JPH0823111A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH0823111A
JPH0823111A JP6156145A JP15614594A JPH0823111A JP H0823111 A JPH0823111 A JP H0823111A JP 6156145 A JP6156145 A JP 6156145A JP 15614594 A JP15614594 A JP 15614594A JP H0823111 A JPH0823111 A JP H0823111A
Authority
JP
Japan
Prior art keywords
cell
solar cell
region
oxide film
type region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6156145A
Other languages
Japanese (ja)
Other versions
JP3294005B2 (en
Inventor
Tadashi Hisamatsu
正 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15614594A priority Critical patent/JP3294005B2/en
Publication of JPH0823111A publication Critical patent/JPH0823111A/en
Application granted granted Critical
Publication of JP3294005B2 publication Critical patent/JP3294005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide a solar cell having an improved cell conversion efficiency by eliminating the injection of electrons to the phase boundary level below an oxide film on the surface. CONSTITUTION:In a solar cell having an n-type regions 2 and 2a and an oxide film 6 formed on a surface as a light receiving surface for a p-type Si substrate 1, the carrier concentration of n-type region 2a in the vicinities of cell end face is characteristically lower than the carrier concentration of n<+> type region 2 forming the main junction inside the cell in this solar cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン(以下、元素記
号Siを使用する)太陽電池に係り、特に光電変換効率
を高めた太陽電池の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon (hereinafter referred to as "Si" symbol) solar cell, and more particularly to a solar cell structure having improved photoelectric conversion efficiency.

【0002】[0002]

【従来の技術】近年、太陽電池は近未来のクリーンエネ
ルギー源の重要な候補と目され、その開発と構造に拍車
がかかりつつある。特にSi単結晶ウエーハを基板とし
た太陽電池は、他材料に比べて高い変換効率が期待出来
ることと経済性にすぐれていることから、地上用、宇宙
用を問わず様々なアプローチで高効率化のための研究開
発がなされている。
2. Description of the Related Art In recent years, solar cells are regarded as important candidates for clean energy sources in the near future, and their development and structure are being spurred. In particular, a solar cell using a Si single crystal wafer as a substrate is expected to have higher conversion efficiency than other materials and is excellent in economic efficiency. Therefore, it is possible to improve efficiency by various approaches regardless of whether it is for the ground or space. Research and development for.

【0003】従来の代表的な太陽電池セル(以下、単に
セルと略す)の概略断面構造を図5に示し、従来の高効
率化技術について以下説明する。図5(a)はその最も
基本的なセル構造を示す図である。p型Si基板1の片
面(受光面側)にリン(P)等の不純物を熱拡散させた
+層2と、対する他方の面(裏面側)にホウ素(B)
等の不純物を熱拡散させたp+層3を有し、n+層表面に
は櫛型のn側電極4、裏面にはそのほぼ全面にp側電極
5が形成され、受光面には反射防止膜(図示を略す)が
全面に被膜されていた。
FIG. 5 shows a schematic cross-sectional structure of a typical conventional solar cell (hereinafter simply referred to as a cell), and a conventional high efficiency technology will be described below. FIG. 5A shows the most basic cell structure. An n + layer 2 formed by thermally diffusing impurities such as phosphorus (P) on one surface (light-receiving surface side) of the p-type Si substrate 1 and boron (B) on the other surface (back surface side) that faces the n + layer 2.
Has a p + layer 3 in which impurities such as the like are thermally diffused, a comb-shaped n-side electrode 4 is formed on the surface of the n + layer, and a p-side electrode 5 is formed on almost the entire back surface thereof, and is reflected on the light receiving surface. The prevention film (not shown) was coated on the entire surface.

【0004】図5(b),(c),図6(a),(b)
は、図5(a)の構造のセル(以下基本セルと略す)を
高効率化するために様々に改善されたセルの構造を示
す。図5(b)は、n+層2が基板1の端面から内部に
形成されたいわゆるプレーナ構造を有する点に特徴があ
る。基本セルは、その出力特性を大きく支配するpn接
合(主接合)がセルの端面に現れているので、セルを所
定形状にウエーハから切断分離する際、主接合に損傷を
与えるという問題を有していた。また端面における水蒸
気等の付着、生成物等の形成によるリーク発生やセルの
取り扱い時の端面損傷によるリーク発生などの信頼性面
での問題も有していた。
5 (b), 5 (c), 6 (a), 6 (b)
5 shows variously improved cell structures for increasing the efficiency of the cell having the structure of FIG. 5A (hereinafter abbreviated as basic cell). FIG. 5B is characterized in that the n + layer 2 has a so-called planar structure formed inside the end face of the substrate 1. Since the pn junction (main junction) that largely controls the output characteristics of the basic cell appears on the end surface of the cell, there is a problem that the main junction is damaged when the cell is cut and separated from the wafer into a predetermined shape. Was there. Further, there is a problem in reliability such as adhesion of water vapor and the like on the end face, leak occurrence due to formation of products and the like, and leak occurrence due to end face damage during cell handling.

【0005】図5(b)に示されるセルは、主接合をセ
ルの端面から内部に形成することでこれらの問題点を解
決した。なお酸化膜6は、主接合を拡散で形成するため
のマスクであり、その巾は約数10μmである。図5
(b)に示されているように、酸化膜6は最終的に残さ
れてもよいし、エッチングで除去されてもよい。
The cell shown in FIG. 5 (b) solves these problems by forming a main junction from the end face of the cell to the inside. The oxide film 6 is a mask for forming the main junction by diffusion and has a width of about several tens of μm. Figure 5
As shown in (b), the oxide film 6 may be left finally or may be removed by etching.

【0006】図5(c)は、表面パッシベーションが施
された点に特徴を有す。基本セル及び図5(b)のセル
では、受光面としてSi表面が露出している。しかしな
がら、Si表面には多くのダングリング・ボンドが存在
するので、n+層内で光励起されたキャリア(正孔)の
一部は主接合側へ流れず表面でとらえられて再結合し、
光電流としてとり出せないという問題を有していた。図
5(c)のセルは受光面全面に薄い酸化膜6を形成する
ことで表面を不活性化し、受光面における表面再結合速
度SF を低減させることでこの効果の抑制を図った。
FIG. 5C is characterized in that the surface is passivated. In the basic cell and the cell of FIG. 5B, the Si surface is exposed as the light receiving surface. However, since many dangling bonds exist on the Si surface, some of the carriers (holes) photoexcited in the n + layer do not flow to the main junction side and are trapped on the surface and recombined.
There was a problem that it could not be taken out as photocurrent. In the cell of FIG. 5C, a thin oxide film 6 is formed on the entire light receiving surface to inactivate the surface, and the surface recombination rate S F on the light receiving surface is reduced to suppress this effect.

【0007】図6(a)は、さらに裏面パッシベーショ
ンが施された点に特徴を有す。図5(c)のセルでは、
比較的長波長な光を吸収してp型基板内で光励起された
キャリア(電子)の一部が主接合側へ流れず、セルの裏
面でとらえられて再結合し、光電流としてとり出せない
という問題を有していた。図6(a)のセルは、いった
ん裏面全面に薄い酸化膜7を形成し、p+層3aはこの
酸化膜に部分的に設けられた窓から不純物を拡散するこ
とで形成された(部分的なp+領域3a)。これによっ
て裏面における表面再結合速度SR を低減せしめ、上記
効果の抑制を図った。
FIG. 6 (a) is characterized in that back surface passivation is further applied. In the cell of FIG. 5 (c),
Some of the carriers (electrons) that absorb light of a relatively long wavelength and are photoexcited in the p-type substrate do not flow to the main junction side, are captured on the back surface of the cell and recombine, and cannot be taken out as a photocurrent. Had a problem. In the cell of FIG. 6A, a thin oxide film 7 is once formed on the entire back surface, and the p + layer 3a is formed by diffusing impurities from a window partially provided in this oxide film (partial). P + region 3a). As a result, the surface recombination rate S R on the back surface was reduced, and the above effect was suppressed.

【0008】図6(b)は、さらに受光面に無反射表面
形状を形成した点に特徴を有す。すなわち上記のセルで
は、入射光のかなりの部分が表面反射によってセル外部
に放出されてしまい光電変換されないという問題を有し
ていた。図6(b)のセルは表面に異方性エッチングに
よって凹凸形状を形成し、この凹凸形状間の多重反射に
より反射損失の低減を図った。
FIG. 6B is further characterized in that a non-reflection surface shape is formed on the light receiving surface. That is, the above cell has a problem that a considerable part of incident light is emitted to the outside of the cell due to surface reflection and is not photoelectrically converted. The cell of FIG. 6 (b) has an uneven shape formed on the surface by anisotropic etching, and the reflection loss is reduced by multiple reflection between the uneven shapes.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような種々の改善にもかかわらず、現状のセルの変換効
率は、地上用で約22%、宇宙用で約17%とまだ充分
に高くないという問題を有していた。発明者らは、上記
の技術のうち表面再結合の影響について種々の検討と考
察を行った。表面再結合速度と変換効率の関係について
は、例えば「コンピュータによるシリコンテクノロジー
II」(山本良一編、海文堂出版(株))のP.161に、コ
ンピュータシミュレーションの結果が示されており、表
面再結合速度が102〜103cm/secまで低減する
と、地上光下で24%以上の変換効率が期待出来ること
が示されているが(同P.161、図7.11)、現状
のセルはそのレベルに達していない。
However, in spite of various improvements as described above, the current cell conversion efficiency is not sufficiently high at about 22% for ground use and about 17% for space use. Had a problem. The inventors conducted various studies and considerations regarding the effect of surface recombination among the above techniques. For the relationship between the surface recombination rate and the conversion efficiency, see, for example, “Computerized Silicon Technology
II ”(edited by Ryoichi Yamamoto, Kaibundou Publishing Co., Ltd.) 161 shows the result of the computer simulation, and it is shown that the conversion efficiency of 24% or more can be expected under the ground light when the surface recombination velocity is reduced to 10 2 to 10 3 cm / sec. (P. 161, FIG. 7.11), the current cell has not reached that level.

【0010】また発明者らは、セルの製造工程と同条件
で形成したSi/SiO2のMOS素子のC−V特性の
測定から、p−Si(基板)と酸化膜の界面、n−Si
(拡散層)と酸化膜の界面で各々空乏層が形成されてい
ることがわかった。よって、太陽電池に光が照射された
場合、n−Siと酸化膜の界面では光励起された正孔の
蓄積が生じ(図4(a)に示す)、p−Siと酸化膜の
界面では光励起された電子の蓄積が生じる(図4(b)
に示す)。そして従来構造の図5(b)〜図6(b)の
セルは、表面の酸化膜の直下にn型領域とp型領域が隣
接して存在するので、界面に存在する界面準位を介し
て、光励起された正孔と電子が容易に再結合することを
解明した。
Further, the inventors of the present invention measured the CV characteristics of the Si / SiO 2 MOS element formed under the same conditions as the cell manufacturing process, and found that the interface between the p-Si (substrate) and the oxide film and the n-Si.
It was found that a depletion layer was formed at each interface between the (diffusion layer) and the oxide film. Therefore, when the solar cell is irradiated with light, photoexcited holes are accumulated at the interface between the n-Si and the oxide film (shown in FIG. 4A), and photoexcited at the interface between the p-Si and the oxide film. Accumulation of generated electrons occurs (Fig. 4 (b)).
Shown in). In the cells of FIGS. 5 (b) to 6 (b) having the conventional structure, the n-type region and the p-type region are adjacent to each other immediately below the oxide film on the surface, so that the interfacial level existing at the interface Have revealed that photoexcited holes and electrons are easily recombined.

【0011】この再結合はSiと酸化膜の界面で生じる
ため、表面パッシベーションを意図して酸化膜をSi表
面に形成しても実質的には表面再結合の抑制が出来ず、
主接合へ流れるキャリアの数が減少し、セルの出力特性
が低下するという問題点があった。
Since this recombination occurs at the interface between Si and the oxide film, even if the oxide film is formed on the Si surface for the purpose of surface passivation, the surface recombination cannot be substantially suppressed.
There is a problem that the number of carriers flowing to the main junction is reduced and the output characteristics of the cell are degraded.

【0012】本発明は上記の問題と考察に基づいてなさ
れたものであって、その課題とするところは、表面酸化
膜下の界面準位への電子の注入をなくし、セルの変換効
率を改善した太陽電池を提供することである。
The present invention has been made on the basis of the above problems and consideration. The object of the present invention is to eliminate the injection of electrons into the interface state below the surface oxide film and improve the conversion efficiency of the cell. To provide a solar cell that does.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次の構成を有する。すなわち本発明は、p
型シリコン(Si)基板の受光面となる表面にn型領域
と酸化膜とを形成した太陽電池において、セル端面周辺
のn型領域のキャリア濃度が、セル内部の主接合を形成
するn+型領域のキャリア濃度より低いことを特徴とす
る太陽電池である。
In order to solve the above problems, the present invention has the following constitution. That is, the present invention is p
In a solar cell in which an n-type region and an oxide film are formed on the surface serving as a light-receiving surface of a type silicon (Si) substrate, the carrier concentration in the n-type region around the cell end face is an n + -type that forms a main junction inside the cell. The solar cell is characterized by having a carrier concentration lower than that of the region.

【0014】また本発明においては、セル端面周辺のn
型領域の表面からの深さが主接合を形成するn+型領域
の深さより浅くすることができる。また本発明において
は、セル端面周辺のn型領域の表面からの深さが主接合
を形成するn+型領域の深さより深く、太陽電池の主接
合を含む断面の少なくとも一部が受光面となる表面側か
ら順次n+−n−p−p+構造であることができる。
Further, in the present invention, n around the cell end face is
The depth from the surface of the type region can be made shallower than the depth of the n + type region forming the main junction. Further, in the present invention, the depth from the surface of the n-type region around the cell end face is deeper than the depth of the n + -type region forming the main junction, and at least a part of the cross section including the main junction of the solar cell serves as the light receiving surface. Can be an n + -n-p-p + structure sequentially from the surface side.

【0015】[0015]

【作用】上記構成の本発明においては、表面酸化膜直下
のn+領域以外の領域をn型領域にすることによって、
表面酸化膜下の界面準位への電子の注入をなくすことが
出来るので、同界面下でのキャリアの再結合が抑制さ
れ、セルの出力特性の向上に寄与することが出来る。
In the present invention having the above-described structure, the region other than the n + region immediately below the surface oxide film is made an n-type region,
Since the injection of electrons into the interface state under the surface oxide film can be eliminated, carrier recombination under the interface can be suppressed, and the output characteristics of the cell can be improved.

【0016】[0016]

【実施例】次に、図面を参照して本発明の実施例を詳細
に説明する。図1は、本発明に係る太陽電池セルの実施
例の構造を示す概略断面図である。図1(a)は、第1
実施例のセル構造を示す断面図である。同図において、
p型Si基板1の受光面側には、例えばリン(P)等の
不純物を拡散させて形成し、本セルの主接合を成すn+
領域2が形成されるが、セルの各端面から数10μm程
度の範囲にはn+領域2よりも不純物濃度が低いn領域
2aが形成されている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of an embodiment of the solar cell according to the present invention. FIG. 1A shows the first
It is sectional drawing which shows the cell structure of an Example. In the figure,
On the light-receiving surface side of the p-type Si substrate 1, for example, an impurity such as phosphorus (P) is diffused to form n + which forms the main junction of this cell.
Although the region 2 is formed, an n region 2a having an impurity concentration lower than that of the n + region 2 is formed in a range of several tens of μm from each end face of the cell.

【0017】本第1実施例のn+領域2のキャリア濃度
は、例えば1×1019〜5×1020/cm3程度であり、
n領域2aのキャリア濃度はこれより低く1×1016
5×1018/cm3程度である。n領域2aの巾(セル端面
からの距離)は数μm〜100μm程度である。n領域
2aの深さxj2は、n+領域2の深さxj1より浅くても
深くてもよい。
The carrier concentration of the n + region 2 of the first embodiment is, for example, about 1 × 10 19 to 5 × 10 20 / cm 3 ,
The carrier concentration of the n region 2a is lower than this and is 1 × 10 16 to
It is about 5 × 10 18 / cm 3 . The width of the n region 2a (distance from the cell end face) is about several μm to 100 μm. The depth x j2 of the n region 2a may be shallower or deeper than the depth x j1 of the n + region 2.

【0018】p型Si基板1の裏面側には、ホウ素
(B)等の不純物を拡散させたp+層3を有し、受光面
側表面には櫛型のn側電極4が、裏面にはそのほぼ全面
にp側電極5が形成され、受光面には反射防止膜(図示
を略す)が全面に被膜される。
On the back surface side of the p-type Si substrate 1, there is a p + layer 3 in which impurities such as boron (B) are diffused, and a comb-shaped n-side electrode 4 is formed on the light receiving surface side surface. The p-side electrode 5 is formed on almost the entire surface of the device, and an antireflection film (not shown) is formed on the entire surface of the light receiving surface.

【0019】図1(b)は、第2実施例のセル構造を示
す断面図である。本実施例の構造ではn領域2aの深さ
j2が、n+領域2の深さxj1より深く、主接合を含む
構造が受光面側から順にn+−n−p−p+となっている
ことに特徴を有する。
FIG. 1B is a sectional view showing the cell structure of the second embodiment. In the structure of the present embodiment, the depth x j2 of the n region 2a is deeper than the depth x j1 of the n + region 2, and the structure including the main junction becomes n + -n-p-p + in order from the light receiving surface side. It is characterized by

【0020】前記第1実施例のセルは、主接合がn+
構造からなり、大きい拡散電位(Built-in voltage)を
形成することに特徴を有しているのに対して、第2実施
例のセルは、主接合はnp構造ではあるが、その各々に
背面電界(Buck surface field)を形成することで、光
生成キャリアが主接合に向かって流れるよう意図された
ことに特徴を有する。他の部分は第1実施例のセルと同
様である。
In the cell of the first embodiment, the main junction is n + p.
The cell according to the second embodiment has a main junction of the np structure, but has a back surface on each of the structures. It is characterized in that the photogenerated carriers are intended to flow toward the main junction by forming an electric field (Buck surface field). The other parts are similar to those of the cell of the first embodiment.

【0021】図1(c)は、第3実施例のセル構造を示
す断面図である。本実施例では第1実施例のセルの表面
側構造に図6(a)で説明した裏面パッシベーション技
術を組み合わせたことに特徴を有す。図2(a)は、第
4実施例のセル構造を示す断面図である。本実施例では
第2実施例のセルの表面側構造に、図6(a)で説明し
た裏面パッシベーション技術を組み合わせたことに特徴
を有す。
FIG. 1C is a sectional view showing the cell structure of the third embodiment. The present embodiment is characterized in that the front surface side structure of the cell of the first embodiment is combined with the back surface passivation technique described with reference to FIG. FIG. 2A is a sectional view showing the cell structure of the fourth embodiment. The present embodiment is characterized in that the front surface side structure of the cell of the second embodiment is combined with the back surface passivation technique described with reference to FIG.

【0022】図2(b)は、第5実施例のセル構造を示
す断面図である。本実施例では第3実施例のセルの受光
面側表面に、図6(b)で説明した無反射構造を形成し
たことに特徴を有す。図2(c)は、さらに第6実施例
のセル構造を示す断面図である。本実施例のセル構造
は、第4実施例のセルの受光面側表面に図6(b)で説
明した無反射構造を形成したことに特徴を有す。
FIG. 2B is a sectional view showing the cell structure of the fifth embodiment. The present embodiment is characterized in that the antireflection structure described in FIG. 6B is formed on the light receiving surface side surface of the cell of the third embodiment. FIG. 2C is a sectional view showing the cell structure of the sixth embodiment. The cell structure of the present embodiment is characterized in that the antireflection structure described in FIG. 6B is formed on the light-receiving surface side surface of the cell of the fourth embodiment.

【0023】次に、本発明の代表的なセルとして、図2
(b)に示した第5実施例のセルの製造法の一例を図3
の工程順断面図を用いて説明する。まず、Si−p型ウ
エーハ1(図3(a))の(100)面の表面に、所望
の無反射表面形状を形成する。これは、例えば水酸化カ
リウム等アルカリ溶液を用いた異方性エッチングで容易
に形成出来る。この例では、表面電極形成部分は平坦な
まま残す形状を示しているが、これに限定されるもので
はない。この際、裏面は例えば耐アルカリ性の樹脂をコ
ーティングしたり、CVD法でSiO2膜を被着する等
の処理を施すことで保護する(図3(b))。
Next, as a typical cell of the present invention, FIG.
An example of a method of manufacturing the cell of the fifth embodiment shown in FIG.
This will be described with reference to the process order cross-sectional views. First, a desired non-reflective surface shape is formed on the (100) surface of the Si-p type wafer 1 (FIG. 3A). This can be easily formed by anisotropic etching using an alkaline solution such as potassium hydroxide. In this example, the surface electrode forming portion has a shape in which it is left flat, but the shape is not limited to this. At this time, the back surface is protected by, for example, coating with an alkali-resistant resin or applying a SiO 2 film by a CVD method (FIG. 3B).

【0024】次に、例えばホスフィン(PH3)を拡散
ソースとした熱拡散でn領域2aを形成する。この際、
n領域2aのキャリア濃度を、後で形成する主接合のn
+領域2のキャリア濃度より低く設定する。例えば、1
×1016〜5×1018/cm3程度である。なお、n領域
2aの拡散深さは、n+領域2の拡散深さより浅く設定
し、例えば0.05〜0.1μm程度である。また熱拡
散で形成した場合は、n領域がウエーハの裏面2bや側
面(図示せず)にも形成されるので、これはエッチング
で除去する。この手間を省くため、n領域2aの形成を
イオンインプランテーションで行ってもよい。
Next, the n region 2a is formed by thermal diffusion using, for example, phosphine (PH 3 ) as a diffusion source. On this occasion,
The carrier concentration of the n region 2a is set to n of the main junction formed later.
+ Set lower than carrier concentration in region 2. For example, 1
It is approximately 10 16 to 5 × 10 18 / cm 3 . The diffusion depth of the n region 2a is set to be shallower than the diffusion depth of the n + region 2 and is, for example, about 0.05 to 0.1 μm. Further, in the case of forming by thermal diffusion, the n region is also formed on the back surface 2b and side surfaces (not shown) of the wafer, so this is removed by etching. In order to save this trouble, the n region 2a may be formed by ion implantation.

【0025】次に、ウエーハの表面、裏面にCVD法で
SiO2を全面被着した後、表面側の主接合形成部分に
は窓開けを行なう。これには周知のフォトリソグラフィ
ーが用いられる(図3(d))。
Next, after SiO 2 is entirely deposited on the front surface and the back surface of the wafer by the CVD method, a window is opened in the main junction forming portion on the front surface side. Well-known photolithography is used for this (FIG.3 (d)).

【0026】次に、例えばオキシ塩化リン(POC
3)を拡散ソースとする熱拡散法によってn+領域2を
形成し、次にいったんウエーハ上のSiO2を除去する
(図3(e))。n+領域2のキャリア濃度は、例えば
1×1019〜5×1020/cm3程度であり、拡散深さは
約0.1〜0.5μm程度である。
Next, for example, phosphorus oxychloride (POC)
The n + region 2 is formed by a thermal diffusion method using 13 3 ) as a diffusion source, and then SiO 2 on the wafer is once removed (FIG. 3E). The carrier concentration of the n + region 2 is, for example, about 1 × 10 19 to 5 × 10 20 / cm 3 , and the diffusion depth is about 0.1 to 0.5 μm.

【0027】次に、あらためて所望厚さのSiO2
6,7を熱酸化法でウエーハの両面に形成する(図3
(f))。酸化膜形成後エッチングで厚さを調整しても
よい。次に、裏面のp+領域形成部分に所望形状の酸化
膜の窓開けを行ない、例えば三臭化ホウ素(BBr3
を拡散ソースとする熱拡散やイオンプランテーション法
を用いてp+領域3aを形成する。
Next, SiO 2 films 6 and 7 having a desired thickness are newly formed on both surfaces of the wafer by a thermal oxidation method (FIG. 3).
(F)). The thickness may be adjusted by etching after forming the oxide film. Next, a window of an oxide film having a desired shape is formed in the p + region forming portion on the back surface, for example, boron tribromide (BBr 3 ).
The p + region 3a is formed by using thermal diffusion or ion plantation method with the diffusion source as a diffusion source.

【0028】次に、表面側には例えば櫛型の電極4を周
知のフォトリソグラフィと真空蒸着法で形成する(図3
(h))。電極4はAgを主成分とし、その厚さは計約
5μmである。次に、裏面側には全面に電極5を真空蒸
着法で形成する(図3(i))。電極は例えばAlと、
Agを主成分とする層の積層でありその厚さは計約5μ
mである。
Next, for example, a comb-shaped electrode 4 is formed on the front surface side by the well-known photolithography and vacuum deposition method (FIG. 3).
(H)). The electrode 4 contains Ag as a main component and has a total thickness of about 5 μm. Next, the electrode 5 is formed on the entire back surface by vacuum evaporation (FIG. 3 (i)). The electrodes are, for example, Al,
It is a stack of layers containing Ag as the main component, and the total thickness is about 5μ.
m.

【0029】その後、所望の熱処理工程を経て、表面に
反射防止膜を被着後、所望寸法に切断分離して(以上図
示せず)セルが完成する。
After that, through a desired heat treatment step, an antireflection film is applied to the surface and then cut and separated into desired dimensions (not shown above) to complete a cell.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、表
面酸化膜の界面で生ずる光励起キャリアの再結合が阻止
出来るので、本来の表面パッシベーションの効果が表わ
れ、太陽電池の出力特性向上に寄与する。これによっ
て、太陽電池の変換効率は、少なくとも2%以上向上す
ることが期待出来、例えば地上光下においては24%以
上の変換効率が達成できる。
As described above, according to the present invention, the recombination of photoexcited carriers generated at the interface of the surface oxide film can be prevented, so that the original effect of surface passivation is exhibited and the output characteristics of the solar cell are improved. Contribute. As a result, the conversion efficiency of the solar cell can be expected to be improved by at least 2% or more, and for example, under the terrestrial light, the conversion efficiency of 24% or more can be achieved.

【0031】なお本発明によれば、セル端面にpn接合
が露出するが、前記の分離切断の際の接合損傷や信頼性
上の問題点は、従来のセルより著しく小さいことが実験
的に確認された。これはセル端面に露出している接合
が、セルの主接合を形成するpn接合(n+領域2とp
型基板)でなく、付加されたn領域2aとp型基板の接
合であるためと考えられる。以上のように本発明による
太陽電池の構造は、太陽電池の高効率化に著しく寄与
し、関係する諸産業に与える効果は大なるものがある。
According to the present invention, the pn junction is exposed on the end face of the cell, but it is experimentally confirmed that the above-mentioned junction damage and reliability problems at the time of separation and cutting are significantly smaller than those of the conventional cell. Was done. This is because the junction exposed at the cell end face is a pn junction (n + region 2 and p that forms the main junction of the cell).
It is considered that it is not the (type substrate) but the junction of the added n region 2a and the p-type substrate. As described above, the structure of the solar cell according to the present invention remarkably contributes to the high efficiency of the solar cell and has a great effect on the related industries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池の実施例のセル構造を示
す概略断面であり、(a)〜(c)は各々その実施例を
示す。
FIG. 1 is a schematic cross-sectional view showing a cell structure of an embodiment of a solar cell according to the present invention, and (a) to (c) respectively show the embodiment.

【図2】本発明に係る太陽電池の実施例のセル構造を示
す概略断面であり、(a)〜(c)は各々その実施例を
示す。
FIG. 2 is a schematic cross-sectional view showing a cell structure of an embodiment of a solar cell according to the present invention, and (a) to (c) respectively show the embodiment.

【図3】本発明の太陽電池セルの一例である第5実施例
(図2(b))のセルの製造法を説明するための工程順
断面図である。
FIG. 3 is a step-by-step cross-sectional view for explaining the manufacturing method of the cell of the fifth embodiment (FIG. 2 (b)) which is an example of the solar cell of the present invention.

【図4】本発明の論拠を説明するためのエネルギーバン
ド図であり、(a)はn型Siと酸化膜の界面、(b)
はp型Siと酸化膜の界面状態を示す。
FIG. 4 is an energy band diagram for explaining the rationale for the present invention, where (a) is an interface between n-type Si and an oxide film, and (b) is a diagram.
Indicates the state of the interface between p-type Si and the oxide film.

【図5】従来の太陽電池のセル構造を示す概略断面であ
り、(a)〜(c)はセルの高効率化のための従来の諸
技術を説明するための図である。
FIG. 5 is a schematic cross-sectional view showing a cell structure of a conventional solar cell, and FIGS. 5 (a) to 5 (c) are views for explaining various conventional techniques for increasing the efficiency of the cell.

【図6】従来の太陽電池のセル構造を示す概略断面であ
り、(a)、(b)はセルの高効率化のための従来の諸
技術を説明するための図である。
FIG. 6 is a schematic cross-sectional view showing a cell structure of a conventional solar cell, and FIGS. 6 (a) and 6 (b) are diagrams for explaining various conventional techniques for increasing the efficiency of the cell.

【符号の説明】[Explanation of symbols]

1 p型Si基板 2 n+層 2a n領域 3 p+層 3a 部分的なp+領域 4 n側電極 5 p側電極 6 酸化膜 7 酸化膜1 p-type Si substrate 2 n + layer 2a n region 3 p + layer 3a partial p + region 4 n-side electrode 5 p-side electrode 6 oxide film 7 oxide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 p型シリコン(Si)基板の受光面とな
る表面にn型領域と酸化膜とを形成した太陽電池におい
て、セル端面周辺のn型領域のキャリア濃度が、セル内
部の主接合を形成するn+型領域のキャリア濃度より低
いことを特徴とする太陽電池。
1. In a solar cell in which an n-type region and an oxide film are formed on a surface serving as a light-receiving surface of a p-type silicon (Si) substrate, the carrier concentration in the n-type region around the cell end face is the main junction inside the cell. A solar cell characterized by having a carrier concentration lower than that of an n + type region forming the.
【請求項2】 セル端面周辺のn型領域の表面からの深
さが主接合を形成するn+型領域の深さより浅いことを
特徴とする請求項1記載の太陽電池。
2. The solar cell according to claim 1, wherein the depth from the surface of the n-type region around the cell end face is shallower than the depth of the n + -type region forming the main junction.
【請求項3】 セル端面周辺のn型領域の表面からの深
さが主接合を形成するn+型領域の深さより深く、太陽
電池の主接合を含む断面の少なくとも一部が受光面とな
る表面側から順次n+−n−p−p+構造であることを特
徴とする請求項1記載の太陽電池。
3. The depth from the surface of the n-type region around the cell end face is deeper than the depth of the n + -type region forming the main junction, and at least a part of the cross section including the main junction of the solar cell serves as the light-receiving surface. The solar cell according to claim 1, wherein the solar cell has an n + -n-p-p + structure sequentially from the front surface side.
JP15614594A 1994-07-07 1994-07-07 Solar cell Expired - Fee Related JP3294005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15614594A JP3294005B2 (en) 1994-07-07 1994-07-07 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15614594A JP3294005B2 (en) 1994-07-07 1994-07-07 Solar cell

Publications (2)

Publication Number Publication Date
JPH0823111A true JPH0823111A (en) 1996-01-23
JP3294005B2 JP3294005B2 (en) 2002-06-17

Family

ID=15621319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15614594A Expired - Fee Related JP3294005B2 (en) 1994-07-07 1994-07-07 Solar cell

Country Status (1)

Country Link
JP (1) JP3294005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552259B1 (en) * 1999-10-18 2003-04-22 Sharp Kabushiki Kaisha Solar cell with bypass function and multi-junction stacked type solar cell with bypass function, and method for manufacturing these devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552259B1 (en) * 1999-10-18 2003-04-22 Sharp Kabushiki Kaisha Solar cell with bypass function and multi-junction stacked type solar cell with bypass function, and method for manufacturing these devices

Also Published As

Publication number Publication date
JP3294005B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP5848421B2 (en) Solar cell and manufacturing method thereof
US8481847B2 (en) Solar cell and method of manufacturing the same
US5990415A (en) Multilayer solar cells with bypass diode protection
US7199395B2 (en) Photovoltaic cell and method of fabricating the same
US11450777B1 (en) Back contact structure and selective contact region buried solar cell comprising the same
KR20080086753A (en) Backside surface passivation and reflection layer for si solar cell by high-k dielectrics
JP2008124381A (en) Solar battery
US11777045B2 (en) Back contact structure and selective contact region buried solar cell comprising the same
US8912617B2 (en) Method for making semiconductor light detection devices
CN112133793A (en) Back-junction back-contact solar cell and manufacturing method thereof
JP6207414B2 (en) Photovoltaic element and manufacturing method thereof
JP2006294802A (en) Photoelectric conversion element
US10665731B2 (en) Photoelectric conversion element
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
KR20120077840A (en) Front and back contact electric field solar cell and method thereof
JP2007019259A (en) Solar cell and its manufacturing method
JP3294005B2 (en) Solar cell
JP2866982B2 (en) Solar cell element
WO2021010422A1 (en) Solar cell and method for manufacturing solar cell
US20240021742A1 (en) Solar cell and method for manufacturing solar cell
JP2004047825A (en) Solar cell
JPH07326786A (en) Crystalline silicon solar battery
JPH0563030B2 (en)
KR101153378B1 (en) Back junction solar cells using a Floating junction and method for manufacturing thereof
WO2020035987A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees