JP7460067B2 - Inorganic compound-containing aggregation treatment agent composition - Google Patents

Inorganic compound-containing aggregation treatment agent composition Download PDF

Info

Publication number
JP7460067B2
JP7460067B2 JP2020006478A JP2020006478A JP7460067B2 JP 7460067 B2 JP7460067 B2 JP 7460067B2 JP 2020006478 A JP2020006478 A JP 2020006478A JP 2020006478 A JP2020006478 A JP 2020006478A JP 7460067 B2 JP7460067 B2 JP 7460067B2
Authority
JP
Japan
Prior art keywords
water
soluble polymer
treatment agent
mass
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020006478A
Other languages
Japanese (ja)
Other versions
JP2021112709A (en
Inventor
雄樹 高橋
工 大原
智史 天沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2020006478A priority Critical patent/JP7460067B2/en
Publication of JP2021112709A publication Critical patent/JP2021112709A/en
Application granted granted Critical
Publication of JP7460067B2 publication Critical patent/JP7460067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Paper (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、凝集処理剤として汎用されているポリアクリルアミド系水溶性高分子に関するものであり、詳しくは、汚泥脱水用途、廃水処理用途、抄紙工程での歩留向上用途等において凝集処理性能を向上させる凝集処理剤組成物及びその方法に関するものである。 The present invention relates to a polyacrylamide-based water-soluble polymer that is widely used as a flocculation treatment agent. Specifically, the present invention relates to a polyacrylamide-based water-soluble polymer that is widely used as a coagulation treatment agent. Specifically, it improves flocculation treatment performance in sludge dewatering applications, wastewater treatment applications, yield improvement applications in papermaking processes, etc. The present invention relates to an aggregation treatment agent composition and a method thereof.

凝集処理剤は、下水から沈降させた初沈生汚泥、活性汚泥槽からの流出水から沈降させた余剰汚泥あるいは混合生汚泥、これら汚泥を嫌気消化処理した消化汚泥といった有機性の汚泥の脱水処理や、各種工場から排出される産業廃水処理、あるいは抄紙工程においてパルプ繊維、填料、製紙用薬剤等のワイヤー上での歩留率向上を図るための歩留向上剤、あるいは歩留と同時に濾水改善の機能を重視した濾水性向上剤として使用されている。
これら凝集処理剤として、一般的にポリアクリルアミド(PAM)系水溶性高分子が汎用されている。これらPAM系水溶性高分子の凝集処理性能の向上のために様々な提案がなされているが、特にPAM系水溶性高分子に無機塩を含有させることで凝集処理性能を向上させる試みがなされている。
例えば、特許文献1では、油中水型エマルジョンからなるPAM系水溶性高分子に無機塩を添加した製紙用薬剤、特許文献2では、油中水型エマルジョンからなるPAM系水溶性高分子に無機塩を添加した汚泥脱水剤がそれぞれ記載されている。これらは油中水型エマルジョン液量に対して0.5~15質量%を重合時に添加したものであり、凝集処理剤の添加対象物の性状の変動によっては効果が得られない場合があり、ポリマーの組成や物性によっても効果は限定的である。
特許文献3には、無機塩を含有する凝集処理剤について記載されているが、これは25℃における溶液粘度が10万センチポイズ以下にし、溶解液粘度を低くすることでハンドリング性を高めることが目的である。
特許文献4には、油中水型ポリマーエマルジョンに無機塩を含有する高分子エマルジョン組成物が記載、組成物全体に対し無機塩を0.1~20重量%含有させているが、これは組成物の保存安定性を高めることが目的である。
そこで、添加対象物の性状の変動やポリマーの組成、物性により影響を受け難い凝集処理剤や比較的簡便な操作で凝集処理剤の効果を向上させる方法が要望される。
Flocculating agents are used in the dehydration of organic sludge, such as primary raw sludge settled from sewage, excess sludge or mixed raw sludge settled from effluent from an activated sludge tank, and digested sludge obtained by anaerobic digestion of these sludges; in the treatment of industrial wastewater discharged from various factories; as retention aids for improving the retention rate on the wire of pulp fibers, fillers, papermaking chemicals, etc. in the papermaking process; and as drainage improvers that emphasize the function of improving drainage as well as retention.
Polyacrylamide (PAM)-based water-soluble polymers are generally used as these flocculating agents. Various proposals have been made to improve the flocculating performance of these PAM-based water-soluble polymers, and in particular, attempts have been made to improve the flocculating performance by incorporating an inorganic salt into the PAM-based water-soluble polymer.
For example, Patent Document 1 describes a papermaking agent in which an inorganic salt is added to a PAM-based water-soluble polymer consisting of a water-in-oil emulsion, and Patent Document 2 describes a sludge dewatering agent in which an inorganic salt is added to a PAM-based water-soluble polymer consisting of a water-in-oil emulsion. These are added at 0.5 to 15 mass % relative to the amount of water-in-oil emulsion liquid during polymerization, and depending on the properties of the material to which the flocculation treatment agent is added, the effect may not be obtained, and the effect is also limited depending on the composition and physical properties of the polymer.
Patent Document 3 describes an aggregating treatment agent containing an inorganic salt, the purpose of which is to reduce the solution viscosity at 25° C. to 100,000 centipoise or less, thereby improving handleability by lowering the viscosity of the dissolving solution.
Patent Document 4 describes a polymer emulsion composition containing an inorganic salt in a water-in-oil polymer emulsion, in which the inorganic salt is contained in an amount of 0.1 to 20% by weight based on the total weight of the composition, with the aim of improving the storage stability of the composition.
Therefore, there is a demand for a flocculating treatment agent that is not easily affected by fluctuations in the properties of the substance to which it is added, or by the composition and physical properties of the polymer, and a method for improving the effect of the flocculating treatment agent with a relatively simple operation.

特開2011-99076号公報JP 2011-99076 A 特開2011-194347号公報Japanese Patent Application Publication No. 2011-194347 特開平6-329866号公報Japanese Patent Application Publication No. 6-329866 特開平7-62254号公報Japanese Patent Application Publication No. 7-62254

本発明は、汚泥脱水処理、産業廃水処理あるいは抄紙工程で使用する歩留向上剤や濾水性向上剤として使用される凝集処理剤に関するものであり、より性能の高い凝集処理剤組成物あるいは凝集処理方法を提供することを課題とする。 The present invention relates to a flocculant treatment agent used as a retention improver or freeness improver used in sludge dewatering treatment, industrial wastewater treatment, or paper making process, and relates to a coagulation treatment agent composition or flocculation treatment agent with higher performance. The task is to provide a method.

上記課題を解決するため鋭意検討を行なった結果、水溶性高分子の溶解液に、硫酸化合物あるいはスルホン酸化合物を含有する凝集処理剤組成物を使用することで凝集処理性能の向上を達成することができることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, we have achieved improvement in flocculation treatment performance by using a flocculation treatment agent composition containing a sulfuric acid compound or a sulfonic acid compound in the water-soluble polymer solution. We have discovered that this can be done, leading to the present invention.

本発明における凝集処理剤組成物を使用することで、添加対象物の性状の変動に関わらず簡易な操作で凝集処理性能の向上を達成することができる。 By using the aggregation treatment agent composition of the present invention, improvement in aggregation treatment performance can be achieved with a simple operation regardless of changes in the properties of the object to be added.

本発明における水溶性高分子としては、下記一般式(1)で表されるカチオン性単量体0~99モル%、下記一般式(2)で表されるアニオン性単量体0~99モル%、非イオン性単量体1~100モル%を構成単位とする。これらは、そのイオン性により大別される。一般式(1)で表されるカチオン性単量体と非イオン性単量体から構成されるものがカチオン性水溶性高分子、一般式(2)で表されるアニオン性単量体と非イオン性単量体から構成されるものがアニオン性水溶性高分子、一般式(1)で表されるカチオン性単量体と一般式(2)で表されるアニオン性単量体及び非イオン性単量体から構成されるものが両性水溶性高分子、非イオン性単量体のみで構成されるものが非イオン性水溶性高分子である。
カチオン性あるいは両性水溶性高分子の場合、一般式(1)で表されるカチオン性単量体1~50モル%、一般式(2)で表されるアニオン性単量体0~50モル%、非イオン性単量体0~99モル%であることが好ましい。アニオン性水溶性高分子の場合、一般式(2)で表されるアニオン性単量体1~50モル%、非イオン性単量体50~99モル%であることが好ましい。これはイオン性単量体の割合が大きいと高分子量が得られ難いためである。更に好ましくは、イオン性単量体が1~40モル%である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1~3のアルキルあるいはアルコキシ基、Rは炭素数1~3のアルキルあるいはアルコキシ基、7~20のアルキル基あるいはアリール基、Aは酸素またはNH、Bは炭素数2~4のアルキレン基を表わす、X は陰イオンをそれぞれ表わす。

Figure 0007460067000002
一般式(2)
は水素、メチル基またはカルボキシメチル基、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOO、Rは水素またはCOO 、YあるいはYは水素または陽イオンをそれぞれ表わす。 The water-soluble polymer in the present invention includes 0 to 99 mol% of a cationic monomer represented by the following general formula (1), and 0 to 99 mol% of an anionic monomer represented by the following general formula (2). %, and the nonionic monomer constitutes 1 to 100 mol% as a constituent unit. These are broadly classified according to their ionicity. A cationic water-soluble polymer is composed of a cationic monomer represented by the general formula (1) and a nonionic monomer, and a cationic water-soluble polymer is composed of a cationic monomer represented by the general formula (2) and a nonionic monomer. Anionic water-soluble polymers are composed of ionic monomers, cationic monomers represented by general formula (1), anionic monomers represented by general formula (2), and nonionic polymers. Amphoteric water-soluble polymers are composed of monomers, and nonionic water-soluble polymers are composed only of nonionic monomers.
In the case of cationic or amphoteric water-soluble polymers, 1 to 50 mol% of the cationic monomer represented by general formula (1) and 0 to 50 mol% of the anionic monomer represented by general formula (2) , the nonionic monomer content is preferably 0 to 99 mol%. In the case of anionic water-soluble polymers, it is preferable that the anionic monomer represented by general formula (2) be 1 to 50 mol% and the nonionic monomer be 50 to 99 mol%. This is because it is difficult to obtain a high molecular weight when the proportion of the ionic monomer is large. More preferably, the ionic monomer content is 1 to 40 mol%.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl or alkoxy group having 1 to 3 carbon atoms, R 4 is an alkyl or alkoxy group having 1 to 3 carbon atoms, an alkyl group or an aryl group having 7 to 20 carbon atoms, A represents oxygen or NH, B represents an alkylene group having 2 to 4 carbon atoms, and X 1 - represents an anion.
Figure 0007460067000002
General formula (2)
R 5 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 - , C 6 H 4 SO 3 - , CONHC(CH 3 ) 2 CH 2 SO 3 - , C 6 H 4 COO - or COO - , R 6 represents hydrogen or COO Y 2 + , and Y 1 or Y 2 represents hydrogen or a cation, respectively.

一般式(1)で表されるカチオン性単量体として、ジメチルアミノエチル(メタ)アクリレートあるいはジメチルアミノプロピルアクリルアミドの塩化メチルや塩化エチルなど低級アルキル基のハロゲン化物による四級化物である。例えば、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ-2-ヒドロキシプロピルトリメチルアンモニウム塩化物等である。これらを二種以上、組み合わせても差し支えない。一般式(2)で表されるアニオン性単量体としては、(メタ)アクリル酸あるいはそのナトリウム塩等のアルカリ金属塩またはアンモニウム塩、マレイン酸あるいはそのアルカリ金属塩、アクリルアミド-2-メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸あるいはそのアルカリ金属塩またはアンモニウム塩等が挙げられる。これらを二種以上、組み合わせても差し支えない。 Cationic monomers represented by the general formula (1) include quaternized products of dimethylaminoethyl (meth)acrylate or dimethylaminopropyl acrylamide with halides of lower alkyl groups such as methyl chloride or ethyl chloride. For example, (meth)acryloyloxyethyl trimethylammonium chloride, (meth)acryloyloxyethyl dimethylbenzylammonium chloride, (meth)acryloylaminopropyl trimethylammonium chloride, (meth)acryloylaminopropyl dimethylbenzylammonium chloride, (meth)acryloyloxy-2-hydroxypropyl trimethylammonium chloride, etc. Two or more of these may be combined. Anionic monomers represented by the general formula (2) include (meth)acrylic acid or its alkali metal salts or ammonium salts such as sodium salt, maleic acid or its alkali metal salts, acrylamidoalkanesulfonic acids such as acrylamido-2-methylpropanesulfonic acid, etc. Two or more of these may be combined.

本発明で使用する非イオン性単量体としては、(メタ)アクリルアミド、N,N’-ジメチルアクリルアミド、アクリロニトリル、(メタ)アクリル酸-2-ヒドロキシエチル、ジアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、アクリロイルモルホリン等が挙げられる。これらの中で(メタ)アクリルアミドが好ましい。これらを二種以上、組み合わせても差し支えない。 Nonionic monomers used in the present invention include (meth)acrylamide, N,N'-dimethylacrylamide, acrylonitrile, 2-hydroxyethyl (meth)acrylate, diacetone acrylamide, N-vinylpyrrolidone, N- -Vinylformamide, N-vinylacetamide, acryloylmorpholine and the like. Among these, (meth)acrylamide is preferred. There is no problem even if two or more of these are combined.

本発明における水溶性高分子は公知の方法により製造することができる。カチオン性単量体、非イオン性単量体、及びアニオン性単量体から選択される一種以上の単量体あるいは単量体混合物を共重合することによって製造することができる。共重合は任意の重合法によって行なう。例えば、水溶液重合、油中水型エマルジョン重合、油中水型分散重合、塩水中分散重合等によって重合した後、水溶液、塩水中分散液、油中水型エマルジョンあるいは粉末等、任意の製品形態にすることができる。この中でも比較的分子量が上げやすい油中水型エマルジョン重合での性能向上が大きく好ましい。 The water-soluble polymer of the present invention can be produced by known methods. It can be produced by copolymerizing one or more monomers or monomer mixtures selected from cationic monomers, nonionic monomers, and anionic monomers. The copolymerization is carried out by any polymerization method. For example, after polymerization by aqueous solution polymerization, water-in-oil emulsion polymerization, water-in-oil dispersion polymerization, dispersion polymerization in salt water, etc., the product can be in any form, such as an aqueous solution, a dispersion in salt water, a water-in-oil emulsion, or a powder. Among these, water-in-oil emulsion polymerization, which is relatively easy to increase the molecular weight, is preferred because of the large improvement in performance.

油中水型エマルジョンの場合は、特開平10-140496号公報や特開2011-99076号公報等に挙げられる方法に準じて適宜に製造することができる。カチオン性単量体、非イオン性単量体、及びアニオン性単量体から選択される一種以上を含有する単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させた後、重合する。 In the case of a water-in-oil emulsion, it can be appropriately produced according to the methods listed in JP-A-10-140496, JP-A-2011-99076, and the like. A monomer mixture containing one or more selected from cationic monomers, nonionic monomers, and anionic monomers is mixed with water, an oily substance consisting of a hydrocarbon immiscible with at least water, and oil. An amount effective to form a water-in-oil emulsion and at least one type of surfactant having an HLB are mixed, vigorously stirred to form a water-in-oil emulsion, and then polymerized.

又、分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類、ナフテン類、あるいは灯油、軽油、中油等の鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度等の特性を有する炭化水素系合成油、あるいはこれらの混合物が挙げられる。含有量としては、油中水型エマルジョン全量に対して20質量%~50質量%の範囲であり、好ましくは20質量%~35質量%の範囲である。 Examples of oily substances made of hydrocarbons used as dispersion media include paraffins, naphthenes, mineral oils such as kerosene, light oil, and medium-weight oil, synthetic hydrocarbon oils having substantially the same range of boiling points, viscosity, and other properties as these, and mixtures of these. The content is in the range of 20% to 50% by mass, and preferably 20% to 35% by mass, based on the total amount of the water-in-oil emulsion.

油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB1~15のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレート、ソルビタンモノステアレート、ソルビタンモノパルミテート、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5~10質量%であり、好ましくは1~5質量%の範囲である。 Examples of at least one surfactant having an effective amount and HLB to form a water-in-oil emulsion are nonionic surfactants with an HLB of 1 to 15, specific examples of which include sorbitan monooleate, Examples include sorbitan monostearate, sorbitan monopalmitate, polyoxyethylene nonylphenyl ether, and the like. The amount of these surfactants added is 0.5 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the water-in-oil emulsion.

重合後は、必要に応じて転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われたエマルジョン粒子が水に馴染み易くし、中の水溶性高分子が溶解し易くする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9~15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系、ポリオキシエチレンアルコールエーテル系等である。 After polymerization, a hydrophilic surface-forming agent called a phase inversion agent is added as necessary to make the emulsion particles covered with an oil film more compatible with water and to make it easier for the water-soluble polymers inside to dissolve. diluted with water and used for each purpose. Examples of hydrophilic surfactants include cationic surfactants and nonionic surfactants with HLB of 9 to 15, such as polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alcohol ether, and the like.

重合条件は通常、使用する単量体や共重合モル%によって適宜決めていき、温度としては20~80℃、好ましくは20~60℃の範囲で行なう。重合開始はラジカル重合開始剤を使用する。これら開始剤は油溶性或いは水溶性のどちらでも良く、アゾ系、レドックス系、過酸化物系の何れでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’-アゾビスイソブチロニトリル、1、1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2、2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2、2’-アゾビス(2-メチルプロピオネート)、2、2’-アゾビス(4-メトキシ-2、4-ジメチルバレロニトリル)等が挙げられる。 The polymerization conditions are usually appropriately determined depending on the monomers used and the copolymerization mol%, and the temperature is 20 to 80°C, preferably 20 to 60°C. A radical polymerization initiator is used to initiate polymerization. These initiators may be either oil-soluble or water-soluble, and any of azo type, redox type, and peroxide type can be used for polymerization. Examples of oil-soluble azo initiators include 2,2'-azobisisobutyronitrile, 1,1'-azobis(cyclohexane-1-carbonitrile), and 2,2'-azobis(2-methylbutyronitrile). dimethyl-2,2'-azobis(2-methylpropionate), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), and the like.

水溶性アゾ開始剤の例としては、2、2’-アゾビス(アミジノプロパン)二塩化水素化物、2、2’-アゾビス[2-(5-メチル-イミダゾリン-2-イル)プロパン]二塩化水素化物、4、4’-アゾビス(4-シアノ吉草酸)等が挙げられる。又、レドックス系の例としては、ペルオキソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン等との組み合わせが挙げられる。更に過酸化物系の例としては、ペルオキソ二硫酸アンモニウム或いはカリウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t-ブチルペルオキシ-2-エチルヘキサノエート等を挙げることができる。 Examples of water-soluble azo initiators include 2,2'-azobis(amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-imidazolin-2-yl)propane] dihydrochloride, 4,4'-azobis(4-cyanovaleric acid), etc. Examples of redox initiators include combinations of ammonium peroxodisulfate with sodium sulfite, sodium hydrogensulfite, trimethylamine, tetramethylethylenediamine, etc. Examples of peroxide initiators include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy-2-ethylhexanoate, etc.

又、重合度を調節するためイソプロピルアルコールを対単量体0.1~5質量%併用、あるいはギ酸ソーダを対単量体0.02~0.5質量%併用すると効果的である。 In order to control the degree of polymerization, it is effective to use isopropyl alcohol in an amount of 0.1 to 5% by weight based on the monomer, or to use sodium formate in an amount of 0.02 to 0.5% by weight based on the monomer.

単量体の重合濃度は20~60質量%の範囲であり、単量体の組成、開始剤の選択によって適宜重合の濃度と温度を設定する。 The polymerization concentration of the monomer is in the range of 20 to 60% by mass, and the polymerization concentration and temperature are appropriately set depending on the composition of the monomer and the selection of the initiator.

本発明における水溶性高分子では、重合時あるいは重合後、構造変性剤として架橋性単量体を使用しても良い。使用する場合は、単量体総量に対し0.01質量%以下が好ましい。架橋性単量体の例としては、N,N’-メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸-1,3-ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N-ビニル(メタ)アクリルアミド、N-メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシラン等が挙げられ、これらの中でN,N’-メチレンビス(メタ)アクリルアミドが好ましい。 In the water-soluble polymer of the present invention, a crosslinkable monomer may be used as a structural modifier during or after polymerization. When used, it is preferably 0.01% by mass or less based on the total amount of monomers. Examples of crosslinking monomers include N,N'-methylenebis(meth)acrylamide, triallylamine, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and diethylene glycol dimethacrylate. 1,3-Butylene glycol methacrylate, polyethylene glycol di(meth)acrylate, N-vinyl(meth)acrylamide, N-methylallylacrylamide, glycidyl acrylate, polyethylene glycol diglycidyl ether, acrolein, glyoxal, vinyl trimethoxy Examples include silane, and among these, N,N'-methylenebis(meth)acrylamide is preferred.

本発明における水溶性高分子は、凝集処理剤として一定の性能を発揮するには高分子量が必要である。極限粘度法による重量平均分子量が500万~3000万の範囲であるが、800万~3000万が好ましく、1000万~3000万が更に好ましい。 The water-soluble polymer in the present invention needs to have a high molecular weight in order to exhibit a certain level of performance as a coagulation agent. The weight average molecular weight measured by the intrinsic viscosity method is in the range of 5 million to 30 million, preferably 8 million to 30 million, and more preferably 10 million to 30 million.

本発明における硫酸化合物としては、硫酸アンモニウム、硫酸マグネシウム、硫酸アルミニウム、硫酸カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸水素アンモニウム、硫酸水素カリウム、硫酸水素ナトリウム、硫酸等が挙げられる。これら一種以上が使用される。スルホン酸化合物としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、オクタンスルホン酸等の脂肪族スルホン酸、ベンゼンスルホン酸、ベンゼンジスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の芳香族スルホン酸、クロロベンゼンスルホン酸、ナフチオン酸、ドビアス酸、ペリ酸、ガンマ酸、ジェー酸、コッホ酸、メタニル酸、トルエンスルホン酸、ドデシルベンゼンスルホン酸等の核置換基を有する芳香族スルホン酸等が挙げられる。これら一種以上が使用される。又、硫酸化合物とスルホン酸化合物が混在していても良い。これら硫酸化合物あるいはスルホン酸化合物の添加率は、水溶性高分子純分に対して、1~600質量%の範囲である。1質量%より低いと凝集処理性能の大きな向上は得られず、600質量%より多くても効果は一定であり、添加対象系内に与える影響が考えられ好ましくはない。2~400質量%が好ましく、2~200質量%がより一層好ましく、3~100質量%が更に一層好ましい。 Examples of the sulfate compounds in the present invention include ammonium sulfate, magnesium sulfate, aluminum sulfate, calcium sulfate, sodium sulfate, potassium sulfate, ammonium hydrogen sulfate, potassium hydrogen sulfate, sodium hydrogen sulfate, and sulfuric acid. At least one of these compounds is used. Examples of the sulfonic acid compounds include aliphatic sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, and octanesulfonic acid, aromatic sulfonic acids such as benzenesulfonic acid, benzenedisulfonic acid, naphthalenesulfonic acid, and naphthalenedisulfonic acid, and aromatic sulfonic acids having nuclear substituents such as chlorobenzenesulfonic acid, naphthionic acid, dobias acid, peric acid, gamma acid, Jie acid, Koch acid, metanilic acid, toluenesulfonic acid, and dodecylbenzenesulfonic acid. At least one of these compounds is used. The sulfuric acid compounds and sulfonic acid compounds may be mixed together. The addition rate of these sulfuric acid compounds or sulfonic acid compounds is in the range of 1 to 600% by mass based on the pure water-soluble polymer. If it is less than 1% by mass, no significant improvement in the flocculation treatment performance is obtained, and even if it is more than 600% by mass, the effect is constant and it is not preferable because of the influence on the target system to which it is added. 2 to 400% by mass is preferable, 2 to 200% by mass is even more preferable, and 3 to 100% by mass is even more preferable.

本発明における硫酸化合物あるいはスルホン酸化合物は、水溶性高分子を水で溶解した溶解液に添加する。水溶性高分子を溶解する水は、蒸留水、イオン交換水、水道水、工業用水等が使用できる。これらが混合されていても差し支えない。水溶性高分子を0.01~1.0質量%に溶解する。水溶性高分子を溶解と同時に硫酸化合物あるいはスルホン酸化合物を添加しても良いが、より短時間で溶解でき添加対象物の性状変化に対応しやすいため添加対象系への最終添加濃度の0.01~1.0質量%が好ましい。添加は、水溶性高分子純分に対して規定量添加できれば無機化合物の形態、濃度に制限はなく任意である。混合時間は1分~60分が好ましい。又、溶解液中に高分子と水以外の他の薬品や物質が含まれていても高分子純分に対して規定量の無機化合物が含まれていれば差し支えない。
尚、水溶性高分子の溶解液に硫酸化合物あるいはスルホン酸化合物が含有していれば本発明における凝集処理剤組成物の効果は発揮されるので重合時に無機化合物が使用されていても差し支えない。
The sulfuric acid compound or sulfonic acid compound in the present invention is added to a solution prepared by dissolving a water-soluble polymer in water. Distilled water, ion-exchanged water, tap water, industrial water, etc. can be used as the water for dissolving the water-soluble polymer. There is no problem even if these are mixed. A water-soluble polymer is dissolved in a concentration of 0.01 to 1.0% by mass. A sulfuric acid compound or a sulfonic acid compound may be added at the same time as dissolving the water-soluble polymer, but since it can be dissolved in a shorter time and it is easier to respond to changes in the properties of the addition target, the final addition concentration to the system to be added may be 0. 01 to 1.0% by mass is preferred. The inorganic compound may be added in any form or concentration without any restriction as long as it can be added in a specified amount to the pure water-soluble polymer. The mixing time is preferably 1 minute to 60 minutes. Further, even if the solution contains chemicals or substances other than the polymer and water, there is no problem as long as the inorganic compound is contained in a specified amount relative to the pure polymer.
Note that the effect of the aggregation treatment agent composition of the present invention is exhibited as long as the solution of the water-soluble polymer contains a sulfuric acid compound or a sulfonic acid compound, so there is no problem even if an inorganic compound is used during polymerization.

本発明における凝集処理剤組成物の効果発現作用について説明する。高分子の溶解液でイオンが存在しない系では高分子が広がることで互いに相互作用し合い、運動性が低下するため対象物への効率的な吸着が起こり難い。一方、イオンの存在により高分子を収縮させると相互作用が弱まり対象物に対し効率的に吸着する。イオン種により収縮の度合いは異なり、硫酸イオンあるいはスルホン酸イオンは特に収縮させる効果が大きく、本発明における凝集処理剤組成物の性能の向上に寄与していることが推測される。 The effect of the flocculating treatment composition of the present invention will be explained. In a polymer solution in which ions are not present, the polymers spread out and interact with each other, reducing mobility and making it difficult for them to be efficiently adsorbed to the target object. On the other hand, when the polymer is contracted by the presence of ions, the interaction is weakened and the polymer is efficiently adsorbed to the target object. The degree of contraction varies depending on the ion species, and sulfate ions and sulfonate ions have a particularly large contraction effect, which is presumed to contribute to the improved performance of the flocculating treatment composition of the present invention.

本発明における凝集処理剤組成物は、排水や汚泥処理用の排水処理剤、汚泥脱水剤、汚泥沈降剤、あるいは製紙用薬剤として歩留向上剤又は濾水性向上剤、凝結剤、紙力増強剤等、広範囲に使用できる。 The coagulation treatment agent composition in the present invention can be used as a wastewater treatment agent for wastewater or sludge treatment, a sludge dehydration agent, a sludge settling agent, or as a papermaking agent such as a retention improver, a freeness improver, a coagulant, or a paper strength enhancer. etc., can be used in a wide range of ways.

本発明における凝集処理剤組成物を製紙用歩留向上剤あるいは濾水性向上剤として使用する場合は、抄紙前の製紙原料に添加される。通常、製紙工程において上流からパルプ乾燥固形分濃度が2.0質量%以上で移送されてきた製紙原料が抄紙機の直前では白水や清水等によりパルプ乾燥固形分濃度が2.0質量%より低い製紙原料に希釈されている。一般的には0.5~1.5質量%に希釈されており、これらはインレット原料やヘッドボックス原料と呼ばれている。これら原料(以下、インレット原料とする。)に対して歩留向上剤あるいは濾水性向上剤が添加され抄紙される。本発明の凝集処理剤組成物もインレット原料に適用する。 When the aggregation treatment agent composition of the present invention is used as a papermaking retention improver or freeness improver, it is added to papermaking raw materials before papermaking. Normally, in the papermaking process, papermaking raw materials are transferred from upstream with a pulp dry solids concentration of 2.0% by mass or more, but immediately before the paper machine, the pulp dry solids concentration is lower than 2.0% by mass due to white water, fresh water, etc. It is diluted in papermaking raw materials. Generally, it is diluted to 0.5 to 1.5% by mass, and these are called inlet raw materials or headbox raw materials. A retention improver or a freeness improver is added to these raw materials (hereinafter referred to as inlet raw materials) and paper is made. The flocculation treatment agent composition of the present invention is also applied to inlet raw materials.

本発明における凝集処理剤組成物の製紙用歩留向上剤あるいは濾水性向上剤を使用する紙の種類としては、新聞用紙、上質印刷用紙、中質印刷用紙、グラビア印刷用紙、PPC用紙、塗工原紙、微塗工紙、包装用紙、ライナーや中芯原紙の板紙等が挙げられる。製紙工程における添加場所は、せん断工程であるファンポンプやスクリーンの前後に適用される。水溶性高分子の添加率は、紙料固形分濃度に対して10~1000ppmの範囲である。 Types of paper for which the papermaking retention aid or drainage aid of the flocculation treatment composition of the present invention is used include newsprint, fine printing paper, medium printing paper, gravure printing paper, PPC paper, coated base paper, lightly coated paper, wrapping paper, liner and core base paper board, etc. The addition location in the papermaking process is before or after the fan pump or screen, which are shearing processes. The addition rate of the water-soluble polymer is in the range of 10 to 1000 ppm based on the solids concentration of the paper stock.

本発明における凝集処理剤組成物の汚泥脱水剤として適用可能な汚泥は、製紙排水、化学工業排水、食品工業排水などの生物処理したときに発生する余剰汚泥、あるいは都市下水、し尿、産業排水の処理で生じる有機性汚泥(いわゆる生汚泥、余剰汚泥、混合生汚泥、消化汚泥、凝沈・浮上汚泥およびこれらの混合物)であるが、これら汚泥に任意の濃度に水で希釈して添加される。汚泥に対する添加率は、汚泥種、脱水機種によっても異なるが、汚泥液量に対し1~1000ppmである。使用する脱水機の種類は、ベルトプレス、遠心脱水機、スクリュープレス、多重円板型脱水機、ロータリープレス、フィルタープレス等に対応できる。又、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄、PAC、硫酸バンド等の無機系凝集剤と併用しても良い。 The sludge that can be used as the sludge dewatering agent in the flocculant composition of the present invention is surplus sludge generated when biologically treating wastewater from paper manufacturing, chemical industry, food industry, etc., or from urban sewage, human waste, and industrial wastewater. Organic sludge produced during processing (so-called raw sludge, surplus sludge, mixed raw sludge, digested sludge, flocculated/floated sludge, and mixtures thereof) is added to these sludges after being diluted with water to an arbitrary concentration. . The addition rate to sludge varies depending on the type of sludge and the type of dewatering machine, but is 1 to 1000 ppm based on the amount of sludge liquid. The types of dehydrators used include belt presses, centrifugal dehydrators, screw presses, multi-disc dehydrators, rotary presses, filter presses, etc. Further, it may be used in combination with an inorganic flocculant such as ferric chloride, ferric sulfate, polyferric sulfate, PAC, and band sulfate.

本発明における凝集処理剤組成物を廃水処理用途として使用する場合は、食品加工廃水、染色廃水、メッキ廃水、化学工場廃水、製紙廃水、金属加工廃水、生活廃水、し尿処理廃水、畜産排水等に適用できる。廃水に対する添加率は、1~1000ppmの範囲であるが、対象廃水により任意に調節する。 When the flocculant composition of the present invention is used for wastewater treatment, it can be used in food processing wastewater, dyeing wastewater, plating wastewater, chemical factory wastewater, paper manufacturing wastewater, metal processing wastewater, domestic wastewater, human waste treatment wastewater, livestock wastewater, etc. Applicable. The addition rate to wastewater is in the range of 1 to 1000 ppm, but it can be arbitrarily adjusted depending on the target wastewater.

以下に本発明における凝集処理剤組成物について具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The flocculation treatment agent composition of the present invention will be specifically explained below, but the present invention is not limited to the following examples.

本発明における水溶性高分子として、水溶性高分子試料1~10を特開昭59-130397号公報、特開平10-140496号公報、特開2011-99076号公報等に開示されている油中水型エマルジョンの常法により製造した。試料7~9は重合時に単量体混合物を混合した水溶液中に無機塩を添加して製造した。又、試料10は、特開昭62-15251号公報、特開昭62-20511号公報、特開2007-16086号公報等で開示されている塩水中分散重合の常法により製造した。これらの組成、物性を表1に示す。 Water-soluble polymer samples 1 to 10 were produced as the water-soluble polymers of the present invention by the conventional method of water-in-oil emulsions disclosed in JP-A-59-130397, JP-A-10-140496, JP-A-2011-99076, etc. Samples 7 to 9 were produced by adding an inorganic salt to an aqueous solution containing a monomer mixture during polymerization. Sample 10 was produced by the conventional method of dispersion polymerization in salt water disclosed in JP-A-62-15251, JP-A-62-20511, JP-A-2007-16086, etc. The compositions and physical properties of these are shown in Table 1.

(表1)
*試料3は分岐構造
製品形態;E:油中水型エマルジョン、D:塩水液中分散重合液
単量体;DMQ:アクリロイルオキシエチルトリメチルアンモニウム塩化物、AAM:アクリルアミド、AAC:アクリル酸
重合時添加無機化合物の添加率:質量%対高分子純分
(Table 1)
*Sample 3 is a product with a branched structure; E: water-in-oil emulsion; D: monomer dispersed in salt water; DMQ: acryloyloxyethyltrimethylammonium chloride; AAM: acrylamide; AAC: added during acrylic acid polymerization. Addition rate of inorganic compounds: mass % vs. polymer purity

(実施例1)
表1の水溶性高分子試料1を純水で溶解し0.1質量%溶解液とした。溶解液に硫酸アンモニウムを水溶性高分子純分に対し、12質量%添加、混合し凝集処理剤組成物試料Aとした。同様に表1の水溶性高分子試料を用いて凝集処理剤組成物試料B~Eを調製した。これらを表2に示す。
Example 1
Water-soluble polymer sample 1 in Table 1 was dissolved in pure water to prepare a 0.1% by mass solution. Ammonium sulfate was added to the solution in an amount of 12% by mass based on the pure water-soluble polymer content, and mixed to prepare flocculating treatment composition sample A. Similarly, flocculating treatment composition samples B to E were prepared using the water-soluble polymer samples in Table 1. These are shown in Table 2.

(表2)
(Table 2)

(実施試験例1)
新聞用紙抄造インレット原料を用いて、ブリット式ダイナミックジャーテスターによる歩留率の測定試験を行なった(30メッシュワイヤー使用)。紙料原料の物性値は、pH7.8、電気伝導度121.2mS/m、固形分濃度7343ppm、軽質炭酸カルシウム等Ash分として30.2質量%対紙料固形分濃度、Whatman No.41濾紙濾過液のミューテック社PCD-03型を使用したカチオン要求量0.0327meq/L、濁度67NTU(HACH社製2100P型で測定)であった。
表2の凝集処理剤組成物試料Aを製紙用歩留向上剤として使用した。
ブリット式ダイナミックジャーテスターに紙料原料を所定量採取し、試料Aを対紙料固形分に対して300ppm添加(高分子純分)し、攪拌回転数1200rpmで30秒間攪拌後(抄紙工程のスクリーン入口添加想定)、濾液を採取しWhatman No.41濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。これらの結果を表3に示す。
(Execution test example 1)
Using newsprint papermaking inlet raw materials, a yield rate measurement test was conducted using a Bullitt type dynamic jar tester (using 30 mesh wire). The physical properties of the paper stock material are pH 7.8, electrical conductivity 121.2 mS/m, solid content concentration 7343 ppm, Ash content such as light calcium carbonate of 30.2% by mass to paper stock solid content concentration, Whatman No. The cation requirement was 0.0327 meq/L and the turbidity was 67 NTU (measured with HACH Co., Ltd. Model 2100P) using a 41 filter paper filtrate model PCD-03 made by Mutec.
Coagulation treatment agent composition sample A in Table 2 was used as a retention aid for paper manufacturing.
Collect a predetermined amount of paper material into a Bullitt-type dynamic jar tester, add 300 ppm of sample A (polymer pure content) to the solid content of paper stock, and stir for 30 seconds at a stirring speed of 1200 rpm. (assuming addition at the inlet), collect the filtrate and transfer it to Whatman No. After filtration with No. 41 filter paper, the SS was measured and the total retention rate was measured.The filter paper was incinerated at 525° C. for 2 hours, and the ash content retention rate was measured. These results are shown in Table 3.

(比較試験例1)実施試験例1と同様な紙料原料を用い、表1の試料を用いて同様な試験を実施した。これらの結果を表3に示す。 (Comparative Test Example 1) Using the same paper stock as in Test Example 1, a similar test was carried out using the samples in Table 1. The results are shown in Table 3.

(表3)
(Table 3)

高分子溶解液に無機化合物として硫酸アンモニウムを含有する紙料A添加時では、無機化合物無添加あるいは重合時に無機化合物を添加した比較試験例に比べて歩留率は向上を示した。 When paper stock A, which contains ammonium sulfate as an inorganic compound, was added to the polymer dissolving solution, the yield rate was improved compared to comparative test examples in which no inorganic compound was added or an inorganic compound was added during polymerization.

(実施試験例2)
新聞用紙抄造インレット原料を用いて、ブリット式ダイナミックジャーテスターによる歩留率の測定試験を行なった(30メッシュワイヤー使用)。紙料原料の物性値は、pH7.4、電気伝導度87mS/m、固形分濃度7743ppm、軽質炭酸カルシウム等Ash分として29.4質量%対紙料固形分濃度、Whatman No.41濾紙濾過液のミューテック社PCD-03型を使用したカチオン要求量0.0121meq/L、濁度19NTU(HACH社製2100P型で測定)であった。
表2の凝集処理剤組成物試料Dを製紙用歩留向上剤として使用した。
ブリット式ダイナミックジャーテスターに紙料原料を所定量採取し、試料Dを対紙料固形分に対して200ppm添加(高分子純分)し、攪拌回転数900rpmで10秒間攪拌後(抄紙工程のスクリーン出口添加想定)、濾液を採取しWhatman No.41濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。これらの結果を表4に示す。
(Execution test example 2)
Using newsprint papermaking inlet raw materials, a yield rate measurement test was conducted using a Bullitt type dynamic jar tester (using 30 mesh wire). The physical properties of the paper stock material are pH 7.4, electrical conductivity 87 mS/m, solid content concentration 7743 ppm, Ash content such as light calcium carbonate of 29.4% by mass to paper stock solid content concentration, Whatman No. The cation requirement was 0.0121 meq/L and the turbidity was 19 NTU (measured with HACH Co., Ltd. Model 2100P) using a Mutech Co., Ltd. PCD-03 filtrate of No. 41 filter paper filtrate.
Coagulation treatment agent composition sample D in Table 2 was used as a retention aid for paper manufacturing.
Collect a predetermined amount of paper material into a Bullitt-type dynamic jar tester, add 200 ppm of sample D (polymer pure content) to the solid content of the paper stock, and stir for 10 seconds at a stirring speed of 900 rpm. (assumed to be added at the outlet), collect the filtrate and transfer it to Whatman No. After filtration with No. 41 filter paper, the SS was measured and the total retention rate was measured.The filter paper was incinerated at 525° C. for 2 hours, and the ash content retention rate was measured. These results are shown in Table 4.

(比較試験例2)実施試験例2と同様な紙料原料を用い、表1の試料を用いて同様な試験を実施した。これらの結果を表4に示す。 (Comparative Test Example 2) Using the same paper stock as in Test Example 2, a similar test was carried out using the samples in Table 1. The results are shown in Table 4.

(表4)

(Table 4)

高分子溶解液に無機化合物として硫酸マグネシウムを含有する試料D添加時では、無機化合物無添加あるいは重合時に無機化合物を添加した比較試験例に比べて歩留率は向上を示した。 When sample D, which contains magnesium sulfate as an inorganic compound, was added to the polymer dissolution solution, the yield rate was improved compared to comparative test examples in which no inorganic compound was added or an inorganic compound was added during polymerization.

(実施試験例3)
新聞用紙抄造原料を用いて、ブリット式ダイナミックジャーテスターによる歩留率の測定試験を行なった(30メッシュワイヤー使用)。紙料原料の物性値は、pH7.7、電気伝導度92mS/m、固形分濃度13098ppm、軽質炭酸カルシウム等Ash分として24.9質量%対紙料固形分濃度、Whatman No.41濾紙濾過液のミューテック社PCD-03型を使用したカチオン要求量0.132meq/L、濁度60NTU(HACH社製2100P型で測定)であった。
表2の凝集処理剤組成物試料BあるいはCを製紙用歩留向上剤として使用した。ブリット式ダイナミックジャーテスターに紙料原料を所定量採取し、試料BあるいはCを対紙料固形分に対して200ppm添加(高分子純分)し、攪拌回転数500rpmで30秒間攪拌後(抄紙工程のスクリーン入口添加想定)、濾液を採取しWhatman No.41濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。これらの結果を表5に示す。
(Example Test 3)
Using the newsprint papermaking raw material, a measurement test of the retention rate was carried out using a Britt type dynamic jar tester (using a 30 mesh wire). The physical properties of the paper stock raw material were pH 7.7, electrical conductivity 92 mS/m, solids concentration 13098 ppm, ash content such as light calcium carbonate 24.9 mass% relative to the paper stock solids concentration, cationic demand of Whatman No. 41 filter paper filtrate using a Mutec PCD-03 model was 0.132 meq/L, and turbidity was 60 NTU (measured with a HACH 2100P model).
The flocculation treatment composition sample B or C in Table 2 was used as a papermaking retention aid. A specified amount of paper stock raw material was collected in a Britt-type dynamic jar tester, and 200 ppm of sample B or C was added to the paper stock solids (polymer pure content), and after stirring for 30 seconds at a stirring speed of 500 rpm (assuming addition to the screen inlet of the papermaking process), the filtrate was collected and filtered with Whatman No. 41 filter paper, and the SS and total retention were measured. The filter paper was then incinerated at 525°C for 2 hours, and the ash retention was measured. These results are shown in Table 5.

(比較試験例3)実施試験例3と同様な紙料原料を用い、表1の試料を用いて同様な試験を実施した。これらの結果を表5に示す。 (Comparative Test Example 3) Using the same paper stock material as in Practical Test Example 3, a similar test was conducted using the samples in Table 1. These results are shown in Table 5.

(表5)
(Table 5)

高分子溶解液に無機化合物として硫酸マグネシウムを含有する試料BあるいはC添加時では、無機化合物無添加あるいは重合時に無機化合物を添加した比較試験例に比べて特に灰分歩留率が向上を示した。 When sample B or C, which contains magnesium sulfate as an inorganic compound, was added to the polymer dissolution liquid, the ash retention rate was particularly improved compared to comparative test examples in which no inorganic compound was added or an inorganic compound was added during polymerization.

(実施試験例4)
段ボール古紙原料(叩解量300mL)を用いて、動的濾水性試験機DDA(Dynamic Drainage Analyzer、マツボー社)による濾水性試験を実施した。紙料原料の物性値は、pH7.3、電気伝導度24mS/m、固形分濃度5140ppm、軽質炭酸カルシウム等Ash分として11.1質量%対紙料固形分濃度、Whatman No.41濾紙濾過液のミューテック社PCD-03型を使用したカチオン要求量0.028meq/L、濁度52NTU(HACH社製2100P型で測定)であった。
表2の凝集処理剤組成物試料Eを製紙用濾水性向上剤として使用した。
原料の所定量を、底部に62メッシュワイヤーの付いたDDA攪拌槽に投入した。攪拌回転数600rpmで30秒間攪拌後、試料Eを対製紙原料固形分に対して250ppm添加(高分子純分)、攪拌回転数600rpmで30秒間攪拌後(スクリーン入口添加想定)、300mBarの減圧下で、紙料を吸引し、ワイヤー上にシートを形成した時点の濾水時間及び15秒間吸引した後のシート含水率を測定した。その結果を表6に示す。
(Example Test 4)
A drainage test was carried out using a dynamic drainage analyzer (DDA, Matsubo) using recycled cardboard raw material (beaten volume 300 mL). The physical properties of the raw material were pH 7.3, electrical conductivity 24 mS/m, solids concentration 5140 ppm, ash content such as light calcium carbonate 11.1 mass% relative to the solids concentration of the raw material, cationic demand of Whatman No. 41 filter paper filtrate using Myutech PCD-03 type 0.028 meq/L, and turbidity 52 NTU (measured with HACH 2100P type).
Flocculation treatment composition sample E in Table 2 was used as a papermaking drainage improver.
A predetermined amount of raw material was put into a DDA stirring tank with a 62 mesh wire at the bottom. After stirring for 30 seconds at a stirring speed of 600 rpm, 250 ppm of sample E was added (polymer content) to the solid content of the papermaking raw material. After stirring for 30 seconds at a stirring speed of 600 rpm (assuming addition at the screen inlet), the paper stock was sucked under a reduced pressure of 300 mBar, and the drainage time when a sheet was formed on the wire and the sheet moisture content after 15 seconds of sucking were measured. The results are shown in Table 6.

(比較試験例4)
実施試験例3と同様な紙料原料を用い、表1の試料を用いて同様な試験を実施した。それらの結果を表6に示す。
Comparative Test Example 4
The same tests were carried out using the same paper stock as in Example 3 and the samples in Table 1. The results are shown in Table 6.

(表6)
(Table 6)

高分子溶解液に無機化合物として硫酸マグネシウムを含有する試料E添加時では、無機化合物無添加の比較試験例に比べて濾水時間が短縮、シート含水率が低下を示し濾水性、搾水性効果は改善した。 When sample E, which contains magnesium sulfate as an inorganic compound, was added to the polymer dissolution solution, the drainage time was shortened and the sheet moisture content was reduced, improving the drainage and water squeezing effects compared to the comparative test example in which no inorganic compound was added.

(実施試験例5)
製紙工場より発生した製紙スラッジ(pH6.6、電気伝導度157mS/m、SS分76000mg/L、VSS53.9質量%、VTS52.7質量%、M-アルカリ度760mg/L、アニオン量6.34meq/L)についてスクリュープレス型脱水機を想定した脱水試験を実施した。
表2の凝集処理時組成物試料Eを汚泥脱水剤として使用した。
製紙スラッジ200mLをポリビーカーに採取し、試料Eを対汚泥液量25ppm添加、CST測定装置において500rpmで60秒間撹拌後、40メッシュにて濾過し濾水量を測定した。その後、ナイロン製濾布(#202)を用いて汚泥をプレス圧4Kg/cmで60秒間脱水し、ケーキ含水率(105℃で20時間乾燥)を測定した。結果を表7に示す。
(Example Test 5)
A dehydration test was conducted using a screw press type dehydrator on paper sludge generated from a paper factory (pH 6.6, electrical conductivity 157 mS/m, SS content 76,000 mg/L, VSS 53.9 mass%, VTS 52.7 mass%, M-alkalinity 760 mg/L, anion amount 6.34 meq/L).
The coagulation treatment composition sample E in Table 2 was used as a sludge dewatering agent.
200 mL of paper sludge was collected in a plastic beaker, and Sample E was added at 25 ppm relative to the sludge liquid volume. The mixture was stirred at 500 rpm for 60 seconds in a CST measuring device, and then filtered through a 40 mesh to measure the amount of filtrate. The sludge was then dehydrated for 60 seconds using a nylon filter cloth (#202) at a press pressure of 4 kg/ cm2 , and the cake moisture content (dried at 105°C for 20 hours) was measured. The results are shown in Table 7.

(比較試験例5)実施試験例5と同様なスラッジを用い、表1の試料を用いて同様な試験を実施した。結果を表7に示す。 (Comparative Test Example 5) Using the same sludge as in Practical Test Example 5, a similar test was conducted using the samples in Table 1. The results are shown in Table 7.

(表7)
(Table 7)

高分子溶解液に無機化合物として硫酸マグネシウムを含有する試料E添加時では、無機化合物無添加あるいは重合時に無機化合物を添加した比較試験例に比べて濾水量が向上、ケーキ含水率が低下を示し脱水効果は改善した。 When sample E containing magnesium sulfate as an inorganic compound was added to the polymer solution, the amount of filtration was improved and the cake moisture content was decreased compared to comparative test examples in which no inorganic compound was added or an inorganic compound was added during polymerization. The effect has improved.

(実施試験例6)
炭酸カルシウムスラリー用いて本発明における凝集処理剤組成物の凝集処理試験を実施した。各種化合物を準備した。表1の水溶性高分子試料0.1質量%水溶液に、硫酸化合物あるいはスルホン酸化合物を水溶性高分子純分に対して規定量添加、混合し、凝集処理剤組成物試料を調製した。又、軽質炭酸カルシウム(TP-121、奥多摩工業社製)を清水で希釈し2.5質量%炭酸カルシウムスラリーを調製した(pH7.0)。
調製スラリー200mLをシリンダーに採取し、調製した凝集処理剤組成物試料0.25gを添加(水溶性高分子添加率50ppm対炭酸カルシウム固形分)、上下転倒撹拌5回実施後、スラリーの界面沈降速度を測定した。結果を表8に示す。
(Execution test example 6)
A flocculation treatment test of the flocculation treatment agent composition of the present invention was conducted using calcium carbonate slurry. Various compounds were prepared. A sulfuric acid compound or a sulfonic acid compound was added and mixed in a specified amount based on the pure water-soluble polymer to a 0.1% by mass aqueous solution of the water-soluble polymer sample shown in Table 1 to prepare an aggregation treatment agent composition sample. In addition, light calcium carbonate (TP-121, manufactured by Okutama Kogyo Co., Ltd.) was diluted with clear water to prepare a 2.5% by mass calcium carbonate slurry (pH 7.0).
Collect 200 mL of the prepared slurry into a cylinder, add 0.25 g of the prepared coagulation treatment agent composition sample (water-soluble polymer addition rate 50 ppm to calcium carbonate solid content), and after performing up-and-down stirring 5 times, interfacial sedimentation velocity of the slurry was measured. The results are shown in Table 8.

(比較試験例6)実施試験例6と同様な炭酸カルシウムスラリーを用い、本発明の範囲外の凝集処理剤組成物試料を調製し同様な試験を実施した。結果を表8に示す。 (Comparative Test Example 6) Using the same calcium carbonate slurry as in Practical Test Example 6, a sample of the flocculation treatment agent composition outside the scope of the present invention was prepared and the same test was conducted. The results are shown in Table 8.

表8

Figure 0007460067000010
界面沈降速度;◎:45cm/分以上、○:30cm/分以上、
×:30cm/分未満 ( Table 8 )
Figure 0007460067000010
Interfacial settling velocity: ◎: 45 cm/min or more, ○: 30 cm/min or more,
×: Less than 30 cm/min

高分子溶解液に化合物を規定量添加した実施試験例では、本発明における凝集処理剤組成物の範囲外の比較試験例に比べて界面沈降速度が速く、凝集処理性能が向上することが確認できた。
In the practical test examples in which a specified amount of a compound was added to a polymer solution, it was confirmed that the interfacial settling rate was faster and the flocculation treatment performance was improved compared to the comparative test examples outside the range of the flocculation treatment agent composition of the present invention.

(実施試験例7)
カオリンスラリーを用いて本発明におけるアニオン性水溶性高分子試料6を使用する凝集処理剤組成物の凝集効果試験を実施した。カオリン(富士フィルム和光純薬社製)を清水で希釈し5質量%カオリンスラリーを調製した(pH8.2)。
表1の水溶性高分子試料0.1質量%水溶液に、硫酸アルミニウムを水溶性高分子純分に対して6あるいは12質量%添加、混合し、凝集処理剤組成物試料を調製した。
調製スラリー200mLをシリンダーに採取し、調製した凝集処理剤組成物試料0.5gを添加(水溶性高分子添加率50ppm対カオリン固形分)、上下転倒撹拌5回実施後、スラリーの界面沈降速度を測定した。結果を表9に示す。
(Execution test example 7)
Using kaolin slurry, a flocculation effect test of the flocculation treatment agent composition using anionic water-soluble polymer sample 6 of the present invention was conducted. Kaolin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was diluted with clear water to prepare a 5% by mass kaolin slurry (pH 8.2).
Aluminum sulfate was added in an amount of 6 or 12% by mass based on the water-soluble polymer purity to a 0.1% by mass aqueous solution of the water-soluble polymer sample shown in Table 1, and mixed to prepare an aggregation treatment agent composition sample.
Collect 200 mL of the prepared slurry into a cylinder, add 0.5 g of the prepared coagulation treatment agent composition sample (water-soluble polymer addition rate 50 ppm to kaolin solid content), and after performing up-and-down stirring 5 times, calculate the interfacial sedimentation rate of the slurry. It was measured. The results are shown in Table 9.

(比較試験例7)実施試験例7と同様なカオリンスラリーを用い、本発明の範囲外の凝集処理剤組成物試料を調製し同様な試験を実施した。結果を表9に示す。 (Comparative Test Example 7) Using the same kaolin slurry as in Test Example 7, a sample of a flocculation treatment composition outside the scope of the present invention was prepared and a similar test was carried out. The results are shown in Table 9.

(表9)
界面沈降速度;◎:6cm/分以上、○:4cm/分以上、
×:3cm/分未満
Table 9
Interfacial settling velocity: ◎: 6 cm/min or more, ○: 4 cm/min or more,
×: Less than 3 cm/min

高分子溶解液に無機化合物を規定量含有する実施試験例では、無機化合物無添加の比較試験例に比べて凝集状態は良好であった。本発明におけるアニオン性水溶性高分子を使用した凝集処理剤組成物の効果が確認できた。 In the experimental test in which the polymer solution contained a specified amount of inorganic compound, the flocculation state was better than in the comparative test in which no inorganic compound was added. The effect of the flocculation treatment composition using the anionic water-soluble polymer of the present invention was confirmed.

本発明における凝集処理剤組成物を製紙用歩留向上剤、濾水性向上剤、汚泥脱水剤としての性能、及び炭酸カルシウムスラリー、カオリンスラリーへの凝集効果が確認できた。本発明における凝集処理剤組成物を汚泥脱水用途、廃水処理用途、抄紙工程での歩留向上剤、濾水性向上剤用途等、凝集処理性能が要求される広範囲での展開が可能である。 The flocculation treatment composition of the present invention has been confirmed to have performance as a papermaking retention improver, drainage improver, and sludge dewatering agent, as well as flocculation effects on calcium carbonate slurries and kaolin slurries. The flocculation treatment composition of the present invention can be deployed in a wide range of applications where flocculation treatment performance is required, such as sludge dewatering applications, wastewater treatment applications, and applications as a retention improver and drainage improver in the papermaking process.

Claims (5)

下記一般式(1)で表されるカチオン性単量体0~99モル%、及び非イオン性単量体1~100モル%を構成単位とする水溶性高分子、又は下記一般式(2)で表されるアニオン性単量体1~50モル%及び非イオン性単量体50~99モル%を構成単位とするアニオン性水溶性高分子濃度0.01~1.0質量%溶解液と、硫酸化合物あるいはスルホン酸化合物から選択される一種以上を前記水溶性高分子純分に対して1~600質量%含有することを特徴とする凝集処理剤組成物。
一般式(1)
は水素又はメチル基、R、Rは炭素数1~3のアルキルあるいはアルコキシ基、Rは炭素数1~3のアルキルあるいはアルコキシ基、7~20のアルキル基あるいはアリール基、Aは酸素またはNH、Bは炭素数2~4のアルキレン基を表わす、X は陰イオンをそれぞれ表わす。
Figure 0007460067000013
一般式(2)
は水素、メチル基またはカルボキシメチル基、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOO、Rは水素またはCOO 、YあるいはYは水素または陽イオンをそれぞれ表わす。
A water-soluble polymer whose constituent units are 0 to 99 mol% of a cationic monomer represented by the following general formula (1) and 1 to 100 mol% of a nonionic monomer , or a water-soluble polymer represented by the following general formula (2) ) Dissolution of an anionic water-soluble polymer having a constituent unit of 1 to 50 mol % of an anionic monomer and 50 to 99 mol % of a nonionic monomer at a concentration of 0.01 to 1.0 mass %. An agglomeration treatment agent composition characterized by containing 1 to 600% by mass of a liquid and one or more selected from sulfuric acid compounds and sulfonic acid compounds based on the pure water-soluble polymer.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl or alkoxy group having 1 to 3 carbon atoms, R 4 is an alkyl or alkoxy group having 1 to 3 carbon atoms, an alkyl group or an aryl group having 7 to 20 carbon atoms, A represents oxygen or NH, B represents an alkylene group having 2 to 4 carbon atoms, and X 1 represents an anion.
Figure 0007460067000013
General formula (2)
R 5 is hydrogen, methyl group or carboxymethyl group, Q is SO 3 - , C 6 H 4 SO 3 - , CONHC(CH 3 ) 2 CH 2 SO 3 - , C 6 H 4 COO - or COO - , R 6 represents hydrogen or COO Y 2 + , and Y 1 or Y 2 represents hydrogen or a cation, respectively.
前記水溶性高分子の重量平均分子量が500万~3000万であることを特徴とする請求項1に記載の凝集処理剤組成物。 The flocculation treatment composition according to claim 1, characterized in that the water-soluble polymer has a weight-average molecular weight of 5 million to 30 million. 前記水溶性高分子の形態が油中水型エマルジョンであることを特徴とする請求項1あるいは2に記載の凝集処理剤組成物。 The aggregation treatment agent composition according to claim 1 or 2, wherein the water-soluble polymer is in the form of a water-in-oil emulsion. 前記請求項1~3に記載の凝集処理剤組成物からなる製紙用歩留向上剤または濾水性向上剤。 A papermaking retention improver or drainage improver comprising the flocculation treatment agent composition according to claims 1 to 3. 前記請求項1~3に記載の凝集処理剤組成物からなる汚泥脱水剤。 A sludge dewatering agent comprising the flocculation treatment composition according to claims 1 to 3.
JP2020006478A 2020-01-20 2020-01-20 Inorganic compound-containing aggregation treatment agent composition Active JP7460067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006478A JP7460067B2 (en) 2020-01-20 2020-01-20 Inorganic compound-containing aggregation treatment agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006478A JP7460067B2 (en) 2020-01-20 2020-01-20 Inorganic compound-containing aggregation treatment agent composition

Publications (2)

Publication Number Publication Date
JP2021112709A JP2021112709A (en) 2021-08-05
JP7460067B2 true JP7460067B2 (en) 2024-04-02

Family

ID=77076375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006478A Active JP7460067B2 (en) 2020-01-20 2020-01-20 Inorganic compound-containing aggregation treatment agent composition

Country Status (1)

Country Link
JP (1) JP7460067B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295196A (en) 2000-02-09 2001-10-26 Hymo Corp Method for improving yield
JP2003155689A (en) 2001-11-14 2003-05-30 Hymo Corp Method for producing paper
JP2003155681A (en) 2001-11-14 2003-05-30 Hymo Corp Method for treating papermaking white water
JP2003164884A (en) 2001-11-29 2003-06-10 Hymo Corp Method for treating discharged water from paper-making
JP2016003414A (en) 2014-06-17 2016-01-12 ハイモ株式会社 Papermaking method using fluid dispersion comprising water-soluble polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295196A (en) 2000-02-09 2001-10-26 Hymo Corp Method for improving yield
JP2003155689A (en) 2001-11-14 2003-05-30 Hymo Corp Method for producing paper
JP2003155681A (en) 2001-11-14 2003-05-30 Hymo Corp Method for treating papermaking white water
JP2003164884A (en) 2001-11-29 2003-06-10 Hymo Corp Method for treating discharged water from paper-making
JP2016003414A (en) 2014-06-17 2016-01-12 ハイモ株式会社 Papermaking method using fluid dispersion comprising water-soluble polymer

Also Published As

Publication number Publication date
JP2021112709A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
CA2378131C (en) Anionic and nonionic dispersion polymers for clarification and dewatering
JP4854432B2 (en) Sludge dewatering method
JP5557366B2 (en) Ionic water-soluble polymer composed of powder, production method thereof and use thereof
JP2007023146A (en) Ionic fine particle and application of the same
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP7460067B2 (en) Inorganic compound-containing aggregation treatment agent composition
JP5692910B2 (en) Sludge dewatering agent and sludge dewatering treatment method
JP5305443B2 (en) Water-soluble polymer composition
JP5995534B2 (en) Aggregation treatment agent and waste water treatment method
JP2008221172A (en) Sludge dehydrating agent, and sludge dehydrating method
JP2006182816A (en) Crosslinked water-soluble polymer dispersion liquid and paper making method using the same
JP5952593B2 (en) Wastewater treatment method
JP3218578B2 (en) Organic sludge dehydrating agent, method for treating organic sludge, and method for producing organic sludge dehydrating agent
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP2015183333A (en) Yield improver and yield improvement method for papermaking raw material
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method
JP5866096B2 (en) Wastewater treatment method
JP3327813B2 (en) Sludge dewatering method
JP2011062634A (en) Flocculant for service water and method for treating raw water for service water
JP2023167130A (en) Sludge dewatering agent and sludge dewatering method using the agent
JP7489062B2 (en) Dewatering method for high salt concentration sludge
JP2015217343A (en) Coagulation treatment agent, and dewatering method of sludge using the same
JP2015100763A (en) High salt concentration sludge dewatering method
JPH10277600A (en) Dehydration agent of high salt concentration sludge and sludge dehydrating method
JP5630782B2 (en) Sludge dewatering agent and sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240312

R150 Certificate of patent or registration of utility model

Ref document number: 7460067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150