JPH0238043B2 - RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO - Google Patents

RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO

Info

Publication number
JPH0238043B2
JPH0238043B2 JP20433285A JP20433285A JPH0238043B2 JP H0238043 B2 JPH0238043 B2 JP H0238043B2 JP 20433285 A JP20433285 A JP 20433285A JP 20433285 A JP20433285 A JP 20433285A JP H0238043 B2 JPH0238043 B2 JP H0238043B2
Authority
JP
Japan
Prior art keywords
rail
heating
temperature
top surface
straightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20433285A
Other languages
Japanese (ja)
Other versions
JPS6264422A (en
Inventor
Tadashi Takimoto
Kyoshi Myamoto
Saburo Mori
Shoji Sekino
Koichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Nippon Kokan Koji KK
JFE Engineering Corp
Original Assignee
Railway Technical Research Institute
Nippon Kokan Koji KK
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Nippon Kokan Koji KK, Nippon Kokan Ltd filed Critical Railway Technical Research Institute
Priority to JP20433285A priority Critical patent/JPH0238043B2/en
Publication of JPS6264422A publication Critical patent/JPS6264422A/en
Publication of JPH0238043B2 publication Critical patent/JPH0238043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Wire Processing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は敷設状態にあるロングレール頭頂面
に生じた局部凹みを取除いて、頭頂面を平坦化す
るロングレール局部凹みの縦矯正法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for vertically correcting local dents in long rails, which flattens the top surface of a long rail by removing the local dents that have occurred on the top surface of the long rail while it is being laid. .

〔従来の技術〕[Conventional technology]

高速鉄道のレールには、列車の走行安定性、継
目騒音の低減、軌道保守費の軽減などのため、長
さ25mの定尺レールを溶接して、1.0〜1.5Kmに長
大化した溶接ロングレールが使用されている。
For high-speed railway rails, welded long rails are made by welding standard length rails of 25 m in length to increase the length from 1.0 to 1.5 km in order to improve train running stability, reduce joint noise, and reduce track maintenance costs. is used.

レールの溶接にはフラツシユ溶接、ガス圧接、
エンクローズアーク溶接あるいはテルミツト溶接
が用いられているが、いずれの工法でもレール溶
接時の加熱により、レール溶接部附近は工場で製
造されたままの均一な性質を持つたレール母材部
とは異なつた性質が与えられる。
For rail welding, we use flash welding, gas pressure welding,
Enclosed arc welding or thermite welding is used, but in either method, due to the heating during rail welding, the area around the rail weld has a different property from the rail base material, which has uniform properties as manufactured at the factory. It is given the ivy property.

第11図は溶接部中心からの距離(mm)を横軸
に、頭頂面の長さ(HB)を縦軸にとつて、フラ
ツシユ溶接でレールの溶接を行つたときの溶接部
近傍におけるレール頭頂面の硬さ分布の一例を示
す。図から明らかなように、溶接時の熱影響の及
ばない母材部は一定の硬さを示すが、溶接時の熱
影響を受けた部分では硬さの著しく低下した部分
が生じる。
Figure 11 shows the top of the rail near the weld when the rail is welded by flash welding, with the horizontal axis representing the distance from the center of the weld (mm) and the length of the top surface (HB) representing the vertical axis. An example of surface hardness distribution is shown. As is clear from the figure, the base metal portion, which is not affected by heat during welding, exhibits a constant hardness, but the portions that are affected by heat during welding have areas where the hardness is significantly reduced.

レールはその頭頂面を車輪が転動通過するの
で、頭頂面の車輪と接触する部分が摩耗する。第
12図は溶接部中心からの距離(mm)を横軸に、
頭頂面の摩耗量(mm)を縦軸にとり第11図に示
した硬さ分布のレール頭頂面の通屯2.2憶トンに
おける摩耗状態を示す。レール頭頂面の摩耗状態
は溶接部以外の母材部ではほぼ平坦であるが、溶
接部近傍ではその硬さの変化に応じた形状に摩耗
する。
As the wheels roll over the top surface of the rail, the portions of the top surface that come into contact with the wheels wear out. Figure 12 shows the distance (mm) from the weld center on the horizontal axis.
The wear amount (mm) of the top surface of the rail is taken as the vertical axis, and the wear condition of the top surface of the rail with the hardness distribution shown in FIG. 11 at a tonnage of 2.2 billion tons is shown. The wear state of the top surface of the rail is almost flat in the base metal parts other than the welded parts, but near the welded parts it wears into a shape that corresponds to the change in hardness.

このため、高速列車の走行に際して、レール溶
接部の踏面状態によつては著しい衝撃音を発生す
るので、列車速度の維持・増加させるためには、
この踏面の微小な凹凸を除去することが必要とな
る。この微小な凹凸は研削のみで平坦にすること
もできるが、凹凸がある限度を超えると研削量が
大きくなつて非能率的・不経済である。
For this reason, when a high-speed train is running, significant impact noise is generated depending on the condition of the tread of the rail weld, so in order to maintain or increase the train speed,
It is necessary to remove minute irregularities on the tread surface. These minute irregularities can be flattened only by grinding, but if the irregularities exceed a certain limit, the amount of grinding becomes large, which is inefficient and uneconomical.

従来、レール頭頂面の微小な凹凸を除去する縦
方向のレール矯正法には大気温でレールに弾性
限界を超える曲げ荷重を加えて塑性変形せしめる
外力を主体とした矯正法、外力は枕木との締結
により拘束力程度にとどめて、レール頭部あるい
は底部を手持ちバーナを用いて局部的に加熱・冷
却して熱塑性変形させる局部的熱処理矯正法、及
びレール全断面をガスバーナなど適当な器具を
用いてA3変態点以上に加熱し、これに油圧装置
等で外力を加えて矯正する全体加熱矯正法などが
ある。
Conventionally, the vertical rail straightening method for removing minute irregularities on the top surface of the rail is mainly based on external force, which applies a bending load exceeding the elastic limit to the rail at ambient temperature to cause it to plastically deform. A local heat treatment straightening method in which the head or bottom of the rail is locally heated and cooled using a hand-held burner to thermoplastically deform the rail, while the restraining force is limited to the level of binding, and the entire cross section of the rail is fixed using an appropriate device such as a gas burner. A There is a total heating straightening method that involves heating to a temperature above the 3 transformation point and then applying an external force using a hydraulic device.

〔発明が解決しようとする問題点〕 外力を主体とした矯正法は油圧装置を用い、
常温近傍で静的曲げを行う方法であつて、曲げ
変形量の調整が容易のため矯正後の仕上がり精
度は良好である。
[Problems to be solved by the invention] The correction method that mainly uses external force uses a hydraulic device,
This method performs static bending at around room temperature, and because the amount of bending deformation can be easily adjusted, the finishing accuracy after straightening is good.

しかし、レールに対応する大きな荷重に耐え
る剛性が曲げ装置に要求されるため、曲げ装置
が大型となり通常は工場あるいは基地作業向で
ある。これを可搬型として作業性を改善しても
敷設して経年したロングレールの矯正には次の
ような問題点を生じる場合がある。すなわち経
年したレール頭頂面には軋み割れなどの表面欠
陥が存在する場合が多く、このような部分を矯
正するため大きな曲げ応力を加えると応力集中
により欠陥が拡大したり、なははだしい場合に
は脆性破断に至る恐れすらある。
However, since the bending device is required to have the rigidity to withstand the large load corresponding to the rail, the bending device is large in size and is usually used for factory or base work. Even if this is made portable and workability is improved, the following problems may occur when straightening long rails that have been installed for many years. In other words, surface defects such as creaks and cracks often exist on the top surface of aged rails, and when large bending stress is applied to correct such areas, the defects may expand due to stress concentration, or if the defects are severe. There is even a risk of brittle fracture.

局部的熱処理矯正法は特別の装置を必要とせ
ず簡便であるが、矯正量の再性に乏しく、加熱
温度が低いと矯正できず、逆に加熱温度が高い
と焼割れを生じるため温度管理が困難であり、
矯正精度を高めるためには高度な熟練を必要と
する問題点があつた。
The local heat treatment straightening method is simple and does not require any special equipment, but the reproducibility of the straightening amount is poor, and if the heating temperature is low, it cannot be straightened, whereas if the heating temperature is high, quench cracking will occur, so temperature control is required. difficult,
There was a problem in that a high degree of skill was required to improve the correction accuracy.

全体加熱矯正法はリングバーナなどによりレ
ール全断面が高温に保持されているため、矯正
に要する外力は小さくてよい。しかし、敷設さ
れたロングレールの矯正法としては次のような
問題点がある。
In the whole heating straightening method, the entire cross section of the rail is kept at a high temperature using a ring burner or the like, so the external force required for straightening may be small. However, this method of straightening long rails has the following problems.

第13図は引張試験温度(℃)を横軸に、引
張強さTSと耐力YS(Kg/mm2)を縦軸にとつて
レールの引張試験結果を示したものであり、図
から明らかなようにレール全断面をA3変態点
である750℃以上に加熱すると、レール強度は
小さくなつて容易に矯正できる。しかし、矯正
する時のレール温度が設定温度以下の場合には
レールに引張りの軸力が作用し、その温度差の
著しい状態、例えば矯正する時のレール温度が
敷設した時の温度より40℃低い時の引張り力
(引張り軸力/レール断面積)は約10Kg/mm2
なる。一方、レールの全断面を加熱した場合に
は、第13図に示すように耐力YSは7Kg/mm2
引張強さは9Kg/mm2以下となり、加熱範囲が引
張り力に耐えられなくなり、加熱範囲に凹み、
すなわちやせる現象も生じる。このため、冬期
の矯正作業は著しく制約される。
Figure 13 shows the results of the tensile test of the rail, with the horizontal axis representing the tensile test temperature (°C) and the vertical axis representing the tensile strength TS and yield strength YS (Kg/mm 2 ). If the entire cross section of the rail is heated above 750°C, which is the A3 transformation point, the rail strength will decrease and it can be easily straightened. However, if the rail temperature during straightening is below the set temperature, a tensile axial force acts on the rail, and there is a significant temperature difference, for example, the rail temperature when straightening is 40°C lower than the temperature when it was laid. The tensile force (pulling axial force/rail cross-sectional area) is approximately 10Kg/ mm2 . On the other hand, when the entire cross section of the rail is heated, the yield strength YS is 7Kg/mm 2 as shown in Figure 13.
The tensile strength will be less than 9Kg/ mm2 , and the heating range will no longer be able to withstand the tensile force, causing a depression in the heating range.
In other words, the phenomenon of weight loss also occurs. For this reason, correction work in winter is severely restricted.

また、レール全断面加熱後の冷却を緩やかに
すると、転動荷重を受けて硬化した敷設レール
頭頂面の加熱範囲に軟化部を生じ、この部分が
他の部分より選択的に摩耗が進行し、結果的に
矯正した個所が短命となる。
In addition, if cooling is slowed down after heating the entire rail cross section, a softened area will appear in the heating range of the top surface of the installed rail, which has hardened under rolling load, and this area will wear more selectively than other areas. As a result, the corrected area will have a short lifespan.

この発明はかかる問題点を解決するためになさ
れたもので、線路閉鎖を行わずに精度の高い縦矯
正のできるロングレールの縦矯正法を得ることを
目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a method for vertically straightening long rails that can perform vertically straightening with high accuracy without closing the track.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るロングレール局部凹みの縦矯正
法は、 ロングレール頭頂面の局部凹み位置を中心と
して、頭部が引張り側になるようにレール底部
から外力を加えてレール長さ2mあたり1.0〜
2.5mmの予歪みを与え、 この状態で圧縮応力を受けているレール底部
の長さ方向を100〜220mmの範囲で750℃〜880℃
に加熱したのちに徐冷し、 上記レールの加熱・冷却にあたり、レール頭
部を300℃以下に保持することにより、ロング
レールの局部凹みを矯正する方法である。
The vertical correction method for localized dents in long rails according to the present invention involves applying an external force from the bottom of the rail around the location of the local dents on the top surface of the long rail so that the head is on the tension side.
A pre-strain of 2.5 mm is applied, and the length direction of the bottom of the rail, which is under compressive stress in this state, is heated to 750°C to 880°C over a range of 100 to 220 mm.
This method corrects local dents in long rails by heating and cooling the rails to a temperature of 300°C or less, and then maintaining the rail head below 300°C during heating and cooling of the rails.

〔作用〕[Effect]

この発明においては、レールに弾性限界内で予
歪みを与えた後、レール底部をA3変態点以上に
加熱し、熱塑性変形させると共に、レール頭部を
300℃以下に保持することによりレール頭頂部の
加熱に伴う軟化すなわち耐摩耗性の低下を防止す
る。
In this invention, after pre-straining the rail within its elastic limit, the bottom of the rail is heated above the A3 transformation point to cause thermoplastic deformation, and the head of the rail is
By maintaining the temperature below 300°C, softening of the top of the rail due to heating, that is, a decrease in wear resistance, is prevented.

〔実施例〕〔Example〕

以下、第1図に示すように頭頂面2の1個所又
は連続した2個所に発生した微小な凹み3を持つ
レール1を矯正する方法を具体的に説明する。な
お第1図において4はレール1の頭部、5は腹
部、6は底部である。
Hereinafter, as shown in FIG. 1, a method for correcting a rail 1 having a minute dent 3 formed in one place or two consecutive places on the top surface 2 will be explained in detail. In FIG. 1, 4 is the head of the rail 1, 5 is the abdomen, and 6 is the bottom.

まず、第2図aに示すように敷設されたレール
1の凹み3を中心として、レール締結装置7を枕
木8の5〜6本分解放し、加圧台9を凹み3の両
側の枕木8の位置に装着する。また作業中列車が
走行してもレール1が横圧により移動して軌間拡
大をおこさないように保持具10を加圧台9の両
側の枕木8の位置に装着する。
First, as shown in FIG. 2a, the rail fastening device 7 is released by 5 to 6 sleepers 8, centering on the recess 3 of the laid rail 1, and the pressurizing table 9 is moved around the recess 3 on both sides of the recess 3. Attach it in the position. In addition, holders 10 are attached to the sleepers 8 on both sides of the pressurizing platform 9 to prevent the rail 1 from moving due to lateral pressure and causing gauge expansion even if the train runs during work.

次に、第2図bに示すように油圧ラーム11を
加圧台9の下に設置し、ホース12により接続さ
れた油圧ポンプ13を用いて加圧し、レール1を
持ち上げる。
Next, as shown in FIG. 2b, a hydraulic ram 11 is installed under the pressurizing table 9, and pressurized using a hydraulic pump 13 connected by a hose 12 to lift the rail 1.

レール1をレールの長さほぼ2mあたりで持ち
上げる量xは第3図に示す凹み深さdと第4図に
示す上越し量uとの和である。凹み深さdは通常
0.5〜2.0mm程度であり、上越し量uは実験の結果
0.5mm程度が適当である。したがつてレール1を
持ち上げる量xの範囲は、レールの長さ2mあた
りで1.0〜2.5mmとなる。60Kg/mレールを2m弦
で2.5mm持ち上げた場合、レール頭部4に加えら
れる引張り応力はほぼ8Kg/mm2あり、従来の外力
のみで塑性変形させる矯正法の場合にレール頭部
に加えられる引張り応力約50Kg/mm2以上に比して
著しく小さくなる。
The amount x by which the rail 1 is lifted at approximately 2 m in length is the sum of the recess depth d shown in FIG. 3 and the lifting amount u shown in FIG. 4. The recess depth d is usually
It is about 0.5 to 2.0 mm, and the overhang amount u is the result of the experiment.
Approximately 0.5mm is appropriate. Therefore, the range of the amount x by which the rail 1 is lifted is 1.0 to 2.5 mm per 2 m of rail length. When a 60Kg/m rail is lifted by 2.5mm with a 2m string, the tensile stress applied to the rail head 4 is approximately 8Kg/ mm2 , which is the same as that applied to the rail head in the case of the conventional correction method that plastically deforms only by external force. This is significantly smaller than the tensile stress of approximately 50Kg/mm 2 or more.

したがつてレール1の頭頂面2に軋み割れなど
の欠陥が多少存在しても、欠陥の拡大あるいは脆
性破断の恐れは生じない。
Therefore, even if some defects such as creaks and cracks are present on the top surface 2 of the rail 1, there is no risk of the defects expanding or brittle fracture.

上記のようにレール1を持ち上げた状態で、凹
み3直下のレール底部6に、第2図cに示すよう
に底部加熱用の小型炉14を装着し、ガスバーナ
15で所定の温度に加熱した後冷却する。
With the rail 1 lifted as described above, a small furnace 14 for bottom heating is attached to the rail bottom 6 directly below the recess 3 as shown in Fig. 2c, and the gas burner 15 is used to heat it to a predetermined temperature. Cooling.

上記のように、レール1に予歪みを与えた状態
で、レール底部6の加熱を行うと、レール1は底
部6の熱膨張が大きいため、下方へ凹形に変形す
るが、底部6の加熱範囲では熱塑性変形がおこ
り、応力緩和も生じて、冷却後には、第5図に示
すように若干の凸量rが残留し、レール1の矯正
が行われる。なお矯正後必要な場合は第6図に示
すように研削して仕上げる。研削する場合の高低
差hは+0.3〜−0.1mm/mとする。
As mentioned above, when the rail bottom 6 is heated with the rail 1 prestrained, the rail 1 deforms downward into a concave shape because the bottom 6 has a large thermal expansion. Thermoplastic deformation occurs in this area, stress relaxation also occurs, and after cooling, a slight convex amount r remains as shown in FIG. 5, and the rail 1 is corrected. After correction, if necessary, finish by grinding as shown in Figure 6. The height difference h during grinding is +0.3 to -0.1 mm/m.

小型炉14で加熱するレール底部の範囲は実験
の結果、50N用レールで100〜200mm、60Kg/mの
レールで120〜220mm程度、すなわちレールの高さ
±50mm程度が適当である。この加熱するレール底
部の範囲が狭いと矯正が充分に行われず、逆にこ
の範囲が広すぎると座屈を生じてしまう。
As a result of experiments, the appropriate range of the bottom of the rail to be heated in the small furnace 14 is about 100 to 200 mm for a 50N rail, and 120 to 220 mm for a 60 kg/m rail, that is, about ±50 mm of the rail height. If the range of the bottom of the rail to be heated is narrow, correction will not be performed sufficiently, and conversely, if this range is too wide, buckling will occur.

また、レール断面における最高加熱温度は底部
6で750〜880℃、頭部4では300℃以下である。
Further, the maximum heating temperature in the cross section of the rail is 750 to 880°C at the bottom 6 and 300°C or less at the head 4.

底部6を750℃以上に加熱するのは、レール鋼
(C;0.6〜0.75%)ではA3変態点である750℃以
上で降伏点が極めて小さくなり、変形抵抗を失つ
た状態となつて容易に熱塑性変形を生じるためで
ある。逆に750℃以下では変形抵抗が大きく、十
分な矯正を行うことが困難である。
Heating the bottom part 6 above 750°C is because rail steel (C; 0.6 to 0.75%) has an extremely small yield point above 750°C, which is the A3 transformation point, and easily loses its deformation resistance. This is because thermoplastic deformation occurs. On the other hand, if the temperature is below 750°C, the deformation resistance is large and it is difficult to perform sufficient correction.

底部6の加熱温度の上限を880℃としたのは、
レール鋼を燒ならし温度の最高温度880℃以上に
加熱すると結晶が粗大化して材質が劣化し、もろ
くなると同時に底部6を880℃以上の高温にする
とレール頭部4を300℃以下に保持することが困
難となるためである。
The reason why we set the upper limit of the heating temperature of the bottom part 6 to 880℃ is because
If rail steel is heated to a maximum temperature of 880°C or higher, the crystals will become coarser and the material will deteriorate, becoming brittle. At the same time, if the bottom part 6 is heated to a high temperature of 880°C or higher, the rail head 4 will be maintained at 300°C or lower. This is because it becomes difficult.

レール部頭4を300℃以下に加熱するのは、第
13図に示すように300℃以下では引張強さTS、
耐力YSの低下が起きなく、転動荷重で硬化され
たレール頭頂面2に軟化部が発生せず、耐摩耗性
が損なわれないためである。
The reason why the rail head 4 is heated to 300°C or lower is because the tensile strength TS is lower than 300°C as shown in Figure 13.
This is because the yield strength YS does not decrease, no softening portion occurs on the rail top surface 2 hardened by rolling load, and wear resistance is not impaired.

第7図は加熱開始からの時間(min)を横軸
に、温度(℃)を縦軸にとつて、レール1を加
熱・冷却したときのレール各部の加熱・冷却曲線
の一例を示す。図に示した加熱・冷却曲線はレー
ル温度が6〜12℃の場合であり、aは頭頂面、b
は腹部中心、cは底部中心の加熱・冷却曲線であ
る。
FIG. 7 shows an example of a heating/cooling curve of each part of the rail when the rail 1 is heated/cooled, with the horizontal axis representing the time (min) from the start of heating and the vertical axis representing the temperature (° C.). The heating/cooling curve shown in the figure is for a rail temperature of 6 to 12℃, where a is the top surface and b
is the heating/cooling curve at the center of the abdomen, and c is the heating/cooling curve at the center of the bottom.

この加熱・冷却曲線は、まず小型炉14でレー
ル底部6を加熱し、レール底部6が所定の温度例
えば750℃に達した時にガスバーナ15を消火し、
その後炉冷及び空冷により徐冷し、レール底部6
の温度が300℃程度に達したら水冷する。この加
熱・冷却の際レール腹部5の最高加熱温度は500
℃以下、頭頂面2の最高加熱温度は300℃以下で
ある。
This heating/cooling curve first heats the rail bottom 6 in a small furnace 14, and when the rail bottom 6 reaches a predetermined temperature, for example, 750°C, the gas burner 15 is extinguished.
After that, the rail bottom 6 is gradually cooled by furnace cooling and air cooling.
When the temperature reaches around 300℃, cool it with water. During this heating and cooling, the maximum heating temperature of the rail abdomen 5 is 500.
℃ or less, and the maximum heating temperature of the parietal surface 2 is 300℃ or less.

上記のようにレール底部6の温度が750℃、腹
部5の温度が500℃以下、頭頂面2の温度が300℃
以下の場合、レール1の耐力は約25Kg/mm2、引張
強さは約45Kg/mm2となり、設定温度からマイナス
40℃の冬期においてもレール強度は約10Kg/mm2
なる引張り力(引張り軸力/レール断面積)をは
るかに超えて安全である。
As mentioned above, the temperature of the rail bottom 6 is 750℃, the temperature of the abdomen 5 is 500℃ or less, and the temperature of the top surface 2 is 300℃
In the following cases, the yield strength of rail 1 is approximately 25Kg/mm 2 and the tensile strength is approximately 45Kg/mm 2 , which is minus the set temperature.
Even in winter at 40°C, the rail strength far exceeds the tensile force (axial tensile force/rail cross-sectional area) of approximately 10 kg/ mm2 , making it safe.

次に上記実施例により具体的にレール1を矯正
した結果を示す。
Next, the results of specifically correcting the rail 1 according to the above embodiment will be shown.

高速鉄道に長年敷設使用した60Kg/mのロング
レールの不動区間に生じた頭頂面2の凹みを矯正
した。この矯正において、枕木の締結装置緊解本
数は6本、レール温度はおおむね6〜12℃で、レ
ールの加熱・冷却はレール底部6の加熱範囲を約
200mmとし、第7図に示した加熱冷却曲線を適用
して行つた。
Corrected the dent in the top surface 2 of the 60kg/m long rail that had been installed and used for many years on high-speed railways in the stationary section. In this straightening, the number of tightening devices for the sleepers is 6, the rail temperature is approximately 6 to 12 degrees Celsius, and the heating and cooling of the rail is approximately within the heating range of the rail bottom 6.
200 mm, and the heating and cooling curve shown in Figure 7 was applied.

このレールの縦矯正の際、第8図に示すレール
の長さL=2mあたりの持ち上げる量x(mm/2
m)と矯正量y(mm/2m)との関係を第9図に
示す。持ち上げる量xと矯正量yとの直線的傾向
は回帰式y=1.095x−0.537であらわされ、相関
係数rは0.908であり、持ち上げる量xと矯正量
yとは、ほぼ完全な相関を示し矯正精度はきわめ
て高い。
When vertically straightening this rail, lift amount x (mm/2
FIG. 9 shows the relationship between the correction amount y (mm/2m) and the correction amount y (mm/2m). The linear tendency between the lifting amount x and the correction amount y is expressed by the regression equation y = 1.095x - 0.537, and the correlation coefficient r is 0.908, indicating an almost perfect correlation between the lifting amount x and the correction amount y. The correction accuracy is extremely high.

また第10図に溶接部中心からの距離(mm)を
横軸に硬さ(Hs)を縦軸にとつて、矯正前後の
頭頂面2各部の硬さを示す。第10図に示すよう
に頭頂面2は加熱による硬さ変化が生じなく、矯
正後も矯正前の硬さを保持することができる。
Further, FIG. 10 shows the hardness of each part of the parietal surface 2 before and after correction, with the horizontal axis representing the distance (mm) from the center of the weld and the vertical axis representing the hardness (Hs). As shown in FIG. 10, the hardness of the parietal surface 2 does not change due to heating, and the hardness before correction can be maintained even after correction.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、レールに弾性
限界内の予歪みを与えた後、レール底部をA3
態点以上に加熱し熱塑性変形させると共に、レー
ル頭部を300℃以下に保持してレールの縦矯正を
行うから、矯正の際もレールが充分な引張強さ、
耐力を有し、従来の矯正方法でしばしば発生した
レール断面積の減少なしで、かつ線路閉鎖を行わ
ずに精度の高い縦矯正を行うことができる。
As explained above, in this invention, after pre-straining the rail within its elastic limit, the bottom of the rail is heated to above the A3 transformation point to thermoplastically deform it, and the top of the rail is held at below 300°C. Since vertical straightening is performed, the rail has sufficient tensile strength during straightening.
It has a high strength and can perform vertical straightening with high accuracy without reducing the cross-sectional area of the rail, which often occurs with conventional straightening methods, and without closing the track.

また矯正後もレール頭頂面の硬さに変化が生じ
ないから、レール頭頂面の耐摩耗性を保持するこ
とができる。
Furthermore, since the hardness of the top surface of the rail does not change even after correction, the wear resistance of the top surface of the rail can be maintained.

さらに、レール頭部に大きな引張応力を与えな
いから、頭頂面に存在した微小な疵の拡大も防止
できる効果を有する。
Furthermore, since no large tensile stress is applied to the rail head, it is possible to prevent the expansion of minute flaws existing on the top surface of the rail.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレールの斜視図、第2図a,b,c,
dはこの発明の実施例の説明図であり、第2図a
は平面図、第2図bは第2図aのA−A断面図、
第2図cは第2図aのB−B断面図、第2図dは
第2図aのC−C断面図、第3図〜第6図は上記
実施例の動作説明図、第7図は加熱・冷却曲線の
分布図、第8図は持ち上げる量xと矯正量yの説
明図、第9図は持ち上げる量xと矯正量yの特性
図、第10図は頭頂面硬さ分布図、第11図はロ
ングレール溶接時のレール頭頂面の硬さ分布図、
第12図は溶接部の摩耗量分布図、第13図はレ
ールの温度−引張強さ、耐力特性図である。 1:レール、2:頭頂面、3:凹み、4:頭
部、6:底部。
Figure 1 is a perspective view of the rail, Figure 2 a, b, c,
d is an explanatory diagram of an embodiment of the present invention, and FIG.
is a plan view, FIG. 2b is a sectional view taken along line A-A in FIG. 2a,
FIG. 2c is a sectional view taken along line BB in FIG. 2a, FIG. 2d is a sectional view taken along line C-C in FIG. The figure is a distribution diagram of heating/cooling curves, Figure 8 is an explanatory diagram of lifting amount x and correction amount y, Figure 9 is a characteristic diagram of lifting amount x and correction amount y, and Figure 10 is a distribution diagram of parietal surface hardness. , Figure 11 is a hardness distribution diagram of the rail top surface during long rail welding,
FIG. 12 is a wear amount distribution diagram of the welded part, and FIG. 13 is a diagram of the temperature-tensile strength and yield strength characteristics of the rail. 1: Rail, 2: Parietal surface, 3: Recess, 4: Head, 6: Bottom.

Claims (1)

【特許請求の範囲】 1 ロングレール頭頂面の局部凹み位置を中心と
して、頭部が引張り側になるようにレール底部か
ら外力を与えて、レール長さ2mあたり1.0〜2.5
mmの予歪みを与え、 この状態で、圧縮応力を受けているレール底部
の長さ方向100〜220mmの範囲を加熱炉でおおい
750℃〜880℃に加熱した後徐々に冷やし、上記レ
ールの加熱・冷却にあたり、レール頭部を300℃
以下に保持するロングレール局部凹みの縦矯正
法。
[Claims] 1. Apply an external force from the bottom of the rail around the local concave position on the top surface of the long rail so that the head is on the tension side, and apply an external force of 1.0 to 2.5 per 2 m of rail length.
A pre-strain of mm is applied, and in this state, a heating furnace is used to cover a range of 100 to 220 mm in the length direction of the bottom of the rail, which is under compressive stress.
After heating to 750℃ to 880℃, the rail head is heated to 300℃.
Vertical correction method for long rail local dents held below.
JP20433285A 1985-09-18 1985-09-18 RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO Expired - Lifetime JPH0238043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20433285A JPH0238043B2 (en) 1985-09-18 1985-09-18 RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20433285A JPH0238043B2 (en) 1985-09-18 1985-09-18 RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO

Publications (2)

Publication Number Publication Date
JPS6264422A JPS6264422A (en) 1987-03-23
JPH0238043B2 true JPH0238043B2 (en) 1990-08-28

Family

ID=16488741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20433285A Expired - Lifetime JPH0238043B2 (en) 1985-09-18 1985-09-18 RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO

Country Status (1)

Country Link
JP (1) JPH0238043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266880B (en) * 2011-07-07 2013-01-30 徐州开元世纪重型锻压有限公司 Moving operating platform for rail correcting hydraulic press
CN107952826B (en) * 2017-11-17 2020-04-24 中冶陕压重工设备有限公司 Straightening equipment for high-speed rail or frog and straightening method thereof
CN109530489A (en) * 2018-12-04 2019-03-29 合肥合锻智能制造股份有限公司 A kind of mobile work platform for heel end track switch

Also Published As

Publication number Publication date
JPS6264422A (en) 1987-03-23

Similar Documents

Publication Publication Date Title
US8557064B2 (en) Method of cooling rail weld zone, and rail weld joint
EP2412472B1 (en) Device and method for cooling welded rail section
US10144983B2 (en) Method of reheating rail weld zone
CN111659973B (en) U76CrRE heat treatment steel rail gas pressure welding method
JPS58202916A (en) Method of straightening rail and rail straightened
JPH0238043B2 (en) RONGUREERUKYOKUBUHEKOMINOTATEKYOSHOBO
JP2007175707A (en) Method of improving fatigue strength in rail weld zone
US5306361A (en) Method for improving service life of rail welds by aluminothermic heat treatment
EP0815325B1 (en) Improvements in and relating to steel rails and methods of producing the same
AU702091B2 (en) Method and apparatus for heat-treating profiled rolling stock
JP2010188382A (en) Method of cooling weld zone of rail
US3193270A (en) Apparatus for heat-treating rails
JPH0359126B2 (en)
US3266956A (en) Thermal hardening of rails
SU1563920A1 (en) Method of resistance butt welding of rails
JP4234892B2 (en) Manufacturing method of bainitic rail with excellent brittle crack growth and fatigue properties
JP3279384B2 (en) Manufacturing method of fatigue resistant rail
RU2755713C1 (en) Apparatus and method for heat treatment of a long-length product with an l-shaped profile with a sole, neck, head
JP7186736B2 (en) Rail straightening jig and rail straightening method
JP2820267B2 (en) Method of manufacturing rail with excellent brittle crack growth characteristics
JP4705283B2 (en) Rail with excellent durability and straightness and its correction method
JPH08332588A (en) Method for improving resistance to horizontal crack in welded zone of rail stem
CN116984701A (en) U71Mn heat-treated steel rail gas pressure welding method
JPS62161917A (en) Manufacture of head end-heattreated rail excellent in resistance to damage and wear
JPH03104824A (en) Heat treatment of long-sized welded rail

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees