JP3294005B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JP3294005B2
JP3294005B2 JP15614594A JP15614594A JP3294005B2 JP 3294005 B2 JP3294005 B2 JP 3294005B2 JP 15614594 A JP15614594 A JP 15614594A JP 15614594 A JP15614594 A JP 15614594A JP 3294005 B2 JP3294005 B2 JP 3294005B2
Authority
JP
Japan
Prior art keywords
cell
type region
solar cell
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15614594A
Other languages
Japanese (ja)
Other versions
JPH0823111A (en
Inventor
正 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15614594A priority Critical patent/JP3294005B2/en
Publication of JPH0823111A publication Critical patent/JPH0823111A/en
Application granted granted Critical
Publication of JP3294005B2 publication Critical patent/JP3294005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシリコン(以下、元素記
号Siを使用する)太陽電池に係り、特に光電変換効率
を高めた太陽電池の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon (hereinafter referred to as "Si") solar cell, and more particularly to a solar cell structure having improved photoelectric conversion efficiency.

【0002】[0002]

【従来の技術】近年、太陽電池は近未来のクリーンエネ
ルギー源の重要な候補と目され、その開発と構造に拍車
がかかりつつある。特にSi単結晶ウエーハを基板とし
た太陽電池は、他材料に比べて高い変換効率が期待出来
ることと経済性にすぐれていることから、地上用、宇宙
用を問わず様々なアプローチで高効率化のための研究開
発がなされている。
2. Description of the Related Art In recent years, solar cells are regarded as important candidates for clean energy sources in the near future, and their development and structure are being spurred. In particular, solar cells using Si single crystal wafers as substrates can be expected to have higher conversion efficiency than other materials and are more economical, so they can be made more efficient by various approaches regardless of whether they are for ground or space use. Research and development has been done for

【0003】従来の代表的な太陽電池セル(以下、単に
セルと略す)の概略断面構造を図5に示し、従来の高効
率化技術について以下説明する。図5(a)はその最も
基本的なセル構造を示す図である。p型Si基板1の片
面(受光面側)にリン(P)等の不純物を熱拡散させた
+層2と、対する他方の面(裏面側)にホウ素(B)
等の不純物を熱拡散させたp+層3を有し、n+層表面に
は櫛型のn側電極4、裏面にはそのほぼ全面にp側電極
5が形成され、受光面には反射防止膜(図示を略す)が
全面に被膜されていた。
FIG. 5 shows a schematic cross-sectional structure of a typical conventional solar cell (hereinafter simply abbreviated as a cell), and a conventional high-efficiency technique will be described below. FIG. 5A is a diagram showing the most basic cell structure. An n + layer 2 in which impurities such as phosphorus (P) are thermally diffused on one surface (light receiving surface side) of a p-type Si substrate 1 and boron (B) on the other surface (back surface side).
Impurities etc. have p + layer 3 is thermally diffused, n + layer on the surface comb of the n-side electrode 4, the back surface p-side electrode 5 is formed on the almost entire surface, reflecting the light receiving surface The prevention film (not shown) was coated on the entire surface.

【0004】図5(b),(c),図6(a),(b)
は、図5(a)の構造のセル(以下基本セルと略す)を
高効率化するために様々に改善されたセルの構造を示
す。図5(b)は、n+層2が基板1の端面から内部に
形成されたいわゆるプレーナ構造を有する点に特徴があ
る。基本セルは、その出力特性を大きく支配するpn接
合(主接合)がセルの端面に現れているので、セルを所
定形状にウエーハから切断分離する際、主接合に損傷を
与えるという問題を有していた。また端面における水蒸
気等の付着、生成物等の形成によるリーク発生やセルの
取り扱い時の端面損傷によるリーク発生などの信頼性面
での問題も有していた。
FIGS. 5 (b), 5 (c), 6 (a), 6 (b)
Shows variously improved cell structures for improving the efficiency of a cell having the structure shown in FIG. 5A (hereinafter abbreviated as a basic cell). FIG. 5B is characterized in that the n + layer 2 has a so-called planar structure in which the n + layer 2 is formed inside from the end face of the substrate 1. The basic cell has a problem that the main junction is damaged when the cell is cut and separated from the wafer into a predetermined shape because a pn junction (main junction) that largely controls the output characteristics appears on the end face of the cell. I was In addition, there is a problem in terms of reliability such as adhesion of water vapor and the like on the end face, generation of a leak due to formation of products, and occurrence of a leak due to damage of the end face when handling the cell.

【0005】図5(b)に示されるセルは、主接合をセ
ルの端面から内部に形成することでこれらの問題点を解
決した。なお酸化膜6は、主接合を拡散で形成するため
のマスクであり、その巾は約数10μmである。図5
(b)に示されているように、酸化膜6は最終的に残さ
れてもよいし、エッチングで除去されてもよい。
The cell shown in FIG. 5 (b) has solved these problems by forming a main junction from the end face of the cell to the inside. The oxide film 6 is a mask for forming a main junction by diffusion, and has a width of about several tens μm. FIG.
As shown in (b), the oxide film 6 may be finally left or may be removed by etching.

【0006】図5(c)は、表面パッシベーションが施
された点に特徴を有す。基本セル及び図5(b)のセル
では、受光面としてSi表面が露出している。しかしな
がら、Si表面には多くのダングリング・ボンドが存在
するので、n+層内で光励起されたキャリア(正孔)の
一部は主接合側へ流れず表面でとらえられて再結合し、
光電流としてとり出せないという問題を有していた。図
5(c)のセルは受光面全面に薄い酸化膜6を形成する
ことで表面を不活性化し、受光面における表面再結合速
度SF を低減させることでこの効果の抑制を図った。
FIG. 5C is characterized in that the surface is passivated. In the basic cell and the cell of FIG. 5B, the Si surface is exposed as a light receiving surface. However, since many dangling bonds exist on the Si surface, some of the carriers (holes) photoexcited in the n + layer do not flow to the main junction side but are caught and recombined at the surface,
There was a problem that it could not be taken out as a photocurrent. In the cell of FIG. 5C, a thin oxide film 6 is formed on the entire light receiving surface to inactivate the surface, and the surface recombination speed S F on the light receiving surface is reduced to suppress this effect.

【0007】図6(a)は、さらに裏面パッシベーショ
ンが施された点に特徴を有す。図5(c)のセルでは、
比較的長波長な光を吸収してp型基板内で光励起された
キャリア(電子)の一部が主接合側へ流れず、セルの裏
面でとらえられて再結合し、光電流としてとり出せない
という問題を有していた。図6(a)のセルは、いった
ん裏面全面に薄い酸化膜7を形成し、p+層3aはこの
酸化膜に部分的に設けられた窓から不純物を拡散するこ
とで形成された(部分的なp+領域3a)。これによっ
て裏面における表面再結合速度SR を低減せしめ、上記
効果の抑制を図った。
FIG. 6A is characterized in that the back surface is further passivated. In the cell of FIG.
Some of the carriers (electrons) that have absorbed light of a relatively long wavelength and have been photoexcited in the p-type substrate do not flow to the main junction side, are caught and recombined on the back surface of the cell, and cannot be extracted as photocurrent. Had the problem that In the cell of FIG. 6A, a thin oxide film 7 is once formed on the entire back surface, and the p + layer 3a is formed by diffusing impurities from a window provided partially on this oxide film (partially). P + region 3a). As a result, the surface recombination speed S R on the back surface was reduced, and the above effect was suppressed.

【0008】図6(b)は、さらに受光面に無反射表面
形状を形成した点に特徴を有す。すなわち上記のセルで
は、入射光のかなりの部分が表面反射によってセル外部
に放出されてしまい光電変換されないという問題を有し
ていた。図6(b)のセルは表面に異方性エッチングに
よって凹凸形状を形成し、この凹凸形状間の多重反射に
より反射損失の低減を図った。
FIG. 6B is further characterized in that a non-reflective surface shape is formed on the light receiving surface. That is, the above-mentioned cell has a problem that a considerable part of the incident light is emitted to the outside of the cell by surface reflection and is not photoelectrically converted. In the cell of FIG. 6B, an uneven shape is formed on the surface by anisotropic etching, and the reflection loss is reduced by multiple reflection between the uneven shapes.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような種々の改善にもかかわらず、現状のセルの変換効
率は、地上用で約22%、宇宙用で約17%とまだ充分
に高くないという問題を有していた。発明者らは、上記
の技術のうち表面再結合の影響について種々の検討と考
察を行った。表面再結合速度と変換効率の関係について
は、例えば「コンピュータによるシリコンテクノロジー
II」(山本良一編、海文堂出版(株))のP.161に、コ
ンピュータシミュレーションの結果が示されており、表
面再結合速度が102〜103cm/secまで低減する
と、地上光下で24%以上の変換効率が期待出来ること
が示されているが(同P.161、図7.11)、現状
のセルはそのレベルに達していない。
However, despite the various improvements described above, the conversion efficiency of the current cell is not sufficiently high at about 22% for ground use and about 17% for space use. Had the problem that The inventors have conducted various studies and discussions on the effects of surface recombination among the above techniques. For the relationship between surface recombination rate and conversion efficiency, see, for example,
II "(Ryoichi Yamamoto, Kaibundo Shuppan Co., Ltd.) 161 shows the result of a computer simulation, which shows that if the surface recombination speed is reduced to 10 2 to 10 3 cm / sec, a conversion efficiency of 24% or more can be expected under terrestrial light. (P.161, FIG. 7.11), the current cell has not reached that level.

【0010】また発明者らは、セルの製造工程と同条件
で形成したSi/SiO2のMOS素子のC−V特性の
測定から、p−Si(基板)と酸化膜の界面、n−Si
(拡散層)と酸化膜の界面で各々空乏層が形成されてい
ることがわかった。よって、太陽電池に光が照射された
場合、n−Siと酸化膜の界面では光励起された正孔の
蓄積が生じ(図4(a)に示す)、p−Siと酸化膜の
界面では光励起された電子の蓄積が生じる(図4(b)
に示す)。そして従来構造の図5(b)〜図6(b)の
セルは、表面の酸化膜の直下にn型領域とp型領域が隣
接して存在するので、界面に存在する界面準位を介し
て、光励起された正孔と電子が容易に再結合することを
解明した。
The present inventors have measured the CV characteristics of a Si / SiO 2 MOS device formed under the same conditions as those of the cell manufacturing process, and found that the interface between the p-Si (substrate) and the oxide film and the n-Si
It was found that a depletion layer was formed at the interface between the (diffusion layer) and the oxide film. Therefore, when the solar cell is irradiated with light, photo-excited holes are accumulated at the interface between the n-Si and the oxide film (shown in FIG. 4A), and the photo-excitation occurs at the interface between the p-Si and the oxide film. The accumulated electrons are accumulated (FIG. 4B).
Shown). In the conventional structure shown in FIGS. 5B to 6B, since the n-type region and the p-type region are immediately adjacent to the surface immediately below the oxide film, the cells are formed through the interface state existing at the interface. As a result, it was revealed that the photoexcited holes and electrons easily recombine.

【0011】この再結合はSiと酸化膜の界面で生じる
ため、表面パッシベーションを意図して酸化膜をSi表
面に形成しても実質的には表面再結合の抑制が出来ず、
主接合へ流れるキャリアの数が減少し、セルの出力特性
が低下するという問題点があった。
Since this recombination occurs at the interface between Si and the oxide film, even if an oxide film is formed on the Si surface for the purpose of surface passivation, surface recombination cannot be substantially suppressed.
There has been a problem that the number of carriers flowing to the main junction decreases, and the output characteristics of the cell deteriorate.

【0012】本発明は上記の問題と考察に基づいてなさ
れたものであって、その課題とするところは、表面酸化
膜下の界面準位への電子の注入をなくし、セルの変換効
率を改善した太陽電池を提供することである。
The present invention has been made based on the above problems and considerations, and has as its object to eliminate the injection of electrons into the interface state below the surface oxide film and to improve the conversion efficiency of the cell. The purpose is to provide an improved solar cell.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次の構成を有する。すなわち本発明は、p
型シリコン基板の受光面となる表面に + 型領域とn型
領域を形成し、更にn + 型領域とn型領域の表面上に酸
化膜を形成したセル構造をなす太陽電池であって、酸化
膜直下における受光面の表面上には、n型領域がセル端
面周辺にのみ形成され、n + 型領域がn型領域以外に形
成されてセル内部の主接合をなし、n型領域のキャリア
濃度が、n +型領域のキャリア濃度より低いことを特徴
とする太陽電池である。
In order to solve the above problems, the present invention has the following arrangement. That is, the present invention provides
N + -type region and the n-type surface as a light receiving surface of the mold silicon down board
Region, and an acid is formed on the surface of the n + -type region and the n-type region.
Solar cell having a cell structure with an oxide film
On the surface of the light receiving surface immediately below the film, an n-type region is
Is formed only around the surface, and the n + -type region is formed outside the n-type region.
The solar cell is characterized by being formed so as to form a main junction inside the cell, wherein the carrier concentration in the n- type region is lower than the carrier concentration in the n + -type region.

【0014】また本発明においては、n型領域の表面か
らの深さがn + 型領域の深さより浅くすることができ
る。
In the present invention, the depth from the surface of the n- type region can be smaller than the depth of the n + -type region.

【0015】また本発明においては、n型領域の表面か
らの深さがn + 型領域の深さより深く、太陽電池の主接
合を含む断面の少なくとも一部が受光面となる表面側か
ら順次n+−n−p−p+構造である。
[0015] In the present invention, the depth from the surface of the n-type region is deeper than the depth of the n + -type regions, sequentially n from the surface at least a part of a cross-section including a main junction of the solar cell becomes the light receiving surface + -n-p-p + Ru structure der.

【0016】[0016]

【実施例】次に、図面を参照して本発明の実施例を詳細
に説明する。図1は、本発明に係る太陽電池セルの実施
例の構造を示す概略断面図である。図1(a)は、第1
実施例のセル構造を示す断面図である。同図において、
p型Si基板1の受光面側には、例えばリン(P)等の
不純物を拡散させて形成し、本セルの主接合を成すn+
領域2が形成されるが、セルの各端面から数10μm程
度の範囲にはn+領域2よりも不純物濃度が低いn領域
2aが形成されている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing the structure of the embodiment of the solar cell according to the present invention. FIG. 1A shows the first
It is sectional drawing which shows the cell structure of an Example. In the figure,
On the light receiving surface side of the p-type Si substrate 1, for example, an impurity such as phosphorus (P) is diffused and formed, and n + forming a main junction of the present cell is formed .
Region 2 is formed, and n region 2a having a lower impurity concentration than n + region 2 is formed in a range of about several tens of μm from each end face of the cell.

【0017】本第1実施例のn+領域2のキャリア濃度
は、例えば1×1019〜5×1020/cm3程度であり、
n領域2aのキャリア濃度はこれより低く1×1016
5×1018/cm3程度である。n領域2aの巾(セル端面
からの距離)は数μm〜100μm程度である。n領域
2aの深さxj2は、n+領域2の深さxj1より浅くても
深くてもよい。
The carrier concentration in the n + region 2 of the first embodiment is, for example, about 1 × 10 19 to 5 × 10 20 / cm 3 .
The carrier concentration of n region 2a is lower than 1 × 10 16 to
It is about 5 × 10 18 / cm 3 . The width (distance from the cell end face) of the n region 2a is about several μm to 100 μm. The depth x j2 of the n region 2a may be shallower or deeper than the depth x j1 of the n + region 2.

【0018】p型Si基板1の裏面側には、ホウ素
(B)等の不純物を拡散させたp+層3を有し、受光面
側表面には櫛型のn側電極4が、裏面にはそのほぼ全面
にp側電極5が形成され、受光面には反射防止膜(図示
を略す)が全面に被膜される。
On the back surface of the p-type Si substrate 1, there is provided a p + layer 3 in which an impurity such as boron (B) is diffused. A p-side electrode 5 is formed on almost the entire surface, and an antireflection film (not shown) is coated on the entire light receiving surface.

【0019】図1(b)は、第2実施例のセル構造を示
す断面図である。本実施例の構造ではn領域2aの深さ
j2が、n+領域2の深さxj1より深く、主接合を含む
構造が受光面側から順にn+−n−p−p+となっている
ことに特徴を有する。
FIG. 1B is a sectional view showing the cell structure of the second embodiment. In the structure of the present embodiment, the depth x j2 of the n region 2a is deeper than the depth x j1 of the n + region 2, and the structure including the main junction becomes n + -n-p-p + in order from the light receiving surface side. It is characterized by having.

【0020】前記第1実施例のセルは、主接合がn+
構造からなり、大きい拡散電位(Built-in voltage)を
形成することに特徴を有しているのに対して、第2実施
例のセルは、主接合はnp構造ではあるが、その各々に
背面電界(Buck surface field)を形成することで、光
生成キャリアが主接合に向かって流れるよう意図された
ことに特徴を有する。他の部分は第1実施例のセルと同
様である。
In the cell of the first embodiment, the main junction is n + p
In the cell of the second embodiment, the main junction has an np structure, and each of the cells has a back surface, which is characterized by forming a large built-in voltage. The formation of an electric field (Buck surface field) is characterized in that the photogenerated carriers are intended to flow toward the main junction. Other parts are the same as those of the cell of the first embodiment.

【0021】図1(c)は、第3実施例のセル構造を示
す断面図である。本実施例では第1実施例のセルの表面
側構造に図6(a)で説明した裏面パッシベーション技
術を組み合わせたことに特徴を有す。図2(a)は、第
4実施例のセル構造を示す断面図である。本実施例では
第2実施例のセルの表面側構造に、図6(a)で説明し
た裏面パッシベーション技術を組み合わせたことに特徴
を有す。
FIG. 1C is a sectional view showing the cell structure of the third embodiment. This embodiment is characterized in that the backside passivation technique described with reference to FIG. 6A is combined with the front side structure of the cell of the first embodiment. FIG. 2A is a sectional view showing the cell structure of the fourth embodiment. This embodiment is characterized in that the back surface passivation technique described with reference to FIG. 6A is combined with the front surface structure of the cell of the second embodiment.

【0022】図2(b)は、第5実施例のセル構造を示
す断面図である。本実施例では第3実施例のセルの受光
面側表面に、図6(b)で説明した無反射構造を形成し
たことに特徴を有す。図2(c)は、さらに第6実施例
のセル構造を示す断面図である。本実施例のセル構造
は、第4実施例のセルの受光面側表面に図6(b)で説
明した無反射構造を形成したことに特徴を有す。
FIG. 2B is a sectional view showing the cell structure of the fifth embodiment. This embodiment is characterized in that the antireflection structure described with reference to FIG. 6B is formed on the light receiving surface side surface of the cell of the third embodiment. FIG. 2C is a sectional view showing the cell structure of the sixth embodiment. The cell structure of this embodiment is characterized in that the non-reflection structure described with reference to FIG. 6B is formed on the light-receiving surface side surface of the cell of the fourth embodiment.

【0023】次に、本発明の代表的なセルとして、図2
(b)に示した第5実施例のセルの製造法の一例を図3
の工程順断面図を用いて説明する。まず、Si−p型ウ
エーハ1(図3(a))の(100)面の表面に、所望
の無反射表面形状を形成する。これは、例えば水酸化カ
リウム等アルカリ溶液を用いた異方性エッチングで容易
に形成出来る。この例では、表面電極形成部分は平坦な
まま残す形状を示しているが、これに限定されるもので
はない。この際、裏面は例えば耐アルカリ性の樹脂をコ
ーティングしたり、CVD法でSiO2膜を被着する等
の処理を施すことで保護する(図3(b))。
Next, as a typical cell of the present invention, FIG.
An example of a method of manufacturing the cell of the fifth embodiment shown in FIG.
This will be described with reference to the cross-sectional views in the order of the steps. First, a desired non-reflective surface shape is formed on the surface of the (100) plane of the Si-p type wafer 1 (FIG. 3A). This can be easily formed by anisotropic etching using an alkali solution such as potassium hydroxide. In this example, the surface electrode forming portion has a shape to be left flat, but the shape is not limited to this. At this time, the back surface is protected by, for example, coating with an alkali-resistant resin or applying a process such as applying a SiO 2 film by a CVD method (FIG. 3B).

【0024】次に、例えばホスフィン(PH3)を拡散
ソースとした熱拡散でn領域2aを形成する。この際、
n領域2aのキャリア濃度を、後で形成する主接合のn
+領域2のキャリア濃度より低く設定する。例えば、1
×1016〜5×1018/cm3程度である。なお、n領域
2aの拡散深さは、n+領域2の拡散深さより浅く設定
し、例えば0.05〜0.1μm程度である。また熱拡
散で形成した場合は、n領域がウエーハの裏面2bや側
面(図示せず)にも形成されるので、これはエッチング
で除去する。この手間を省くため、n領域2aの形成を
イオンインプランテーションで行ってもよい。
Next, the n region 2a is formed by thermal diffusion using, for example, phosphine (PH 3 ) as a diffusion source. On this occasion,
The carrier concentration of n region 2a is adjusted to n of a main junction to be formed later.
+ Set to be lower than the carrier concentration of region 2. For example, 1
It is about × 10 16 to 5 × 10 18 / cm 3 . The diffusion depth of the n region 2a is set to be shallower than the diffusion depth of the n + region 2, and is, for example, about 0.05 to 0.1 μm. When formed by thermal diffusion, the n region is also formed on the back surface 2b and the side surface (not shown) of the wafer, and this is removed by etching. In order to save this trouble, the formation of the n region 2a may be performed by ion implantation.

【0025】次に、ウエーハの表面、裏面にCVD法で
SiO2を全面被着した後、表面側の主接合形成部分に
は窓開けを行なう。これには周知のフォトリソグラフィ
ーが用いられる(図3(d))。
Next, after the entire surface of the wafer is coated with SiO 2 by the CVD method, a window is opened in the main junction forming portion on the front surface side. Well-known photolithography is used for this (FIG. 3D).

【0026】次に、例えばオキシ塩化リン(POC
3)を拡散ソースとする熱拡散法によってn+領域2を
形成し、次にいったんウエーハ上のSiO2を除去する
(図3(e))。n+領域2のキャリア濃度は、例えば
1×1019〜5×1020/cm3程度であり、拡散深さは
約0.1〜0.5μm程度である。
Next, for example, phosphorus oxychloride (POC
An n + region 2 is formed by a thermal diffusion method using l 3 ) as a diffusion source, and then SiO 2 on the wafer is once removed (FIG. 3E). The carrier concentration of n + region 2 is, for example, about 1 × 10 19 to 5 × 10 20 / cm 3 , and the diffusion depth is about 0.1 to 0.5 μm.

【0027】次に、あらためて所望厚さのSiO2
6,7を熱酸化法でウエーハの両面に形成する(図3
(f))。酸化膜形成後エッチングで厚さを調整しても
よい。次に、裏面のp+領域形成部分に所望形状の酸化
膜の窓開けを行ない、例えば三臭化ホウ素(BBr3
を拡散ソースとする熱拡散やイオンプランテーション法
を用いてp+領域3aを形成する。
Next, SiO 2 films 6 and 7 having a desired thickness are formed again on both surfaces of the wafer by a thermal oxidation method (FIG. 3).
(F)). The thickness may be adjusted by etching after forming the oxide film. Next, a window of an oxide film having a desired shape is formed in the p + region forming portion on the back surface, and for example, boron tribromide (BBr 3 )
The p + region 3a is formed by using thermal diffusion or ion plantation using as a diffusion source.

【0028】次に、表面側には例えば櫛型の電極4を周
知のフォトリソグラフィと真空蒸着法で形成する(図3
(h))。電極4はAgを主成分とし、その厚さは計約
5μmである。次に、裏面側には全面に電極5を真空蒸
着法で形成する(図3(i))。電極は例えばAlと、
Agを主成分とする層の積層でありその厚さは計約5μ
mである。
Next, for example, a comb-shaped electrode 4 is formed on the front side by well-known photolithography and vacuum deposition (FIG. 3).
(H)). The electrode 4 has Ag as a main component and a total thickness of about 5 μm. Next, an electrode 5 is formed on the entire back surface by vacuum evaporation (FIG. 3 (i)). The electrodes are, for example, Al and
It is a laminate of layers mainly composed of Ag, and the total thickness is about 5 μm.
m.

【0029】その後、所望の熱処理工程を経て、表面に
反射防止膜を被着後、所望寸法に切断分離して(以上図
示せず)セルが完成する。
Then, after a desired heat treatment step, an antireflection film is applied to the surface, and cut and separated into desired dimensions (not shown) to complete the cell.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、表
面酸化膜の界面で生ずる光励起キャリアの再結合が阻止
出来るので、本来の表面パッシベーションの効果が表わ
れ、太陽電池の出力特性向上に寄与する。これによっ
て、太陽電池の変換効率は、少なくとも2%以上向上す
ることが期待出来、例えば地上光下においては24%以
上の変換効率が達成できる。
As described above, according to the present invention, recombination of photoexcited carriers generated at the interface of the surface oxide film can be prevented, so that the original effect of surface passivation is exhibited and the output characteristics of the solar cell can be improved. Contribute. Thereby, the conversion efficiency of the solar cell can be expected to be improved by at least 2% or more. For example, the conversion efficiency of 24% or more can be achieved under terrestrial light.

【0031】なお本発明によれば、セル端面にpn接合
が露出するが、前記の分離切断の際の接合損傷や信頼性
上の問題点は、従来のセルより著しく小さいことが実験
的に確認された。これはセル端面に露出している接合
が、セルの主接合を形成するpn接合(n+領域2とp
型基板)でなく、付加されたn領域2aとp型基板の接
合であるためと考えられる。以上のように本発明による
太陽電池の構造は、太陽電池の高効率化に著しく寄与
し、関係する諸産業に与える効果は大なるものがある。
According to the present invention, a pn junction is exposed at the end face of the cell. However, it has been experimentally confirmed that the junction damage and reliability problems at the time of the above-described separation and cutting are significantly smaller than those of the conventional cell. Was done. This is because the junction exposed at the cell end face forms a pn junction (n + region 2 and p
It is considered that the added n region 2a is joined to the p-type substrate instead of the n-type substrate). As described above, the structure of the solar cell according to the present invention significantly contributes to the improvement of the efficiency of the solar cell, and has a great effect on related industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池の実施例のセル構造を示
す概略断面であり、(a)〜(c)は各々その実施例を
示す。
FIG. 1 is a schematic cross section showing a cell structure of an embodiment of a solar cell according to the present invention, and (a) to (c) each show the embodiment.

【図2】本発明に係る太陽電池の実施例のセル構造を示
す概略断面であり、(a)〜(c)は各々その実施例を
示す。
FIG. 2 is a schematic cross section showing a cell structure of an embodiment of a solar cell according to the present invention, and (a) to (c) each show the embodiment.

【図3】本発明の太陽電池セルの一例である第5実施例
(図2(b))のセルの製造法を説明するための工程順
断面図である。
FIG. 3 is a cross-sectional view in a process order for explaining a method for manufacturing a cell of a fifth embodiment (FIG. 2B) which is an example of the solar cell of the present invention.

【図4】本発明の論拠を説明するためのエネルギーバン
ド図であり、(a)はn型Siと酸化膜の界面、(b)
はp型Siと酸化膜の界面状態を示す。
FIGS. 4A and 4B are energy band diagrams for explaining the basis of the present invention, wherein FIG. 4A is an interface between n-type Si and an oxide film, and FIG.
Indicates the interface state between the p-type Si and the oxide film.

【図5】従来の太陽電池のセル構造を示す概略断面であ
り、(a)〜(c)はセルの高効率化のための従来の諸
技術を説明するための図である。
FIG. 5 is a schematic cross-sectional view showing a cell structure of a conventional solar cell, and (a) to (c) are diagrams for explaining various conventional techniques for increasing the efficiency of a cell.

【図6】従来の太陽電池のセル構造を示す概略断面であ
り、(a)、(b)はセルの高効率化のための従来の諸
技術を説明するための図である。
FIGS. 6A and 6B are schematic cross-sectional views showing a cell structure of a conventional solar cell, and FIGS. 6A and 6B are diagrams for explaining various conventional techniques for increasing the efficiency of a cell.

【符号の説明】[Explanation of symbols]

1 p型Si基板 2 n+層 2a n領域 3 p+層 3a 部分的なp+領域 4 n側電極 5 p側電極 6 酸化膜 7 酸化膜Reference Signs List 1 p-type Si substrate 2 n + layer 2 an region 3 p + layer 3 a partial p + region 4 n-side electrode 5 p-side electrode 6 oxide film 7 oxide film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p型シリコン基板の受光面となる表面に
+ 型領域とn型領域を形成し、更にn + 型領域とn型領
域の表面上に酸化膜を形成したセル構造をなす太陽電池
であって、 酸化膜直下における受光面の表面上には、n型領域がセ
ル端面周辺にのみ形成され、n + 型領域がn型領域以外
に形成されてセル内部の主接合をなし、 型領域のキャリア濃度が、n +型領域のキャリア濃度
より低いことを特徴とする太陽電池。
To 1. A light receiving surface and becomes the surface of the p-type silicon down board
n + -type region and the n-type region is formed, further n + -type region and the n-type territory
Cells with an oxide film formed on the surface of a solar cell
An n-type region is formed on the surface of the light receiving surface immediately below the oxide film.
Formed only around the end face of the transistor, and the n + type region is other than the n type region
Is formed without a main junction of the internal cells, the carrier concentration of the n-type region, a solar cell characterized by lower than the carrier concentration of the n + -type region.
【請求項2】型領域の表面からの深さがn + 型領域
の深さより浅いことを特徴とする請求項1記載の太陽電
池。
2. The solar cell according to claim 1, wherein the depth from the surface of the n- type region is smaller than the depth of the n + -type region.
【請求項3】型領域の表面からの深さがn + 型領域
の深さより深く、太陽電池の主接合を含む断面の少なく
とも一部が受光面となる表面側から順次n+−n−p−
+構造であることを特徴とする請求項1記載の太陽電
池。
3. A depth from the surface of the n-type region is deeper than the depth of the n + -type regions, sequentially from the surface of at least a portion of a cross-section including a main junction of the solar cell is the light-receiving surface n +-n- p-
The solar cell according to claim 1, wherein the solar cell has ap + structure.
JP15614594A 1994-07-07 1994-07-07 Solar cell Expired - Fee Related JP3294005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15614594A JP3294005B2 (en) 1994-07-07 1994-07-07 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15614594A JP3294005B2 (en) 1994-07-07 1994-07-07 Solar cell

Publications (2)

Publication Number Publication Date
JPH0823111A JPH0823111A (en) 1996-01-23
JP3294005B2 true JP3294005B2 (en) 2002-06-17

Family

ID=15621319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15614594A Expired - Fee Related JP3294005B2 (en) 1994-07-07 1994-07-07 Solar cell

Country Status (1)

Country Link
JP (1) JP3294005B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189483A (en) * 1999-10-18 2001-07-10 Sharp Corp Solar battery cell with bypass function, multi-junction laminating type solar battery cell with bypass function, and their manufacturing method

Also Published As

Publication number Publication date
JPH0823111A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
JP5213134B2 (en) Solar cell
KR101155343B1 (en) Fabrication method of back contact solar cell
EP2371010B1 (en) Solar cell and method of manufacturing the same
US11450777B1 (en) Back contact structure and selective contact region buried solar cell comprising the same
JP2011507246A (en) Back electrode type solar cell having wide backside emitter region and method for manufacturing the same
KR20080086753A (en) Backside surface passivation and reflection layer for si solar cell by high-k dielectrics
US11777045B2 (en) Back contact structure and selective contact region buried solar cell comprising the same
KR20120140049A (en) Solar cell and method for manufacturing the same
US8912617B2 (en) Method for making semiconductor light detection devices
JP4945916B2 (en) Photoelectric conversion element
KR101179365B1 (en) Front and Back contact electric field solar cell and method thereof
US10665731B2 (en) Photoelectric conversion element
JP2004071763A (en) Photovoltaic element
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
KR20120086593A (en) Solar cell and the method of manufacturing the same
JP3294005B2 (en) Solar cell
KR101198438B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR101135590B1 (en) Solar cell and method for manufacturing the same
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
CN107482074B (en) Built-in diode structure of battery piece, manufacturing process of built-in diode structure and solar module
KR101995834B1 (en) Solar cell and manufacturing method thereof
US20240021742A1 (en) Solar cell and method for manufacturing solar cell
KR101155192B1 (en) Method for fabricating solar cell
JPH07326786A (en) Crystalline silicon solar battery
KR101153378B1 (en) Back junction solar cells using a Floating junction and method for manufacturing thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees