JP2000126800A - Dehydration of organic sludge - Google Patents

Dehydration of organic sludge

Info

Publication number
JP2000126800A
JP2000126800A JP10307418A JP30741898A JP2000126800A JP 2000126800 A JP2000126800 A JP 2000126800A JP 10307418 A JP10307418 A JP 10307418A JP 30741898 A JP30741898 A JP 30741898A JP 2000126800 A JP2000126800 A JP 2000126800A
Authority
JP
Japan
Prior art keywords
sludge
flocculant
weight
cake
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10307418A
Other languages
Japanese (ja)
Other versions
JP3473830B2 (en
Inventor
Yasuhiko Watanabe
康彦 渡辺
Satoru Takebayashi
哲 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP30741898A priority Critical patent/JP3473830B2/en
Publication of JP2000126800A publication Critical patent/JP2000126800A/en
Application granted granted Critical
Publication of JP3473830B2 publication Critical patent/JP3473830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cake low in the concn. of a suspended substance in separeated water, high in the recovery ratio thereof, high in the strength of floc and low in water content by efficiently dehydrating org. sludge containing biologically treated sludge generated from sewage, excretion or industrial waste water by the addition of a small amt. of a chemical agent. SOLUTION: In a dehydration method, a cationic org. polymeric flocculant is added to org. sludge and org. sludge and the cationic org. polymeric flocculant are reacted under a strong shearing force applied condition to dehydrate org. sludge. In this case, the cationic org. polymeric flocculant wherein inherent viscosity is 3 dl/g or more and the quotient obtained by dividing the product of the viscosity (meats) of a 0.2 wt.% aq. soln. measured at a rotational speed of 30 rpm using a Brookfield rotational viscometer and the inherent viscosity (dl/g) by the stringing length (mm) of a 0.4 wt.% aq. soln. is 50-200 is added and sludge is mechanically dehydrated by a dehydrator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性汚泥の脱水
方法に関する。さらに詳しくは、本発明は、下水、し
尿、産業排水などより生ずる生物処理汚泥が含まれる有
機性汚泥を、効率的に脱水することができる有機性汚泥
の脱水方法に関する。
The present invention relates to a method for dehydrating organic sludge. More specifically, the present invention relates to a method for dehydrating organic sludge that can efficiently dehydrate organic sludge containing biologically treated sludge generated from sewage, human waste, industrial wastewater, and the like.

【0002】[0002]

【従来の技術】近年、都市下水やし尿処理などから発生
する生物処理汚泥を含む有機性汚泥は、有機物含有量の
増加や腐敗などにより、汚泥脱水に必要な脱水剤の添加
率が増加し、脱水ケーキの含水率が高く、汚泥処理量も
低く抑えざるを得ないなど、難脱水化の傾向にある。こ
れらの難脱水性汚泥に対しては、従来より、種々の脱水
方法が試みられている。例えば、特開昭63−1582
00号公報には、脱水ケーキの含水率が低く、ろ布剥離
性が良好な汚泥の脱水方法として、無機凝集剤添加後の
pH値が5〜8である有機質汚泥に対して両性有機高分子
凝集剤を添加し、次いで脱水する汚泥の脱水方法が提案
されている。また、特開平2−180700号公報に
は、汚泥の処理能力が大きく、懸濁物質の回収率が高
く、ろ布からの脱水ケーキの剥離性が良好であり、脱水
ケーキの含水量を低減することができる有機性汚泥の脱
水方法として、有機性汚泥に無機凝集剤を添加し、さら
に特定のコロイド当量値とアニオン量/カチオン量の比
を有する両性有機高分子凝集剤を添加したのち、脱水す
る方法が提案されている。さらに、特公平3−4716
0号公報には、生成するフロックの強度が大きく、脱水
が容易で、ケーキの含水率が低く、懸濁物質の分離水へ
の流出が少ない有機性汚泥の脱水法として、余剰汚泥に
硫酸バンドなどの金属塩を使用して凝集処理し、さらに
第4級アンモニウム基を有するカチオン性高分子凝集剤
を添加して脱水する方法が提案されている。このような
2種以上の薬剤を併用して脱水する方法は、難脱水性汚
泥の脱水性改善に効果があり、広く用いられるようにな
っている。しかし、これらの従来の技術には、薬品コス
トが高い、効果に汎用性が乏しい、設備や作業が煩雑に
なるなどの問題点がある。一方、脱水機に関しては、圧
密という概念を取り入れた脱水機構を有する高効率型遠
心脱水機が開発され、日本下水道事業団により、平成4
年度民間開発技術審査証明で認定されている。この高効
率型遠心脱水機を用いることにより、低含水率のケーキ
が得られるようになってきてはいるものの、適用できる
汚泥種が限定されている。このために、下水、し尿、産
業排水などから生ずる生物処理汚泥を含む有機性汚泥に
広く適用することができ、少量の薬剤の添加により効果
的に脱水して、フロックの強度が大きく、ろ布からの剥
離性が良好で、含水率の低いケーキを得ることができる
有機性汚泥の脱水方法が求められていた。
2. Description of the Related Art In recent years, organic sludge including biologically treated sludge generated from municipal sewage or human waste treatment has increased the rate of addition of a dehydrating agent required for sludge dewatering due to an increase in organic matter content and decay. There is a tendency for dewatering to be difficult, for example, the water content of the dewatered cake is high, and the sludge treatment amount must be kept low. Various dehydration methods have been attempted for these hardly dewaterable sludges. For example, JP-A-63-1582
No. 00, the moisture content of the dewatered cake is low, as a method of dewatering sludge having a good filter cloth releasability, after adding an inorganic flocculant,
A method of dewatering sludge has been proposed in which an amphoteric organic polymer flocculant is added to organic sludge having a pH value of 5 to 8, and then dewatered. Japanese Patent Application Laid-Open No. 2-180700 discloses that sludge treatment capacity is large, suspended solids recovery rate is high, dewatered cake is easily separated from filter cloth, and the water content of dewatered cake is reduced. As an organic sludge dewatering method, an inorganic coagulant is added to organic sludge, and an amphoteric organic polymer coagulant having a specific colloid equivalent value and a ratio of anion amount / cation amount is added. A way to do that has been proposed. In addition, Japanese Patent Publication No. 3-4716
No. 0 discloses a method of dehydrating organic sludge in which the strength of the generated floc is large, the dewatering is easy, the water content of the cake is low, and the amount of suspended solids flowing out to the separated water is small. There has been proposed a method of performing a coagulation treatment using a metal salt such as described above and further adding a cationic polymer coagulant having a quaternary ammonium group to perform dehydration. Such a method of dehydrating by using two or more kinds of chemicals in combination is effective in improving the dehydration of hardly dewaterable sludge and has been widely used. However, these conventional techniques have problems such as high chemical cost, poor versatility in effect, and complicated equipment and work. On the other hand, as for the dewatering machine, a high-efficiency centrifugal dewatering machine with a dewatering mechanism incorporating the concept of consolidation was developed, and the Japan Sewage Works Agency issued a
It is certified by the private development technology examination certificate in fiscal year. By using this high-efficiency centrifugal dehydrator, cakes with a low moisture content are being obtained, but applicable sludge types are limited. For this reason, it can be widely applied to organic sludge including biologically treated sludge generated from sewage, night soil, industrial wastewater, etc. There has been a demand for a method for dehydrating organic sludge, which has good releasability from water and can obtain a cake having a low water content.

【0003】[0003]

【発明が解決しようとする課題】本発明は、下水、し
尿、産業排水などより生ずる生物処理汚泥が含まれる有
機性汚泥を、少量の薬剤の添加により効率的に脱水し
て、分離水中のSS濃度が低く、SS回収率が高く、フ
ロックの強度が大きく、含水率の低いケーキを得ること
ができる有機性汚泥の脱水方法を提供することを目的と
してなされたものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a method of efficiently dehydrating organic sludge containing biologically treated sludge generated from sewage, night soil, industrial wastewater, etc. by adding a small amount of a chemical, and removing SS from separated water. An object of the present invention is to provide a method for dehydrating organic sludge, which can obtain a cake having a low concentration, a high SS recovery rate, a high floc strength and a low moisture content.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、有機性汚泥に、
固有粘度が3dl/g以上で、0.2重量%水溶液の粘度
(mPa・s)と固有粘度(dl/g)の積を0.4重量%
水溶液の曳糸長(mm)で除した商が特定の範囲にあるカ
チオン性有機高分子凝集剤を添加し、強い剪断力のかか
る条件下に、汚泥と凝集剤を反応させ、脱水することに
より、容易に効果的な脱水を行い得ることを見いだし、
この知見に基づいて本発明を完成するに至った。すなわ
ち、本発明は、(1)有機性汚泥にカチオン性有機高分
子凝集剤を添加し、強い剪断力のかかる条件下に、有機
性汚泥とカチオン性有機高分子凝集剤とを反応させ、脱
水する有機性汚泥の脱水方法において、固有粘度が3dl
/g以上であり、B型回転粘度計を用いて回転速度30
rpmで測定した0.2重量%水溶液の粘度(mPa・s)
と固有粘度(dl/g)の積を、0.4重量%水溶液の曳
糸長(mm)で除した商が50〜200であるカチオン性
有機高分子凝集剤を添加し、脱水機を用いて機械脱水す
ることを特徴とする有機性汚泥の脱水方法、(2)強い
剪断力のかかる条件が、ホモジナイザーを用いる5,0
00rpm、5秒以上の撹拌に相当する条件である第(1)
項記載の有機性汚泥の脱水方法、及び、(3)有機性汚
泥が下水・し尿排水処理又は産業排水より生じる有機性
汚泥であり、脱水機が遠心脱水機である第(1)項記載の
有機性汚泥の脱水方法、を提供するものである。さら
に、本発明の好ましい態様として、(4)カチオン性有
機高分子凝集剤のB型回転粘度計を用いて回転速度30
rpmで測定した0.2重量%水溶液の粘度(mPa・s)
と固有粘度(dl/g)の積を、0.4重量%水溶液の曳
糸長(mm)で除した商が、55〜80である第(1)項記
載の有機性汚泥の脱水方法、(5)カチオン性有機高分
子凝集剤が、カチオン性ビニルモノマーとノニオン性ビ
ニルモノマーとのコポリマーである第(1)項記載の有機
性汚泥の脱水方法、(6)カチオン性有機高分子凝集剤
が、カチオン性ビニルモノマーとアニオン性ビニルモノ
マーとノニオン性ビニルモノマーとのコポリマーである
第(1)項記載の有機性汚泥の脱水方法、(7)カチオン
性有機高分子凝集剤のカチオン性ビニルモノマー単位の
割合が、全モノマー単位の30〜80モル%である第
(5)項又は第(6)項記載の有機性汚泥の脱水方法、及
び、(8)遠心脱水機が、高効率型遠心脱水機である第
(3)項記載の有機性汚泥の脱水方法、を挙げることがで
きる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, organic sludge has been obtained.
When the intrinsic viscosity is 3 dl / g or more, the product of the viscosity (mPa · s) of the 0.2% by weight aqueous solution and the intrinsic viscosity (dl / g) is 0.4% by weight.
By adding a cationic organic polymer flocculant whose quotient divided by the spinning length (mm) of the aqueous solution is in a specific range, reacting the sludge with the flocculant under conditions of strong shearing force, and dehydrating , Found that effective dehydration can be performed easily,
Based on this finding, the present invention has been completed. That is, the present invention relates to (1) adding a cationic organic polymer flocculant to organic sludge, reacting the organic sludge with the cationic organic polymer flocculant under conditions of strong shearing force, and dehydrating the organic sludge. Organic sludge dewatering method, the intrinsic viscosity is 3dl
/ G or more and a rotational speed of 30 using a B-type rotational viscometer.
Viscosity of 0.2 wt% aqueous solution measured at rpm (mPa · s)
And the intrinsic viscosity (dl / g) divided by the spinning length (mm) of a 0.4% by weight aqueous solution are added, and a cationic organic polymer flocculant having a quotient of 50 to 200 is added. Organic sludge dewatering method characterized in that mechanical dehydration is performed by using a homogenizer (2).
(1) which is a condition corresponding to stirring at 00 rpm for 5 seconds or more.
(3) The organic sludge dewatering method according to (1), wherein the organic sludge is organic sludge generated from sewage / human wastewater treatment or industrial wastewater, and the dehydrator is a centrifugal dehydrator. A method for dehydrating organic sludge. Further, as a preferred embodiment of the present invention, (4) a cationic organic polymer coagulant using a B-type rotational viscometer with a rotational speed of 30.
Viscosity of 0.2 wt% aqueous solution measured at rpm (mPa · s)
The method for dehydrating an organic sludge according to Item (1), wherein the quotient obtained by dividing the product of the intrinsic viscosity (dl / g) by the spinning length (mm) of the 0.4% by weight aqueous solution is 55 to 80, (5) The method for dehydrating organic sludge according to (1), wherein the cationic organic polymer flocculant is a copolymer of a cationic vinyl monomer and a nonionic vinyl monomer, (6) a cationic organic polymer flocculant Is a copolymer of a cationic vinyl monomer, an anionic vinyl monomer and a nonionic vinyl monomer, (7) a cationic vinyl monomer as a cationic organic polymer flocculant, The ratio of the units is 30 to 80 mol% of the total monomer units.
(5) The method for dehydrating organic sludge according to item (6) or (6), wherein (8) the centrifugal dehydrator is a high-efficiency centrifugal dehydrator.
The method of dewatering organic sludge described in the item (3) can be mentioned.

【0005】[0005]

【発明の実施の形態】本発明方法は、有機性汚泥にカチ
オン性有機高分子凝集剤を添加し、強い剪断力のかかる
条件下に、有機性汚泥とカチオン性有機高分子凝集剤と
を反応させ、脱水する有機性汚泥の脱水方法において、
固有粘度が3dl/g以上であり、B型回転粘度計を用い
て回転速度30rpmで測定した0.2重量%水溶液の粘度
(mPa・s)と固有粘度(dl/g)の積を、0.4重量
%水溶液の曳糸長(mm)で除した商が50〜200であ
るカチオン性有機高分子凝集剤を添加し、脱水機を用い
て機械脱水するものである。本発明方法に用いるカチオ
ン性有機高分子凝集剤としては、例えば、カチオン性ビ
ニルモノマーとノニオン性ビニルモノマーから得られる
カチオン性ビニルコポリマー、カチオン性ビニルモノマ
ーとアニオン性ビニルモノマーとノニオン性ビニルモノ
マーから得られる両性ビニルコポリマーなどを挙げるこ
とができる。このようなカチオン性有機高分子凝集剤を
得るためのカチオン性ビニルモノマーに特に制限はな
く、例えば、一般式[1]で表されるモノマーを挙げる
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention comprises adding a cationic organic polymer flocculant to organic sludge and reacting the organic sludge with the cationic organic polymer flocculant under conditions of strong shearing force. In the method of dewatering organic sludge,
The intrinsic viscosity is 3 dl / g or more, and the product of the viscosity (mPa · s) of the 0.2% by weight aqueous solution and the intrinsic viscosity (dl / g) measured at a rotation speed of 30 rpm using a B-type rotational viscometer is 0. A cationic organic polymer flocculant having a quotient of 50 to 200 divided by the spinning length (mm) of a 0.4% by weight aqueous solution is added, and mechanically dewatered using a dehydrator. Examples of the cationic organic polymer flocculant used in the method of the present invention include a cationic vinyl copolymer obtained from a cationic vinyl monomer and a nonionic vinyl monomer, and a cationic vinyl copolymer obtained from a cationic vinyl monomer, an anionic vinyl monomer and a nonionic vinyl monomer. And the like. The cationic vinyl monomer for obtaining such a cationic organic polymer flocculant is not particularly limited, and examples thereof include a monomer represented by the general formula [1].

【化1】 一般式[1]において、R1は水素又はメチル基であ
り、R2はメチレン基、エチレン基、プロピレン基、ブ
チレン基などの炭素数1〜4のアルキレン基であり、プ
ロピレン基及びブチレン基は直鎖状であっても、側鎖を
有するものであってもよい。R3及びR4はメチル基、エ
チル基、n−プロピル基、イソプロピル基、n−ブチル
基、イソブチル基、sec−ブチル基、tert−ブチル基な
どの炭素数1〜4のアルキル基であり、R5は水素、炭
素数1〜4のアルキル基又はベンジル基である。また、
Aは−O−又は−NH−であり、X-は塩素イオン、臭
素イオン、ヨウ素イオンなどのハロゲンイオン、1/2
SO4 2-、NO3 -、CH3COO -、CH3SO4 -、C25
SO4 -などの陰性イオンである。
Embedded imageIn the general formula [1], R1Is a hydrogen or methyl group
RTwoRepresents a methylene group, an ethylene group, a propylene group,
An alkylene group having 1 to 4 carbon atoms such as a tylene group;
Even if the propylene group and the butylene group are linear,
You may have. RThreeAnd RFourIs a methyl group, d
Tyl group, n-propyl group, isopropyl group, n-butyl
Group, isobutyl group, sec-butyl group, tert-butyl group
Any alkyl group having 1 to 4 carbon atoms;FiveIs hydrogen, charcoal
It is an alkyl group or a benzyl group having a prime number of 1 to 4. Also,
A is -O- or -NH-, and X is-Is chlorine ion, smell
Halogen ion such as elementary ion and iodine ion, 1/2
SOFour 2-, NOThree -, CHThreeCOO -, CHThreeSOFour -, CTwoHFive
SOFour -And negative ions.

【0006】一般式[1]で表されるモノマーとして
は、例えば、ジメチルアミノ(メチル、エチル、プロピ
ル又はブチル)アクリレート又はメタクリレート、ジエ
チルアミノ(メチル、エチル、プロピル又はブチル)アク
リレート又はメタクリレート、ジ−n−プロピルアミノ
(メチル、エチル、プロピル又はブチル)アクリレート又
はメタクリレート、ジイソプロピルアミノ(メチル、エ
チル、プロピル又はブチル)アクリレート又はメタクリ
レート、ジ−n−ブチルアミノ(メチル、エチル、プロ
ピル又はブチル)アクリレート又はメタクリレート、ジ
−sec−ブチルアミノ(メチル、エチル、プロピル又はブ
チル)アクリレート又はメタクリレート、ジイソブチル
アミノ(メチル、エチル、プロピル又はブチル)アクリレ
ート又はメタクリレート、ジメチルアミノ(メチル、エ
チル、プロピル又はブチル)アクリルアミド又はメタク
リルアミド、ジエチルアミノ(メチル、エチル、プロピ
ル又はブチル)アクリルアミド又はメタクリルアミド、
ジ−n−プロピルアミノ(メチル、エチル、プロピル又
はブチル)アクリルアミド又はメタクリルアミド、ジイ
ソプロピルアミノ(メチル、エチル、プロピル又はブチ
ル)アクリルアミド又はメタクリルアミド、ジ−n−ブ
チルアミノ(メチル、エチル、プロピル又はブチル)アク
リルアミド又はメタクリルアミド、ジ−sec−ブチルア
ミノ(メチル、エチル、プロピル又はブチル)アクリルア
ミド又はメタクリルアミド、ジイソブチルアミノ(メチ
ル、エチル、プロピル又はブチル)アクリルアミド又は
メタクリルアミドなどの、ハロゲン化水素、硫酸、硝
酸、酢酸などによる中和塩、ハロゲン化アルキル、ハロ
ゲン化ベンジル、ジメチル硫酸、ジエチル硫酸などによ
る四級化物などを挙げることができる。ハロゲン化水素
としては、例えば、塩化水素、臭化水素などを、ハロゲ
ン化アルキルとしては、例えば、塩化メチル、臭化メチ
ル、ヨウ化メチル、塩化エチル、臭化エチル、ヨウ化エ
チルなどを、ハロゲン化ベンジルとしては、塩化ベンジ
ル、臭化ベンジルなどを挙げることができる。これらの
カチオン性ビニルモノマーは、1種を単独で用いること
ができ、あるいは、2種以上を組み合わせて用いること
もできる。
Examples of the monomer represented by the general formula [1] include dimethylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, diethylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, di-n -Propylamino
(Methyl, ethyl, propyl or butyl) acrylate or methacrylate, diisopropylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, di-n-butylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, di-sec -Butylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, diisobutylamino (methyl, ethyl, propyl or butyl) acrylate or methacrylate, dimethylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, diethylamino (methyl , Ethyl, propyl or butyl) acrylamide or methacrylamide,
Di-n-propylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, diisopropylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, di-n-butylamino (methyl, ethyl, propyl or butyl) ) Acrylamide or methacrylamide, di-sec-butylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, diisobutylamino (methyl, ethyl, propyl or butyl) acrylamide or methacrylamide, hydrogen halide, sulfuric acid, Examples include neutralized salts with nitric acid and acetic acid, and quaternized compounds with alkyl halide, benzyl halide, dimethyl sulfate, diethyl sulfate and the like. Examples of the hydrogen halide include hydrogen chloride and hydrogen bromide, and examples of the alkyl halide include methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, and ethyl iodide. Examples of benzyl bromide include benzyl chloride and benzyl bromide. One of these cationic vinyl monomers can be used alone, or two or more can be used in combination.

【0007】カチオン性有機高分子凝集剤の合成に用い
るノニオン性ビニルモノマーとしては、例えば、アクリ
ルアミド、メタクリルアミド、N,N−ジメチルアクリ
ルアミド、N,N−ジメチルメタクリルアミドなどのア
ミド類、アクリロニトリル、メタクリロニトリルなどの
シアン化ビニル系化合物、アクリル酸メチル、アクリル
酸エチル、メタクリル酸メチル、メタクリル酸エチルな
どの(メタ)アクリル酸のアルキルエステル類、酢酸ビニ
ルなどのビニルエステル類、スチレン、α−メチルスチ
レン、p−メチルスチレンなどの芳香族ビニル系化合物
などを挙げることができる。これらのノニオン性ビニル
モノマーは、1種を単独で用いることができ、あるい
は、2種以上を組み合わせて用いることもできる。本発
明方法においては、カチオン性有機高分子凝集剤として
用いることができる両性ビニルコポリマーの合成に用い
るアニオン性ビニルモノマーとしては、例えば、アクリ
ル酸、メタクリル酸、α−エチルアクリル酸などの不飽
和モノカルボン酸及びこれらのナトリウム塩、カリウム
塩、アンモニウム塩などや、マレイン酸、フマル酸、イ
タコン酸などの不飽和ジカルボン酸及びこれらのナトリ
ウム塩、カリウム塩、アンモニウム塩などを挙げること
ができる。これらのアニオン性ビニルモノマーは、1種
を単独で用いることができ、あるいは、2種以上を組み
合わせて用いることもできる。本発明方法に使用するカ
チオン性有機高分子凝集剤の製造方法に特に制限はな
く、常法である溶液重合、懸濁重合、エマルション重合
など、いずれの方法をも用いることができる。水溶液重
合においては、モノマーを水に溶解し、雰囲気を不活性
ガスで置換し、重合温度まで昇温したのち、重合開始剤
として、過硫酸アンモニウム、過硫酸カリウム、2,2'
−アゾビス(2−アミジノプロパン)二塩酸塩などの水溶
性重合開始剤を加えて重合することができる。
The nonionic vinyl monomer used in the synthesis of the cationic organic polymer flocculant includes, for example, amides such as acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, acrylonitrile, methacrylic acid and the like. Vinyl cyanide compounds such as lonitrile, alkyl esters of (meth) acrylic acid such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl esters such as vinyl acetate, styrene, α-methyl Examples thereof include aromatic vinyl compounds such as styrene and p-methylstyrene. One of these nonionic vinyl monomers can be used alone, or two or more can be used in combination. In the method of the present invention, examples of the anionic vinyl monomer used in the synthesis of the amphoteric vinyl copolymer which can be used as the cationic organic polymer flocculant include, for example, unsaturated monohydric acids such as acrylic acid, methacrylic acid and α-ethylacrylic acid. Examples thereof include carboxylic acids and their sodium, potassium, and ammonium salts, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid, and their sodium, potassium, and ammonium salts. One of these anionic vinyl monomers can be used alone, or two or more can be used in combination. The method for producing the cationic organic polymer flocculant used in the method of the present invention is not particularly limited, and any of ordinary methods such as solution polymerization, suspension polymerization, and emulsion polymerization can be used. In aqueous solution polymerization, after dissolving the monomer in water, replacing the atmosphere with an inert gas, and raising the temperature to the polymerization temperature, ammonium persulfate, potassium persulfate, and 2,2 ′ are used as polymerization initiators.
Polymerization can be carried out by adding a water-soluble polymerization initiator such as azobis (2-amidinopropane) dihydrochloride.

【0008】本発明方法においては、少量の架橋構造を
有するカチオン性有機高分子凝集剤を用いることができ
る。架橋構造を有するカチオン性有機高分子凝集剤は、
その合成に際して、モノマー混合物に共有結合架橋剤を
添加することにより製造することができる。このような
共有架橋結合剤としては、水溶性ポリマーに架橋結合を
与えるために通常用いられるジエチレン性又はポリエチ
レン性不飽和モノマー、例えば、メチレンビスアクリル
アミドなどを挙げることができる。添加する共有架橋結
合剤の量は、100ppm以下の微量であることが好まし
い。本発明方法に用いるカチオン性有機高分子凝集剤
は、カチオン性ビニルモノマー単位の割合が、全モノマ
ー単位の30〜80モル%であることが好ましく、40
〜70モル%であることがより好ましい。カチオン性ビ
ニルモノマー単位の割合が全モノマー単位の30モル%
未満であると、重力ろ過性が不良となり、ケーキの含水
率と分離水のSS濃度が高くなり、ときには凝集フロッ
クが形成されなくなるおそれがある。カチオン性ビニル
モノマー単位の割合が全モノマー単位の80モル%を超
えると、重力ろ過性が不良となり、ケーキの含水率と分
離水のSS濃度が高くなるおそれがある。本発明方法に
おいて、カチオン性有機高分子凝集剤の固有粘度は3dl
/g以上であり、より好ましくは4dl/g以上であり、
さらに好ましくは5dl/g以上である。カチオン性有機
高分子凝集剤の固有粘度が3dl/g未満であると、凝集
力が弱く、ろ過性が不良となり、脱水能力が不足して、
ケーキの含水率が十分に低下しないおそれがある。本発
明方法において、カチオン性有機高分子凝集剤の固有粘
度は、溶媒として1N硝酸ナトリウム水溶液を用い、3
0℃において測定した値である。固有粘度は、カチオン
性有機高分子凝集剤がカチオン性ビニルモノマーとノニ
オン性ビニルモノマーとのコポリマーである場合はpH4
として、また、カチオン性有機高分子凝集剤がカチオン
性ビニルモノマーとアニオン性ビニルモノマーとノニオ
ン性ビニルモノマーとのコポリマーである場合はpH3と
して測定することが好ましい。
In the method of the present invention, a small amount of a cationic organic polymer flocculant having a crosslinked structure can be used. Cationic organic polymer flocculant having a cross-linked structure,
In the synthesis, it can be produced by adding a covalent crosslinking agent to the monomer mixture. Such covalent cross-linking agents include diethylenically or polyethyleneically unsaturated monomers commonly used to provide cross-linking to the water-soluble polymer, such as methylene bisacrylamide. The amount of the covalent crosslinking agent to be added is preferably a trace amount of 100 ppm or less. In the cationic organic polymer flocculant used in the method of the present invention, the ratio of cationic vinyl monomer units is preferably 30 to 80 mol% of all monomer units, and is preferably 40 to 80 mol%.
More preferably, it is about 70 mol%. The proportion of the cationic vinyl monomer unit is 30 mol% of all the monomer units.
If it is less than 30, the gravity filterability becomes poor, the water content of the cake and the SS concentration of the separated water increase, and sometimes flocculent flocs may not be formed. If the proportion of the cationic vinyl monomer unit exceeds 80 mol% of all monomer units, the gravity filterability becomes poor, and the water content of the cake and the SS concentration of the separated water may increase. In the method of the present invention, the intrinsic viscosity of the cationic organic polymer flocculant is 3 dl.
/ G or more, more preferably 4 dl / g or more,
More preferably, it is 5 dl / g or more. When the intrinsic viscosity of the cationic organic polymer flocculant is less than 3 dl / g, the flocculence is weak, the filterability is poor, and the dehydration ability is insufficient,
The water content of the cake may not be sufficiently reduced. In the method of the present invention, the intrinsic viscosity of the cationic organic polymer flocculant is determined by using a 1N aqueous solution of sodium nitrate as a solvent.
This is a value measured at 0 ° C. The intrinsic viscosity is pH 4 when the cationic organic polymer flocculant is a copolymer of a cationic vinyl monomer and a nonionic vinyl monomer.
When the cationic organic polymer flocculant is a copolymer of a cationic vinyl monomer, an anionic vinyl monomer and a nonionic vinyl monomer, the pH is preferably measured at pH 3.

【0009】本発明方法においては、カチオン性有機高
分子凝集剤のB型回転粘度計を用いて回転速度30rpm
で測定した0.2重量%水溶液の粘度(mPa・s)と固
有粘度(dl/g)の積を0.4重量%水溶液の曳糸長(m
m)で除した商が50〜200であり、より好ましくは
55〜80である。B型回転粘度計を用いて回転速度3
0rpmで測定した0.2重量%水溶液の粘度(mPa・
s)と固有粘度(dl/g)の積を0.4重量%水溶液の
曳糸長(mm)で除した商が50未満であっても、200
を超えても、ろ過性が不良となり、脱水能力が不足し
て、ケーキの含水率が十分に低下しないおそれがある。
本発明方法において、カチオン性有機高分子凝集剤の
0.2重量%水溶液は、次のようにして調製することが
できる。すなわち、精製したカチオン性有機高分子凝集
剤1.00gを精秤し、脱イオン水499gをスターラ
ーで撹拌しながら、粒状のかたまりが生じないように少
量ずつ添加し、500rpmで2時間撹拌したのち、室温
で1日放置して溶解させる。カチオン性有機高分子凝集
剤の0.4重量%水溶液は、精製したカチオン性有機高
分子凝集剤2.00gと脱イオン水498gを用いて、
同様に調製することができる。本発明方法において、カ
チオン性有機高分子凝集剤のB型粘度計を用いて回転速
度30rpmで測定した0.2重量%水溶液の粘度(mPa
・s)は、30℃において測定した値である。B型粘度
計としては、(株)東京計器製のB型粘度計などのブルッ
クフィールド形単一円筒粘度計を用いることができる。
ローターの回転速度は30rpmとし、回転速度とロータ
ー番号の組み合わせによって、粘度測定時に目盛板の指
針が20〜100%の範囲に入るものを選定する。ロー
ター回転時間は、指針が安定するまでの約5分程度とす
ることが好ましい。本発明方法において、カチオン性有
機高分子凝集剤の0.4重量%水溶液の曳糸長は、30
℃において測定した値である。曳糸長は、凝集剤水溶液
の糸引き性を測定するものであり、凝集剤分子間又は分
子内の架橋、枝分かれの有無、分子量分布に関係する指
標として用いられる。使用する測定器としては、例え
ば、協和界面科学(株)製の曳糸長測定器などを挙げるこ
とができる。カチオン性有機高分子凝集剤の0.4重量
%水溶液約100mlをビーカーにとり、曳糸長測定器の
ガラス製回転楕円体をその長径に相当する液面下11mm
まで浸漬し、10〜15秒間浸漬を続けたのち、上昇速
度15.2mm/secで引き上げ、糸が切れるまでの液面か
らの上昇距離を測定する。測定は10回繰り返して行
い、その平均値を曳糸長とする。
In the method of the present invention, a rotational speed of 30 rpm is measured using a cationic organic polymer flocculant B-type rotational viscometer.
The product of the viscosity (mPa · s) of the 0.2% by weight aqueous solution and the intrinsic viscosity (dl / g) measured by the above method is defined as the string length (m) of the 0.4% by weight aqueous solution.
The quotient divided by m) is 50 to 200, more preferably 55 to 80. Rotation speed 3 using a B-type viscometer
Viscosity of 0.2 wt% aqueous solution measured at 0 rpm (mPa ·
s) and the intrinsic viscosity (dl / g) divided by the spinning length (mm) of the 0.4% by weight aqueous solution are less than 50 even if the quotient is less than 50.
Even if it exceeds, the filterability may be poor, the dewatering ability may be insufficient, and the water content of the cake may not be sufficiently reduced.
In the method of the present invention, a 0.2% by weight aqueous solution of a cationic organic polymer flocculant can be prepared as follows. That is, 1.00 g of the purified cationic organic polymer flocculant was precisely weighed, and 499 g of deionized water was added little by little while stirring with a stirrer so as to prevent generation of a granular lump, followed by stirring at 500 rpm for 2 hours. Allow to dissolve for 1 day at room temperature. A 0.4% by weight aqueous solution of the cationic organic polymer flocculant was prepared using 2.00 g of the purified cationic organic polymer flocculant and 498 g of deionized water.
It can be prepared similarly. In the method of the present invention, the viscosity (mPa) of a 0.2% by weight aqueous solution measured at a rotation speed of 30 rpm using a B-type viscometer of a cationic organic polymer flocculant.
・ S) is a value measured at 30 ° C. As the B-type viscometer, a Brookfield single cylinder viscometer such as a B-type viscometer manufactured by Tokyo Keiki Co., Ltd. can be used.
The rotation speed of the rotor is set to 30 rpm, and a combination of the rotation speed and the rotor number is selected such that the scale plate pointer falls within the range of 20 to 100% during viscosity measurement. It is preferable that the rotor rotation time is about 5 minutes until the pointer stabilizes. In the method of the present invention, the spinning length of a 0.4% by weight aqueous solution of the cationic organic polymer flocculant is 30.
It is a value measured at ° C. The spinning length measures the stringiness of the aqueous flocculant solution, and is used as an index relating to the presence or absence of cross-linking or branching between or within the flocculant molecules, and the molecular weight distribution. As a measuring instrument to be used, for example, a string length measuring instrument manufactured by Kyowa Interface Science Co., Ltd. can be exemplified. About 100 ml of a 0.4% by weight aqueous solution of a cationic organic polymer flocculant is placed in a beaker, and the glass spheroid of the thread length measuring device is placed at a height of 11 mm below the liquid level corresponding to the major axis.
After the immersion is continued for 10 to 15 seconds, the film is pulled up at a rising speed of 15.2 mm / sec, and the rising distance from the liquid surface until the yarn breaks is measured. The measurement is repeated 10 times, and the average value is defined as the spinning length.

【0010】本発明方法において使用する脱水機は、機
械脱水し得るものであれば特に制限はなく、例えば、遠
心力を利用する遠心脱水機、多数のロールの間に2枚の
ろ布を連続的に移動させ、1台の機械で重力によるろ過
と圧搾及び圧縮による脱水を行うベルトプレス脱水機、
ろ布に付着させた汚泥中の水分を真空により吸引し脱水
する真空脱水機、圧力をかけて圧搾することにより脱水
する加圧脱水機、らせん羽根を回転させて圧搾による脱
水を行うスクリュープレス脱水機などを挙げることがで
きる。これらの脱水機の中で、遠心脱水機を好適に使用
することができ、高効率型遠心脱水機を特に好適に使用
することができる。高効率型遠心脱水機は、圧密という
概念を取り入れた脱水機構を有する遠心脱水機で、前述
したように、日本下水道事業団により、平成4年度民間
開発技術審査証明で認定されているものである。高効率
型遠心脱水機としては、例えば、月島機械(株)製の高効
率型遠心脱水機(セントリーエース)、巴工業(株)製の
高効率型遠心脱水機(DM型)、コトブキ技研工業(株)
製の高効率型遠心脱水機(セントリプレス)などを挙げ
ることができる。本発明方法においては、強い剪断力の
かかる条件が、ホモジナイザーを用いる5,000rpm、
5秒以上の撹拌に相当する条件であることが好ましい。
遠心脱水機における強い剪断力のかかる条件と、ホモジ
ナイザーの撹拌条件の対応は、次のようにして求めるこ
とができる。すなわち、実装置における汚泥供給量と凝
集剤水溶液注入量より、汚泥に対する凝集剤の添加率
(mg/リットル)を算出し、このときの脱水ろ液(分離
水)中の残留凝集剤量を、コロイド滴定法により求め
る。一方、実装置の汚泥をホモジナイザーにかけ、所定
の回転数で安定したのち、凝集剤を実装置と同じ添加率
で添加し、所定の時間撹拌したのちろ過し、ろ液中の残
留凝集剤量を測定する。ホモジナイザー処理後のろ液中
の残留凝集剤量が、実装置における脱水ろ液中の残留凝
集剤量と一致する条件が、遠心脱水機における強い剪断
力のかかる条件と対応するホモジナイザーの回転数及び
撹拌時間である。使用するホモジナイザーとしては、例
えば、NIHONSEIKI KAISHA製のEXC
EL AUTO HOMOGENIZER ED−7型、
SMT(株)製のHIGH−FLEX HOMOGENI
ZER HF93−4型、広沢鉄工所(株)製のHIGH
POWER HOMOGENIZER PII−C型などを
挙げることができる。本発明の有機性汚泥の脱水方法に
よれば、少量の薬剤の添加により効果的に脱水して、分
離水中のSS濃度が低く、SS回収率が高く、フロック
強度が大きく、含水率の低いケーキを得ることができ
る。
The dewatering machine used in the method of the present invention is not particularly limited as long as it can be mechanically dewatered. For example, a centrifugal dewatering machine using centrifugal force, and two filter cloths are continuously arranged between many rolls. Belt press dewatering machine which performs the dewatering by gravity, filtering and squeezing and compression by one machine,
A vacuum dewatering machine that sucks and dewaters the sludge adhering to the filter cloth by vacuum, a pressure dehydrator that dewaters by pressing and pressing, and a screw press dewatering that rotates the spiral blade to dewater by pressing Machine and the like. Among these dehydrators, a centrifugal dehydrator can be preferably used, and a high-efficiency centrifugal dehydrator can be particularly preferably used. The high-efficiency centrifugal dewatering machine is a centrifugal dewatering machine with a dewatering mechanism that incorporates the concept of consolidation. As mentioned above, it has been certified by the Japan Sewage Works Agency with a private development technology examination certificate in fiscal 1994. . Examples of the high-efficiency centrifugal dehydrator include, for example, a high-efficiency centrifugal dehydrator (Sentry Ace) manufactured by Tsukishima Kikai Co., Ltd., a high-efficiency centrifugal dehydrator (DM type) manufactured by Tomoe Kogyo, and Kotobuki Giken Kogyo (stock)
High efficiency centrifugal dehydrator (Centrepress). In the method of the present invention, conditions under which a strong shearing force is applied are set to 5,000 rpm using a homogenizer,
It is preferable that the conditions correspond to stirring for 5 seconds or more.
The correspondence between the conditions in which a strong shearing force is applied in the centrifugal dehydrator and the stirring conditions of the homogenizer can be determined as follows. That is, the addition rate (mg / liter) of the flocculant to the sludge is calculated from the sludge supply amount and the flocculant aqueous solution injection amount in the actual apparatus, and the residual flocculant amount in the dehydrated filtrate (separated water) at this time is calculated as Determined by colloid titration. On the other hand, the sludge of the actual apparatus is put into a homogenizer, and after stabilizing at a predetermined rotation speed, a flocculant is added at the same addition rate as the actual apparatus, and the mixture is stirred for a predetermined time and then filtered. Measure. The amount of the residual coagulant in the filtrate after the homogenizer treatment is the same as the amount of the residual coagulant in the dewatered filtrate in the actual apparatus, and the rotation speed of the homogenizer corresponding to the condition where a strong shear force is applied in the centrifugal dehydrator and Stirring time. As a homogenizer to be used, for example, EXC manufactured by NIHONSEIKI KAISHA is used.
EL AUTO HOMOGENIZER ED-7 type,
HIGH-FLEX HOMOGENI manufactured by SMT Corporation
ZER HF93-4, HIGH made by Hirosawa Iron Works Co., Ltd.
POWER HOMOGENIZER PII-C type and the like can be mentioned. According to the organic sludge dewatering method of the present invention, the cake is effectively dewatered by adding a small amount of a chemical, and has a low SS concentration in the separated water, a high SS recovery rate, a high floc strength, and a low water content. Can be obtained.

【0011】[0011]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例で使用した凝集剤
A−1〜A−7の組成、0.2重量%水溶液の粘度、固
有粘度、0.4重量%水溶液の曳糸長及び[(水溶液粘度
×固有粘度)/曳糸長]の値を第1表に、比較例で使用
した凝集剤B−1〜B−6の組成、0.2重量%水溶液
の粘度、固有粘度、0.4重量%水溶液の曳糸長及び
[(水溶液粘度×固有粘度)/曳糸長]の値を第2表に示
す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In addition, the composition of the flocculants A-1 to A-7, the viscosity of the 0.2% by weight aqueous solution, the intrinsic viscosity, the spinning length of the 0.4% by weight aqueous solution, and [(aqueous solution viscosity × intrinsic viscosity)] Table 1 shows the values of the compositions of the coagulants B-1 to B-6, the viscosity of the 0.2% by weight aqueous solution, the intrinsic viscosity, and the value of the 0.4% by weight aqueous solution. Table 2 shows the yarn length and the value of [(aqueous solution viscosity x intrinsic viscosity) / string length].

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】また、実施例及び比較例における試験方法
を次に示す。 (1)有機性汚泥とカチオン性高分子凝集剤との反応条
件の推定 実装置における有機性汚泥とカチオン性高分子凝集剤と
の反応条件は、下記の方法により推定した。 (1)実装置における汚泥供給量(m3/h)及び凝集剤
水溶液注入量(m3/h又はリットル/min)を、それぞ
れ流量計又はポンプストロークより求め、凝集剤水溶液
の濃度を考慮して、汚泥に対する凝集剤の添加率(mg/
リットル)を算出する。 (2)そのときの脱水ろ液(分離水)中の残留凝集剤量
を、コロイド滴定法により求める。ろ液20mlをビーカ
ーに採取し、トルイジンブルー指示薬を3〜4滴滴下し
てN/400ポリビニル硫酸カリウム(PVSK)溶液
で滴定し、N/400PVSK消費量を求める。 (3)上記実装置の汚泥200mlを、容量500mlのホモ
ジナイザー用ステンレス製容器に採取し、ホモジナイザ
ー[NIHONSEIKI KAISHA製、EXCE
L AUTO HOMOGENIZER ED−7型]に
セットし、所定の回転数で安定した段階で上記(1)の凝
集剤を実装置と同じ添加率で速やかに添加し5秒間撹拌
する。 (4)回転数は、例えば、500、1,000、2,00
0、3,000、5,000、7,000、10,000、
15,000rpmなどとする。 (5)各回転数で反応させたのち、ナイロンろ布を敷いた
ブフナーロートに、内径50mmの硬質塩化ビニル製円筒
を置き、その中へ凝集した汚泥を一気にそそぎ込み、ろ
液を採取する。 (6)このろ液中の残留凝集剤量を、上記(2)と同じ方法
で測定する。 (7)上記(2)で求めた残留凝集剤量と同じ残留凝集剤量
が得られる回転数が、ホモジナイザーを用いる場合に相
当する実装置における強い剪断力のかかる条件であると
推定する。 (2)フロック強度の評価 実施例及び比較例において、フロック強度は、下記の方
法により評価した。ナイロンろ布を敷いたブフナーロー
トに内径50mmの硬質塩化ビニル製円筒を置き、その中
へ凝集した汚泥を一気に注ぎ込み、ナイロンろ布上に堆
積した汚泥を手に取り、徐々に絞ってそのときの強度を
以下の通り判定する。 強:1回の手絞りで、すぐに絞り込まれたケーキとな
り、最大握力で最後まで絞ることができる。 中:1回の手絞りで、絞り込まれるが、最大握力では、
ケーキが指の間に侵入する。 弱:4〜5回ゆっくり絞ると、水が抜け、固形状のケー
キが得られるが、握力を高めると、指の間から抜け出
る。 不可:手の中にケーキが残らず、ほとんど指の間から抜
け出る。 (3)従来型遠心脱水機適用試験 性能評価試験のうち、従来型遠心脱水機に適用する机上
評価試験は次の方法により行った。 (1)汚泥200mlを、容量500mlのホモジナイザー用
ステンレス製容器に採取する。 (2)汚泥を入れたステンレス製容器をホモジナイザー
[NIHONSEIKIKAISHA製、EXCEL
AUTO HOMOGENIZER ED−7型]にセッ
トし、所定の回転数で安定した状態になった時点で、
0.2重量%凝集剤水溶液の所定量を速やかに添加した
のち、5秒間撹拌する。 (3)形成された凝集フロックの粒径を測定したのち、ナ
イロンろ布を敷いたブフナーロートに内径50mmの硬質
塩化ビニル製円筒を置き、その中へ凝集した汚泥を一気
にそそぎ込み、20秒後の重力ろ液量を測定する。 (4)さらに、ナイロンろ布上に堆積した汚泥について、
フロック強度を測定するとともに、その一定量をベルト
プレス用ろ布に取り、0.5kg/cm2の圧力で1分間圧搾
を行い、脱水ケーキの含水率を測定する。 (4)高効率型遠心脱水機適用試験 (1)汚泥200mlを、容量500mlのホモジナイザー用
ステンレス製容器に採取する。 (2)汚泥を入れたステンレス製容器をホモジナイザー
[NIHONSEIKIKAISHA製、EXCEL
AUTO HOMOGENIZER ED−7型]にセッ
トし、所定の回転数で安定した状態になった時点で、
0.2重量%凝集剤水溶液の所定量を速やかに添加した
のち、5秒間撹拌する。 (3)形成された凝集フロックの粒径を測定したのち、ナ
イロンろ布を敷いたブフナーロートに内径50mmの硬質
塩化ビニル製円筒を置き、その中へ凝集した汚泥を一気
にそそぎ込み、20秒後の重力ろ液量を測定する。 (4)ナイロンろ布上に堆積した汚泥について、フロック
強度を測定するとともに、その全量を遠沈管に取り、
3,000Gの遠心力で10分間遠心分離操作を行い、
遠沈管の底に堆積したケーキを採取し、よく混合したの
ち、さらに遠沈管に約100mlを充填して同様の条件で
遠心分離操作を行う。この操作を5回繰り返したのち、
遠沈管底部側の脱水ケーキをカッターで掻き取り含水率
を測定する。
Test methods in Examples and Comparative Examples are shown below. (1) Estimation of reaction conditions between organic sludge and cationic polymer flocculant Reaction conditions between organic sludge and cationic polymer flocculant in the actual apparatus were estimated by the following method. (1) The sludge supply amount (m 3 / h) and the coagulant aqueous solution injection amount (m 3 / h or liter / min) in the actual apparatus are obtained from a flow meter or a pump stroke, respectively, and the concentration of the coagulant aqueous solution is taken into consideration. The addition rate of flocculant to sludge (mg /
Liters). (2) The amount of the remaining flocculant in the dehydrated filtrate (separated water) at that time is determined by a colloid titration method. 20 ml of the filtrate is collected in a beaker, and 3 to 4 drops of toluidine blue indicator is dropped and titrated with an N / 400 polyvinyl potassium sulfate (PVSK) solution to determine the N / 400 PVSK consumption. (3) 200 ml of the sludge from the actual apparatus was collected in a 500 ml stainless steel container for a homogenizer, and the homogenizer [NIHONSEIKI KAISHA, EXCE
L AUTO HOMOGENIZER ED-7 type], and at the stage where it is stabilized at a predetermined rotation speed, the flocculant of the above (1) is quickly added at the same addition rate as in the actual apparatus, and stirred for 5 seconds. (4) The number of rotations is, for example, 500, 1,000, 2,000
0, 3,000, 5,000, 7,000, 10,000,
For example, 15,000 rpm. (5) After reacting at each rotation speed, a hard vinyl chloride cylinder having an inner diameter of 50 mm is placed on a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge is poured into the cylinder at once, and the filtrate is collected. (6) The amount of residual coagulant in the filtrate is measured by the same method as in (2) above. (7) It is estimated that the number of revolutions at which the same amount of residual flocculant as obtained in (2) above is obtained is a condition in which a strong shearing force is applied to the actual apparatus corresponding to the case where a homogenizer is used. (2) Evaluation of Flock Strength In Examples and Comparative Examples, the flock strength was evaluated by the following method. Place a hard vinyl chloride cylinder with an inner diameter of 50 mm on a Buchner funnel covered with a nylon filter cloth, pour flocculent sludge into the cylinder at a stretch, take up the sludge deposited on the nylon filter cloth, and squeeze it slowly. The strength is determined as follows. Strong: With one hand squeezing, the cake is immediately squeezed and can be squeezed to the end with the maximum grip. Middle: It is narrowed down by one hand squeezing, but at the maximum grip strength,
Cake penetrates between fingers. Weak: When squeezed slowly 4 to 5 times, water comes out and a solid cake is obtained, but when the grip strength is increased, it comes out between the fingers. Impossible: There is no cake left in the hands, almost falling out between the fingers. (3) Application test of conventional centrifugal dehydrator Among the performance evaluation tests, the desktop evaluation test applied to the conventional centrifugal dehydrator was performed by the following method. (1) 200 ml of sludge is collected in a 500 ml stainless steel container for a homogenizer. (2) The stainless steel container containing the sludge is placed in a homogenizer [NIHONSEIKIKAISHA, EXCEL
AUTO HOMOGENIZER ED-7 type], and when it becomes stable at a predetermined speed,
A predetermined amount of a 0.2% by weight aqueous solution of a flocculant is quickly added, followed by stirring for 5 seconds. (3) After measuring the particle size of the formed floc, the hard vinyl chloride cylinder having an inner diameter of 50 mm is placed in a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge is poured into the cylinder at a stretch, and after 20 seconds. Measure the gravity filtrate volume of. (4) Furthermore, regarding the sludge deposited on the nylon filter cloth,
The floc strength is measured, and a certain amount thereof is taken on a filter cloth for a belt press and pressed for 1 minute at a pressure of 0.5 kg / cm 2 to measure the water content of the dehydrated cake. (4) Application test of high-efficiency centrifugal dehydrator (1) 200 ml of sludge is collected in a 500 ml stainless steel container for a homogenizer. (2) The stainless steel container containing the sludge is placed in a homogenizer [NIHONSEIKIKAISHA, EXCEL
AUTO HOMOGENIZER ED-7 type], and when it becomes stable at a predetermined speed,
A predetermined amount of a 0.2% by weight aqueous solution of a flocculant is quickly added, followed by stirring for 5 seconds. (3) After measuring the particle size of the formed floc, the hard vinyl chloride cylinder having an inner diameter of 50 mm is placed in a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge is poured into the cylinder at a stretch, and after 20 seconds. Measure the gravity filtrate volume of. (4) Measure the floc strength of the sludge deposited on the nylon filter cloth, take the whole amount into a centrifuge tube,
Centrifuge at 3,000 G for 10 minutes.
The cake deposited on the bottom of the centrifuge tube is collected, mixed well, and then the centrifuge tube is filled with about 100 ml and centrifuged under the same conditions. After repeating this operation 5 times,
The dewatered cake on the bottom side of the centrifuge tube is scraped with a cutter and the moisture content is measured.

【0015】比較例1〜2及び実施例1〜3において
は、し尿処理場の消化汚泥について脱水処理を行った。 比較例1 現状では、し尿処理場の消化汚泥に対して、遠心脱水機
を用い、凝集剤B−2を210mg/リットル機内注入に
より添加して処理している。消化汚泥の性状は、pH6.
9、電気伝導率205mS/m、SS1.61重量%、
VSS/SS74.5重量%、繊維分/SS2.5重量%
である。現状において、脱水ケーキの含水率は82.0
〜83.0重量%、分離水のSS濃度200〜600mg
/リットル、SS回収率96〜98重量%である。現状
品B−2での脱水ろ液中の残留凝集剤量は、1.2mlN
/400PVSK/20mlろ液であり、机上評価で求め
たこれに相当する撹拌条件は、ホモジナイザー撹拌で
5,000rpm×5秒であった。消化汚泥200mlを容量
500mlのステンレス製容器に採取し、ホモジナイザー
[NIHOHSEIKI KAISHA製、EXCEL
AUTO HOMOGENIZER ED−7型]にセッ
トし、回転数が5,000rpmで安定になった時点で凝集
剤B−2の0.2重量%水溶液を凝集剤濃度が210mg
/リットルになるように添加したのち、5秒間撹拌し
た。次いで、ナイロンろ布を敷いたブフナーロートに内
径50mmの硬質塩化ビニル製円筒を置き、その中へ凝集
した汚泥を一気に注ぎ込み、20秒後の重力ろ液量を測
定したところ、112mlであった。ナイロンろ布上に堆
積した汚泥のフロック強度は、中〜強であった。ろ過後
の汚泥をベルトプレス用ろ布に取り、0.5kg/cm2の圧
力で1分間圧搾を行って脱水ケーキを得た。得られた脱
水ケーキの含水率は、82.0重量%であった。 比較例2 凝集剤B−2の代わりに凝集剤B−1を用い、比較例1
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は106ml、汚泥のフロック強度は中
〜強、脱水ケーキの含水率は82.1重量%であった。 実施例1 凝集剤B−2の代わりに凝集剤A−1を用い、比較例1
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は134ml、汚泥のフロック強度は
強、脱水ケーキの含水率は80.5重量%であった。 実施例2 凝集剤B−2の代わりに凝集剤A−2を用い、比較例1
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は145ml、汚泥のフロック強度は
強、脱水ケーキの含水率は80.0重量%であった。 実施例3 凝集剤B−2の代わりに凝集剤A−3を用い、比較例1
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は140ml、汚泥のフロック強度は
強、脱水ケーキの含水率は79.8重量%であった。さ
らに、凝集剤B−2の代わりに凝集剤A−3を用いて、
実機評価を行った。脱水ケーキの含水率は79.5〜8
0.3重量%、分離水のSS濃度34〜52mg/リット
ル、SS回収率99.8重量%以上であった。比較例1
〜2及び実施例1〜3の結果を、第3表に示す。
In Comparative Examples 1-2 and Examples 1-3, the digested sludge in the night soil treatment plant was subjected to a dehydration treatment. Comparative Example 1 At present, coagulant B-2 is added to digested sludge in a night soil treatment plant by using a centrifugal dehydrator by injecting 210 mg / liter into the machine. The digested sludge has a pH of 6.
9, electric conductivity 205 mS / m, SS 1.61% by weight,
VSS / SS 74.5% by weight, fiber content / SS 2.5% by weight
It is. At present, the water content of the dehydrated cake is 82.0.
~ 83.0 wt%, SS concentration of separation water 200 ~ 600mg
/ Liter, SS recovery rate of 96-98% by weight. The amount of residual flocculant in the dehydrated filtrate of the current product B-2 is 1.2 ml N
/ 400 PVSK / 20 ml filtrate, and the equivalent stirring condition determined by desktop evaluation was 5,000 rpm × 5 seconds with homogenizer stirring. 200 ml of digested sludge is collected in a stainless steel container having a capacity of 500 ml, and a homogenizer [EXCEL manufactured by NIHOHSEIKI KAISHA]
AUTO HOMOGENIZER ED-7 type], and when the number of revolutions became stable at 5,000 rpm, a 0.2% by weight aqueous solution of flocculant B-2 was added to a flocculant concentration of 210 mg.
/ Liter and then stirred for 5 seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge was poured into the cylinder at a stretch, and the amount of gravity filtrate after 20 seconds was measured to be 112 ml. The floc strength of the sludge deposited on the nylon filter cloth was medium to strong. The filtered sludge was collected on a filter cloth for a belt press and pressed for 1 minute at a pressure of 0.5 kg / cm 2 to obtain a dewatered cake. The water content of the obtained dehydrated cake was 82.0% by weight. Comparative Example 2 Comparative Example 1 using flocculant B-1 instead of flocculant B-2
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 2 seconds, the gravity filtrate volume was 106 ml, the floc strength of the sludge was medium to strong, and the water content of the dewatered cake was 82.1% by weight. Example 1 Comparative Example 1 using flocculant A-1 instead of flocculant B-2
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After seconds, the gravity filtrate volume was 134 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 80.5% by weight. Example 2 Comparative Example 1 using flocculant A-2 instead of flocculant B-2
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After s, the gravity filtrate volume was 145 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 80.0% by weight. Example 3 Comparative Example 1 using flocculant A-3 instead of flocculant B-2
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The amount of gravity filtrate after 140 seconds was 140 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 79.8% by weight. Further, using the flocculant A-3 instead of the flocculant B-2,
The actual machine was evaluated. The water content of the dehydrated cake is 79.5 to 8
0.3 wt%, SS concentration of separated water was 34 to 52 mg / liter, and SS recovery was 99.8 wt% or more. Comparative Example 1
Table 2 shows the results of Examples 1 to 3.

【0016】[0016]

【表3】 [Table 3]

【0017】第3表の机上評価の結果に見られるよう
に、0.2重量%水溶液の粘度と固有粘度の積を0.4重
量%水溶液の曳糸長で除した商が50未満であるカチオ
ン性有機高分子凝集剤を用いた比較例1〜2と、該商が
50〜200であるカチオン性有機高分子凝集剤を用い
た実施例1〜3を比較すると、実施例1〜3の方が、2
0秒後のろ液量が多く、フロック強度が強く、ケーキ含
水率が低く、効果的に脱水されていることが分かる。ま
た、比較例1と実施例3の実機運転の結果を比較する
と、実施例3の方が、ケーキの含水率と分離水のSS濃
度が低く、SS回収率が高く、実機運転においても、机
上評価に対応した良好な脱水効果が得られていることが
分かる。
As can be seen from the results of the desktop evaluation in Table 3, the quotient obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparing Comparative Examples 1-2 using the cationic organic polymer flocculant with Examples 1-3 using the cationic organic polymer flocculant whose quotient is 50-200, Better than 2
It can be seen that the amount of filtrate after 0 seconds is large, the floc strength is high, the water content of the cake is low, and the cake is effectively dehydrated. Also, comparing the results of the actual operation of Comparative Example 1 and Example 3, the water content of the cake and the SS concentration of the separated water are lower in Example 3, and the SS recovery rate is higher. It can be seen that a good dehydration effect corresponding to the evaluation was obtained.

【0018】比較例3〜6及び実施例4〜7において
は、下水処理場の混合汚泥について脱水処理を行った。 比較例3 現状では、下水処理場の混合汚泥に対して、遠心脱水機
を用い、凝集剤B−3を280mg/リットル機内注入に
より添加して処理している。混合汚泥の性状は、pH5.
4、電気伝導率355mS/m、SS2.70重量%、
VSS/SS75.7重量%、繊維分/SS10.8重量
%である。現状において、脱水ケーキの含水率は78.
0〜80.0重量%、分離水のSS濃度300〜1,50
0mg/リットル、SS回収率96〜98重量%である。
現状品B−3での脱水ろ液中の残留凝集剤量は、0.8
5mlN/400PVSK/20mlろ液であり、机上評価
で求めたこれに相当する撹拌条件は、ホモジナイザー撹
拌で10,000rpm×5秒であった。混合汚泥200ml
を容量500mlのステンレス製容器に採取し、ホモジナ
イザー[NIHOHSEIKI KAISHA製、EX
CEL AUTO HOMOGENIZER ED−7
型]にセットし、回転数が10,000rpmで安定になっ
た時点で凝集剤B−3の0.2重量%水溶液を凝集剤濃
度が280mg/リットルになるように添加したのち、5
秒間撹拌した。次いで、ナイロンろ布を敷いたブフナー
ロートに内径50mmの硬質塩化ビニル製円筒を置き、そ
の中へ凝集した汚泥を一気に注ぎ込み、20秒後の重力
ろ液量を測定したところ、88mlであった。ナイロンろ
布上に堆積した汚泥のフロック強度は、中であった。ろ
過後の汚泥をベルトプレス用ろ布に取り、0.5kg/cm2
の圧力で1分間圧搾を行って脱水ケーキを得た。得られ
た脱水ケーキの含水率は、79.7重量%であった。 比較例4 凝集剤B−3の代わりに凝集剤B−4を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は82ml、汚泥のフロック強度は弱〜
中、脱水ケーキの含水率は79.9重量%であった。 比較例5 凝集剤B−3の代わりに凝集剤B−5を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は79ml、汚泥のフロック強度は弱〜
中、脱水ケーキの含水率は80.0重量%であった。 比較例6 凝集剤B−3の代わりに凝集剤B−6を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は76ml、汚泥のフロック強度は弱〜
中、脱水ケーキの含水率は80.1重量%であった。 実施例4 凝集剤B−3の代わりに凝集剤A−4を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は112ml、汚泥のフロック強度は中
〜強、脱水ケーキの含水率は77.6重量%であった。 実施例5 凝集剤B−3の代わりに凝集剤A−5を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は115ml、汚泥のフロック強度は
強、脱水ケーキの含水率は76.5重量%であった。実
施例6 凝集剤B−3の代わりに凝集剤A−6を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は128ml、汚泥のフロック強度は
強、脱水ケーキの含水率は76.4重量%であった。 実施例7 凝集剤B−3の代わりに凝集剤A−7を用い、比較例3
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は130ml、汚泥のフロック強度は
強、脱水ケーキの含水率は76.4重量%であった。さ
らに、凝集剤B−3の代わりに凝集剤A−7を用いて、
実機評価を行った。脱水ケーキの含水率は75.8〜7
7.0重量%、分離水のSS濃度114〜342mg/リ
ットル、SS回収率99.9重量%以上であった。比較
例3〜6及び実施例4〜7の結果を、第4表に示す。
In Comparative Examples 3 to 6 and Examples 4 to 7, dewatering was performed on the mixed sludge in the sewage treatment plant. Comparative Example 3 At present, coagulant B-3 is added to mixed sludge in a sewage treatment plant using a centrifugal dehydrator by injecting into a 280 mg / liter machine. The mixed sludge has a pH of 5.
4, electric conductivity 355 mS / m, SS 2.70% by weight,
VSS / SS 75.7% by weight, fiber content / SS 10.8% by weight. At present, the water content of the dewatered cake is 78.
0 to 80.0% by weight, SS concentration of separated water 300 to 1,50
0 mg / l, SS recovery 96-98% by weight.
The amount of residual flocculant in the dehydrated filtrate of the current product B-3 is 0.8.
The stirring conditions were 5 ml N / 400 PVSK / 20 ml filtrate, and the equivalent stirring conditions determined by desktop evaluation were 10,000 rpm × 5 seconds with homogenizer stirring. 200ml of mixed sludge
Was collected in a stainless steel container having a capacity of 500 ml, and a homogenizer [manufactured by NIHOHSEIKI KAISHA, EX
CEL AUTO HOMOGENIZER ED-7
And a 0.2% by weight aqueous solution of flocculant B-3 is added when the rotational speed becomes stable at 10,000 rpm so that the flocculant concentration becomes 280 mg / l.
Stirred for seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge was poured into the cylinder at a stretch, and the amount of gravity filtrate after 20 seconds was measured to be 88 ml. The floc strength of the sludge deposited on the nylon filter cloth was medium. The sludge after filtration is taken on a filter cloth for a belt press, and 0.5 kg / cm 2
At a pressure of 1 minute to obtain a dehydrated cake. The water content of the obtained dehydrated cake was 79.7% by weight. Comparative Example 4 Comparative Example 3 using flocculant B-4 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 82 seconds is 82ml, and the floc strength of sludge is weak
The water content of the dehydrated cake was 79.9% by weight. Comparative Example 5 Comparative Example 3 was performed using flocculant B-5 instead of flocculant B-3.
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 79 seconds is 79 ml, and the floc strength of sludge is weak
The water content of the dehydrated cake was 80.0% by weight. Comparative Example 6 Comparative Example 3 was performed using the flocculant B-6 instead of the flocculant B-3.
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 76 seconds, the gravity filtrate volume is 76 ml, and the floc strength of the sludge is low.
The water content of the dehydrated cake was 80.1% by weight. Example 4 Comparative Example 3 using flocculant A-4 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 2 seconds, the gravity filtrate volume was 112 ml, the floc strength of the sludge was medium to strong, and the water content of the dewatered cake was 77.6% by weight. Example 5 Comparative Example 3 using flocculant A-5 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The amount of gravity filtrate after 115 seconds was 115 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 76.5% by weight. Example 6 Comparative Example 3 using flocculant A-6 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 128 seconds was 128 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 76.4% by weight. Example 7 Comparative Example 3 using flocculant A-7 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The amount of gravity filtrate after 130 seconds was 130 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 76.4% by weight. Further, using a flocculant A-7 instead of the flocculant B-3,
The actual machine was evaluated. The water content of the dehydrated cake is 75.8-7
7.0% by weight, SS concentration of separated water was 114 to 342 mg / L, and SS recovery was 99.9% by weight or more. Table 4 shows the results of Comparative Examples 3 to 6 and Examples 4 to 7.

【0019】[0019]

【表4】 [Table 4]

【0020】第4表の机上評価の結果に見られるよう
に、0.2重量%水溶液の粘度と固有粘度の積を0.4重
量%水溶液の曳糸長で除した商が50未満であるカチオ
ン性有機高分子凝集剤を用いた比較例3〜6と、該商が
50〜200であるカチオン性有機高分子凝集剤を用い
た実施例4〜7を比較すると、実施例4〜7の方が、2
0秒後のろ液量が多く、フロック強度が強く、ケーキの
含水率が低く、効果的に脱水されていることが分かる。
また、比較例3と実施例7の実機運転の結果を比較する
と、実施例7の方が、ケーキの含水率と分離水のSS濃
度が低く、SS回収率が高く、実機運転においても、机
上評価に対応した良好な脱水効果が得られていることが
分かる。
As can be seen from the results of the desktop evaluation in Table 4, the quotient obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparison of Comparative Examples 3 to 6 using a cationic organic polymer flocculant with Examples 4 to 7 using a cationic organic polymer flocculant whose quotient is 50 to 200 shows that Examples 4 to 7 Better than 2
It can be seen that the filtrate amount after 0 seconds is large, the floc strength is strong, the water content of the cake is low, and the cake is effectively dehydrated.
Also, comparing the results of the actual operation of Comparative Example 3 and Example 7, the water content of the cake and the SS concentration of the separated water are lower in Example 7, and the SS recovery rate is higher. It can be seen that a good dehydration effect corresponding to the evaluation was obtained.

【0021】比較例7〜12及び実施例8〜14におい
ては、下水処理場の混合汚泥について脱水処理を行っ
た。 比較例7 現状では、下水処理場の混合汚泥に対して、遠心脱水機
を用い、凝集剤B−3を230mg/リットル機内注入に
より添加して処理している。混合汚泥の性状は、pH4.
8、電気伝導率436mS/m、SS4.18重量%、
VSS/SS77.2重量%、繊維分/SS7.4重量%
である。現状において、脱水ケーキの含水率は76.0
〜77.0重量%、分離水のSS濃度200〜500mg
/リットル、SS回収率99.9重量%以上である。現
状品B−3での脱水ろ液中の残留凝集剤量は、0.7ml
N/400PVSK/20mlろ液であり、机上評価で求
めたこれに相当する撹拌条件は、ホモジナイザー撹拌で
10,000rpm×5秒であった。混合汚泥200mlを容
量500mlのステンレス製容器に採取し、ホモジナイザ
ー[NIHOHSEIKI KAISHA製、EXCE
L AUTO HOMOGENIZER ED−7型]に
セットし、回転数が10,000rpmで安定になった時点
で凝集剤B−3の0.2重量%水溶液を凝集剤濃度が2
30mg/リットルになるように添加したのち、5秒間撹
拌した。次いで、ナイロンろ布を敷いたブフナーロート
に内径50mmの硬質塩化ビニル製円筒を置き、その中へ
凝集した汚泥を一気に注ぎ込み、20秒後の重力ろ液量
を測定したところ、19mlであった。ナイロンろ布上に
堆積した汚泥のフロック強度は、弱〜中であった。ろ過
後の汚泥をベルトプレス用ろ布に取り、0.5kg/cm2
圧力で1分間圧搾を行って脱水ケーキを得た。得られた
脱水ケーキの含水率は、76.3重量%であった。 比較例8 凝集剤B−3の代わりに凝集剤B−1を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は22ml、汚泥のフロック強度は中、
脱水ケーキの含水率は76.8重量%であった。 比較例9 凝集剤B−3の代わりに凝集剤B−2を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は21ml、汚泥のフロック強度は中、
脱水ケーキの含水率は76.5重量%であった。 比較例10 凝集剤B−3の代わりに凝集剤B−4を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は18ml、汚泥のフロック強度は弱、
脱水ケーキの含水率は76.0重量%であった。 比較例11 凝集剤B−3の代わりに凝集剤B−5を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は18ml、汚泥のフロック強度は弱、
脱水ケーキの含水率は76.1重量%であった。 比較例12 凝集剤B−3の代わりに凝集剤B−6を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は17ml、汚泥のフロック強度は弱、
脱水ケーキの含水率は76.0重量%であった。 実施例8 凝集剤B−3の代わりに凝集剤A−1を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は41ml、汚泥のフロック強度はやや
強、脱水ケーキの含水率は75.4重量%であった。 実施例9 凝集剤B−3の代わりに凝集剤A−2を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は42ml、汚泥のフロック強度はやや
強、脱水ケーキの含水率は75.1重量%であった。 実施例10 凝集剤B−3の代わりに凝集剤A−3を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は42ml、汚泥のフロック強度は強、
脱水ケーキの含水率は74.1重量%であった。 実施例11 凝集剤B−3の代わりに凝集剤A−4を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は44ml、汚泥のフロック強度は強、
脱水ケーキの含水率は73.7重量%であった。 実施例12 凝集剤B−3の代わりに凝集剤A−5を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は41ml、汚泥のフロック強度は強、
脱水ケーキの含水率は73.4重量%であった。さら
に、凝集剤B−3の代わりに凝集剤A−5を用いて、実
機評価を行った。脱水ケーキの含水率は73.2〜75.
1重量%、分離水のSS濃度97〜297mg/リット
ル、SS回収率99.9重量%以上であった。 実施例13 凝集剤B−3の代わりに凝集剤A−6を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は44ml、汚泥のフロック強度は強、
脱水ケーキの含水率は73.2重量%であった。 実施例14 凝集剤B−3の代わりに凝集剤A−7を用い、比較例7
と同様にして凝集ろ過試験及び圧搾試験を行った。20
秒後の重力ろ液量は46ml、汚泥のフロック強度は強、
脱水ケーキの含水率は73.1重量%であった。比較例
7〜12及び実施例8〜14の結果を、第5表に示す。
In Comparative Examples 7 to 12 and Examples 8 to 14, dewatering treatment was performed on the mixed sludge in the sewage treatment plant. Comparative Example 7 At present, coagulant B-3 is added to a mixed sludge in a sewage treatment plant by using a centrifugal dehydrator by injecting 230 mg / liter into the machine. The mixed sludge has a pH of 4.
8, electric conductivity 436 mS / m, SS 4.18% by weight,
VSS / SS 77.2% by weight, fiber content / SS 7.4% by weight
It is. At present, the water content of the dewatered cake is 76.0.
~ 77.0% by weight, SS concentration of separated water 200 ~ 500mg
/ Liter, SS recovery rate of 99.9% by weight or more. The amount of residual flocculant in the dehydrated filtrate of the current product B-3 is 0.7 ml.
The N / 400 PVSK / 20 ml filtrate was used, and the equivalent stirring conditions determined by desktop evaluation were 10,000 rpm × 5 seconds with homogenizer stirring. 200 ml of mixed sludge was collected in a stainless steel container having a capacity of 500 ml, and a homogenizer [manufactured by NIHOHSEIKI KAISHA, EXCE
L AUTOMOGENIZER ED-7 type], and when the rotation speed became stable at 10,000 rpm, a 0.2% by weight aqueous solution of the flocculant B-3 was added to the flocculant at a concentration of 2%.
After adding to 30 mg / liter, the mixture was stirred for 5 seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge was poured into the cylinder at a stretch, and the amount of gravity filtrate after 20 seconds was measured to be 19 ml. The floc strength of the sludge deposited on the nylon filter cloth was low to medium. The filtered sludge was collected on a filter cloth for a belt press and pressed for 1 minute at a pressure of 0.5 kg / cm 2 to obtain a dewatered cake. The water content of the obtained dehydrated cake was 76.3% by weight. Comparative Example 8 Comparative Example 7 was conducted using the flocculant B-1 instead of the flocculant B-3.
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
Seconds, the gravity filtrate volume is 22ml, the sludge floc strength is medium,
The water content of the dehydrated cake was 76.8% by weight. Comparative Example 9 Comparative Example 7 was conducted using the flocculant B-2 instead of the flocculant B-3.
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 21 seconds, the gravity filtrate volume is 21 ml, and the floc strength of the sludge is medium.
The water content of the dehydrated cake was 76.5% by weight. Comparative Example 10 Comparative Example 7 using flocculant B-4 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 18 seconds, the gravity filtrate volume is 18 ml, the floc strength of the sludge is weak,
The water content of the dehydrated cake was 76.0% by weight. Comparative Example 11 Comparative Example 7 was carried out using flocculant B-5 instead of flocculant B-3.
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 18 seconds, the gravity filtrate volume is 18 ml, the floc strength of the sludge is weak,
The water content of the dehydrated cake was 76.1% by weight. Comparative Example 12 Comparative Example 7 was conducted using a flocculant B-6 instead of the flocculant B-3.
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 17 seconds is 17 ml, the floc strength of sludge is weak,
The water content of the dehydrated cake was 76.0% by weight. Example 8 Comparative Example 7 using flocculant A-1 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 41 seconds was 41 ml, the floc strength of the sludge was slightly strong, and the water content of the dewatered cake was 75.4% by weight. Example 9 Comparative Example 7 using flocculant A-2 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
After 2 seconds, the gravity filtrate volume was 42 ml, the floc strength of the sludge was slightly strong, and the water content of the dewatered cake was 75.1% by weight. Example 10 Comparative Example 7 using flocculant A-3 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 42 seconds is 42 ml, the floc strength of the sludge is strong,
The water content of the dehydrated cake was 74.1% by weight. Example 11 Comparative Example 7 using flocculant A-4 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 44 seconds is 44 ml, the floc strength of the sludge is strong,
The water content of the dehydrated cake was 73.7% by weight. Example 12 Comparative Example 7 using flocculant A-5 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 41 seconds is 41 ml, the floc strength of the sludge is strong,
The water content of the dehydrated cake was 73.4% by weight. Furthermore, actual machine evaluation was performed using flocculant A-5 instead of flocculant B-3. The water content of the dehydrated cake is 73.2 to 75.
The SS concentration of separated water was 97 to 297 mg / liter, and the SS recovery rate was 99.9% by weight or more. Example 13 Comparative Example 7 using flocculant A-6 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 44 seconds is 44 ml, the floc strength of the sludge is strong,
The water content of the dehydrated cake was 73.2% by weight. Example 14 Comparative Example 7 using flocculant A-7 instead of flocculant B-3
A coagulation filtration test and a squeeze test were performed in the same manner as described above. 20
The gravity filtrate volume after 46 seconds is 46 ml, the floc strength of sludge is strong,
The water content of the dehydrated cake was 73.1% by weight. Table 5 shows the results of Comparative Examples 7 to 12 and Examples 8 to 14.

【0022】[0022]

【表5】 [Table 5]

【0023】第5表の机上評価の結果に見られるよう
に、0.2重量%水溶液の粘度と固有粘度の積を0.4重
量%水溶液の曳糸長で除した商が50未満であるカチオ
ン性有機高分子凝集剤を用いた比較例7〜12と、該商
が50〜200であるカチオン性有機高分子凝集剤を用
いた実施例8〜14を比較すると、実施例8〜14の方
が、20秒後のろ液量が多く、フロック強度が強く、ケ
ーキの含水率が低く、効果的に脱水されていることが分
かる。また、比較例7と実施例12の実機運転の結果を
比較すると、実施例12の方が、ケーキの含水率と分離
水のSS濃度が低く、SS回収率が高く、実機運転にお
いても、机上評価に対応した良好な脱水効果が得られて
いることが分かる。
As can be seen from the results of the desktop evaluation in Table 5, the quotient obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparing Comparative Examples 7 to 12 using the cationic organic polymer flocculant with Examples 8 to 14 using the cationic organic polymer flocculant whose quotient is 50 to 200, the results of Examples 8 to 14 One can see that the amount of filtrate after 20 seconds is large, the floc strength is high, the water content of the cake is low, and the cake is effectively dehydrated. Also, comparing the results of the actual operation of Comparative Example 7 and Example 12, the water content of the cake and the SS concentration of the separated water were lower and the SS recovery rate was higher in Example 12, and even in the actual operation, It can be seen that a good dehydration effect corresponding to the evaluation was obtained.

【0024】比較例13〜14及び実施例15〜17に
おいては、し尿処理場の消化汚泥について、従来型遠心
脱水機に適用する机上評価試験を行った。 比較例13 消化汚泥の性状は、pH6.9、電気伝導率205mS/
m、SS1.61重量%、VSS/SS74.5重量%、
繊維分/SS2.5重量% である。消化汚泥200mlを
容量500mlのステンレス製容器に採取し、ホモジナイ
ザー[NIHOHSEIKI KAISHA製、EXC
EL AUTO HOMOGENIZER ED−7型]
にセットし、回転数が5,000rpmで安定になった時点
で凝集剤B−1の0.2重量%水溶液を凝集剤濃度が2
10mg/リットルになるように添加したのち、5秒間撹
拌した。次いで、ナイロンろ布を敷いたブフナーロート
に内径50mmの硬質塩化ビニル製円筒を置き、その中へ
凝集した汚泥を一気に注ぎ込み、20秒後の重力ろ液量
を測定したところ、86mlであった。ナイロンろ布上に
堆積した汚泥のフロック強度は、弱であった。ろ過後の
汚泥をベルトプレス用ろ布に取り、0.5kg/cm2の圧力
で1分間圧搾を行って脱水ケーキを得た。得られた脱水
ケーキの含水率は、82.7重量%であった。 比較例14 凝集剤B−1の代わりに凝集剤B−2を用い、比較例1
3と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は96ml、汚泥のフロック強度は弱
〜中、脱水ケーキの含水率は82.2重量%であった。 実施例15 凝集剤B−1の代わりに凝集剤A−1を用い、比較例1
3と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は120ml、汚泥のフロック強度は
中〜強、脱水ケーキの含水率は81.5重量%であっ
た。 実施例16 凝集剤B−1の代わりに凝集剤A−2を用い、比較例1
3と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は125ml、汚泥のフロック強度は
強、脱水ケーキの含水率は81.2重量%であった。 実施例17 凝集剤B−1の代わりに凝集剤A−3を用い、比較例1
3と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は110ml、汚泥のフロック強度は
強、脱水ケーキの含水率は81.0重量%であった。比
較例13〜14及び実施例15〜17の結果を、第6表
に示す。
In Comparative Examples 13 to 14 and Examples 15 to 17, a desktop evaluation test applied to a conventional centrifugal dehydrator was performed on digested sludge in a human waste treatment plant. Comparative Example 13 The properties of digested sludge were pH 6.9, electric conductivity 205 mS /
m, SS 1.61% by weight, VSS / SS 74.5% by weight,
Fiber content / SS 2.5% by weight. 200 ml of digested sludge was collected in a stainless steel container having a capacity of 500 ml, and a homogenizer [EXC manufactured by NIHOHSEIKI KAISHA, EXC
EL AUTO HOMOGENIZER ED-7 type]
And when the rotation speed becomes stable at 5,000 rpm, a 0.2% by weight aqueous solution of coagulant B-1 is added to the coagulant at a concentration of 2%.
After adding to 10 mg / liter, the mixture was stirred for 5 seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge was poured into the cylinder at a stretch, and the amount of gravity filtrate after 20 seconds was measured to be 86 ml. The floc strength of the sludge deposited on the nylon filter cloth was low. The filtered sludge was collected on a filter cloth for a belt press and pressed for 1 minute at a pressure of 0.5 kg / cm 2 to obtain a dewatered cake. The water content of the obtained dehydrated cake was 82.7% by weight. Comparative Example 14 Comparative Example 1 using flocculant B-2 instead of flocculant B-1
A coagulation filtration test and a compression test were performed in the same manner as in Example 3. 2
After 0 seconds, the gravity filtrate volume was 96 ml, the floc strength of the sludge was low to medium, and the water content of the dehydrated cake was 82.2% by weight. Example 15 Comparative Example 1 using flocculant A-1 instead of flocculant B-1
A coagulation filtration test and a compression test were performed in the same manner as in Example 3. 2
After 0 seconds, the gravity filtrate volume was 120 ml, the floc strength of the sludge was medium to strong, and the water content of the dewatered cake was 81.5% by weight. Example 16 Comparative Example 1 using flocculant A-2 instead of flocculant B-1
A coagulation filtration test and a compression test were performed in the same manner as in Example 3. 2
After 0 second, the gravity filtrate volume was 125 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 81.2% by weight. Example 17 Comparative Example 1 using flocculant A-3 instead of flocculant B-1
A coagulation filtration test and a compression test were performed in the same manner as in Example 3. 2
After 0 seconds, the gravity filtrate volume was 110 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 81.0% by weight. Table 6 shows the results of Comparative Examples 13 to 14 and Examples 15 to 17.

【0025】[0025]

【表6】 [Table 6]

【0026】第6表の結果に見られるように、0.2重
量%水溶液の粘度と固有粘度の積を0.4重量%水溶液
の曳糸長で除した商が50未満であるカチオン性有機高
分子凝集剤を用いた比較例13〜14と、該商が50〜
200であるカチオン性有機高分子凝集剤を用いた実施
例15〜17を比較すると、実施例15〜17の方が、
20秒後のろ液量が多く、フロック強度が強く、ケーキ
含水率が低く、効果的に脱水されていることが分かる。
As can be seen from the results shown in Table 6, the cationic organic compound whose quotient obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparative Examples 13 and 14 using a polymer flocculant, and the quotient is 50 to
Comparing Examples 15 to 17 using the cationic organic polymer flocculant of 200, Examples 15 to 17 are
It can be seen that the amount of filtrate after 20 seconds is large, the flock strength is strong, the water content of the cake is low, and the cake is effectively dehydrated.

【0027】比較例15〜16及び実施例18〜20に
おいては、比較例13〜14及び実施例15〜17に用
いたし尿処理場の消化汚泥について、高効率型遠心脱水
機に適用する机上評価試験を行った。 比較例15 消化汚泥200mlを容量500mlのステンレス製容器に
採取し、ホモジナイザー[NIHOHSEIKI KA
ISHA製、EXCEL AUTO HOMOGENIZ
ER ED−7型]にセットし、回転数が5,000rpm
で安定になった時点で凝集剤B−1の0.2重量%水溶
液を凝集剤濃度が210mg/リットルになるように添加
したのち、5秒間撹拌した。次いで、ナイロンろ布を敷
いたブフナーロートに内径50mmの硬質塩化ビニル製円
筒を置き、その中へ凝集した汚泥を一気に注ぎ込み、2
0秒後の重力ろ液量を測定したところ、86mlであっ
た。ナイロンろ布上に堆積した汚泥のフロック強度は、
弱であった。ろ過後の汚泥を遠沈管に取り、3,000
Gの遠心力で10分間遠心分離操作を行い、遠沈管の底
に堆積したケーキを採取し、よく混合したのち、さらに
遠沈管に約100ml充填して同様の条件で遠心分離操作
を行った。この操作を5回繰り返したのち、遠沈管底部
側の脱水ケーキをカッターで掻き取り、含水率を測定し
たところ、81.0重量%であった。 比較例16 凝集剤B−1の代わりに凝集剤B−2を用い、比較例1
5と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は96ml、汚泥のフロック強
度は弱〜中、脱水ケーキの含水率は80.9重量%であ
った。 実施例18 凝集剤B−1の代わりに凝集剤A−1を用い、比較例1
5と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は120ml、汚泥のフロック
強度は中〜強、脱水ケーキの含水率は79.6重量%で
あった。 実施例19 凝集剤B−1の代わりに凝集剤A−2を用い、比較例1
5と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は125ml、汚泥のフロック
強度は強、脱水ケーキの含水率は78.3重量%であっ
た。 実施例20 凝集剤B−1の代わりに凝集剤A−3を用い、比較例1
5と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は110ml、汚泥のフロック
強度は強、脱水ケーキの含水率は78.1重量%であっ
た。比較例15〜16及び実施例18〜20の結果を、
第7表に示す。
In Comparative Examples 15 to 16 and Examples 18 to 20, the digested sludge from the urine treatment plant used in Comparative Examples 13 to 14 and Examples 15 to 17 was evaluated on a desk applied to a high-efficiency centrifugal dehydrator. The test was performed. Comparative Example 15 200 ml of digested sludge was collected in a stainless steel container having a capacity of 500 ml, and the homogenizer [NIHOHSEIKI KA] was used.
EXCEL AUTO HOMOGENIZ made by ISHA
ER ED-7 type] at 5,000 rpm
When it became stable, a 0.2% by weight aqueous solution of flocculant B-1 was added so that the flocculant concentration became 210 mg / l, and the mixture was stirred for 5 seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the coagulated sludge was poured into the cylinder at once, and
When the gravity filtrate amount after 0 seconds was measured, it was 86 ml. The floc strength of the sludge deposited on the nylon filter cloth is
It was weak. Collect the sludge after filtration in a centrifuge tube, and
Centrifugation was performed for 10 minutes at the centrifugal force of G, the cake deposited on the bottom of the centrifuge tube was collected, mixed well, and then approximately 100 ml was further filled into the centrifuge tube and centrifuged under the same conditions. After repeating this operation five times, the dewatered cake on the bottom of the centrifuge tube was scraped off with a cutter, and the water content was measured. As a result, it was 81.0% by weight. Comparative Example 16 Comparative Example 1 using flocculant B-2 instead of flocculant B-1
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 5. After 20 seconds, the gravity filtrate volume was 96 ml, the floc strength of the sludge was low to medium, and the water content of the dewatered cake was 80.9% by weight. Example 18 Comparative Example 1 using flocculant A-1 instead of flocculant B-1
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 5. After 20 seconds, the gravity filtrate volume was 120 ml, the floc strength of the sludge was medium to strong, and the water content of the dewatered cake was 79.6% by weight. Example 19 Comparative Example 1 using flocculant A-2 instead of flocculant B-1
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 5. After 20 seconds, the gravity filtrate volume was 125 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 78.3% by weight. Example 20 Comparative Example 1 using flocculant A-3 instead of flocculant B-1
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 5. After 20 seconds, the gravity filtrate volume was 110 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 78.1% by weight. The results of Comparative Examples 15 to 16 and Examples 18 to 20,
It is shown in Table 7.

【0028】[0028]

【表7】 [Table 7]

【0029】第7表の結果に見られるように、0.2重
量%水溶液の粘度と固有粘度の積を0.4重量%水溶液
の曳糸長で除した商が50未満であるカチオン性有機高
分子凝集剤を用いた比較例15〜16と、該商が50〜
200であるカチオン性有機高分子凝集剤を用いた実施
例18〜20を比較すると、実施例18〜20の方がケ
ーキ含水率が低く、高効率型遠心脱水機に適用される条
件においても、効果的に脱水されていることが分かる。
As can be seen from the results shown in Table 7, the cationic organic compound whose quotient obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparative Examples 15 to 16 using a polymer flocculant, and the quotient is 50 to
Comparing Examples 18 to 20 using the cationic organic polymer flocculant that is 200, Examples 18 to 20 have a lower cake moisture content, even under the conditions applied to a high-efficiency centrifugal dehydrator. It turns out that it is dehydrated effectively.

【0030】比較例17〜18及び実施例21〜23に
おいては、下水処理場の混合汚泥について、従来型遠心
脱水機に適用する机上評価試験を行った。 比較例17 混合汚泥の性状は、pH4.8、電気伝導率436mS/
m、SS4.18重量%、VSS/SS77.2重量%、
繊維分/SS7.4重量% である。消化汚泥200mlを
容量500mlのステンレス製容器に採取し、ホモジナイ
ザー[NIHOHSEIKI KAISHA製、EXC
EL AUTO HOMOGENIZER ED−7型]
にセットし、回転数が5,000rpmで安定になった時点
で凝集剤B−4の0.2重量%水溶液を凝集剤濃度が2
30mg/リットルになるように添加したのち、5秒間撹
拌した。次いで、ナイロンろ布を敷いたブフナーロート
に内径50mmの硬質塩化ビニル製円筒を置き、その中へ
凝集した汚泥を一気に注ぎ込み、20秒後の重力ろ液量
を測定したところ、19mlであった。ナイロンろ布上に
堆積した汚泥のフロック強度は、弱〜中であった。ろ過
後の汚泥をベルトプレス用ろ布に取り、0.5kg/cm2
圧力で1分間圧搾を行って脱水ケーキを得た。得られた
脱水ケーキの含水率は、76.3重量%であった。 比較例18 凝集剤B−4の代わりに凝集剤B−5を用い、比較例1
7と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は18ml、汚泥のフロック強度は
弱、脱水ケーキの含水率は76.0重量%であった。 実施例21 凝集剤B−4の代わりに凝集剤A−4を用い、比較例1
7と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は41ml、汚泥のフロック強度は
強、脱水ケーキの含水率は73.4重量%であった。 実施例22 凝集剤B−4の代わりに凝集剤A−5を用い、比較例1
7と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は44ml、汚泥のフロック強度は
強、脱水ケーキの含水率は73.2重量%であった。 実施例23 凝集剤B−4の代わりに凝集剤A−6を用い、比較例1
7と同様にして凝集ろ過試験及び圧搾試験を行った。2
0秒後の重力ろ液量は46ml、汚泥のフロック強度は
強、脱水ケーキの含水率は73.1重量%であった。比
較例17〜18及び実施例21〜23の結果を、第8表
に示す。
In Comparative Examples 17 to 18 and Examples 21 to 23, an on-board evaluation test applied to a conventional centrifugal dehydrator was performed on mixed sludge in a sewage treatment plant. Comparative Example 17 The mixed sludge had a pH of 4.8 and an electrical conductivity of 436 mS /
m, SS 4.18% by weight, VSS / SS 77.2% by weight,
Fiber content / SS 7.4% by weight. 200 ml of digested sludge was collected in a stainless steel container having a capacity of 500 ml, and a homogenizer [EXC manufactured by NIHOHSEIKI KAISHA, EXC
EL AUTO HOMOGENIZER ED-7 type]
When the rotational speed becomes stable at 5,000 rpm, a 0.2% by weight aqueous solution of coagulant B-4 is added to the coagulant at a concentration of 2%.
After adding to 30 mg / liter, the mixture was stirred for 5 seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the flocculated sludge was poured into the cylinder at a stretch, and the amount of gravity filtrate after 20 seconds was measured to be 19 ml. The floc strength of the sludge deposited on the nylon filter cloth was low to medium. The filtered sludge was collected on a filter cloth for a belt press and pressed for 1 minute at a pressure of 0.5 kg / cm 2 to obtain a dewatered cake. The water content of the obtained dehydrated cake was 76.3% by weight. Comparative Example 18 Comparative Example 1 using flocculant B-5 instead of flocculant B-4
A coagulation filtration test and a compression test were performed in the same manner as in Example 7. 2
After 0 seconds, the gravity filtrate volume was 18 ml, the floc strength of the sludge was weak, and the water content of the dewatered cake was 76.0% by weight. Example 21 Comparative Example 1 using flocculant A-4 instead of flocculant B-4
A coagulation filtration test and a compression test were performed in the same manner as in Example 7. 2
After 0 second, the gravity filtrate volume was 41 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 73.4% by weight. Example 22 Comparative Example 1 using flocculant A-5 instead of flocculant B-4
A coagulation filtration test and a compression test were performed in the same manner as in Example 7. 2
After 0 seconds, the gravity filtrate volume was 44 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 73.2% by weight. Example 23 Comparative Example 1 using flocculant A-6 instead of flocculant B-4
A coagulation filtration test and a compression test were performed in the same manner as in Example 7. 2
After 0 seconds, the gravity filtrate volume was 46 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 73.1% by weight. Table 8 shows the results of Comparative Examples 17 to 18 and Examples 21 to 23.

【0031】[0031]

【表8】 [Table 8]

【0032】第8表の結果に見られるように、0.2重
量%水溶液の粘度と固有粘度の積を0.4重量%水溶液
の曳糸長で除した商が50未満であるカチオン性有機高
分子凝集剤を用いた比較例17〜18と、該商が50〜
200であるカチオン性有機高分子凝集剤を用いた実施
例21〜23を比較すると、実施例21〜23の方が、
20秒後のろ液量が多く、フロック強度が強く、ケーキ
含水率が低く、効果的に脱水されていることが分かる。
As can be seen from the results in Table 8, the cationic organic compound having a quotient of less than 50 obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparative Examples 17 to 18 using a polymer flocculant and the quotient of 50 to
Comparing Examples 21 to 23 using the cationic organic polymer flocculant of 200, Examples 21 to 23 are
It can be seen that the amount of filtrate after 20 seconds is large, the flock strength is strong, the water content of the cake is low, and the cake is effectively dehydrated.

【0033】比較例19〜20及び実施例24〜26に
おいては、比較例17〜18及び実施例21〜23に用
いた下水処理場の混合汚泥について、高効率型遠心脱水
機に適用する机上評価試験を行った。 比較例19 混合汚泥200mlを容量500mlのステンレス製容器に
採取し、ホモジナイザー[NIHOHSEIKI KA
ISHA製、EXCEL AUTO HOMOGENIZ
ER ED−7型]にセットし、回転数が5,000rpm
で安定になった時点で凝集剤B−4の0.2重量%水溶
液を凝集剤濃度が230mg/リットルになるように添加
したのち、5秒間撹拌した。次いで、ナイロンろ布を敷
いたブフナーロートに内径50mmの硬質塩化ビニル製円
筒を置き、その中へ凝集した汚泥を一気に注ぎ込み、2
0秒後の重力ろ液量を測定したところ、19mlであっ
た。ナイロンろ布上に堆積した汚泥のフロック強度は、
弱〜中であった。ろ過後の汚泥を遠沈管に取り、3,0
00Gの遠心力で10分間遠心分離操作を行い、遠沈管
の底に堆積したケーキを採取し、よく混合したのち、さ
らに遠沈管に約100ml充填して同様の条件で遠心分離
操作を行った。この操作を5回繰り返したのち、遠沈管
底部側の脱水ケーキをカッターで掻き取り、含水率を測
定したところ、74.4重量%であった。 比較例20 凝集剤B−4の代わりに凝集剤B−5を用い、比較例1
9と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は18ml、汚泥のフロック強
度は弱、脱水ケーキの含水率は73.8重量%であっ
た。 実施例24 凝集剤B−4の代わりに凝集剤A−4を用い、比較例1
9と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は41ml、汚泥のフロック強
度は強、脱水ケーキの含水率は70.6重量%であっ
た。 実施例25 凝集剤B−4の代わりに凝集剤A−5を用い、比較例1
9と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は44ml、汚泥のフロック強
度は強、脱水ケーキの含水率は70.2重量%であっ
た。 実施例26 凝集剤B−4の代わりに凝集剤A−6を用い、比較例1
9と同様にして凝集ろ過試験及び遠心分離試験を行っ
た。20秒後の重力ろ液量は46ml、汚泥のフロック強
度は強、脱水ケーキの含水率は70.3重量%であっ
た。比較例19〜20及び実施例24〜26の結果を、
第9表に示す。
In Comparative Examples 19 to 20 and Examples 24 to 26, the mixed sludge of the sewage treatment plant used in Comparative Examples 17 to 18 and Examples 21 to 23 was evaluated on a desk applied to a high-efficiency centrifugal dewatering machine. The test was performed. Comparative Example 19 200 ml of mixed sludge was collected in a stainless steel container having a capacity of 500 ml, and the homogenizer [NIHOHSEIKI KA] was used.
EXCEL AUTO HOMOGENIZ made by ISHA
ER ED-7 type] at 5,000 rpm
When the mixture became stable in step (2), a 0.2% by weight aqueous solution of flocculant B-4 was added so that the flocculant concentration became 230 mg / l, and the mixture was stirred for 5 seconds. Next, a hard vinyl chloride cylinder having an inner diameter of 50 mm was placed on a Buchner funnel covered with a nylon filter cloth, and the coagulated sludge was poured into the cylinder at once, and
The gravity filtrate amount after 0 seconds was measured and found to be 19 ml. The floc strength of the sludge deposited on the nylon filter cloth is
Low to medium. Collect the sludge after filtration in a centrifuge tube,
Centrifugation was performed for 10 minutes at a centrifugal force of 00G, and the cake deposited on the bottom of the centrifuge tube was collected and mixed well, and then approximately 100 ml was filled in the centrifuge tube and centrifuged under the same conditions. After repeating this operation five times, the dewatered cake on the bottom of the centrifuge tube was scraped off with a cutter, and the water content was measured. As a result, it was 74.4% by weight. Comparative Example 20 Comparative Example 1 was performed using flocculant B-5 instead of flocculant B-4.
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 9. After 20 seconds, the gravity filtrate volume was 18 ml, the floc strength of the sludge was weak, and the water content of the dewatered cake was 73.8% by weight. Example 24 Comparative Example 1 using flocculant A-4 instead of flocculant B-4
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 9. After 20 seconds, the gravity filtrate volume was 41 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 70.6% by weight. Example 25 Comparative Example 1 using flocculant A-5 instead of flocculant B-4
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 9. After 20 seconds, the gravity filtrate volume was 44 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 70.2% by weight. Example 26 Comparative Example 1 using flocculant A-6 instead of flocculant B-4
A coagulation filtration test and a centrifugation test were performed in the same manner as in Example 9. After 20 seconds, the gravity filtrate volume was 46 ml, the floc strength of the sludge was strong, and the water content of the dewatered cake was 70.3% by weight. The results of Comparative Examples 19 to 20 and Examples 24 to 26,
It is shown in Table 9.

【0034】[0034]

【表9】 [Table 9]

【0035】第9表の結果に見られるように、0.2重
量%水溶液の粘度と固有粘度の積を0.4重量%水溶液
の曳糸長で除した商が50未満であるカチオン性有機高
分子凝集剤を用いた比較例19〜20と、該商が50〜
200であるカチオン性有機高分子凝集剤を用いた実施
例24〜26を比較すると、実施例24〜26の方がケ
ーキ含水率が低く、高効率型遠心脱水機に適用される条
件においても、効果的に脱水されていることが分かる。
As can be seen from the results in Table 9, a cationic organic compound in which the quotient obtained by dividing the product of the viscosity of the 0.2% by weight aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution is less than 50. Comparative Examples 19 to 20 using a polymer flocculant and the quotient of 50 to
Comparing Examples 24 to 26 using the cationic organic polymer flocculant that is 200, Examples 24 to 26 have lower cake moisture content, even under the conditions applied to a high-efficiency centrifugal dehydrator. It turns out that it is dehydrated effectively.

【0036】比較例21及び実施例27においては、し
尿処理場の余剰汚泥と浄化槽汚泥の混合汚泥について、
高効率型遠心脱水機による実機評価試験を行った。 比較例21 混合汚泥の性状は、pH7.0、電気伝導率258mS/
m、SS1.58重量%、VSS/SS75.2重量%、
繊維分/SS5.1重量% である。混合汚泥に対して凝
集剤B−4を160mg/リットル、すなわちSSに対し
て1.0重量%になるように添加し、ボール部とスクリ
ューの回転数の差すなわち差速を4rpmとして高効率型
遠心脱水処理を行った。得られたケーキの含水率は7
8.3重量%であり、分離水中のSS濃度は1,270mg
/リットルであった。 実施例27 凝集剤B−4の代わりに、凝集剤A−5を用いて、比較
例21と同じ高効率型遠心脱水機による実機評価試験を
行った。得られたケーキの含水率は74.8重量%であ
り、分離水中のSS濃度は23mg/リットルであった。
比較例21及び実施例27の結果を、第10表に示す。
In Comparative Example 21 and Example 27, the mixed sludge of the excess sludge in the night soil treatment plant and the septic tank sludge was used.
An actual machine evaluation test was performed using a high-efficiency centrifugal dehydrator. Comparative Example 21 The properties of the mixed sludge were pH 7.0, electric conductivity 258 mS /
m, SS 1.58 wt%, VSS / SS 75.2 wt%,
Fiber content / SS 5.1% by weight. The coagulant B-4 was added to the mixed sludge at 160 mg / liter, that is, 1.0% by weight based on SS, and the difference between the rotation speed of the ball and the screw, that is, the differential speed was 4 rpm, and the high efficiency type was used. A centrifugal dehydration treatment was performed. The water content of the obtained cake is 7
8.3% by weight, SS concentration in separated water is 1,270mg
/ Liter. Example 27 Instead of the coagulant B-4, an actual machine evaluation test using the same high-efficiency centrifugal dehydrator as in Comparative Example 21 was performed using the coagulant A-5. The water content of the obtained cake was 74.8% by weight, and the SS concentration in the separated water was 23 mg / L.
Table 10 shows the results of Comparative Example 21 and Example 27.

【0037】[0037]

【表10】 [Table 10]

【0038】比較例21で用いたカチオン性有機高分子
凝集剤B−4と、、実施例27で用いたカチオン性有機
高分子凝集剤A−5は、いずれもジメチルアミノエチル
アクリレートの塩化メチル4級化物とアクリルアミドと
のモル比70/30のコポリマーであり、同一組成を有
しているが、第10表に見られるように、0.2重量%
水溶液の粘度と固有粘度の積を0.4重量%水溶液の曳
糸長で除した商が44である凝集剤B−4を用いた比較
例21と、該商が61である凝集剤A−5を用いた実施
例27を比較すると、実施例27の方がケーキ含水率が
低く、分離水のSS濃度が低く、SS回収率が高くな
り、効果的な脱水処理が行われることが分かる。
The cationic organic polymer flocculant B-4 used in Comparative Example 21 and the cationic organic polymer flocculant A-5 used in Example 27 were both methyl chloride 4 of dimethylaminoethyl acrylate. A 70/30 molar ratio of graded product and acrylamide, having the same composition, but as shown in Table 10, 0.2% by weight
Comparative Example 21 using flocculant B-4 having a quotient of 44 obtained by dividing the product of the viscosity of the aqueous solution and the intrinsic viscosity by the spinning length of the 0.4% by weight aqueous solution, and flocculant A- having a quotient of 61 Comparing Example 27 using No. 5, it can be seen that Example 27 has a lower cake moisture content, a lower SS concentration in the separated water, a higher SS recovery, and an effective dehydration treatment.

【0039】[0039]

【発明の効果】本発明の有機性汚泥の脱水方法によれ
ば、少量の薬剤の添加により効果的に脱水して、分離水
中のSS濃度が低く、SS回収率が高く、フロック強度
が大きく、含水率の低いケーキを得ることができる。
According to the method for dewatering organic sludge of the present invention, dewatering is effectively performed by adding a small amount of a chemical, so that the SS concentration in the separated water is low, the SS recovery rate is high, and the floc strength is high. A cake having a low moisture content can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D015 BA06 BA08 BA09 BA10 BB05 CA11 DB04 DB07 DC02 DC07 EA04 EA39 4D059 AA01 AA03 AA23 BE19 BE38 BE57 DB11 DB24 DB25  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D015 BA06 BA08 BA09 BA10 BB05 CA11 DB04 DB07 DC02 DC07 EA04 EA39 4D059 AA01 AA03 AA23 BE19 BE38 BE57 DB11 DB24 DB25

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】有機性汚泥にカチオン性有機高分子凝集剤
を添加し、強い剪断力のかかる条件下に、有機性汚泥と
カチオン性有機高分子凝集剤とを反応させ、脱水する有
機性汚泥の脱水方法において、固有粘度が3dl/g以上
であり、B型回転粘度計を用いて回転速度30rpmで測
定した0.2重量%水溶液の粘度(mPa・s)と固有粘
度(dl/g)の積を、0.4重量%水溶液の曳糸長(m
m)で除した商が50〜200であるカチオン性有機高
分子凝集剤を添加し、脱水機を用いて機械脱水すること
を特徴とする有機性汚泥の脱水方法。
1. An organic sludge which is obtained by adding a cationic organic polymer flocculant to an organic sludge and reacting the organic sludge with the cationic organic polymer flocculant under a condition where a strong shearing force is applied. In the dehydration method, the intrinsic viscosity is 3 dl / g or more, and the viscosity (mPa · s) and the intrinsic viscosity (dl / g) of a 0.2% by weight aqueous solution measured at a rotation speed of 30 rpm using a B-type rotational viscometer. Is multiplied by the spinning length (m
A method for dehydrating organic sludge, comprising adding a cationic organic polymer flocculant having a quotient of 50 to 200 divided by m) and mechanically dehydrating using a dehydrator.
【請求項2】強い剪断力のかかる条件が、ホモジナイザ
ーを用いる5,000rpm、5秒以上の撹拌に相当する条
件である請求項1記載の有機性汚泥の脱水方法。
2. The method for dewatering organic sludge according to claim 1, wherein the condition under which a strong shearing force is applied is a condition corresponding to stirring at 5,000 rpm for 5 seconds or more using a homogenizer.
【請求項3】有機性汚泥が下水・し尿排水処理又は産業
排水より生じる有機性汚泥であり、脱水機が遠心脱水機
である請求項1記載の有機性汚泥の脱水方法。
3. The method for dewatering organic sludge according to claim 1, wherein the organic sludge is organic sludge generated from sewage / human wastewater treatment or industrial wastewater, and the dewatering machine is a centrifugal dewatering machine.
JP30741898A 1998-10-28 1998-10-28 Organic sludge dewatering method Expired - Fee Related JP3473830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30741898A JP3473830B2 (en) 1998-10-28 1998-10-28 Organic sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30741898A JP3473830B2 (en) 1998-10-28 1998-10-28 Organic sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2000126800A true JP2000126800A (en) 2000-05-09
JP3473830B2 JP3473830B2 (en) 2003-12-08

Family

ID=17968827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30741898A Expired - Fee Related JP3473830B2 (en) 1998-10-28 1998-10-28 Organic sludge dewatering method

Country Status (1)

Country Link
JP (1) JP3473830B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314900A (en) * 2000-05-11 2001-11-13 Kurita Water Ind Ltd Sludge dehydration method
JP2006505653A (en) * 2002-11-04 2006-02-16 ジーイー・ベッツ・インコーポレイテッド Modified polymer flocculant with improved performance characteristics
JP2007268414A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Dehydration method of organic sludge
JP2011529525A (en) * 2008-07-31 2011-12-08 ゼネラル・エレクトリック・カンパニイ Method for removing fat, oil and grease from waste water and method for collecting tallow
KR20150067121A (en) 2012-08-22 2015-06-17 엠티 아쿠아포리마 가부시키가이샤 Polymer-coagulating agent and method for producing same, and method for dehydrating sludge using same
CN113024070A (en) * 2021-03-24 2021-06-25 泰州新佳源环保事务所有限公司 Be used for prosthetic mud splitter of soil
CN113800679A (en) * 2021-09-23 2021-12-17 温州市丰源水利水电工程有限公司 Water quality treatment system for water resource management and construction method thereof
US11459250B2 (en) 2017-04-28 2022-10-04 Hymo Corporation Treatment method for organic wastewater and use of same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314900A (en) * 2000-05-11 2001-11-13 Kurita Water Ind Ltd Sludge dehydration method
JP2006505653A (en) * 2002-11-04 2006-02-16 ジーイー・ベッツ・インコーポレイテッド Modified polymer flocculant with improved performance characteristics
JP4660193B2 (en) * 2002-11-04 2011-03-30 ジーイー・ベッツ・インコーポレイテッド Modified polymer flocculant with improved performance characteristics
JP2007268414A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Dehydration method of organic sludge
JP2011529525A (en) * 2008-07-31 2011-12-08 ゼネラル・エレクトリック・カンパニイ Method for removing fat, oil and grease from waste water and method for collecting tallow
KR20150067121A (en) 2012-08-22 2015-06-17 엠티 아쿠아포리마 가부시키가이샤 Polymer-coagulating agent and method for producing same, and method for dehydrating sludge using same
US11459250B2 (en) 2017-04-28 2022-10-04 Hymo Corporation Treatment method for organic wastewater and use of same
CN113024070A (en) * 2021-03-24 2021-06-25 泰州新佳源环保事务所有限公司 Be used for prosthetic mud splitter of soil
CN113800679A (en) * 2021-09-23 2021-12-17 温州市丰源水利水电工程有限公司 Water quality treatment system for water resource management and construction method thereof
CN113800679B (en) * 2021-09-23 2023-08-08 温州市丰源水利水电工程有限公司 Water quality treatment system for water resource management and construction method thereof

Also Published As

Publication number Publication date
JP3473830B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP4854432B2 (en) Sludge dewatering method
JP3097162B2 (en) Sludge dewatering agent and method for dewatering sludge using the same
JP3208473B2 (en) Treatment agent consisting of amphoteric water-soluble polymer dispersion
JP3178224B2 (en) Sludge dewatering agent
JP2991611B2 (en) Sludge dewatering method using inorganic coagulant and amphoteric polymer coagulant together
JP3473830B2 (en) Organic sludge dewatering method
JPH06218399A (en) Sludge dewatering agent
JP3247795B2 (en) Amphoteric polymer sludge dewatering agent and sludge dewatering method using the same
JP4868127B2 (en) Organic sludge dewatering method
JPH06239B2 (en) Dewatering method of organic sludge
JP3183809B2 (en) Sludge dewatering agent
JPH11290900A (en) Dehydration of organic sludge
JPH06218400A (en) Sludge dewatering agent
JP3633726B2 (en) Sludge treatment method
JP4661998B2 (en) Sludge dewatering method
JP3606119B2 (en) Sludge dewatering method
JP3097157B2 (en) Sludge dewatering method
JP4771187B2 (en) Dewatering method of organic biological treatment sludge
JPH0118800B2 (en)
JPH1085800A (en) Method for dehydrating sludge
JPH03169398A (en) Sludge dewatering method
JPS60248299A (en) Treatment of sludge
JP3924011B2 (en) Dewatering method for sewage digested sludge
JP3185237B2 (en) Sludge dewatering agent
JPH1085798A (en) Method for dehydrating sludge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees