JP3314839B2 - Heat-adhesive network structure and method for producing the same - Google Patents

Heat-adhesive network structure and method for producing the same

Info

Publication number
JP3314839B2
JP3314839B2 JP33797893A JP33797893A JP3314839B2 JP 3314839 B2 JP3314839 B2 JP 3314839B2 JP 33797893 A JP33797893 A JP 33797893A JP 33797893 A JP33797893 A JP 33797893A JP 3314839 B2 JP3314839 B2 JP 3314839B2
Authority
JP
Japan
Prior art keywords
melting point
heat
elastic resin
layer
network structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33797893A
Other languages
Japanese (ja)
Other versions
JPH07197366A (en
Inventor
英夫 磯田
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP33797893A priority Critical patent/JP3314839B2/en
Publication of JPH07197366A publication Critical patent/JPH07197366A/en
Application granted granted Critical
Publication of JP3314839B2 publication Critical patent/JP3314839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、布団、家具、ベッド、
車両用クッション材、断熱材等に適した優れたクッショ
ン性と耐熱耐久性とを有し、熱接着加工が容易な熱接着
性網状構造体及び、その製法に関する。
The present invention relates to a futon, a furniture, a bed,
The present invention relates to a heat-adhesive net-like structure having excellent cushioning properties and heat resistance and durability suitable for a vehicle cushion material, a heat insulating material, and the like, and easily heat-bondable, and a method for producing the same.

【0002】[0002]

【従来の技術】現在、布団、家具、ベッド、電車、自動
車等のクッション材で、発泡ウレタン、非弾性捲縮繊維
詰綿、及び非弾性捲縮繊維を接着した樹脂綿や硬綿など
が使用されている。
2. Description of the Related Art At present, urethane foam, non-elastic crimped fiber-filled cotton, and resin cotton and hard cotton to which non-elastic crimped fibers are bonded are used as cushioning materials for futons, furniture, beds, trains, automobiles, and the like. Have been.

【0003】しかしながら、発泡−架橋型ウレタンはク
ッション材としての耐久性は良好だが、透湿透水性に劣
り蓄熱性があるため蒸れやすく、かつ、熱可塑性では無
いためリサイクルが困難となり焼却される場合、焼却炉
の損傷が大きく、かつ、有毒ガス除去に経費が掛かる。
このため埋め立てされることが多くなったが、地盤の安
定化が困難なため埋め立て場所が限定され経費も高くな
っていく問題がある。また、加工性は優れるが製造中に
使用される薬品の公害問題などもある。また、熱可塑性
ポリエステル繊維詰綿では繊維間が固定されていないた
め、使用時形態が崩れたり、繊維が移動して、かつ、捲
縮のへたりで嵩高性の低下や弾力性の低下が問題にな
る。
[0003] However, foamed-crosslinked urethane has good durability as a cushioning material, but is inferior in moisture permeation and water permeability and has heat storage properties, so that it is easy to humid. In addition, the damage to the incinerator is large, and the cost for removing toxic gas is high.
For this reason, landfills have been increased, but there is a problem in that it is difficult to stabilize the ground, so that landfill locations are limited and costs increase. Further, although the processability is excellent, there is a problem of pollution of chemicals used during the production. In addition, in the case of the cotton filled with thermoplastic polyester fiber, since the space between the fibers is not fixed, the shape at the time of use collapses, the fiber moves, and the crimp set causes a decrease in bulkiness and a decrease in elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
Japanese Patent Application Laid-Open Publication No. Sho 6 (1994) discloses a resin cotton in which polyester fibers are bonded with an adhesive, for example, a rubber using an adhesive as a rubber.
Nos. 0-11352, JP-A-61-141388 and JP-A-61-141391. Further, JP-A-61-1377 discloses a method using a crosslinkable urethane.
No. 32 publication. These cushioning materials are inferior in durability, are not thermoplastic, cannot be recycled because they are not a single composition, and have problems such as complicated workability and pollution of chemicals used during production. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成としてイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。なお、この繊維は特公昭60−1
404号公報に記載された繊維と同一と認められるので
従来技術を改良したものとは言えない。
[0005] Polyester hard cotton, for example, JP-A-58-3
JP-A No. 1150, JP-A-2-154050, JP-A-3-220354, etc., are disclosed in Japanese Patent Application Laid-Open No. Sho 58-58, because the adhesive component of the heat-bonding fiber used is a brittle amorphous polymer. -136828, JP-A-3-
There is a problem that the adhesive portion is brittle and the durability is poor such that the adhesive portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of performing confounding treatment has been proposed in Japanese Patent Application Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is greatly reduced. In addition, there is also complexity in processing. Further, there is a problem that the bonded portion is hardly deformed and it is difficult to provide soft cushioning. For this reason, the adhesive is soft and the polyester elastomer recovers even if deformed to some extent.
Japanese Patent Application Laid-Open No. 4-240219 discloses a thermal bonding fiber using an inelastic polyester as a core component, and WO-91 / 19032, Japanese Patent Application Laid-Open No. 5-156561 discloses a cushioning material using the fiber. It has been proposed in, for example, JP-A-5-163654. When the adhesive component used in this fiber structure is a soft segment of polyester elastomer, the content of polyalkylene glycol is 30 to 50.
5% by weight of terephthalic acid in the acid component of the hard segment
It contains 0 to 80 mol%, and contains isophthalic acid as another acid component composition to increase the amorphousness, and has a melting point of 180%.
℃ or lower and low melt viscosity to improve the formation of the heat-bonded part to form an amoeboid bonded part, but plastic deformation is easy, and the core component is inelastic polyester, so plastic deformation especially under heating And there is a problem that heat resistance and compression resistance decrease. In addition, this fiber is the Japanese Patent Publication No. 60-1
Since the fibers are considered to be the same as those described in Japanese Patent No. 404, it cannot be said that the prior art is improved.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りクッション材には使用ができない
ものである。また、特公平3−17666号公報には繊
度の異なる吐出線条を互いに融着してモ−ル状物を作る
方法があるがクッション材には適さない網状構造体であ
る。特公平3−55583号公報には、ごく表面のみ冷
却前に回転体等の細化装置で細くする方法が記載されて
いる。この方法では表面をフラット化できず、厚みのあ
る細い線条層を作ることできない。したがって座り心地
の良好なクッション材にはならない。特開平1−207
462号公報では、塩化ビニ−ル製のフロアマットの開
示があるが、室温での圧縮回復性が悪く、耐熱性は著し
く悪いので、クッション材としては好ましくないもので
ある。網状体が不織布や側地との自己熱接着性を有する
ものは無く、高次加工には接着剤を使用して、又は、発
泡体を含浸させているので、加工コストが高くなる問題
がある。
A thermoplastic olefin network used for civil engineering is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is an olefin, the heat resistance and durability are extremely poor and cannot be used as a cushion material. In Japanese Patent Publication No. 3-17666, there is a method in which discharge filaments having different fineness are fused to each other to form a molding, but this is a net-like structure not suitable for a cushion material. Japanese Patent Publication No. 3-55583 discloses a method in which only a very small surface is thinned by a thinning device such as a rotating body before cooling. In this method, the surface cannot be flattened, and a thick and thin linear layer cannot be formed. Therefore, the cushioning material does not provide a comfortable sitting comfort. JP-A-1-207
Japanese Patent Publication No. 462 discloses a floor mat made of vinyl chloride, which is not preferable as a cushioning material because of its poor compression recovery at room temperature and extremely poor heat resistance. There is no problem that the reticulated body has self-heat adhesion to the nonwoven fabric or the side fabric, and the high-order processing uses an adhesive or impregnated with a foam, so the processing cost is high. .

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
耐熱耐久性、クッション性の優れた蒸れにくいクッショ
ン材に適した、かつ、高次加工性の良好な自己熱接着性
を有する熱可塑性弾性樹脂からなる熱接着性網状構造体
及び製法を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems,
Provided is a heat-adhesive network structure made of a thermoplastic elastic resin having a self-heat-adhesive property, which is suitable for a heat-resistant and cushioning-resistant cushion material having excellent heat resistance and excellent high-order workability, and a method for producing the same. With the goal.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する為の
手段、即ち本発明は、高融点と低融点の熱可塑性弾性樹
脂よりなり、高融点熱可塑性弾性樹脂の融点より10℃
以上融点が低い低融点熱可塑性弾性樹脂からなる網状構
造体が熱接着層を形成し、高融点熱可塑性弾性樹脂から
なる網状構造体が基本層を形成し、両層が三次元ランダ
ムループ形成時に融着一体化されてなる熱接着性網状構
造体であり、上記網状構造体は、連続線条を曲がりくね
らせ多数のループを形成し、夫々のループを互いに接触
せしめて、接触部の大部分が融着され、一定の幅と厚み
を保形した三次元ランダムループ構造であり、該熱接着
性網状構造の片面又は両面は実質的にフラット化された
熱接着層で形成れ、該熱接着層の厚みが1mm以上、1
0mm以下であることを特徴とする熱接着性網状構造体お
よび網状構造体の片面又は両面に低融点熱可塑性弾性樹
脂からなる熱接着層が形成され、前記熱接着層以外の部
分に前記熱可塑性弾性樹脂の融点より少なくとも10℃
以上高い融点を持つ熱可塑性弾性樹脂からなる基本層が
形成されるように分配したノズルより、夫々の樹脂の融
点より10〜120℃高い温度下に溶融状態の樹脂を下
方に向けて吐出させ、溶融状態で多数のループを形成
し、夫々のループを互いに接触し、融着させて一定の幅
と厚みを保形した三次元ランダムループ構造を形成しつ
つ、引取装置で挟み込み、実質的に面をフラット化させ
冷却槽で冷却せしめて、前記熱接着層と前記基本層と
融着一体することを特徴とする熱接着性網状構造体の
製法である。
Means for solving the above-mentioned problems, that is, the present invention comprises a high melting point and a low melting point thermoplastic elastic resin, and has a melting point of 10 ° C. higher than the melting point of the high melting point thermoplastic elastic resin.
A network structure made of a low melting point thermoplastic elastic resin having a low melting point forms a thermal bonding layer, a network structure made of a high melting point thermoplastic elastic resin forms a basic layer, and both layers are three-dimensional landers.
A heat-adhesive network structure that is fused and integrated at the time of forming a loop, and the network structure winds a continuous filament to form a large number of loops, and brings the respective loops into contact with each other to form a contact portion. mostly fused, a three-dimensional random loop structure in which the shape-keeping a constant width and thickness, one side or both sides of the heat-adhesive net structure is formed by a substantially heat-bonding layer which is flattened in , The thickness of the heat bonding layer is 1 mm or more,
A heat-adhesive network characterized by being 0 mm or less, a heat-adhesive layer made of a low-melting-point thermoplastic elastic resin is formed on one or both surfaces of the net-like structure, and the thermoplastic adhesive is formed on portions other than the heat-adhesive layer. At least 10 ° C above the melting point of the elastic resin
From a nozzle distributed so that a basic layer made of a thermoplastic elastic resin having a higher melting point is formed, the resin in a molten state is discharged downward at a temperature 10 to 120 ° C. higher than the melting point of each resin, A large number of loops are formed in a molten state, and the respective loops are brought into contact with each other and fused to form a three-dimensional random loop structure having a constant width and thickness, and are sandwiched by a take-off device, and are substantially formed in a plane. Is flattened and cooled in a cooling tank, and the heat bonding layer and the base layer are separated from each other .
It is a preparation of heat-adhesive net structure, characterized in that fusing together of.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ル等をブロック共重合したポリ
エステル系エラストマ−、ポリアミド系エラストマ−、
ポリウレタン系エラストマ−などが挙げられる。熱可塑
性弾性樹脂とすることで、再溶融により再生が可能とな
るため、リサイクルが容易となる。例えば、ポリエステ
ル系エラストマ−としては、熱可塑性ポリエステルをハ
−ドセグメントとし、ポリアルキレンジオ−ルをソフト
セグメントとするポリエステルエ−テルブロック共重合
体、または、脂肪族ポリエステルをソフトセグメントと
するポリエステルエステルブロック共重合体が例示でき
る。ポリエステルエ−テルブロック共重合体のより具体
的な事例としては、テレフタル酸、イソフタル酸、ナフ
タレン2・6ジカルボン酸、ナフタレン2・7ジカルボ
ン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジカ
ルボン酸、1・4シクロヘキサンジカルボン酸等の脂環
族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダイ
マ−酸等の脂肪族ジカルボン酸または、これらのエステ
ル形成性誘導体などから選ばれたジカルボン酸の少なく
とも1種と、1・4ブタンジオ−ル、エチレングリコ−
ル、トリメチレングリコ−ル、テトレメチレングリコ−
ル、ペンタメチレングリコ−ル、ヘキサメチレングリコ
−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメタ
ノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環族
ジオ−ル、またはこれらのエステル形成性誘導体などか
ら選ばれたジオ−ル成分の少なくとも1種、および平均
分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うことができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの等も
本発明の熱可塑性弾性樹脂に包含される。また、必要に
応じ、抗酸化剤や耐光剤等を添加して耐久性を向上させ
ることができる。なお、本発明の熱可塑性高融点弾性樹
脂(高融点弾性樹脂と略す)の融点は耐熱耐久性が保持
できる140℃以上が好ましく、160℃以上のものを
用いると耐熱耐久性が向上するのでより好ましい。熱接
着成分となる熱可塑性低融点弾性樹脂(低融点弾性樹脂
と略す)の融点は、少なくとも10℃以上低くしない
と、熱接着時に高融点弾性樹脂からなる網状体構造が軟
化変形したり、融点差がない場合は溶融して網状体構造
が無くなるので好ましくない。高融点弾性樹脂との融点
差が100℃以上著しく低い場合は、網状体を同一溶融
温度で製造する場合、滞留時間が長いと低融点弾性樹脂
の熱分解が著しくなり接着機能に必要な分子量を保持で
きなくなるので、高温での滞留時間を著しく短くする必
要がある。高融点弾性樹脂からなる網状体構造を保持す
るための低融点弾性樹脂の融点差は、10℃以上必要で
あり、好ましくは15℃以上80℃以下、より好ましく
は20℃以上50℃以下である。また、熱接着する際の
温度は低いほうが生産性からは好ましいが、耐熱性を保
持するには高いほうが好ましい。耐熱性を要求される自
動車用のクッション材に必要な耐熱性は70℃以上であ
るから、低融点弾性樹脂の融点は、好ましくは80℃以
上220℃以下、より好ましくは120℃以上200℃
以下である。
The thermoplastic elastic resin in the present invention is obtained by block copolymerizing a soft segment such as a polyether-based glycol, a polyester-based glycol, and a polycarbonate-based glycol having a molecular weight of 300 to 5,000. Polyester-based elastomer, polyamide-based elastomer,
Polyurethane-based elastomers and the like can be mentioned. By using a thermoplastic elastic resin, regeneration becomes possible by re-melting, so that recycling becomes easy. For example, as a polyester-based elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be exemplified. More specific examples of polyester ether block copolymers include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4 4 'dicarboxylic acid. Alicyclic dicarboxylic acids such as 1.4 cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and at least one dicarboxylic acid selected from ester-forming derivatives thereof; Seeds, 1,4-butanediol, ethylene glyco-
, Trimethylene glycol, tetramethylene glycol
Alicyclic diols such as aliphatic diols such as toluene, pentamethylene glycol and hexamethylene glycol, and 1.1 cyclohexane dimethanol, and 1.4 cyclohexane dimethanol, and the like. At least one diol component selected from ester-forming derivatives and the like; and polyethylene glycol having an average molecular weight of about 300 to 5,000.
A triblock copolymer composed of at least one of polyalkylenediols such as ethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of each of the above dicarboxylic acids, diols, and polyester diols such as polylactone having an average molecular weight of about 300 to 5,000. .
In consideration of thermal adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid or naphthalene 2.6 dicarboxylic acid as a dicarboxylic acid, 1.4 butanediol as a diol component, poly As the alkylenediol, a triblock copolymer of polytetramethylene glycol or a terpolymer of polyester is particularly preferable. In a special case,
Those into which polysiloxane-based soft segments are introduced can also be used. The thermoplastic elastomer resin of the present invention also includes those obtained by blending a non-elastomer component with the above-mentioned elastomer and copolymerizing the same. In addition, durability can be improved by adding an antioxidant, a light stabilizer, or the like, if necessary. The melting point of the thermoplastic high-melting point elastic resin (abbreviated as high-melting point elastic resin) of the present invention is preferably 140 ° C. or higher, which can maintain the heat resistance and durability. preferable. Unless the melting point of the thermoplastic low melting point elastic resin (abbreviated as low melting point elastic resin) serving as the heat bonding component is not lowered by at least 10 ° C. or more, the network structure made of the high melting point elastic resin may be softened or deformed during heat bonding. If there is no difference, it is not preferable because it melts and loses the network structure. When the difference in melting point from the high melting point elastic resin is significantly lower than 100 ° C., when the reticulated body is manufactured at the same melting temperature, if the residence time is long, the thermal decomposition of the low melting point elastic resin becomes remarkable and the molecular weight required for the adhesive function is reduced. Since retention is no longer possible, the residence time at high temperatures must be significantly reduced. The melting point difference of the low melting point elastic resin for maintaining the network structure composed of the high melting point elastic resin needs to be 10 ° C or more, preferably 15 ° C or more and 80 ° C or less, more preferably 20 ° C or more and 50 ° C or less. . Further, the temperature at the time of heat bonding is preferably lower from the viewpoint of productivity, but is preferably higher to maintain heat resistance. Since the heat resistance required for a cushioning material for automobiles requiring heat resistance is 70 ° C. or higher, the melting point of the low melting point elastic resin is preferably 80 ° C. to 220 ° C., more preferably 120 ° C. to 200 ° C.
It is as follows.

【0010】本発明の網状構造体を構成する線条は、示
差走査型熱量計にて測定した融解曲線において、融点以
下に吸熱ピ−クを有するのが好ましい。融点以下に吸熱
ピ−クを有するものは、常温及び高温での伸張回復性が
著しく良好になるので網状構造体の耐熱耐へたり性が吸
熱ピ−クを有しないものより著しく向上する。例えば、
本発明の好ましいポリエステル系エラストマ−として、
酸成分としてテレフタル酸やナフタレン2・6ジカルボ
ン酸などを90モル%以上含有するもの、より好ましく
はテレフタル酸やナフタレン2・6ジカルボン酸の含有
量は95モル%以上、特に好ましくは100モル%とグ
リコ−ル成分をエステル交換後、必要な重合度まで重合
し、次いで、ポリアルキレンジオ−ルとして、好ましく
は平均分子量が500以上5000以下、特に好ましく
は1000以上3000以下のポリテトラメチレングリ
コ−ルを15重量%以上70重量%以下、より好ましく
は30重量%以上60重量%以下共重合量させた場合、
テレフタル酸やナフタレン2・6ジカルボン酸の含有量
が多いとハ−ドセグメントの結晶性が向上し、塑性変形
しにくく、かつ、耐熱抗へたり性が向上するが、溶融熱
接着後更に融点より少なくとも10℃以上低い温度でア
ン−リング処理するとより耐熱抗へたり性が向上する。
圧縮歪みを付与してからアニ−リングすると更に耐熱抗
へたり性が向上する。このような処理をした網状構造体
の線条を示差走査型熱量計(DSC)による融解曲線を
測定すると、ハードセグメントのガラス転移点温度以
上、融点以下の温度で吸熱ピークをより明確に発現す
る。なおアニ−リングしない場合は融点以下に吸熱ピ−
クを発現しない。このことから類推するに、アン−リン
グにより、ハ−ドセグメントが再配列され、疑似結晶化
様の架橋点が形成され、耐熱抗へたり性が向上している
のではないかとも考えられる。(この処理を疑似結晶化
処理と定義する。)
[0010] The filaments constituting the network structure of the present invention preferably have an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have remarkably good elongation recoverability at room temperature and high temperature, so that the heat resistance and sag resistance of the network structure are remarkably improved as compared with those having no endothermic peak. For example,
As a preferred polyester-based elastomer of the present invention,
An acid component containing at least 90 mol% of terephthalic acid or naphthalene 2.6 dicarboxylic acid, more preferably at least 95 mol%, particularly preferably 100 mol%, of terephthalic acid or naphthalene 2.6 dicarboxylic acid. After transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as polyalkylenediol, polytetramethylene glycol having an average molecular weight of preferably 500 or more and 5000 or less, particularly preferably 1000 or more and 3000 or less. 15 to 70% by weight, more preferably 30 to 60% by weight,
If the content of terephthalic acid or naphthalene 2,6-dicarboxylic acid is large, the crystallinity of the hard segment is improved, the plastic segment is hardly deformed, and the heat resistance and set resistance are improved. When the unring treatment is performed at a temperature lower by at least 10 ° C., the heat resistance and set resistance are further improved.
Annealing after imparting compressive strain further improves heat resistance and sag resistance. When a melting curve of a line of the network structure thus treated is measured by a differential scanning calorimeter (DSC), an endothermic peak is more clearly exhibited at a temperature equal to or higher than the glass transition temperature of the hard segment and equal to or lower than the melting point. . When annealing is not performed, the endothermic peak is kept below the melting point.
Does not develop By analogy with this, it is considered that the hard segments are rearranged by the unring, pseudo-crystallization-like cross-linking points are formed, and the heat resistance is improved. (This process is defined as a pseudo-crystallization process.)

【0011】本発明の網状構造体は、熱可塑性弾性樹脂
からなる線条を曲がりくねらせ該線条同士を接触させ、
接触部を融着して3次元網状構造を形成している。この
ことで、非常に大きい応力で、大変形を与えても、融着
一体化した3次元網状構造全体が変形して応力を吸収
し、応力が解除されると弾性樹脂のゴム弾性が発現して
構造体は元の形態に回復することができる。公知の非弾
性樹脂からなる線条で構成された網状構造体では、塑性
変形を生じ、このような回復が起こらないので耐熱耐久
性が劣る。融着していない場合は、形態保持が出来ず、
構造体が一体で変形しないため、応力集中による疲労現
象が起こり耐久性が劣ると同時に、形態が変形してしま
うので好ましくない。本発明のより好ましい融着の程度
は、線条が接触している部分の大半が融着した状態であ
り、もっとも好ましくは接触部分が全て融着した状態で
ある。
[0011] The reticulated structure of the present invention is characterized in that a wire made of a thermoplastic elastic resin is meandered, and the wires are brought into contact with each other;
The contact portions are fused to form a three-dimensional network structure. As a result, even if a large deformation is given by a very large stress, the entire fusion-integrated three-dimensional network structure is deformed to absorb the stress, and when the stress is released, the rubber elasticity of the elastic resin is developed. The structure can be restored to its original form. In a net-like structure constituted by a filament made of a known inelastic resin, plastic deformation occurs and such recovery does not occur, so that heat resistance and durability are inferior. If not fused, the shape cannot be maintained,
Since the structure is not integrally deformed, a fatigue phenomenon due to stress concentration occurs and durability is deteriorated, and at the same time, the form is undesirably deformed. A more preferable degree of fusion in the present invention is a state in which most of the portions in contact with the filaments are fused, and most preferably a state in which all the contact portions are fused.

【0012】本発明の熱可塑性弾性樹脂からなる網状構
造体は、網状構造体の片面または両面を構成する線条の
融点がその面と接する高融点弾性樹脂の線条の融点より
少なくとも10℃以上低い低融点弾性樹脂からなる厚み
1mm以上10mm以下の層を形成していることで低融点弾
性樹脂が熱接着成分となり、熱接着加工を可能にする。
網状体、不織布、編織物、硬綿、フイルム、発泡体、金
属、粉体、繊維状物等を片面に接着したい場合は片面に
熱接着成分の層を形成し、両面に接着したい場合は両面
に熱接着成分を形成した構成にすることで、接着剤の塗
布や接着層を追加しなくても熱接着して新たな成形体を
得ることができる。厚み1mm未満では接着が不充分とな
り10mmを越えると熱接着時の厚み低下が著しくなり好
ましくない。本発明の好ましい厚みは2mmから8mm、よ
り好ましくは2.5mmから7.5mmである。前記した如
く、低融点弾性樹脂と高融点弾性樹脂の融点差は10℃
以上、好ましくは15℃以上80℃以下、より好ましく
は20℃以上50℃以下である。この範囲は高融点弾性
樹脂からなる網状体構造を保持する以外に、疑似結晶化
処理をしていない本発明の熱接着性網状構造体を熱風等
を用い、系全体を加熱して熱接着し新たな構造体を成形
する場合、熱接着温度を低融点弾性樹脂の融点より高い
温度で、高融点弾性樹脂の融点より10℃以上低い温度
で行えば同時に高融点弾性樹脂からなる網状構造体を疑
似結晶化処理する効果も得ることができる。このような
条件で熱接着処理を行うことで、もとの熱接着性網状構
造体中の高融点弾性樹脂が持っていた以上の高度の耐熱
耐久性を熱接着して新たな構造体を成形する際に付与で
きる特徴を有する。熱接着後、低融点弾性樹脂の融点よ
り10℃以上低い温度で新たな構造体を更にアニーリン
グすることで、接着層の伸張回復性も著しく向上するの
で、新たに接着された表面の編織物等の構造物が外力を
受けて大きく変形しても接着層及び網状構造体が弾性樹
脂のため、構造体全体が変形に容易に追随して変形歪み
を吸収でき、外力が解除されれば弾性樹脂のゴム弾性が
発現して構造体は元の形態に回復することができるので
本発明の熱接着性網状構造体を用いて得られた新たな成
形体に常温及び高温での高度の耐へたり性を付与でき
る。他方、接着面のみを例えば遠赤外線や加熱ローラ−
等を用いて加熱し、熱接着する場合は、高融点弾性樹脂
からなる網状構造体は疑似結晶化したものを用いるのが
好ましい。この場合も、熱接着後低融点弾性樹脂の融点
より10℃以上低い温度で新たな構造体を更にアニーリ
ングするのが上述の理由から好ましい。熱接着成分の表
面のみ加熱して、接着成分層の網状構造を保持できるよ
うな方法を用いて熱接着を行う場合にのみ、熱接着成分
層を厚み10mm以下を限度として少し厚くすればクッシ
ョン材の少し柔らかな層として適度の沈み込みにより快
適な臀部のタッチを与えて臀部の圧力分布を均一分散化
する層(表面層)の機能も合わせて持たせることができ
る。本発明では、表面層の上に熱接着層を持たせる構成
もできる。クッション材に用いる場合のクッション層の
働きは振動吸収と体型保持を受け持つ層(基本層)と、
表面層が一体化されることで、応力や振動を一体で変形
し吸収させることが座り心地の向上には必要である。ま
た、表面層と基本層が融着一体化していることで、外力
を構造全体で変形し吸収できることで、耐へたり性や耐
熱耐久性の低下を防止できる。表面層と基本層が溶融接
着されていない場合は、表面層が選択的にへたり易くな
るので好ましくない。本発明は、この基本層と表面層
に、その必要な機能に応じ任意に各層が異なる熱可塑性
弾性樹脂からなる線条で形成され、融着一体化された網
状構造体とすることができる。上述の機能を発現する好
ましい構成は、表面層又は厚み10mm以下を限度として
熱接着層を兼ねる層には柔らかさ(モジュラスのやや低
い)と回復性の良好な、例えば50%から70%のソフ
トセグメントを含有した熱可塑性弾性樹脂(本発明では
熱接着層を兼ねる層では低融点弾性樹脂であり、表面層
の上に熱接着層を持たせる場合は表面層は高融点弾性樹
脂になる)からなる線条で形成すること等が例示でき
る。基本層には硬い(ややモジュラスの高い)回復性の
良い、例えば20%から50%のソフトセグメントを含
有し、ハ−ドセグメントは剛直なナフタレ−トを含有し
た熱可塑性弾性樹脂(本発明では高融点弾性樹脂)から
なる線条で形成し、なお、表面層や基本層は単層ではな
く多層になっていることでクッション性の微妙なコント
ロールや圧縮応力の均一分散が容易にできるので、柔ら
かい成分の熱可塑性弾性樹脂と硬い成分の熱可塑性樹脂
とを好ましくは2種類以上、より好ましくは3種類以上
で構成された線条の層を多層一体化した表面層や基本層
を形成することは本発明のより好ましい例である。熱接
着成分を兼ねた単一成分からなる網状構造体では、表面
層の機能を付与すれば柔らか過ぎて基本層の機能を失
い、基本層の機能を付与しようとすると硬くなり表面層
の機能を失うので表面層と基本層の機能を同時に満足さ
せることができない。他方、表面層とは反対の面も本発
明では熱接着層を持つことができる。このためにクッシ
ョン材のフレ−ムと接する面にモジュラスの高い形態保
持性の良い補強材を熱接着せしめてフレ−ム面から受け
る振動や反発応力をクッション層へ均一に伝達させ、ク
ッション層で一体化した全体が変形してエンルギ−変換
できるようにし、座り心地を良くすると共にクッション
の耐久性も向上させることができる。振動吸収層をもつ
補強材を熱接着せしめればより乗り心地が向上するので
好ましい。なお、機能付与のため、線条成分との兼ね合
いで各層の繊度や密度との最適な組合せも任意に選択す
ることができる。
The reticulated structure made of the thermoplastic elastic resin of the present invention is such that the filaments constituting one or both surfaces of the reticulated structure have a melting point at least 10 ° C. higher than the melting point of the refractory elastic resin filaments in contact with the surface. By forming a layer made of a low-melting-point elastic resin having a thickness of 1 mm or more and 10 mm or less, the low-melting-point elastic resin becomes a heat-adhesive component, and enables heat-adhesion processing.
If you want to bond nets, non-woven fabrics, knitted fabrics, hard cotton, films, foams, metals, powders, fibrous materials, etc. on one side, form a layer of the heat-adhesive component on one side, and both sides on both sides. With the configuration in which the heat bonding component is formed, a new molded body can be obtained by heat bonding without applying an adhesive or adding an adhesive layer. If the thickness is less than 1 mm, the adhesion is insufficient, and if it exceeds 10 mm, the thickness is significantly reduced during thermal bonding, which is not preferable. The preferred thickness of the present invention is between 2 mm and 8 mm, more preferably between 2.5 mm and 7.5 mm. As described above, the difference in melting point between the low melting point elastic resin and the high melting point elastic resin is 10 ° C.
Above, preferably 15 ° C. or more and 80 ° C. or less, more preferably 20 ° C. or more and 50 ° C. or less. In this range, in addition to retaining the network structure made of the high-melting point elastic resin, the heat-adhesive network structure of the present invention, which has not been subjected to the pseudo-crystallization treatment, is heated and heat-bonded using hot air or the like. When a new structure is molded, the heat bonding temperature is higher than the melting point of the low melting point elastic resin and at least 10 ° C. lower than the melting point of the high melting point elastic resin. The effect of pseudo crystallization can also be obtained. By performing the heat bonding process under these conditions, a new structure is formed by heat bonding with a high degree of heat resistance higher than that of the high melting point elastic resin in the original heat bonding network structure. It has features that can be added when performing After the thermal bonding, the new structure is further annealed at a temperature lower than the melting point of the low melting point elastic resin by 10 ° C. or more, so that the stretch recovery of the adhesive layer is significantly improved. Even if the structure is deformed greatly by external force, the adhesive layer and the net-like structure are elastic resin, so the whole structure can easily follow the deformation and absorb the deformation distortion, and if the external force is released, the elastic resin Because the rubber elasticity is developed and the structure can be restored to the original form, a new molded article obtained by using the heat-adhesive network structure of the present invention can be subjected to a high degree of sag resistance at room temperature and high temperature. Properties can be imparted. On the other hand, only the adhesive surface is, for example, far infrared rays or a heating roller.
In the case of heating and heat-bonding using a method such as the above, it is preferable to use a pseudo-crystallized network structure made of a high melting point elastic resin. Also in this case, it is preferable to further anneal the new structure at a temperature lower than the melting point of the low melting point elastic resin by 10 ° C. or more after the thermal bonding, for the above-described reason. Only when the surface of the heat-adhesive component is heated and heat-adhesion is performed using a method that can maintain the network structure of the adhesive component layer, if the heat-adhesive component layer is slightly thickened up to a thickness of 10 mm or less, a cushion material can be used. As a slightly soft layer, it can also have the function of a layer (surface layer) that gives a comfortable buttocks touch by moderate sinking and makes the buttocks pressure distribution evenly distributed. In the present invention, a configuration in which a thermal adhesive layer is provided on the surface layer can also be employed. When used as a cushion material, the function of the cushion layer is a layer (basic layer) that is responsible for vibration absorption and body shape retention,
It is necessary to improve the sitting comfort by integrally deforming and absorbing stress and vibration by integrating the surface layer. Further, since the surface layer and the basic layer are fused and integrated, the external force can be deformed and absorbed by the entire structure, thereby preventing the sag resistance and the heat resistance durability from lowering. If the surface layer and the base layer are not melt-bonded, it is not preferable because the surface layer is easily removed selectively. According to the present invention, the basic layer and the surface layer can be formed into a network structure in which each layer is arbitrarily formed of a line made of a thermoplastic elastic resin different from each other according to the required functions, and is fused and integrated. A preferred configuration exhibiting the above-mentioned function is that the surface layer or the layer also serving as a heat bonding layer with a thickness of 10 mm or less has a soft (slightly low modulus) and good recoverability, for example, 50% to 70% softness. From a thermoplastic elastic resin containing segments (in the present invention, the layer that also serves as the heat bonding layer is a low melting point elastic resin, and when the heat bonding layer is provided on the surface layer, the surface layer becomes a high melting point elastic resin) For example, it can be formed with a linear line. The base layer contains a hard (slightly high modulus) recoverable, for example, 20% to 50% soft segment, and the hard segment is a thermoplastic elastic resin containing rigid naphthalate (in the present invention). (High melting point elastic resin), and the surface layer and the basic layer are not a single layer but a multilayer, so that fine control of cushioning property and uniform dispersion of compressive stress can be easily performed. Forming a surface layer or a basic layer in which two or more linear layers of a thermoplastic elastic resin of a soft component and a thermoplastic resin of a hard component are preferably integrated, and more preferably three or more. Is a more preferred example of the present invention. In a network structure consisting of a single component that also serves as a heat bonding component, if the surface layer function is given, it is too soft and loses the function of the base layer, and if the function of the base layer is given, it becomes hard and the function of the surface layer becomes hard. As a result, the functions of the surface layer and the basic layer cannot be simultaneously satisfied. On the other hand, the surface opposite to the surface layer can also have a heat bonding layer in the present invention. For this purpose, a reinforcing material having a high modulus and good shape retention is thermally bonded to the surface of the cushion material in contact with the frame, so that the vibration and repulsive stress received from the frame surface are uniformly transmitted to the cushion layer. The whole unit is deformed so that it can be converted into energy, so that the sitting comfort can be improved and the durability of the cushion can be improved. It is preferable to bond the reinforcing material having the vibration absorbing layer by heat, because the riding comfort is further improved. In order to impart a function, an optimum combination with the fineness and density of each layer can be arbitrarily selected in consideration of the linear component.

【0013】本発明の網状構造体を構成する線条の太さ
や断面形状は特には限定されないが、細過ぎると柔らか
くなり過ぎ体型保持や適度の抗圧縮反発性が低下するの
で、本発明の高融点弾性樹脂からなる網状構造体を構成
する線条の太さは好まくは0.001〜10mm、より好
ましくは0.01〜5mmである。接着層を形成する低融
点弾性樹脂は太すぎると加熱溶融させにくく、接着面の
接着点数が低下するので5mm以下とするのが好ましく、
0.001mm〜2mmとするのがより好ましい。本発明の
高融点弾性樹脂からなる網状構造体を構成する線条の断
面形状は、中空断面や異形断面にすることで、抗圧縮性
や嵩だか性をを付与できるので特に好ましい。抗圧縮性
は、用いる熱可塑性弾性樹脂のモジュラスにより調整し
て、柔らかい熱可塑性弾性樹脂では中空率や異形度を高
くして、初期圧縮応力の勾配を調整できるし、ややモジ
ュラスの高い素材では中空率や異形度を低くして、また
は丸断面として断面2次モ−メントを低くすることで座
り心地が良好な抗圧縮性を付与できる。中空断面や異形
断面の他の効果として中空率や異形度を高くすること
で、同一の抗圧縮性を付与した場合、見掛けの密度を低
くできるのでより軽量化が可能となり、自動車等の座席
に用いると省エネルギ−化ができ、布団などの場合は、
上げ下ろし時の取扱性が向上する。接着層を形成する低
融点弾性樹脂の断面形状も異形断面にすることで接着面
積の増加により接着力を向上できるので好ましい。
The thickness and cross-sectional shape of the filaments constituting the net-like structure of the present invention are not particularly limited. However, if it is too thin, it becomes too soft and the body shape is maintained and a suitable anti-compression resilience is reduced. The thickness of the line forming the network structure made of the melting point elastic resin is preferably 0.001 to 10 mm, more preferably 0.01 to 5 mm. If the low melting point elastic resin forming the adhesive layer is too thick, it is difficult to heat and melt, and the number of bonding points on the bonding surface is reduced, so that it is preferably 5 mm or less,
More preferably, it is 0.001 mm to 2 mm. The cross-sectional shape of the filament constituting the network structure made of the high-melting point elastic resin of the present invention is particularly preferable because it is possible to impart a compressive property and a bulky property to a hollow cross section or an irregular cross section. The anti-compression property is adjusted by the modulus of the thermoplastic elastic resin to be used.The hollow modulus and the degree of irregularity can be increased in a soft thermoplastic elastic resin, and the gradient of the initial compressive stress can be adjusted. By lowering the ratio and the degree of irregularity, or by reducing the secondary moment of the cross section as a round cross section, it is possible to impart good compression resistance to the sitting comfort. As another effect of hollow cross section and irregular cross section, by increasing the hollow ratio and degree of irregularity, when the same anti-compression property is imparted, the apparent density can be reduced, so that it is possible to reduce the weight, making it possible to reduce When used, energy saving can be achieved.
Handleability when lifting and lowering is improved. It is preferable that the cross-sectional shape of the low-melting point elastic resin forming the adhesive layer is also an irregular cross-section, because the bonding strength can be improved by increasing the bonding area.

【0014】本発明網状構造体の見掛け密度は特には限
定されないが、高融点弾性樹脂から構成される網状構造
体は、クッション体としての機能が発現されやすい0.
005g/cm3 以上0.20g/cm3 以下が好ましく、
より好ましくは0.01g/cm3 以上0.10g/cm3
以下である。低融点弾性樹脂から構成される接着層の見
掛け密度は、片面又は両面に網状体、不織布、編織物、
硬綿、フイルム、発泡体、金属、粉体、繊維状物等の熱
接着させる層と接着層との界面での多少のマイグレ−シ
ョンをおこして強固に熱接着した新たな成形体を得るこ
とができる0.01g/cm3 以上0.20g/cm3 以下
とするのが好ましい。高融点弾性樹脂からなる網状構造
体が2種類以上の層で一体化されている場合、各層の見
掛け密度を変え好ましい特性を付与することができる。
例えば、表面層にややモジュラスの低い、回復性の良い
熱可塑性弾性樹脂を用い線条の構成本数を多くすること
で表面層の見掛け密度を0.04〜0.06g/cm3
やや高くして線条の一本が受ける応力を少なくして応力
の分散を良くし、クッション層がややモジュラスの高い
熱可塑性弾性樹脂の線条で0.04〜0.06g/cm3
と中程度の密度にして、臀部を支えるクッション性の向
上とフレ−ム面から受ける振動や反発応力をクッション
層へ均一に伝達させ、クッション層と表面層が一体化し
た全体が変形してエンルギ−変換できるようにし、座り
心地を良くすると共にクッションの耐久性も向上させる
こともできる。又、座席のサイドの厚みと張りを付与さ
せるために部分的に繊度をやや細くして高密度化するこ
ともできる。このように繊度の異なる線条からなる各層
はその目的に応じ、熱可塑性弾性樹脂特性との兼ね合わ
せも含めた好ましい密度と繊度を任意に選択できる。な
お、網状構造体の各層の厚みは、特に限定されないが、
高融点弾性樹脂から構成される網状構造体は、クッショ
ン体としての機能が発現されやすい3mm以上とするのが
好ましい。低融点弾性樹脂から構成される接着層の厚み
は、接着機能を持ち成形時の厚み変化を少なくするため
に2mm以上10mm以下とするのが好ましい。又、ランダ
ムなループの大きさは目的用途により、任意に選定でき
るが、直径1〜5mm、特に2〜15mmが好ましい。
Although the apparent density of the net-like structure of the present invention is not particularly limited, the net-like structure made of a high-melting point elastic resin easily exhibits a function as a cushion.
005g / cm 3 or more 0.20 g / cm 3 or less,
More preferably, 0.01 g / cm 3 or more and 0.10 g / cm 3
It is as follows. The apparent density of the adhesive layer composed of the low melting point elastic resin is a net, a nonwoven fabric, a knitted fabric,
Some migration at the interface between the adhesive layer and the layer to be thermally bonded, such as hard cotton, film, foam, metal, powder, or fibrous material, to obtain a new molded product that is firmly thermally bonded. It is preferably 0.01 g / cm 3 or more and 0.20 g / cm 3 or less. When the network structure made of the high melting point elastic resin is integrated with two or more types of layers, the apparent density of each layer can be changed to give preferable characteristics.
For example, the apparent density of the surface layer is slightly increased to 0.04 to 0.06 g / cm 3 by using a thermoplastic elastic resin having a relatively low modulus and a good recoverability for the surface layer and increasing the number of filaments. The stress applied to one of the filaments is reduced to improve the dispersion of the stress, and the cushion layer is made of a thermoplastic elastic resin filament having a somewhat high modulus of 0.04 to 0.06 g / cm 3.
With a medium density, the cushioning to support the buttocks is improved, and the vibration and repulsive stress received from the frame surface are evenly transmitted to the cushion layer. -It can be converted to improve sitting comfort and improve the durability of the cushion. In addition, in order to increase the thickness and the tension of the side of the seat, the fineness can be made slightly thinner partially to increase the density. For each layer composed of the filaments having different finenesses as described above, a preferable density and fineness can be arbitrarily selected in consideration of the purpose thereof, including the combination with the characteristics of the thermoplastic elastic resin. The thickness of each layer of the network structure is not particularly limited,
The mesh structure made of the high melting point elastic resin is preferably 3 mm or more in which the function as a cushion body is easily developed. The thickness of the adhesive layer composed of the low melting point elastic resin is preferably 2 mm or more and 10 mm or less in order to have an adhesive function and reduce the thickness change during molding. The size of the random loop can be arbitrarily selected according to the intended use, but the diameter is preferably 1 to 5 mm, particularly preferably 2 to 15 mm.

【0015】網状構造体面の曲がりくねらせた熱可塑性
弾性樹脂からなる線条が途中で厚み方向を水平線とした
時、その線からの角度が45°以上曲げられ、実質的に
面がフラット化されて、接触部の大部分が融着している
ことが、本発明の好ましい実施形態である。本発明で
は、網状構造体面の片面又は両面は低融点弾性樹脂から
なる熱接着層で形成されており、実質的に熱接着面がフ
ラット化されていることで網状体、不織布、編織物、硬
綿、フイルム、発泡体、金属等の被熱接着体面との接触
面積が広くできるので、熱接着面積が広くなり、強固に
熱接着した新たな成形体を得ることができる。このこと
は、高融点弾性樹脂からなる網状構造体層と熱接着層の
該線条の接触点も大幅に増加して接着点を形成するた
め、局部的な外力も構造面で受け止めて面構造が全体で
変形して内部の構造体全体も変形して応力を吸収し、応
力が解除されると弾性樹脂のゴム弾性が発現して、構造
体は元の形態に回復することができるので、良好な座り
心地と共に優れたクッションの耐久性を有する成形体を
得ることができる。片面が高融点弾性樹脂で形成されて
いる場合も同様の効果が発現する。実質的にフラット化
されてない場合、凹凸のある接着面では被熱接着体面及
び高融点弾性樹脂からなる網状構造体層との接触面積が
少なくなるので熱接着点の面積も少なくなり、外力の伝
達が熱接着点に集中して応力集中による疲労が発生して
耐へたり性が低下するので好ましくない。更に、接着が
不充分となる為、剥離などの問題を生ずる場合がある。
非弾性樹脂では、表面が実質的にフラット化していても
そのまま応力が接着点に集中して構造破壊を生じ回復し
にくくなる。
When a line made of a thermoplastic elastic resin having a meandering surface on the surface of the reticulated structure is made a horizontal line in the thickness direction, the angle from the line is bent by 45 ° or more, and the surface is substantially flattened. Thus, it is a preferred embodiment of the present invention that most of the contact portions are fused. In the present invention, one or both of the surfaces of the network structure is formed of a heat bonding layer made of a low melting point elastic resin, and the heat bonding surface is substantially flattened, so that the network, nonwoven fabric, knitted fabric, hard Since the area of contact with the surface of the object to be heated such as cotton, film, foam, metal, etc. can be increased, the area of thermal adhesion can be increased, and a new molded article that is strongly thermally bonded can be obtained. This is because the point of contact between the reticular structure layer made of a high melting point elastic resin and the line of the heat bonding layer is greatly increased to form a bonding point. Is deformed as a whole, the entire internal structure is also deformed to absorb the stress, and when the stress is released, the rubber elasticity of the elastic resin is developed, and the structure can recover to its original form, It is possible to obtain a molded article having excellent sitting comfort and excellent cushion durability. The same effect is exhibited when one surface is made of a high melting point elastic resin. When not substantially flattened, the contact area between the heat-bonded surface and the reticulated structure layer made of the high-melting-point elastic resin is reduced on the uneven bonding surface, so that the area of the thermal bonding point is also reduced, and the external force is reduced. This is not preferable because the transmission is concentrated at the heat bonding point and fatigue due to stress concentration occurs to reduce sag resistance. Furthermore, since the adhesion is insufficient, problems such as peeling may occur.
In the case of an inelastic resin, even if the surface is substantially flat, the stress is directly concentrated on the bonding point, causing structural destruction and making recovery difficult.

【0016】次に本発明の製法について述べる。本発明
網状構造体は、網状構造体の片面または両面に低融点熱
可塑性弾性樹脂の層か形成されるように、及び、他の部
分に高融点熱可塑性弾性樹脂の層が形成されるように分
配したノズルより、各樹脂を融点より10℃以上、12
0℃以下の溶融温度でノズルより下方に向けて吐出さ
せ、溶融状態の吐出線条を曲がりくねらせて互いに接触
させて大部分の接触部を融着させ3次元構造を形成しつ
つ、引取り装置で挟み込み、次いで冷却槽で冷却せしめ
て網状体を一工程で形成することを特徴とする熱接着性
網状構造体の製法である。本発明の網状構造体を得るに
は、少なくとも2成分押出機、好ましくは3成分押出機
を用いて、熱接着成分となる低融点熱可塑性弾性樹脂及
びクッション体となる高融点熱可塑性弾性樹脂を各単独
成分毎に溶融して、ノズル背面で低融点弾性樹脂を網状
構造体の片面または両面を構成するように分配し、他の
部分に高融点熱可塑性弾性樹脂を分配してノズルのオリ
フィスより吐出させる。本発明の好ましい実施形態で
は、例えば、長手方向の有効幅50mm、ノズルの幅方向
の列の孔間ピッチは10mm一定、列間のピッチが5mm一
定の丸断面のオリフィス形状の場合、熱接着層を形成す
る低融点弾性樹脂を、片面に配する場合は1列目又は1
列目〜2列目、両面に配する場合は1列目と11列目又
は1列目〜2列目と11列目又は10列目〜11列目に
分配して熱接着成分層の厚みを1mm以上10mm以下とな
るようにして、高融点弾性樹脂を他の列に分配して、好
ましくは、各成分の融点より10℃以上、120℃以下
の同一の溶融温度で、各成分の層が所望の見掛け密度に
なる吐出量、例えば、単孔吐出量は、熱接着層の部分は
2.5g/分、クッション体となる部分は2g/分のよ
うに、好ましくは、各成分を各ギヤポンプにてノズルへ
溶融状態の弾性樹脂を送り、下方に向けて各オリフィス
より吐出させる。本発明のより好ましい実施形態から
は、構成本数を熱接着層で増やす場合、例えば、1列目
から2列目の孔間ピッチを5mm、10列目と11列目の
孔間ピッチを6.67mmに変更して各成分の全吐出量を
同一で吐出させれば、熱接着層の見掛け密度を0.06
08g/cm3 、クッション体を形成する層0.0404
g/cm3 のまま変えずに構成本数を2倍、及び約1.5
倍に増加させた緻密な熱接着層にできる。勿論、クッシ
ョン体となる高融点弾性樹脂の層の特定部分の孔密度を
かえて、クッション特性を最適化することができる。ま
た、オリフィスの断面積を変えて吐出時の圧力損失差を
付与すると、溶融した熱可塑性弾性樹脂を同一ノズルか
ら一定の圧力で押し出される吐出量が圧力損失の大きい
オリフィスほど少なくなる原理を用いると列内、列間で
異繊度線条からなる網状構造体も製造できる。本発明に
使うノズルのオリフィス形状は丸断面でも良いが、本発
明では、線条を中空や異形断面化することで溶融状態の
吐出線条が形成する3次元構造が流動緩和し難くし、逆
に接触点での流動時間を長く保持して接着点を強固にで
きるので特に好ましい。特開平1−2075号公報に記
載の接着のための加熱をする場合、3次元構造が緩和し
易くなり平面的構造化し、3次元立体構造化が困難とな
るので好ましくない。次いで、引取りネットで溶融状態
の3次元立体構造体両面を挟み込み、両面の溶融状態の
曲がりくねった吐出線条を45°以上折り曲げて変形さ
せて表面をフラット化すると同時に曲げられていない吐
出線条との接触点を接着して構造を形成後、連続して冷
却媒体(通常は室温の水を用いるのが冷却速度を早くで
き、コスト面でも安くなるので好ましい)で急冷して本
発明の3次元立体網状構造体を得る。次いで水切り乾燥
するが冷却媒体中に界面活性剤等を添加すると、水切り
や乾燥がしにくくなったり、熱可塑性弾性樹脂が膨潤す
ることもあり好ましくない。本発明の好ましい方法とし
ては、一旦冷却後、疑似結晶化処理を行う。疑似結晶化
処理温度は、少なくとも融点(Tm)より10℃以上低
く、Tanδのα分散立ち上がり温度(Tαcr)以上
で行う。この処理で、融点以下に吸熱ピ−クを持ち、疑
似結晶化処理しないもの(吸熱ピ−クを有しないもの)
より耐熱耐へたり性が著しく向上する。本発明の好まし
い疑似結晶化処理温度は高融点弾性樹脂の(Tαcr+
10℃)から低融点弾性樹脂の(Tm−20℃)であ
る。単なる熱処理により疑似結晶化させると耐熱耐へた
り性が向上する。が更には一旦冷却後、10%以上の圧
縮変形を付与してアニ−リングすることで耐熱耐へたり
性が著しく向上するのでより好ましい。また、一旦冷却
後、乾燥工程を経する場合、乾燥温度をアニ−リング温
度とすることで同時に疑似結晶化処理を行うができる。
また、熱接着成形時または熱接着成形後に別途疑似結晶
化処理を行うができる。次いで所望の長さまたは形状に
切断してクッション材に用いる。尚、ノズル面と樹脂を
固化させる冷却媒体上に設置した引取りコンベアとの距
離、樹脂の溶融粘度、オリフィスの孔径と吐出量などに
より所望のループ径や線径をきめられる。冷却媒体上に
設置した間隔が調整可能な一対の引取りコンベアで溶融
状態の吐出線条を挟み込み停留させることで互いに接触
した部分を融着させ、連続して冷却媒体中に引込み固化
させ網状構造体を形成する時、上記コンベアの間隔を調
整することで、融着した網状体が溶融状態でいる間で厚
み調節が可能となり、所望の厚みのものが得られる。引
取りコンベアとノズル面の距離は好ましくは30cm以内
であり、長過ぎると溶融線条が冷却さて接触部が融着し
なくなるので好ましくない。コンベア速度も速すぎる
と、接触点の形成が不充分になったり、融着点が充分に
形成されるまでに冷却され、接触部の融着が不充分にな
る場合がある。また、速度が遅過ぎると溶融物が滞留し
過ぎ、密度が高くなるので、所望の見掛け密度に適した
コンベア速度を設定する必要がある。
Next, the production method of the present invention will be described. The network structure of the present invention is formed such that a layer of a low-melting thermoplastic elastic resin is formed on one or both sides of the network structure, and a layer of a high-melting thermoplastic elastic resin is formed on other portions. From the dispensed nozzles, make each resin 10 ° C or more from the melting point, 12
Discharged below the nozzle at a melting temperature of 0 ° C or less, and the discharge lines in the molten state are meandered and brought into contact with each other to fuse most of the contact portions to form a three-dimensional structure while taking off. This is a method for producing a heat-adhesive network structure, in which the network is sandwiched between devices and then cooled in a cooling bath to form a network in one step. In order to obtain the network structure of the present invention, at least a two-component extruder, preferably a three-component extruder, is used to form a low-melting thermoplastic elastic resin serving as a heat bonding component and a high-melting thermoplastic elastic resin serving as a cushion body. Each single component is melted and the low melting point elastic resin is distributed on the back of the nozzle so as to constitute one or both sides of the net-like structure, and the high melting point thermoplastic elastic resin is distributed to the other parts and is distributed from the nozzle orifice. Discharge. In a preferred embodiment of the present invention, for example, in the case of a circular cross-section orifice in which the effective width in the longitudinal direction is 50 mm, the pitch between the holes in the row in the width direction of the nozzle is constant at 10 mm, and the pitch between the rows is constant at 5 mm, In the case where the low melting point elastic resin forming
In the case of disposing on the second to second rows, or on both sides, the first and eleventh rows or the first to second and eleventh rows or the tenth and eleventh rows are distributed to the thickness of the heat-adhesive component layer. And the high-melting point elastic resin is distributed to other rows, preferably at the same melting temperature of 10 ° C. or more and 120 ° C. or less from the melting point of each component. Is preferably 2.5 g / min for the heat bonding layer and 2 g / min for the cushion, and preferably each component is The melted elastic resin is sent to the nozzle by a gear pump and discharged downward from each orifice. In a more preferred embodiment of the present invention, when the number of components is increased by the heat bonding layer, for example, the pitch between the holes in the first to second rows is 5 mm, and the pitch between the holes in the tenth and eleventh rows is 6. If the total discharge amount of each component is changed to 67 mm and the same amount is discharged, the apparent density of the heat bonding layer becomes 0.06.
08 g / cm 3 , cushion-forming layer 0.0404
g / cm 3 and double the number of components without changing, and about 1.5
A dense thermal adhesive layer that is doubled can be obtained. Of course, the cushion characteristics can be optimized by changing the hole density of a specific portion of the high-melting point elastic resin layer that becomes the cushion body. In addition, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, a principle is used in which the discharge amount at which the molten thermoplastic elastic resin is extruded at a constant pressure from the same nozzle becomes smaller as the orifice with a larger pressure loss is used. It is also possible to manufacture a net-like structure composed of filaments of different fineness within and between rows. The orifice shape of the nozzle used in the present invention may have a round cross-section, but in the present invention, the three-dimensional structure formed by the molten discharge filament is less likely to flow by forming the filament into a hollow or irregular cross-section. This is particularly preferable because the flow time at the contact point can be kept long and the adhesion point can be strengthened. In the case of heating for bonding described in Japanese Patent Application Laid-Open No. 1-2075, it is not preferable because the three-dimensional structure is easily relaxed, and it becomes difficult to form a three-dimensional structure. Next, the both sides of the molten three-dimensional structure are sandwiched by the take-off net, and the melted and twisted discharge lines on both sides are bent and deformed by 45 ° or more to flatten the surface and at the same time the discharge lines that are not bent. After the structure is formed by bonding the contact points with water, it is quenched continuously with a cooling medium (usually, it is preferable to use water at room temperature because the cooling rate can be increased and the cost is reduced). Obtain a three-dimensional three-dimensional network structure. Then, drying with water is performed. However, if a surfactant or the like is added to the cooling medium, draining or drying becomes difficult, and the thermoplastic elastic resin may swell, which is not preferable. As a preferred method of the present invention, a pseudo crystallization treatment is performed after cooling once. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm) and is equal to or higher than the α dispersion rise temperature (Tαcr) of Tan δ. In this process, an endothermic peak below the melting point and not subjected to pseudo-crystallization treatment (no endothermic peak)
The heat and sag resistance is significantly improved. The preferred pseudo-crystallization temperature of the present invention is (Tαcr +
10 ° C.) to (Tm−20 ° C.) of the low melting point elastic resin. Pseudo crystallization by simple heat treatment improves heat set resistance. However, it is more preferable to perform annealing after imparting a compressive deformation of 10% or more after cooling once, since heat resistance and sag resistance are remarkably improved. In the case where a drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature.
Further, a pseudo crystallization treatment can be separately performed at the time of heat bonding molding or after the heat bonding molding. Next, it is cut into a desired length or shape and used as a cushion material. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and a take-off conveyor provided on a cooling medium for solidifying the resin, the melt viscosity of the resin, the hole diameter of the orifice, and the discharge amount. A pair of take-up conveyors with adjustable intervals installed on the cooling medium sandwich and hold the discharge line in the molten state to fuse the parts that are in contact with each other, and are continuously drawn into the cooling medium to be solidified. When the body is formed, by adjusting the distance between the conveyors, the thickness can be adjusted while the fused net is in a molten state, and a desired thickness can be obtained. The distance between the take-up conveyor and the nozzle surface is preferably within 30 cm. If the distance is too long, the molten wire is cooled and the contact portion is not fused, which is not preferable. If the conveyor speed is too high, the contact point may be insufficiently formed, or the contact point may be cooled until the fusion point is sufficiently formed, and the fusion of the contact portion may be insufficient. On the other hand, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set a conveyor speed suitable for the desired apparent density.

【0017】本発明の網状構造体をクッション材に用い
る場合、その使用目的、使用部位により使用する樹脂、
繊度、ル−プ径、嵩密度を選択する必要がある。例え
ば、表層のワディング部は、ソフトなタッチと適度の沈
み込みと張りのある膨らみを付与するために、低密度で
細い繊度、細かいル−プ径にするのが好ましく、中層の
クッション体としては、共振振動数を低くし、適度の硬
さと圧縮時のヒステリシスを直線的に変化させて体型保
持性を良くし、耐久性を保持させるために、中密度で太
い繊度、やや大きいル−プ径が好ましい。また、クッシ
ョン体となる層及び、被熱接着物との接着強度を得るた
めに相溶性の良い熱接着成分を選択するのが好ましい。
3次元構造を損なわない程度に成形型等を用いて使用目
的にあった形状に成形して使用できる。また、樹脂製造
過程以外でも性能を低下させない範囲で製造過程から成
形体に加工する任意の段階で難燃化、防虫抗菌化、耐熱
化、撥水撥油化、着色、芳香等の機能付与を薬剤添加等
の処理加工ができる。
When the net-like structure of the present invention is used for a cushion material, a resin to be used depending on the purpose of use and the site of use,
It is necessary to select fineness, loop diameter and bulk density. For example, the wadding portion of the surface layer is preferably made to have a low density, fine fineness, and a small loop diameter in order to provide a soft touch and a moderate sinking and a firm bulge. In order to lower the resonance frequency, linearly change the appropriate hardness and the hysteresis at the time of compression to improve body shape retention and maintain durability, medium density, large fineness, and slightly larger loop diameter Is preferred. In addition, it is preferable to select a heat bonding component having good compatibility in order to obtain a bonding strength between the layer to be the cushion body and the object to be heated.
It can be formed into a shape suitable for the purpose of use by using a forming die or the like to the extent that the three-dimensional structure is not damaged. Also, at any stage during the processing from the manufacturing process to the molded body in a range that does not reduce the performance other than the resin manufacturing process, functions such as flame retardancy, insect repellent antibacterial, heat resistance, water and oil repellency, coloring, fragrance etc. Processing such as drug addition can be performed.

【0018】[0018]

【実施例】以下に実施例で本発明を詳述する。The present invention will be described in detail with reference to the following examples.

【0019】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め、試料の重さを体積で徐した値で
示す。(n=4の平均値) 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚みと処理前の厚みの比を%で示す(n=
3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚みと処理前の厚みの比を%
で示す。(n=3の平均値) 熱接着強度 試料を15cm×15cmの大きさに切断し、熱接着面に離
形シ−トを挟んで折り返したポリエステルの織物を、折
り返し側が試料の中央にくる様に2枚を配して、ヒ−ト
プレスで挟み、低融点弾性樹脂の融点より10℃高い温
度で織物及び熱接着面を余熱し、次いで、圧縮して熱接
着させ得られた熱接着成形品を用い、離形シ−トを挟ん
で折り返し、熱接着していない側の織物の部分をチャッ
クに挟み、両側から織物を引っ張って織物と熱接着した
網状構造体との剥離力を測定し、幅1cm当たりの剥離力
に換算し、熱接着強度を求め、n=5の平均値が、1kg
/cm未満;×、1kg/cm以上3kg/cm未満;△、3kg/
cm以上5kg/cm未満;○、5kg/cm以上;◎で示す。 座り心地 30℃RH75%室内で座席用フレ−ムにバケットシ−
ト状に成形したクッションにポリエステルモケットの側
地を掛けた座席にパネラ−を座らせ(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価:(1) から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluation in the examples was performed by the following method. Endothermic peak at melting point (Tm) and below melting point Using an endothermic peak (melting peak) based on an endothermic curve measured at a heating rate of 20 ° C./min using a TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation. ) Temperature was determined. The Tαcr polymer is heated to the melting point + 10 ° C., and the thickness is about 300 μm.
And a Tan δ (ratio M ″ / tan δ (imaginary elastic modulus M ″ and real part M ′ of elastic modulus) measured at 110 Hz and at a heating rate of 1 ° C./min using a Vibron DDVII model manufactured by Orientec. M ′) is the rise temperature of α-dispersion corresponding to the transition point temperature from the rubber elastic region to the melting region. Apparent density A sample is cut into a size of 15 cm × 15 cm, the height is measured at four locations, the volume is determined, and the weight of the sample is indicated by a value obtained by reducing the volume by the volume. (Average value of n = 4) Fused Samples are visually judged to determine whether or not they are fused. to decide. Heat resistance (70 ° C residual strain) Cut the sample into 15cm x 15cm size, compress it by 50%, leave it at 70 ° C for 22 hours in dry heat, cool it to remove the compressive strain, and leave it for one day, and before treatment Is expressed in% (n =
(Average value of 3) Repetitive compressive strain A sample was cut into a size of 15 cm × 15 cm, and 50% in a RH chamber at 25 ° C. and 65% with a SERVO pulsar manufactured by Shimadzu Corporation.
The compression recovery is repeated at a cycle of 1 Hz until the thickness of the sample reaches 20,000 times.
Indicated by (Average value of n = 3) Thermal adhesive strength A polyester fabric cut into a size of 15 cm x 15 cm and folded over a release sheet on the thermal adhesive surface, with the folded side at the center of the sample The heat-bonded molded product obtained by sandwiching two sheets in a heat press, preheating the woven fabric and the heat-bonded surface at a temperature 10 ° C. higher than the melting point of the low-melting elastic resin, and then compressing and heat-bonding , And folded back with the release sheet sandwiched, the portion of the woven fabric on the side that was not thermally bonded was sandwiched between chucks, and the woven fabric was pulled from both sides to measure the peeling force between the woven fabric and the thermally bonded net-like structure, Converted to the peeling force per 1 cm width, the thermal adhesive strength was determined, and the average value of n = 5 was 1 kg
/ Cm; less than 1 kg / cm and less than 3 kg / cm;
cm or more and less than 5 kg / cm; ○, 5 kg / cm or more; Seat comfort 30 ° C RH 75% Bucket seat on seat frame in room
A paneler sits on a seat in which a side of polyester moquette is hung on a cushion shaped like a letter (n = 5). (1) Feeling of flooring: The degree of "Donsu" when sitting and hitting the floor. Was qualitatively evaluated sensoryly. Not felt; ◎, almost felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: After sitting for two hours, sensationally felt that the part in contact with the buttocks and the inner part of the crotch was stuffy. It was qualitatively evaluated. Almost no: ◎, slight stuffiness; ○, slight stuffiness; △, noticeable stuffiness; × (3) How long to be patient in 8 hours or less: 1 hour; × within 2 hours; △ within 4 hours;
○: 4 hours or more; ◎ (4) The degree of waist fatigue when seated in a seat for 4 hours was qualitatively evaluated sensoryly. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points of ◎ in evaluation from (1) to (4), ○
Is 3 points, Δ is 2 points, and × is 1 point, 12 points or more do not contain Δ; very good (◎), 12 points or more include Δ; good (○), 10 points or more are × Was evaluated as poor (x), poor x (x), and poor (x).

【0020】実施例1及び2 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤1%を添加混合
練込み後ペレット化し、50℃48時間乾燥して得られ
た熱可塑性弾性樹脂原料の処方を表1に示す。
Examples 1 and 2 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as the polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, transesterified by a conventional method, and polytetramethylene glycol (PTMG) was added. Table 1 shows the formulation of the thermoplastic elastomer resin raw material obtained by forming a terester block copolymer elastomer, adding 1% of an antioxidant, mixing and kneading, pelletizing and drying at 50 ° C. for 48 hours.

【0021】[0021]

【表1】 [Table 1]

【0022】得られたポリエステル系の2種類の熱可塑
性弾性樹脂を2本の押出機にて溶融し、幅50cm、長さ
5cmのノズル有効面に長さ方向に列間ピッチを5mm、オ
リフィス径を0.7mmとし、1列目と2列目及び11列
目の孔間ピッチを5mm、3列目から10列目までの孔間
ピッチを10mmとしたノズルに、A−1を1列目と2列
目及び11列目に分配し、A−2を3列目から10列目
に分配して、溶融温度240℃にて、単孔吐出量をA−
1は1.26g/分孔、A−2は2.00g/分孔にて
吐出させ、ノズル面12cm下に冷却水を配し、幅60cm
のステンレス製エンドレスネットを平行に5cm間隔で一
対の引取りコンベアを水面上に一部出るように配した上
に引取り、接触部分を融着させつつ、両面を挟み込みつ
つ毎分1mの速度で25℃の冷却水中へ引込み固化さ
せ、次いで100℃の熱風乾燥機中で20分疑似結晶化
処理した後、所定の大きさに切断して得られた網状構造
体の特性を表3に示す。平均の見掛け密度は0.047
5g/cm3 、各層の見掛け密度と厚みは、A−1層の1
列と2列目の層(表)は0.0675g/cm3 で約8m
m、11列目の層(裏)は0.102g/cm3 で約3m
m、A−2層0.0404g/cm3 で約41mm、熱接着
層となる低融点弾性樹脂からなるA−1層は面が実質的
にフラット化された構成本数の多い緻密化した層であっ
た。
The obtained two types of polyester-based thermoplastic elastic resins are melted by two extruders, and a pitch between rows is 5 mm in a length direction on an effective surface of a nozzle having a width of 50 cm and a length of 5 cm, and an orifice diameter. A was set to 0.7 mm, the pitch between the holes in the first, second, and eleventh rows was 5 mm, and the pitch between the holes in the third to tenth rows was 10 mm. And the second and eleventh rows, and A-2 was distributed from the third to the tenth rows.
1 was discharged at 1.26 g / minute, A-2 was discharged at 2.00 g / minute, cooling water was placed under the nozzle surface 12 cm, and the width was 60 cm.
A pair of take-up conveyors are arranged in parallel at 5 cm intervals so as to partially emerge above the water surface, and the stainless steel endless nets are taken at a speed of 1 m / min while sandwiching the contact portions while sandwiching both surfaces. Table 3 shows the characteristics of the net-like structure obtained by drawing into cooling water at 25 ° C., solidifying it, then subjecting it to pseudo-crystallization treatment in a hot-air dryer at 100 ° C. for 20 minutes, and then cutting it into a predetermined size. The average apparent density is 0.047
5 g / cm 3 , the apparent density and thickness of each layer were 1
The layer (table) in the row and the second row is about 8 m at 0.0675 g / cm 3
m, layer in 11th row (back) is 0.102 g / cm 3 and about 3 m
m, A-2 layer: 0.0404 g / cm 3 , about 41 mm, A-1 layer made of a low melting point elastic resin to be a heat bonding layer is a dense layer having a large number of components whose surface is substantially flattened. there were.

【0023】実施例2 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)80モル%とジメチルイソフタレ−ト
(DMI)20モル%、及び1・4ブタンジオ−ル(1
・4BD)を少量の触媒と仕込み、常法によりエステル
交換後、ポリテトラメチレングリコ−ル(PTMG)を
添加して昇温減圧しつつ重縮合せしめポリエ−テルエス
テルブロック共重合エラストマ−を生成させ、次いで抗
酸化剤1%を添加混合練込み後ペレット化し、50℃4
8時間乾燥して得られた熱可塑性弾性樹脂原料(A−
3)の処方を表1に示す。次いで、熱接着層となる低融
点弾性樹脂にA−3を用いた以外、実施例1と同様にし
て得た網状構造体の特性を表3に示す。見掛け密度と厚
みは実施例1とほぼ同じで、A−3層も面が実質的にフ
ラット化された構成本数の多い緻密化した層であった。
Example 2 As polyester-based elastomers, 80 mol% of dimethyl terephthalate (DMT), 20 mol% of dimethyl isophthalate (DMI), and 1.4 butanediol (1)
4BD) was charged with a small amount of a catalyst, transesterified by a conventional method, polytetramethylene glycol (PTMG) was added, and polycondensation was performed while raising the temperature and reducing the pressure to form a polyetherester block copolymer elastomer. Then, 1% of an antioxidant was added, mixed, kneaded, and pelletized.
Thermoplastic elastic resin raw material (A-
Table 1 shows the prescription of 3). Next, Table 3 shows the characteristics of the reticulated structure obtained in the same manner as in Example 1 except that A-3 was used as the low-melting point elastic resin to be the heat bonding layer. The apparent density and the thickness were almost the same as those in Example 1, and the A-3 layer was also a dense layer having a large number of components whose surface was substantially flattened.

【0024】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し、次いで抗酸
化剤1%を添加混合練込み後ペレット化し乾燥してポリ
エ−テル系ウレタンを熱可塑性弾性樹脂原料とした。処
方を表2に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added to polymerize, and then 1% of an antioxidant was added. After mixing and kneading, pelletized and dried, polyether urethane was used as a thermoplastic elastic resin raw material. The formulations are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】得られたポリウレタン系の2種類の熱可塑
性弾性樹脂をB−1を1列目と2列目及び11列目に分
配し、B−2を3列目から10列目とに分配して、溶融
温度215℃にて、単孔吐出量をB−1は1.26g/
分孔、B−2は2.00g/分孔にて吐出させ、疑似結
晶化処理しなかった以外実施例1と同様にして得た網状
構造体の特性を表3に示す。得られた網状構造体は実施
例1と同様に熱接着層となる低融点弾性樹脂からなるB
−1層は面が実質的にフラット化された構成本数の多い
緻密化した層であった。見掛け密度と厚みは実施例1と
ほぼ同じであった。
The obtained two types of polyurethane-based thermoplastic elastic resins were distributed in the first row, the second row, and the eleventh row of B-1, and the B-2 was distributed in the third to tenth rows. Then, at a melting temperature of 215 ° C., the single hole discharge amount was 1.26 g / B-1.
Table 3 shows the properties of the reticulated structure obtained in the same manner as in Example 1 except that the pores and B-2 were discharged at 2.00 g / pore and the pseudo-crystallization treatment was not performed. The obtained net-like structure was made of B made of a low-melting point elastic resin to serve as a heat bonding layer in the same manner as in Example 1.
The -1 layer was a dense layer having a large number of constituents whose surface was substantially flattened. The apparent density and thickness were almost the same as in Example 1.

【0027】比較例1及び2 固有粘度0.61のイソフタル酸を45モル%とテレフ
タル酸55モル%およびエチレングリコ−ルを共重合し
た融点115℃のポリエステル(PEIT)を1列目と
2列目及び11列目に分配し、固有粘度0.63のポリ
エチレンテレフタレ−ト(PET)を3列目から10列
目に分配し、溶融温度280℃にて各列での単孔吐出量
は実施例1と同様にして得た網状構造体、及びメルトイ
ンデックス10のポリエチレン(PE)を1列目と2列
目及び11列目に分配し、メルトインデックス35のポ
リプロピレン(PP)を3列目から10列目に分配し、
溶融温度220℃にて各列での単孔吐出量は実施例1と
同様にして得た網状構造体の特性を表3に示す。
Comparative Examples 1 and 2 First and second rows of polyester (PEIT) having a melting point of 115 ° C. obtained by copolymerizing 45 mol% of isophthalic acid having an intrinsic viscosity of 0.61, 55 mol% of terephthalic acid and ethylene glycol. The polyethylene terephthalate (PET) having an intrinsic viscosity of 0.63 was distributed from the third row to the tenth row, and the single hole discharge amount in each row at a melting temperature of 280 ° C. The network structure obtained in the same manner as in Example 1 and polyethylene (PE) having a melt index of 10 were distributed in the first, second and eleventh rows, and polypropylene (PP) having a melt index of 35 was distributed in the third row. To the 10th column,
Table 3 shows the characteristics of the network structure obtained in the same manner as in Example 1 for the single hole discharge amount in each row at a melting temperature of 220 ° C.

【0028】[0028]

【表3】 [Table 3]

【0029】比較例3 ノズルの孔配列を列間ピッチ5mm、孔間ピッチを10mm
とし、オリフィス径をφ0.7mmとしたノズルより、A
−3の熱可塑性弾性樹脂のみを235℃にて単孔吐出量
を2.0g/分にて吐出させた以外、実施例2と同様の
条件にて得た網状構造体の特性を表3に示す。平均の見
掛け密度は0.048g/cm3 、厚みは約50mmであっ
た。なお、熱接着強度を測定するために接着処理をした
時、厚みが約32mmに減少して回復しなかった。
Comparative Example 3 The arrangement of the nozzle holes was 5 mm between rows and the pitch between holes was 10 mm.
From the nozzle with an orifice diameter of 0.7 mm, A
Table 3 shows the characteristics of the reticulated structure obtained under the same conditions as in Example 2 except that only the thermoplastic elastic resin of No. -3 was discharged at 235 ° C. at a single hole discharge rate of 2.0 g / min. Show. The average apparent density was 0.048 g / cm 3 and the thickness was about 50 mm. When the bonding treatment was performed to measure the thermal bonding strength, the thickness was reduced to about 32 mm and did not recover.

【0030】比較例4 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例1
と同様の方法で得た網状構造体の特性の一部を表3に示
す。なお、接着状態が不良で形態保持が悪いため、見掛
け密度、70℃残留歪、繰返圧縮歪み、熱接着強度の評
価はしていない。
Comparative Example 4 Example 1 was repeated except that the take-up conveyor net was arranged 60 cm below the nozzle surface and the pseudo-crystallization treatment was not performed after the take-up conveyor net.
Table 3 shows some of the characteristics of the reticulated structure obtained in the same manner as in Example 1. In addition, since the adhesion state is poor and the shape retention is poor, the evaluation of the apparent density, the residual strain at 70 ° C., the repeated compression strain, and the thermal adhesion strength is not performed.

【0031】実施例1はポリエステル系ポリマ−を用い
たソフトで適度の沈み込みがあり、耐熱耐久性が良好な
クッション材に適した好ましい網状構造体であり、熱接
着強度も良好である。実施例2は熱接着成分を低温化し
た例で熱接着強度が向上した例である。実施例3はポリ
ウレタン系ポリマ−を用いた疑似結晶化処理していない
例で、座り心地は非常に良好なクッション性を示し、接
着強度も良好であった。比較例1及び比較例2は、熱可
塑性非弾性樹脂を用いた例で、疑似結晶化処理をしても
融点以下に吸熱ピークを持たず、耐熱耐久性が著しく劣
り、且つ硬くて座り心地が極めて悪くクッション材に適
さない例である。但し、接着強度は良好であった。比較
例3は単成分の弾性樹脂層からなり本発明の範囲を外れ
る例で、耐久性や座り心地は実施例1よりも劣り、接着
時に部分的に溶融してクッション層の厚みが低下すると
いう成形時の問題も大なるものとなる。比較例4は繊維
同士が互いに融着していない例で、形態保持が極めて悪
くクッション材に適さないものである。
Example 1 is a preferred net-like structure suitable for a cushion material having a soft and moderate sinking, a good heat resistance and durability using a polyester polymer, and a good heat bonding strength. Example 2 is an example in which the temperature of the heat bonding component is lowered and the heat bonding strength is improved. Example 3 was an example in which a pseudo-crystallization treatment using a polyurethane polymer was not performed, and the seating comfort was very good and the adhesive strength was good. Comparative Examples 1 and 2 are examples using a thermoplastic inelastic resin, and have no endothermic peak below the melting point even after pseudo-crystallization treatment, and have extremely poor heat resistance and durability, and are hard and comfortable to sit on. This is an example that is extremely bad and is not suitable for a cushion material. However, the adhesive strength was good. Comparative Example 3 is an example comprising a single-component elastic resin layer and deviating from the scope of the present invention, in which the durability and sitting comfort are inferior to those in Example 1, and the thickness of the cushion layer is reduced due to partial melting at the time of bonding. Problems during molding also become significant. Comparative Example 4 is an example in which fibers are not fused to each other, and has an extremely poor shape retention and is not suitable for a cushion material.

【0032】[0032]

【発明の効果】本発明の網状構造体は熱可塑性弾性樹脂
を用いた線条が融着一体化した熱可塑性低融点弾性樹脂
からなる熱接着性を有する層を片面または両面に有する
ので、熱接着による新たな成形体を容易に形成でき、接
着された被接着層の外力の変形を面で受けて熱接着層と
高融点弾性樹脂からなるクッション機能層とが一体で構
造全体で変形し応力を吸収し、外力が除去されると弾性
樹脂特有のゴム弾性で元の形態に回復することができる
ので、座り心地のより改善された、耐熱耐久性、嵩高
で、適度の圧縮反発力を持ち、蒸れにくいクッション材
に適した、且つ、リサイクルが容易な車両用座席、船舶
用座席、家具用クッション、寝装用品に有用な熱接着性
網状構造体である。単独での使用や他の素材との併用も
可能である。更には、断熱材や内装材、保温材、伸縮不
織布用途等にも有用な熱接着性網状構造体である。
As described above, the network structure of the present invention has a heat-adhesive layer made of a thermoplastic low-melting elastic resin in which filaments made of a thermoplastic elastic resin are fused and integrated on one or both sides. A new molded body can be easily formed by bonding, and the thermal bonding layer and the cushion function layer made of high melting point elastic resin are integrally deformed by the external force deformation of the bonded layer to be bonded, and stress When the external force is removed, it can be restored to its original form by the elasticity of the elastic resin, so it has better sitting comfort, heat resistance, bulkiness, and moderate compression repulsion. This is a heat-adhesive net-like structure suitable for a vulnerable cushion material and easy to recycle, which is useful for vehicle seats, marine seats, furniture cushions, and bedding products. It can be used alone or in combination with other materials. Furthermore, it is a heat-adhesive net-like structure that is also useful for heat insulating materials, interior materials, heat insulating materials, stretchable nonwoven fabrics, and the like.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−207462(JP,A) 特開 平1−213454(JP,A) 特開 平5−138789(JP,A) 特開 平5−272043(JP,A) 特開 平5−329281(JP,A) 特開 平5−261184(JP,A) 特開 平5−337258(JP,A) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 35/00 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-1-207462 (JP, A) JP-A-1-213454 (JP, A) JP-A-5-138789 (JP, A) JP-A-5-138789 272043 (JP, A) JP-A-5-329281 (JP, A) JP-A-5-261184 (JP, A) JP-A-5-337258 (JP, A) (58) Fields investigated (Int. 7 , DB name) D04H 1/00-18/00 B68G 1/00-15/00 B32B 1/00-35/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高融点と低融点の熱可塑性弾性樹脂より
なり、高融点熱可塑性弾性樹脂の融点より10℃以上融
点が低い低融点熱可塑性弾性樹脂からなる網状構造体が
熱接着層を形成し、高融点熱可塑性弾性樹脂からなる網
状構造体が基本層を形成し、両層が三次元ランダムルー
プ形成時に融着一体化されてなる熱接着性網状構造体で
あり、上記網状構造体は、連続線条を曲がりくねらせ多
数のループを形成し、夫々のループを互いに接触せしめ
て、接触部の大部分が融着され、一定の幅と厚みを保形
した三次元ランダムループ構造であり、該熱接着性網状
構造の片面又は両面は実質的にフラット化された熱接着
層で形成され、該熱接着層の厚みが1mm以上、10mm以
下であることを特徴とする熱接着性網状構造体。
1. A network structure made of a high melting point and low melting point thermoplastic elastic resin, and a low melting point thermoplastic elastic resin having a melting point of 10 ° C. or more lower than the melting point of the high melting point thermoplastic elastic resin forms a heat bonding layer. The network structure made of a high melting point thermoplastic elastic resin forms the basic layer, and both layers are three-dimensional random loops.
Is a heat-adhesive network structure that is fused and integrated at the time of forming the loop, and the network structure winds a continuous filament to form a large number of loops, and brings the respective loops into contact with each other. Most of is fused, is a three-dimensional random loop structure having a constant width and thickness, one or both sides of the heat-adhesive network is formed of a substantially flat heat-adhesion layer, A heat-adhesive network structure, wherein the thickness of the heat-adhesive layer is 1 mm or more and 10 mm or less.
【請求項2】 網状構造体を形成するループが、ループ
の途中において、該網状構造体の厚み方向を基線とし
て、該基線から45°以上押し曲げられて接触部の大部
分が融着しており、構造体は実質的にフラット化されて
いる請求項1に記載の熱接着性網状構造体。
2. A loop forming a network structure is pushed and bent at least 45 ° from the base line in the middle of the loop with the thickness direction of the network structure as a base line, and most of the contact portions are fused. 2. The thermoadhesive network of claim 1, wherein the structure is substantially flat.
【請求項3】 網状構造体の片面又は両面に低融点熱可
塑性弾性樹脂からなる熱接着層が形成され、前記熱接着
層以外の部分に前記熱可塑性弾性樹脂の融点より少なく
とも10℃以上高い融点を持つ熱可塑性弾性樹脂からな
る基本層が形成されるように分配したノズルより、夫々
の樹脂の融点より10〜120℃高い温度下に溶融状態
の樹脂を下方に向けて吐出させ、溶融状態で多数のルー
プを形成し、夫々のループを互いに接触し、融着させて
一定の幅と厚みを保形した三次元ランダムループ構造を
形成しつつ、引取装置で挟み込み、実質的に面をフラッ
ト化させ冷却槽で冷却せしめて、前記熱接着層と前記基
本層と融着一体することを特徴とする熱接着性網状
構造体の製法。
3. A heat-bonding layer made of a low-melting thermoplastic elastic resin is formed on one or both surfaces of the network structure, and a melting point higher than the melting point of the thermoplastic elastic resin by at least 10 ° C. in a portion other than the heat-bonding layer. From a nozzle distributed so that a basic layer made of a thermoplastic elastic resin having is formed, a resin in a molten state is discharged downward at a temperature higher by 10 to 120 ° C. than a melting point of each resin, and is discharged in a molten state. A large number of loops are formed, each loop is in contact with each other and fused to form a three-dimensional random loop structure with a constant width and thickness, and sandwiched by a take-off device to substantially flatten the surface It is allowed to allowed to cool in the cooling bath, the base and the heat adhesive layer
Preparation of thermoadhesive net structure, characterized in that fusing together of the main layer.
【請求項4】 一旦冷却後、融点より少なくとも10℃
以上低い温度でアニーリングを行なう請求項3に記載の
熱接着性網状構造体の製法。
4. Once cooled, at least 10 ° C. below the melting point
4. The method according to claim 3, wherein annealing is performed at a lower temperature.
JP33797893A 1993-12-28 1993-12-28 Heat-adhesive network structure and method for producing the same Expired - Fee Related JP3314839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33797893A JP3314839B2 (en) 1993-12-28 1993-12-28 Heat-adhesive network structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33797893A JP3314839B2 (en) 1993-12-28 1993-12-28 Heat-adhesive network structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07197366A JPH07197366A (en) 1995-08-01
JP3314839B2 true JP3314839B2 (en) 2002-08-19

Family

ID=18313795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33797893A Expired - Fee Related JP3314839B2 (en) 1993-12-28 1993-12-28 Heat-adhesive network structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP3314839B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686691B2 (en) * 1994-08-23 2005-08-24 日本発条株式会社 Textile cushion body for seat pad
JP2005199033A (en) * 2003-12-16 2005-07-28 Toyobo Co Ltd Mat for preventing slip of floor covering
JP4982944B2 (en) * 2004-11-01 2012-07-25 東洋紡績株式会社 Sandproof sheet
JP6334352B2 (en) * 2014-09-30 2018-05-30 帝人フロンティア株式会社 SOUND ABSORBING MATERIAL FOR FUEL CELL EXHAUST SYSTEM, FUEL CELL EXHAUST SOUND REDUCTION METHOD, AND FUEL CELL SOUNDER
BR112019024665A2 (en) * 2017-05-31 2020-06-16 Dow Global Technologies Llc PACKAGING WITH THREE-DIMENSIONAL HANDLE MATERIAL

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294878A (en) * 1979-09-07 1981-10-13 Johns-Manville Corporation Process for rapid annealing of refractory fiber bodies and laminated body produced by process
JPH01207462A (en) * 1988-02-09 1989-08-21 Risuron:Kk Mat consisting of filament loop aggregate and production and apparatus thereof
JPH01213454A (en) * 1988-02-16 1989-08-28 Risuron:Kk Production of mat consisting of filament loop aggregate
JP2545265B2 (en) * 1988-03-22 1996-10-16 チッソ株式会社 Filter element using composite fiber
DE4132804A1 (en) * 1991-04-10 1992-10-15 Isolyser Co Disposable garments and articles soluble in hot water
JP3233227B2 (en) * 1992-03-16 2001-11-26 東洋紡績株式会社 Cushion material and its manufacturing method
JPH05138789A (en) * 1991-11-21 1993-06-08 Kanebo Ltd Stretchable sheetlike object and its manufacture
US5385775A (en) * 1991-12-09 1995-01-31 Kimberly-Clark Corporation Composite elastic material including an anisotropic elastic fibrous web and process to make the same
JPH05329281A (en) * 1992-06-02 1993-12-14 Toyobo Co Ltd Flame-retardant seat for vehicle
JPH05337258A (en) * 1992-06-08 1993-12-21 Toyobo Co Ltd Seat for vehicle

Also Published As

Publication number Publication date
JPH07197366A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP2921638B2 (en) Cushion net structure and manufacturing method
JP3344512B2 (en) Heterogeneous net structure and manufacturing method thereof
JP3314839B2 (en) Heat-adhesive network structure and method for producing the same
JP3314837B2 (en) Different density network structure and method of manufacturing the same
JP3344511B2 (en) Reticulated structure and method for producing the same
JP3344514B2 (en) Multi-component network structure and manufacturing method thereof
JP3314838B2 (en) Thermal adhesive network structure and method for producing the same
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP2002000408A (en) Vehicle seat
JP3430442B2 (en) Reticulated structure and method for producing the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3346506B2 (en) Flame-retardant composite network structure, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090607

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110607

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees