて、1MPa(60秒間)の条件で圧搾し凝集汚泥ケーキを得た。得られた凝集汚泥ケーキを105℃で2時間乾燥させた。乾燥処理前後での凝集汚泥ケーキを秤量し、その重量変化から含水率(重量%)を計算した。
The dehydrating property was evaluated by the moisture content of the coagulated sludge (floc). Agglomerated sludge (floc) was sandwiched between filter cloths and pressed using a desktop press dehydrator under the condition of 1 MPa (60 seconds) to obtain an agglomerated sludge cake. The obtained agglomerated sludge cake was dried at 105 ° C. for 2 hours. The agglomerated sludge cake before and after the drying treatment was weighed, and the water content (% by weight) was calculated from the change in weight.

比較例1
凝集剤として、上記凝集剤(ハ)を用いた以外は、実施例1と同様にして汚泥の脱水処理を行い、凝集汚泥(フロック)の評価を行った。その結果を表2に示す。
Comparative Example 1
Sludge was dehydrated in the same manner as in Example 1 except that the flocculant (c) was used as the flocculant, and the flocs were evaluated. The results are shown in Table 2.

実施例2
処理汚泥として、汚泥Bを用い、凝集剤の使用量を汚泥総固形分に対して、0.96重量%とした以外は実施例1と同様にして、汚泥の脱水処理を行い、凝集汚泥(フロック)の評価を行った。その結果を表2に示す。
Example 2
Sludge B was used as the treated sludge, and the sludge was dehydrated in the same manner as in Example 1 except that the amount of the flocculant used was 0.96% by weight based on the total solid content of the sludge. Flock) was evaluated. The results are shown in Table 2.

比較例2
凝集剤として、上記凝集剤(ハ)を用いた以外は、実施例2と同様にして汚泥の脱水処理を行い、凝集汚泥(フロック)の評価を行った。その結果を表2に示す。
Comparative Example 2
The sludge was dehydrated in the same manner as in Example 2 except that the above flocculant (c) was used as the flocculant, and the flocs were evaluated. The results are shown in Table 2.

以上の結果から、比較例で用いたような凝集剤では、汚泥の腐敗が進行するに従ってその凝集効果が低下するが、本発明の凝集剤は腐敗汚泥であってもその凝集効果に変化がなく、優れていることがわかる。   From the above results, in the flocculant used in the comparative example, the flocculation effect decreases as the sludge decays, but the flocculant of the present invention has no change in the flocculation effect even in the case of septic sludge. , You can see that it is excellent.

実施例3及び比較例3〜6
凝集剤として、下記表3に示すものを用いた以外は、実施例1と同様にして汚泥の処理を行い、凝集汚泥(フロック)の評価を行った。その結果を表3に示す。
なお、比較例3〜6では、フロック強度が極度に低いので、脱水性の評価は行わなかった。
Example 3 and Comparative Examples 3-6
Except that the flocculant shown in Table 3 below was used, the sludge was treated in the same manner as in Example 1 to evaluate the flocs. The results are shown in Table 3.
In Comparative Examples 3 to 6, since the floc strength was extremely low, the dehydrating property was not evaluated.

Claims (6)

下記(A)で表されるカチオン系水溶性高分子化合物と下記(B)で表される両性系水溶性高分子化合物とを含有する高分子凝集剤を用いて繊維分が15重量%以下である有機汚泥を脱水する方法において、高分子凝集剤が、さらに、下記(C)で表される両性系水溶性高分子化合物又は(D)で表されるアミジン系カチオン性高分子化合物を含有し、且つ高分子凝集剤全重量に対し(A)で表されるカチオン系水溶性高分子化合物を10〜80重量%、(B)で表される両性系水溶性高分子化合物を10〜60重量%、及び(C)で表される両性系水溶性高分子化合物又は(D)で表されるアミジン系カチオン性高分子化合物を10〜80重量%含有することを特徴とする汚泥の脱水方法。
(A) 下記構造式(1)で表される構成単位と下記構造式(2)で表される構成単位からなる共重合体であるカチオン系水溶性高分子化合物
(B) 下記構造式(1)で表される構成単位、下記構造式(2)で表される構成単位、及び下記構造式(3)で表される構成単位からなる共重合体である両性系水溶性高分子化合物
(C) 下記構造式(1)で表される構成単位、下記構造式(3)で表される構成単位、及び下記構造式(4)で表される構成単位からなる共重合体である両性系水溶性高分子化合物
(D) 下記構造式(5−a)又は(5―b)で表される構成単位を含有するアミジン系カチオン性高分子化合物
(上記構造式(1)〜(4)、(5−a)及び(5−b)において、R1、R2及びR3はそれぞれ独立して、メチル基、エチル基又はベンジル基を表し、R4は水素原子又はメチル基を表し、XはCl-、Br-又は1/2SO4 2-を示す。)
Using a polymer flocculant containing a cationic water-soluble polymer compound represented by (A) below and an amphoteric water-soluble polymer compound represented by (B) below, the fiber content is 15% by weight or less. In the method of dehydrating a certain organic sludge , the polymer flocculant further contains an amphoteric water-soluble polymer compound represented by (C) below or an amidine-based cationic polymer compound represented by (D). And 10 to 80% by weight of the cationic water-soluble polymer compound represented by (A) and 10 to 60% by weight of the amphoteric water-soluble polymer compound represented by (B) based on the total weight of the polymer flocculant. % And an amphoteric water-soluble polymer compound represented by (C) or an amidine-based cationic polymer compound represented by (D) in an amount of 10 to 80% by weight.
(A) Cationic water-soluble polymer compound (B) which is a copolymer comprising a structural unit represented by the following structural formula (1) and a structural unit represented by the following structural formula (2) (B) ), An amphoteric water-soluble polymer compound (C) that is a copolymer of the structural unit represented by the following structural formula (2) and the structural unit represented by the following structural formula (3) ) Amphoteric aqueous solution which is a copolymer comprising a structural unit represented by the following structural formula (1), a structural unit represented by the following structural formula (3), and a structural unit represented by the following structural formula (4) Polymer compound (D) Amidine-based cationic polymer compound containing a structural unit represented by the following structural formula (5-a) or (5-b)
(In the structural formulas (1) to (4), (5-a) and (5-b), R 1 , R 2 and R 3 each independently represents a methyl group, an ethyl group or a benzyl group, R 4 represents a hydrogen atom or a methyl group, and X represents Cl , Br or 1 / 2SO 4 2− .)
(A)で表されるカチオン系水溶性高分子化合物において、該高分子化合物の全構成単位に対する構造式(2)で表される構成単位の割合が5〜99モル%であることを特徴とする請求項1に記載の汚泥の脱水方法。       The cationic water-soluble polymer compound represented by (A) is characterized in that the proportion of the structural unit represented by Structural Formula (2) with respect to all the structural units of the polymer compound is 5 to 99 mol%. The method for dewatering sludge according to claim 1. (B)で表される両性系水溶性高分子化合物において、該高分子化合物の全構成単位に対する構造式(2)で表される構成単位の割合が5〜90モル%、構造式(3)で表される構成単位の割合が5〜50モル%、構造式(1)で表される構成単位の割合が5〜90モル%であることを特徴とする請求項1又は2に記載の汚泥の脱水方法。       In the amphoteric water-soluble polymer compound represented by (B), the proportion of the structural unit represented by Structural Formula (2) with respect to all the structural units of the polymer compound is 5 to 90 mol%, Structural Formula (3) The ratio of the structural unit represented by 5 to 50 mol%, and the ratio of the structural unit represented by Structural Formula (1) is 5 to 90 mol%, The sludge of Claim 1 or 2 characterized by the above-mentioned. Dehydration method. (C)で表される両性系水溶性高分子化合物において、該高分子化合物の全構成単位に対する構造式(3)で表される構成単位の割合が5〜50モル%であり、構造式(4)で表される構成単位の割合が5〜90モル%であり、構造式(1)で表される構成単位の割合が5〜90モル%であることを特徴とする請求項1〜3のいずれか一項に記載の汚泥の脱水方法。       In the amphoteric water-soluble polymer compound represented by (C), the proportion of the structural unit represented by the structural formula (3) with respect to all structural units of the polymer compound is 5 to 50 mol%, and the structural formula ( The proportion of the structural unit represented by 4) is 5 to 90 mol%, and the proportion of the structural unit represented by structural formula (1) is 5 to 90 mol%. The method for dewatering sludge according to any one of the above. (D)で表されるアミジン系カチオン性高分子化合物が、該高分子化合物の全構成単位に対する構造式(5−a)又は(5−b)で表される構成単位の合計割合が20〜80モル%であることを特徴とする請求項1〜のいずれか一項に記載の汚泥の脱水方法。 The amidine-based cationic polymer compound represented by (D) has a total ratio of the structural unit represented by the structural formula (5-a) or (5-b) to the total structural unit of the polymer compound of 20 to 20 It is 80 mol%, The dewatering method of the sludge as described in any one of Claims 1-4 characterized by the above-mentioned. 有機汚泥は、汚泥容量指標SVI3000が13ml/g以上であることを特徴とする請求項1〜5のいずれか一項に記載の汚泥の脱水方法。 The sludge dewatering method according to any one of claims 1 to 5, wherein the organic sludge has a sludge capacity index SVI 3000 of 13 ml / g or more.
JP2006238727A 2006-09-04 2006-09-04 Sludge dewatering method Active JP4854432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238727A JP4854432B2 (en) 2006-09-04 2006-09-04 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238727A JP4854432B2 (en) 2006-09-04 2006-09-04 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2008055391A JP2008055391A (en) 2008-03-13
JP4854432B2 true JP4854432B2 (en) 2012-01-18

Family

ID=39238771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238727A Active JP4854432B2 (en) 2006-09-04 2006-09-04 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP4854432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376388B2 (en) 2020-02-27 2023-11-08 三和シヤッター工業株式会社 Fixing structure and method for door frame and opening frame material
JP7421371B2 (en) 2020-02-27 2024-01-24 三和シヤッター工業株式会社 Fixing structure and method for door frame and opening frame material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993138B (en) * 2009-08-05 2015-01-14 大野绿水株式会社 Method of removing a coloring component
CN101993139B (en) * 2009-08-05 2014-12-03 大野绿水株式会社 Method of removing a coloring component
JP5338550B2 (en) * 2009-08-05 2013-11-13 三菱レイヨン株式会社 Sludge dewatering agent and dewatering method
JP5700354B2 (en) * 2010-04-15 2015-04-15 三菱レイヨン株式会社 Sludge dewatering agent and sludge dewatering treatment method
JP5961934B2 (en) * 2011-06-27 2016-08-03 三菱レイヨン株式会社 Sludge dewatering method
JP5967705B2 (en) * 2012-06-11 2016-08-10 ハイモ株式会社 Coagulation treatment agent and sludge dewatering method using the same
JP5963257B2 (en) * 2012-06-22 2016-08-03 ハイモ株式会社 Sludge dewatering agent
JP6028598B2 (en) * 2013-02-05 2016-11-16 三菱レイヨン株式会社 Method for dewatering organic sludge
JP6131465B2 (en) * 2013-02-15 2017-05-24 三菱ケミカル株式会社 Sludge dewatering method
JP6651825B2 (en) * 2015-12-08 2020-02-19 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314431B2 (en) * 1993-01-27 2002-08-12 ダイヤニトリックス株式会社 Sludge dewatering agent
JP3314432B2 (en) * 1993-01-27 2002-08-12 ダイヤニトリックス株式会社 Sludge dewatering agent
JP3178224B2 (en) * 1994-02-15 2001-06-18 栗田工業株式会社 Sludge dewatering agent
JP3339801B2 (en) * 1997-07-04 2002-10-28 東京都下水道サービス株式会社 Septic sludge treatment method
JP3906636B2 (en) * 2000-12-15 2007-04-18 東亞合成株式会社 Amphoteric polymer flocculant and sludge dewatering method
JP4161559B2 (en) * 2001-10-11 2008-10-08 東亞合成株式会社 Composition, amphoteric polymer flocculant and method for dewatering sludge
JP2004089780A (en) * 2002-08-29 2004-03-25 Kanatsu Giken Kogyo Kk Dehydration method for sludge
JP4149795B2 (en) * 2002-11-18 2008-09-17 ハイモ株式会社 Sludge dewatering agent
JP2004209413A (en) * 2003-01-06 2004-07-29 Toagosei Co Ltd Composition, polymer coagulant, and method for dehydrating sludge
JP5037002B2 (en) * 2004-11-25 2012-09-26 ダイヤニトリックス株式会社 Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water
JP4823552B2 (en) * 2005-04-18 2011-11-24 ダイヤニトリックス株式会社 Livestock wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376388B2 (en) 2020-02-27 2023-11-08 三和シヤッター工業株式会社 Fixing structure and method for door frame and opening frame material
JP7421371B2 (en) 2020-02-27 2024-01-24 三和シヤッター工業株式会社 Fixing structure and method for door frame and opening frame material

Also Published As

Publication number Publication date
JP2008055391A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4854432B2 (en) Sludge dewatering method
CN101037492A (en) Method for preparing propylene amides copolymer with regular branch structure by inverse emulsion method
WO2016190388A1 (en) Wastewater treatment method
EP1236748A1 (en) Polymer flocculents and preparation thereof
JPH04298300A (en) Sludge dehydrating agent and method for dehydrating sludge by using this agent
JPH08225621A (en) Amphoteric water-soluble polymer dispersion, its production and treatment comprising thin dispersion
JPH06218399A (en) Sludge dewatering agent
JP4868127B2 (en) Organic sludge dewatering method
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP5172372B2 (en) Sludge dewatering method
JP5338550B2 (en) Sludge dewatering agent and dewatering method
JP6060958B2 (en) Removal method of coloring components
JP5239167B2 (en) Concentration method of sludge
JP2001179300A (en) Method for dehydrating sludge of pulp or papermaking industry
JPH11319412A (en) Polymer flocculant
JP2006182816A (en) Crosslinked water-soluble polymer dispersion liquid and paper making method using the same
JP3709825B2 (en) Sludge dewatering method
JP2000126800A (en) Dehydration of organic sludge
JPH09225499A (en) Organic sludge dehydrator, treatment of organic and production of organic sludge dehydrator
JP4161559B2 (en) Composition, amphoteric polymer flocculant and method for dewatering sludge
JP2004210986A (en) Composition, polymer coagulant and method of sludge dewatering
JP2004209413A (en) Composition, polymer coagulant, and method for dehydrating sludge
JP2004283716A (en) Method for dehydrating sludge
JP7460067B2 (en) Inorganic compound-containing aggregation treatment agent composition
JP3924056B2 (en) Sludge dewatering agent and sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250