JP3279384B2 - Manufacturing method of fatigue resistant rail - Google Patents

Manufacturing method of fatigue resistant rail

Info

Publication number
JP3279384B2
JP3279384B2 JP10482093A JP10482093A JP3279384B2 JP 3279384 B2 JP3279384 B2 JP 3279384B2 JP 10482093 A JP10482093 A JP 10482093A JP 10482093 A JP10482093 A JP 10482093A JP 3279384 B2 JP3279384 B2 JP 3279384B2
Authority
JP
Japan
Prior art keywords
rail
roller
residual stress
roll
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10482093A
Other languages
Japanese (ja)
Other versions
JPH06312216A (en
Inventor
親行 浦島
和男 杉野
明史 佐藤
和成 田中
孝仁 明賀
和典 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10482093A priority Critical patent/JP3279384B2/en
Publication of JPH06312216A publication Critical patent/JPH06312216A/en
Application granted granted Critical
Publication of JP3279384B2 publication Critical patent/JP3279384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレールの頭部と底部を加
工硬化すると同時に圧縮残留応力を付与せしめる耐疲労
性レールの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fatigue-resistant rail, in which the head and the bottom of the rail are work-hardened and a compressive residual stress is applied at the same time.

【0002】[0002]

【従来の技術】国内外において、鉄道の一層の効率化を
目指して列車の高速化が至上命題となっており、既に国
内では最高速度270km/hを実現し、近い将来350
km/hの実現に向けて積極的に検討がなされている。こ
うした現状において、乗客を安全に目的地まで運ぶため
に、列車を支えるレールの安全性がますます重要となっ
てきており、レールの耐用寿命の延命化ならびに耐破壊
性の向上が強く要望されている。中でも、海外の鉄道に
おいてはローラー矯正されたレールのレール腹部を脆性
き裂が進展し、脱線、死傷事故に至ったことから、レー
ル腹部脆性き裂進展特性が重要視され、腹部脆性き裂進
展特性の優れたレールが望まれている。
2. Description of the Related Art In Japan and overseas, speeding up trains has become a paramount task with the aim of further improving the efficiency of railways.
Active studies are underway to achieve km / h. Under these circumstances, the safety of rails supporting trains is becoming more and more important in order to carry passengers safely to their destinations, and there is a strong demand for extending the service life of rails and improving their resistance to destruction. I have. Above all, in overseas railways, brittle cracks developed in the rail abdomen of the roller-corrected rail, leading to derailment and fatal injury, so the abdominal brittle crack growth characteristics were emphasized, and the abdominal brittle crack growth A rail with excellent characteristics is desired.

【0003】レールの耐疲労損傷性を増すためには、レ
ール材質の強化と合わせて残留応力の活用が最も効果的
であることが分かっており、従来から如何にしてレール
に低コストで、かつ耐疲労損傷性に有効な圧縮残留応力
を付与するかが研究されてきた。例えば、特開平4−1
7921号公報は、ローラーを千鳥状に配置した通常の
ローラー矯正機のローラー直径を50mm〜300mmに小
さくすることで、ローラー接触部のレール表面近傍をレ
ール表面内部よりも多く塑性変形させてレール表面層に
圧縮の残留応力を誘起する技術が紹介されている。しか
し、この技術は大きな圧縮残留応力が要求される場合、
ローラー矯正機の矯正荷重が約150tにも達すること
から、50mm〜300mmの小径ロールでは矯正荷重に耐
えられないためバックアップローラーが必要となり、矯
正機の構造が複雑で設備費用が嵩むこと、さらにメンテ
ナンス費用やローラー摩耗によるローラー交換などに浪
費を要することなどの問題から、もっと低コストで効率
的な残留応力制御技術の開発が望まれている。
In order to increase the fatigue damage resistance of the rail, it has been found that the use of the residual stress is most effective in combination with the reinforcement of the rail material. It has been studied whether to impart effective compressive residual stress to fatigue damage resistance. For example, Japanese Patent Application Laid-Open No. 4-1
No. 7921 discloses that by reducing the roller diameter of a normal roller straightening machine in which the rollers are arranged in a staggered manner to 50 mm to 300 mm, the vicinity of the rail surface of the roller contact portion is plastically deformed more than the inside of the rail surface, and the rail surface is deformed. Techniques for inducing compressive residual stress in the layer are introduced. However, this technique is required when large compressive residual stress is required.
Since the straightening load of the roller straightening machine reaches approximately 150t, a small diameter roll of 50mm to 300mm cannot withstand the straightening load, so a backup roller is required, which complicates the structure of the straightening machine, increases equipment costs, and further maintenance. Due to problems such as cost and wastefulness of roller replacement due to roller wear, it is desired to develop a lower cost and more efficient residual stress control technique.

【0004】また、ローラー矯正レールの頭部表面およ
び底部表面に発生した長手方向の引張残留応力が腹部脆
性き裂進展特性に悪影響することを究明し、この結果引
張残留応力を圧縮残留応力に変えることで脆性き裂進展
を停止させるか、あるいは底部側へ短いき裂長さで進展
させることが分かった。しかし、ローラー矯正でレール
頭部表面および底部表面の残留応力を低コストで、効率
的に圧縮側へ変える手段は見いだされていなかった。
Further, it has been determined that the tensile residual stress in the longitudinal direction generated on the head surface and the bottom surface of the roller straightening rail has an adverse effect on the abdominal brittle crack growth characteristics, and as a result, the tensile residual stress is converted into a compressive residual stress. It was found that brittle crack growth was stopped by this, or the crack was propagated to the bottom side with a short crack length. However, there has not been found any means for efficiently reducing the residual stress on the rail head surface and the bottom surface by roller straightening to the compression side at low cost.

【0005】[0005]

【発明が解決しようとする課題】上記のような問題点を
抜本的に解決するためには、ローラー矯正機のローラー
径が50mm〜300mmの小径であることが必要で、そう
でないとレール表面が圧縮残留応力にならない。言い換
えると、ローラー径が大きい場合、レールとローラーの
接触摩擦力が大きいためにレール表面層の塑性変形に制
限を受けるためと結論づけられる。さらに本発明者ら
は、詳細な検討の結果、ローラー矯正においてはローラ
ー接触部のレール表面は、矯正荷重による圧縮応力に加
えて梁としての圧縮の曲げ応力を受けるために、レール
長手方向に塑性変形しにくいことが分かった。この現象
はローラー径に顕著に影響される。したがって、もし梁
としての圧縮の曲げ応力がなければ、比較的大径のロー
ラーでもローラー接触部のレール表面層の長手方向に容
易に圧縮の塑性変形を与えることができる。また、その
時の圧下荷重も通常のローラー矯正の荷重より著しく小
さいことが分かった。
In order to drastically solve the above-mentioned problems, it is necessary that the roller diameter of the roller straightening machine be as small as 50 mm to 300 mm, otherwise the rail surface will be reduced. No compressive residual stress. In other words, it is concluded that when the roller diameter is large, the plastic deformation of the rail surface layer is restricted due to the large contact frictional force between the rail and the roller. Furthermore, the present inventors have conducted a detailed study and found that, in roller straightening, the rail surface at the roller contact portion receives a compressive stress due to the straightening load and a compressive bending stress as a beam. It turned out that it was difficult to deform. This phenomenon is significantly affected by the roller diameter. Therefore, if there is no compressive bending stress as a beam, even a roller having a relatively large diameter can easily give a compressive plastic deformation in the longitudinal direction of the rail surface layer at the roller contact portion. It was also found that the rolling load at that time was significantly smaller than the load for normal roller correction.

【0006】これらの知見から、通常のローラー矯正後
に相対向させた比較的小径ロールで、レール頭部と底部
を同時に圧縮残留応力に変えられるローラー矯正方法を
開発した。すなわち、通常のローラー矯正を行ったレー
ルの頭部および底部はともに引張残留応力を呈している
が、その後小径ローラーでレール頭部および底部表面層
のみを同時に矯正圧延することで該表面層の長手方向に
容易に圧縮の塑性変形を与えることができ、ローラー矯
正で発生した引張残留応力を圧縮残留応力に変え、さら
に圧下表面層を加工硬化させて強化できることが分かっ
た。
[0006] Based on these findings, a roller straightening method was developed in which the head and bottom of the rail can be simultaneously changed to compressive residual stress using relatively small-diameter rolls facing each other after normal roller straightening. That is, both the head and the bottom of the rail subjected to the normal roller straightening exhibit tensile residual stress, but thereafter, only the rail head and the bottom surface layer are straightened and rolled simultaneously with a small-diameter roller, so that the longitudinal length of the surface layer is reduced. It was found that plastic deformation of compression can be easily applied in the direction, the tensile residual stress generated by the roller straightening can be changed to the compressive residual stress, and further, the reduction surface layer can be hardened by work hardening.

【0007】[0007]

【課題を解決するための手段】本発明は上記知見に基づ
いてなされたもので、その要旨とするところは、ロール
を上下に千鳥状に配置した曲げ矯正機を通過して走行す
るレールを、ロールの直径が100〜600mmでレール
の頭部と接触してレール踏面がレール頭部曲率と同等な
いし1.2の曲率をもつ凹状断面形状の上ロールと、該
レールの底部に接触して曲率が200〜1000mmの凸
状断面形状の下ロールとからなる一対または二対以上の
圧下矯正機で、かつヘルツ応力が900〜3000MPa
の範囲で圧下矯正する耐疲労性レールの製造方法であ
る。
SUMMARY OF THE INVENTION The present invention has been made based on the above findings, and the gist of the present invention is to provide a rail that travels through a straightening machine in which rolls are arranged vertically in a staggered manner. An upper roll having a concave cross-sectional shape having a roll diameter of 100 to 600 mm and a rail tread having a curvature equal to or equal to the curvature of the rail head by contacting the rail head, and a curvature in contact with the bottom of the rail; Is a pair or two or more pairs of reduction rolls composed of a lower roll having a convex cross-sectional shape of 200 to 1000 mm, and a Hertz stress of 900 to 3000 MPa.
This is a method for producing a fatigue-resistant rail that is reduced in the range of (1).

【0008】以下、本発明について図面を参照しながら
詳細に説明する。図1は、本発明法を示す。図1におい
ては、1はレール、2はガイドロール、3は矯正ロー
ル、4は上下ロールから一対または二対以上の圧下矯正
機である。すなわち、ガイドロール2に誘導されなが
ら、矯正ロール3を上下に千鳥状に配置した曲げ矯正機
を通過したレール1を、上下ロールの一対または二対以
上の矯正機で圧下加工し矯正する。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 illustrates the method of the present invention. In FIG. 1, 1 is a rail, 2 is a guide roll, 3 is a straightening roll, 4 is a pair of upper and lower rolls, or a pair of two or more reduction straightening machines. That is, while being guided by the guide rolls 2, the rails 1 that have passed through the bending straighteners in which the straightening rolls 3 are arranged vertically in a staggered manner are pressed down and straightened by one or two or more pairs of upper and lower rolls.

【0009】本発明において圧下矯正機4の上下ローラ
ーは、図2に示すように、直径(D)が100〜600
mmを有する。さらにもう1つの特徴として、レール頭部
側に接触する上ロール(a)のレール踏面は、レール頭
部の曲率と同等ないし1.2倍以下の曲率をもつ凹状断
面形状を有する。一方、レール底部側に接触する下ロー
ル(b)は、ロール軸方向の曲率が200〜1000mm
の凸状断面形状を有している。本発明におけるこのよう
なロール配置は、まず生産性の良い従来のローラー曲げ
矯正機でレールを真直にした後、圧下矯正機によって耐
疲労損傷性、および耐腹部脆性き裂進展特性に有効な圧
縮残留応力を低コストで、効率的に付与することをねら
っている。
In the present invention, the upper and lower rollers of the draft reduction machine 4 have a diameter (D) of 100 to 600 as shown in FIG.
mm. As still another feature, the rail tread surface of the upper roll (a) in contact with the rail head side has a concave cross-sectional shape having a curvature equal to or less than 1.2 times the curvature of the rail head. On the other hand, the lower roll (b) in contact with the rail bottom has a curvature in the roll axis direction of 200 to 1000 mm.
Has a convex cross-sectional shape. Such a roll arrangement in the present invention is achieved by first straightening the rail with a conventional roller bending straightener having good productivity, and then using a reduction straightener to prevent fatigue damage and abdominal brittle crack propagation characteristics. It is intended to efficiently apply the residual stress at low cost.

【0010】すなわち、本発明では、まず矯正ロール3
をレール1の走行方向に千鳥状に配列して走行するレー
ル1に繰り返し曲げを与えて真直にする。この状態では
レールはほぼ真直になっているものの、レール頭部およ
び底部はレール長手方向に約200MPa 程度の引張残留
応力となっている。しかし、その後の相対向するロール
の圧下矯正機4の圧下圧延によって、レール頭部および
底部表面層をレール長手方向に圧縮塑性変形を与えるこ
とでレール頭部および底部表面層を引張残留応力から圧
縮残留応力に変えることができる。
That is, in the present invention, first, the straightening roll 3
Are arranged in a staggered manner in the running direction of the rail 1 to repeatedly straighten the running rail 1. In this state, although the rail is almost straight, the rail head and bottom have a tensile residual stress of about 200 MPa in the longitudinal direction of the rail. However, the rail head and bottom surface layer are subjected to compressive plastic deformation in the longitudinal direction of the rail by rolling down the straightening machine 4 of the opposing rolls thereafter to compress the rail head and bottom surface layer from tensile residual stress. It can be changed to residual stress.

【0011】特に本発明では圧下矯正機4の上下ロール
の直径およびローラー軸方向の曲率の限定は、レール頭
部および底部表面層に耐疲労損傷性を増す圧縮の残留応
力を付与すると同時に加工硬化により強化する範囲であ
る。すなわち、上下ロールの直径を100〜600mmに
限定する理由はロールと接触するレール表面層の長手方
向に、効率的にレール内部よりも強い塑性変形を与える
ためである。レール表面層の長手方向にレール内部より
も強い塑性変形を与えることは、レール表面層を加工硬
化させ、かつ圧縮の残留応力を付与させるためである。
ロールの直径が100mmより小さい場合、レール表面層
の塑性変形による加工硬化や圧縮残留応力の生成は可能
であるが、ローラー直径が小さいためにローラーがレー
ル表面に強い塑性変形を与える荷重に耐えられず、小径
ロールの背面にバックアップロールを配置してレール表
面に強い塑性変形を与える荷重に十分耐え得るものにし
ても、レール表面層の塑性変形による加工硬化や圧縮残
留応力はローラー直径100mm以上のものとさほど変わ
らないことおよび設備上高価になるなどの問題がある。
一方、直径が600mmを超えるロールの場合、レール表
面層よりもレール内部に強い塑性変形が発生しはじめ、
レール表面には逆に引張残留応力が発生し、レールの耐
疲労損傷性および耐腹部脆性き裂進展特性を損なう問題
がある。
Particularly, in the present invention, the diameters of the upper and lower rolls and the curvature in the axial direction of the roller of the straightening machine 4 are limited by applying a compressive residual stress to the rail head and the bottom surface layer, which increases fatigue resistance, and simultaneously work hardening. Range. That is, the reason why the diameter of the upper and lower rolls is limited to 100 to 600 mm is to efficiently give a stronger plastic deformation in the longitudinal direction of the rail surface layer in contact with the rolls than in the rail. Giving a plastic deformation stronger than the inside of the rail in the longitudinal direction of the rail surface layer is for work hardening the rail surface layer and imparting compressive residual stress.
When the roll diameter is smaller than 100 mm, work hardening and compression residual stress can be generated by plastic deformation of the rail surface layer, but the roller diameter is small, so the roller can withstand the load that gives strong plastic deformation to the rail surface. However, even if a backup roll is placed on the back of a small-diameter roll and can withstand a load that gives strong plastic deformation to the rail surface, work hardening and compressive residual stress due to plastic deformation of the rail surface layer are more than 100 mm in roller diameter. There is a problem that it is not much different from the one and that the equipment is expensive.
On the other hand, in the case of a roll having a diameter exceeding 600 mm, stronger plastic deformation begins to occur inside the rail than the rail surface layer,
Conversely, tensile residual stress is generated on the rail surface, and there is a problem that the fatigue damage resistance of the rail and the abdominal brittle crack propagation characteristics are impaired.

【0012】また、ローラー軸方向の曲率をレール頭部
側と接触する上ロールは、矯正するレールの頭部曲率と
同等ないしレール頭部各部曲率より1.2倍以下の曲率
をもつ凹状断面形状に限定する理由は、レールに疲労損
傷の発生し易い部分の表面層に強い塑性変形を与えて、
より大きな圧縮の残留応力を発生させるためである。す
なわち、レールの頭部曲率より小さな曲率半径ではロー
ルがレール頭部表面に接触することがなく、レール頭部
表面各部に塑性変形を与えることはできない。レール頭
部各部曲率より1.2倍を超える曲率半径では、ロール
の接触する部分がレールの頭部中央部のみになり、未接
触部では依然として引張残留応力が残存してレールの耐
疲労損傷性を改善することができないためである。
The upper roll contacting the roller head with the curvature in the roller axial direction has a concave cross-sectional shape having a curvature equal to the curvature of the head of the rail to be corrected or 1.2 times or less than the curvature of each part of the rail head. The reason for limiting to is to apply strong plastic deformation to the surface layer of the part where fatigue damage is likely to occur on the rail,
This is for generating a larger compressive residual stress. That is, if the radius of curvature is smaller than the radius of curvature of the head of the rail, the roll does not contact the surface of the rail head, and no plastic deformation can be applied to each part of the surface of the rail head. If the radius of curvature exceeds 1.2 times the curvature of each part of the rail head, the part where the roll contacts is only the center part of the rail head, and the residual tensile stress remains in the non-contact part, and the fatigue damage resistance of the rail Because it cannot be improved.

【0013】一方、レール底部側と接触する下ロールの
軸方向の曲率を200〜1000mmに限定する理由は、
ローラー矯正で生成したレール底部中央近傍の引張残留
応力を圧縮残留応力に変えると同時に、同部を加工硬化
により強化するためである。すなわち、ローラー軸方向
曲率が200mm以下では、引張残留応力の残存するレー
ル底部中央近傍全てを圧下圧延できなく、また1000
mmを超える曲率ではレール底部での接触面積が大きくな
ってローラー接触部に十分な加工硬化および圧縮残留応
力を誘起できない。
On the other hand, the reason for limiting the axial curvature of the lower roll in contact with the rail bottom to 200 to 1000 mm is as follows.
This is because the tensile residual stress in the vicinity of the center of the rail bottom generated by the roller straightening is changed into the compressive residual stress and, at the same time, the part is strengthened by work hardening. That is, if the roller axial curvature is 200 mm or less, the entire area near the center of the rail bottom where the residual tensile stress remains cannot be rolled down, and
If the curvature exceeds mm, the contact area at the bottom of the rail becomes large and sufficient work hardening and compressive residual stress cannot be induced at the roller contact portion.

【0014】なお、本発明において圧下矯正機の各ロー
ルのヘルツ応力を900〜3000MPa に限定する理由
は、レール表面の凹凸を極小化するために必要な塑性変
形をレール表層に生成するためである。すなわち、ロー
ル4と接触するレール表面のヘルツ応力が900MPa よ
り小さい場合、圧下圧延によるレール表面の塑性変形が
小さくなり、レール表面の凹凸およびレール長手方向の
波状変形の改善効果が十分でない。一方、3000MPa
を超えるヘルツ応力の場合、レール表面の凹凸およびレ
ール長手方向の波状変形の改善効果は3000MPa の場
合とほとんど変わらず、かつ圧延荷重として過大にな
り、設備制約上問題が派生するため好ましくない。上記
のような本発明法によれば、圧縮残留応力が付与されて
使用寿命の長いレールを製造することができる。
The reason for limiting the Hertzian stress of each roll of the drafting straightener to 900 to 3000 MPa in the present invention is to generate plastic deformation necessary for minimizing irregularities on the rail surface on the rail surface layer. . That is, when the Hertzian stress on the rail surface in contact with the roll 4 is smaller than 900 MPa, the plastic deformation of the rail surface due to the rolling reduction becomes small, and the effect of improving the unevenness of the rail surface and the wavy deformation in the rail longitudinal direction is not sufficient. On the other hand, 3000MPa
When the Hertz stress exceeds, the effect of improving the unevenness of the rail surface and the wavy deformation in the longitudinal direction of the rail is almost the same as the case of 3000 MPa, and the rolling load becomes excessively large, which is not preferable because a problem arises due to facility restrictions. According to the method of the present invention as described above, it is possible to manufacture a rail having a long service life by applying a compressive residual stress.

【0015】[0015]

【実施例】次に本発明の具体的実施例について説明す
る。本発明によるレール残留応力制御法の有効性を確認
するため、普通炭素鋼のJIS60kレール12mを用
いて本発明の圧下圧延による残留応力制御実験および従
来のローラー矯正機でのローラー矯正を行い、レール表
面残留応力、水潤滑下での実物レール転がり疲労損傷寿
命を比較した。矯正条件およびそれぞれの結果を本発明
法と従来法で比較し、表1,2に示す。
EXAMPLES Next, specific examples of the present invention will be described. In order to confirm the effectiveness of the rail residual stress control method according to the present invention, the residual stress control experiment by the rolling reduction according to the present invention and the roller correction with a conventional roller straightener were performed using a 12 m rail of JIS60k of ordinary carbon steel. The surface residual stress and the actual rail rolling fatigue damage life under water lubrication were compared. Correction conditions and respective results are compared between the method of the present invention and the conventional method, and are shown in Tables 1 and 2.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】試験結果から明らかなように、本発明によ
る残留応力制御法が非常に有効であることが明白であ
る。すなわち、従来のローラー矯正ままのレールの場合
では、レール頭頂面および底部中央にはレール長手方向
に200〜245MPa の引張残留応力が発生し、また、
水潤滑下で実物レールの転がり疲労損傷試験では通過ト
ン数7950万トンで引張残留応力の存在するレール頭
頂面からき裂が発生した。これに対し、本発明法では圧
下圧延したレールの場合、レール頭頂面および底部中央
のレール長手方向残留応力は表1で示すように−167
〜−216MPa の圧縮となり、水潤滑下での実物レール
転がり疲労損傷寿命は通過トン数3億5730万トン
と、従来法の約4倍に延び、非常に優れた耐転がり疲労
損傷性を示す。
As is apparent from the test results, it is clear that the residual stress control method according to the present invention is very effective. That is, in the case of the conventional rail with the roller straightened, a tensile residual stress of 200 to 245 MPa is generated in the rail longitudinal direction at the top and bottom of the rail, and
In a rolling fatigue damage test of a real rail under water lubrication, a crack was generated from the top of the rail where tensile residual stress exists at a passing tonnage of 79.5 million tons. On the other hand, in the method of the present invention, in the case of the rolled rail, the residual stress in the rail longitudinal direction at the top and bottom of the rail is -167 as shown in Table 1.
Compression of -216 MPa, the rolling fatigue fatigue life under actual lubrication under water lubrication is 357.3 million tons, which is about four times longer than that of the conventional method, and shows extremely excellent rolling fatigue resistance.

【0019】また、表2は、5対の圧下矯正機で、レー
ルを矯正した場合の残留応力などについて示す。このよ
うに耐転がり疲労性が優れている理由は、軽圧下圧延に
よってレール表面層が加工硬化したことに加えて、該表
面に大きな圧縮の残留応力が発生しているためである。
このように耐転がり疲労損傷性が優れているため、従来
新幹線などで顕在化している“ダークスポット”と称す
る高速鉄道特有の転がり疲労損傷に大きな効果があるも
のと思われる。一方、腹部脆性き裂進展特性についても
別途実験を行い、従来レールでは脆性き裂進展長さが約
400mmにも達したが、本発明により残留応力を制御し
た場合、腹部脆性き裂がわずか30mm進展しただけで停
止させることができた。
Table 2 shows the residual stress and the like when the rails were straightened by five pairs of draft reduction machines. The reason that the rolling fatigue resistance is excellent is that the rail surface layer is work-hardened by light rolling, and that a large compressive residual stress is generated on the surface.
Because of the excellent rolling fatigue damage resistance, it is considered that there is a great effect on the rolling fatigue damage peculiar to a high-speed railway called "dark spot" which has been apparent in the Shinkansen and the like. On the other hand, the abdominal brittle crack growth characteristics were also separately tested, and the brittle crack growth length of the conventional rail reached about 400 mm, but when the residual stress was controlled by the present invention, the abdominal brittle crack was only 30 mm. It could be stopped just by making progress.

【0020】[0020]

【発明の効果】このように、本発明の残留応力制御法は
生産性を落とすことなく、低コストで効率的に実施で
き、しかもレールの耐疲労損傷性および腹部脆性き裂列
進展特性を著しく改善できるものである。
As described above, the residual stress control method of the present invention can be efficiently carried out at a low cost without lowering the productivity, and further, the fatigue damage resistance of the rail and the abdominal brittle crack row growth characteristics are remarkably improved. It can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法の一実施例を示す説明図。FIG. 1 is an explanatory view showing one embodiment of the method of the present invention.

【図2】本発明法に使用する圧下ローラーの一例を示す
説明図。
FIG. 2 is an explanatory view showing an example of a pressing roller used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 レール 2 ガイドローラー 3 矯正ローラー 4 圧下ローラー Reference Signs List 1 rail 2 guide roller 3 straightening roller 4 reduction roller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 和成 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (72)発明者 明賀 孝仁 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (72)発明者 関 和典 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平2−282426(JP,A) 特開 平4−17921(JP,A) 特開 平4−300026(JP,A) 特開 平6−279846(JP,A) 実開 平3−9222(JP,U) (58)調査した分野(Int.Cl.7,DB名) B21D 3/05 B21D 3/02 C21D 7/00 - 7/13 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazunari Tanaka 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Yawata Works (72) Inventor Takahito Akiga Tobata-ku, Kitakyushu-shi, Fukuoka No. 1-1 Tobata-cho Nippon Steel Corporation Yawata Works (72) Inventor Kazunori Seki 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (56) References JP 2-282426 (JP, A) JP-A-4-17921 (JP, A) JP-A-4-300026 (JP, A) JP-A-6-279846 (JP, A) JP-A-3-9222 (JP, A) U) (58) Fields surveyed (Int. Cl. 7 , DB name) B21D 3/05 B21D 3/02 C21D 7 /00-7/13

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ロールを上下に千鳥状に配置した曲げ矯
正機を通過して走行するレールを、ロールの直径が10
0〜600mmであり、かつレールの頭部と接触するロー
ルのレール踏面がレール頭部曲率と同等ないし1.2の
曲率をもつ凹状断面形状の上ロールと、該レールの底部
に接触して曲率が200〜1000mmの凸状断面形状の
下ロールとで対となる一対または二対以上の圧下矯正機
で、かつヘルツ応力が900〜3000MPa の範囲で圧
下矯正することを特徴とする耐疲労性レールの製造方
法。
A rail running through a straightening machine in which the rolls are arranged in a staggered manner in a vertical direction is provided with a roll having a diameter of 10 mm.
An upper roll having a concave cross-sectional shape having a radius of 0 to 600 mm and having a curvature equal to or less than 1.2 on the rail tread of the roll contacting the head of the rail, and a curvature in contact with the bottom of the rail; A pair of rolls having a convex cross section having a convex cross section of 200 to 1000 mm and a pair of two or more pairs of draft reduction machines, wherein the draft correction is performed in the range of 900 to 3000 MPa in Hertz stress. Manufacturing method.
JP10482093A 1993-04-30 1993-04-30 Manufacturing method of fatigue resistant rail Expired - Lifetime JP3279384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10482093A JP3279384B2 (en) 1993-04-30 1993-04-30 Manufacturing method of fatigue resistant rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10482093A JP3279384B2 (en) 1993-04-30 1993-04-30 Manufacturing method of fatigue resistant rail

Publications (2)

Publication Number Publication Date
JPH06312216A JPH06312216A (en) 1994-11-08
JP3279384B2 true JP3279384B2 (en) 2002-04-30

Family

ID=14391042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10482093A Expired - Lifetime JP3279384B2 (en) 1993-04-30 1993-04-30 Manufacturing method of fatigue resistant rail

Country Status (1)

Country Link
JP (1) JP3279384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693296B1 (en) 2011-12-23 2017-01-06 삼성에스디아이 주식회사 Cathode active material and method of manufacturing the same and lithium secondary battery including the same
KR101940877B1 (en) * 2016-12-22 2019-01-21 주식회사 포스코 Apparatus for forming beam structure

Also Published As

Publication number Publication date
JPH06312216A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
JP3279384B2 (en) Manufacturing method of fatigue resistant rail
JPH08215702A (en) Rolling method of shape having flange and web and rolling device train
EP0815325B1 (en) Improvements in and relating to steel rails and methods of producing the same
JP4132497B2 (en) Rail straightening device
JP3279385B2 (en) Manufacturing method of rail with excellent internal damage resistance
JP3731974B2 (en) Method for manufacturing residual stress control rail with low warpage
JPH0359126B2 (en)
JP3731962B2 (en) Method for manufacturing residual stress control rail with low warpage
JPH07185659A (en) Shape straightening device for rail with fatigue resistance and brittle fracture resistance
US1929356A (en) Treating austenitic steel
JPH07185660A (en) Straightening method for rail roller
JP3754191B2 (en) Rail straightening method and apparatus
JP2991066B2 (en) Roller straightening method for H-section steel
JP3754190B2 (en) Rail straightening method
US6325874B1 (en) Cold forming flat-rolled high-strength steel blanks into structural members
JP2680164B2 (en) Straightening method for improving rail fatigue resistance
JP4705283B2 (en) Rail with excellent durability and straightness and its correction method
JP2910606B2 (en) Roller straightening device for H-section steel
CZ298418B6 (en) Method of straightening rails and a disk straightening machine for straightening rails
JP3373766B2 (en) Manufacturing method of residual stress control rail with less warpage
JP2982639B2 (en) Roller straightening method and apparatus for H-section steel
JP2004283836A (en) Apparatus and method for correcting h-section steel
JPH0238043B2 (en) RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO
JP2924687B2 (en) Roller straightening method and apparatus for H-section steel
RU2136421C1 (en) Method for straightening rolled piece and roller-type straightening machine for performing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

EXPY Cancellation because of completion of term