JP4705283B2 - Rail with excellent durability and straightness and its correction method - Google Patents

Rail with excellent durability and straightness and its correction method Download PDF

Info

Publication number
JP4705283B2
JP4705283B2 JP2001270853A JP2001270853A JP4705283B2 JP 4705283 B2 JP4705283 B2 JP 4705283B2 JP 2001270853 A JP2001270853 A JP 2001270853A JP 2001270853 A JP2001270853 A JP 2001270853A JP 4705283 B2 JP4705283 B2 JP 4705283B2
Authority
JP
Japan
Prior art keywords
rail
rolling
straightness
straightening
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001270853A
Other languages
Japanese (ja)
Other versions
JP2003080316A (en
Inventor
忠継 吉田
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001270853A priority Critical patent/JP4705283B2/en
Publication of JP2003080316A publication Critical patent/JP2003080316A/en
Application granted granted Critical
Publication of JP4705283B2 publication Critical patent/JP4705283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軌条に関し、特に、鉄道車輌の高速化に必要な耐久性および真直性に優れた軌条、およびその矯正方法に関するものである。
【0002】
【従来の技術】
鉄道車輌の高速化に伴い、走行時の安全性および快適性の確保が図られている。
【0003】
その一環として、車輌を支える軌条の安全性がますます重要となってきており、耐用寿命の延命化ならびに耐破壊性の向上が強く要望されている。中でも、海外の鉄道においては、図7に示す矯正機でローラー矯正された軌条1の胴部(柱部とも記載される。)に脆性き裂が進展し、脱線、死傷事故に至ったことから、軌条胴部脆性き裂進展特性が重要視され、胴部脆性き裂進展特性の優れた軌条が望まれている。軌条の耐疲労損傷性を増すためには、軌条材質の強化と合わせて残留応力の活用が最も効果的であることが公知であり、従来から、如何にして軌条に低コストで耐疲労損傷性に有効な圧縮残留応力を付与するかが研究されてきた。例えば、特開平4−17921号公報には、軌条の耐疲労性を向上させる矯正法として、図8に示すように、直径が50〜300mmの小径ロール3を上下交互に配列したローラー矯正機で、レール1の頭部と底部の表面層を加工することにより、ロールと接触する軌条表面近傍を、軌条表面内部よりも多く塑性変形させて、軌条表面層に圧縮の残留応力を誘起する技術が開示されている。しかし、この技術では、大きな圧縮残留応力が要求される場合、ローラー矯正機の矯正荷重が約150tにも達することから、50〜300mmの小径ロールでは矯正荷重に耐えられないため、バックアップロール31が必要となり、矯正機の構造が複雑で設備コストが嵩む問題があった。
【0004】
特開平6−312216号公報では、図9に示すように、ローラー矯正機(a)の後段に、直径100〜500mm、ロール軸方向に200〜1000mmの曲率を有するロール4を、図10に示すように相対向させた圧延装置(b)を設け、ロール間のヘルツ応力が90〜300MPa の範囲になるように負荷して、軌条頭部および底部表面層に圧縮残留応力を付与することにより、軌条の耐転がり疲労寿命を4倍以上に向上させる技術が開示されている。しかし、この技術は、前段のローラー矯正と後段の非対称圧延との組合せであるから、大きな圧縮残留応力が要求される場合、原理的に後段の圧延で、非対称性に由来する圧延曲がりが発生する。そのため、ローラー矯正機単独の場合に比べて、最適な矯正条件の設定が煩雑になる問題点があった。
【0005】
この他にも、鉄道車輌の高速化に伴い、軌条頭部踏面の長手方向の平担性を確保するというニーズがある。軌条頭部の踏面に、長手方向に周期的な波状の凹凸、即ち、波状変形が存在すると、走行時の車輌の車輪に上下方向の振動が発生する。速度の遅い従来線では通常問題にならないような波長の長い波状変形でも、高速車輌の場合、比較的高い周波数の振動になる。この周波数が車輌の足廻りの固有振動数と一致した場合は、共振を生じて車輪と軌条の接触が不安定となり、最悪の場合、車輌の脱線などの事故に繋がる可能性がある。また、事故にはならなくとも、波状変形による振動は、乗り心地の低下を招来する問題があった。軌条の波状変形発生の一因子として、ローラー矯正機のロールのガタや偏心が矯正工程で軌条に転写されることが考えられる。これを防止するためには、ローラー矯正機の全ロールのガタおよび偏心を最小限に管理する必要があるが、そのためには、装置の改造や設備更新が必要になる。しかし、通常のローラー矯正機はロールを7本以上有するので、初期コストのアップに繋がるとともに、操業時に余分な管理費が発生する問題があった。前記の特開平6−312216号公報では、ローラー矯正機の後段にロール対を配置して圧下するので、ローラー矯正機で波状変形が発生しても圧延により修正出来るとしている。しかし、圧延による波状変形の修正効果を高めるためには圧下率を増加させる必要があり、その際に、前記の非対称性に由来する圧延曲がりの発生が問題となる。
【0006】
【発明が解決しようとする課題】
上記のような問題点を抜本的に解決するためには、ロール本数が多く設備的に複雑であり、そのため波状変形発生因子となりやすいローラー矯正機に代えて、より単純な原理の新矯正技術を指向する必要がある。即ち、圧延による軌条の矯正技術を開発すれば、波状変形発生因子の排除および圧縮残留応力の制御により、波状変形の無い高耐久性の軌条の製造が原理的に可能になる。しかし、前述のような従来の軌条の圧延は、非対称圧延であるから、圧延曲がりが発生して、真直性の確保を狙いとする本来の矯正が出来ない問題があった。そこで、軌条圧延のように非対称圧延であっても、圧延機自体に矯正効果を発揮する機能を具備すれば、狙いとする軌条の矯正が可能になることを知見し、本発明を成したものである。
【0007】
【課題を解決するための手段】
本発明は、上記検討に基づきなされたもので、その要旨とするところは、以下のとおりである。
【0008】
(1)耐久性および真直性に優れる軌条において、矯正後の軌条の頭部踏面および脚部底面並びに頭部および脚部の一部を含む胴部の表面から1mm以下の表層に圧縮の残留応力を有するとともに、該軌条の長手方向に直角な断面内の残留応力の絶対値が、該軌条の変形抵抗の1割以下であることを特徴とする耐久性および真直性に優れる軌条。
【0009】
(2)耐久性および真直性に優れる軌条の矯正方法において、圧延後の矯正工程で、該軌条の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、軌条の頭部踏面および脚部底面を竪ロールと接触させ、頭部および脚部の一部と胴部を水平ロールと接触させて、10%以下の延伸率で全断面が塑性変形するように圧下するとともに、該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該軌条に、曲げモーメントを負荷することを特徴とする耐久性および真直性に優れる軌条の矯正方法。
【0010】
(3)耐久性および真直性に優れる軌条の矯正方法において、圧延後の矯正工程で、該軌条の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、軌条の頭部踏面および脚部底面を竪ロールと接触させ、頭部および脚部の一部と胴部を水平ロールと接触させて、10%以下の延伸率で全断面が塑性変形するように圧下するとともに、該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該軌条に、曲げモーメントと長手方向の張力とを負荷することを特徴とする耐久性および真直性に優れる軌条の矯正方法。
【0011】
以下に、本発明について説明する。
【0012】
【発明の実施の形態】
図1は、軌条の長手方向に直角な断面の残留応力分布を示す図であり、図1(a)は、本発明の軌条の場合、図1(b)は、特開平6−312216号公報のローラーレベラー矯正後の軌条の場合である。なお、本発明においては、断面とは、軌条の長手方向に対して直角な断面を指すものとする。図1(b)に示すように、ローラーレベラー矯正後の軌条の断面全体には、引張応力と圧縮応力とが隣あって複雑に分布しており、残留応力の絶対値が該軌条の変形抵抗の1割を超える領域(図1(b)の斜線部)が認められる。このような余分な残留応力場の中に介在物や内部割れなどの素材欠陥が存在すると、車輪との接触によって加えられる繰返し応力によってその部分から疲労き裂が発生し易く、その分、材料の欠陥管理や材質向上などのためのコスト増加の因子となる。線形破壊力学の観点では、材料内部の円形のき裂と表面の同じ半径の半円き裂とでは、後者の応力拡大係数(き裂の伝播し易さの指標)が前者の約1.1倍となり、通常、表面から割れやすい。しかし、一般に、疲労強度は引張強度の50%以下であり、変形抵抗よりも小さいため、図1(b)のように内部の残留応力が変形抵抗の1割を超えると、これに車輪により加えられる外部からの応力が重畳されることもあって、内部の円形のき裂の応力拡大係数が表面の半円き裂のそれより大となる部分が発生し易く、有害と見なされる。発明者らは種々の強度の残留応力が分布する材料の疲労特性試験を実施して、図1(a)に示すように、内部の残留応力が変形抵抗の1割以下であれば、これが1割を超える図1(b)に比べて、内部からの破壊が著しく減少することを知見した。このことから本発明の軌条の長手方向に直角な断面内の残留応力の絶対値は、軌条の変形抵抗の1割以下とするものである。
【0013】
また、材料内部の欠陥が少ない材料では、軌条表面の打痕などによる応力集中により割れが発生し易い。その場合は、表面から1mm程度に圧縮の残留応力が分布していれば、き裂の有効応力拡大係数が減少するので破壊を生じにくいこと、また、1mmを超えて圧縮の残留応力を付与しても、効果が飽和してしまうこと、付与するための費用がかかることなどを知見した。このことから、残留応力を付与する範囲を1mm以下とするものである。一般に、軌条踏面は車輌の車輪と直接接触するために過大な応力が発生し易いので、この部分に圧縮の残留応力を付与すると効果的である。また、前記したように軌条の胴部を起点とする破壊が発生していることから図1(a)に示すように、踏面以外のその他の部分にも適宜、圧縮の残留応力を付与すると、一層軌条の信頼性が増し、好ましい。
【0014】
以上のことから、本発明は、矯正後の軌条で、該軌条の表面から1mm以下の表層に圧縮応力を有するとともに、該軌条の長手方向に直角な断面内の残留応力の絶対値が、該軌条の変形抵抗の1割以下とし、耐久性および真直性に優れた軌条とするものである。
【0015】
また、本発明は、軽圧下を特徴とする矯正方法により、図1(a)に示すように疲労破壊を抑制しうる理想的な残留応力分布、すなわち、矯正後の軌条で、軌条の表面から1mm以下の表層に圧縮応力を有するとともに、該軌条の断面内の残留応力の絶対値が該軌条の変形抵抗の1割以下、を有する軌条を製造可能とするものである。
【0016】
すなわち、圧延後の矯正工程で、軌条の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、10%以下の延伸率で圧下するとともに、該圧延機の出側と入側のいづれか一方または両方に設けたピンチロールにより、塑性変形中の該軌条に、曲げモーメントおよび、さらに、長手方向の張力を負荷するものである。
【0017】
図2は、本発明の矯正方法に使用する矯正装置の基本構成を示す図であり、圧延工程で所定の断面寸法形状に成形された軌条50が、入側ピンチロール列52とユニバーサル圧延機51および出側ピンチロール列53を通過している状況を示す。
【0018】
図3は、図2で矯正圧延中の軌条と圧延機のロールとの位置関係を示す垂直断面図である。軌条50は、ユニバーサル圧延機51の上下の水平ロール54,54’と左右の竪ロール55,55’とにより挟み込まれて断面全体が同時に圧下されることにより、断面全体に塑性変形を受けており、軌条は所定の断面寸法に矯正成形される。その際、軌条50の頭部踏面および脚部底面が竪ロール55,55’と接触し、頭部および脚部の一部と胴部が水平ロール54,54’と接触する。矯正圧延中にロールと接触するこれらの軌条の表面はロール表面との間で相対滑りを発生するため、軌条の表面近傍がせん断変形により局部ひずみを生じる。その結果、表面近傍に圧縮の残留応力が付与されるとともに加工硬化を生じる。このように、損傷を受ける部位に圧縮の残留応力を付与することができるので、軌条の断面全体を塑性変形させうる圧延機としてユニバーサル圧延機を用いた図3の圧延は、軌条の耐疲労損傷性を安価に向上させる、材質改善技術として有用である。また、孔形を加工するなど、圧延機のロール形状を変更することにより、残留応力を付与する部分を比較的自由に設定出来る上に、圧下率や摩擦係数を変化させることにより、残留応力の発生深さやその強度を変化させることが可能であり、材質制御技術としても優れている。
【0019】
また、矯正圧延の延伸率を10%以下と規定しているのは、延伸率を10%以下とすることで、軌条の表面から1mm以下の表層に圧縮の残留応力を付与できると共に、長手方向に直角な断面内の残留応力の絶対値を変形抵抗の1割以下にすることができるためであり、これ以上の延伸率で圧下すると、軌条の断面形状の変化が大きくなり、狙いの形状に制御し難いためと、圧延反力が大となって装置が大型化し、設備コストの増大を招くためである。
【0020】
図4は、従来方式のローラーレベラーによる矯正と本発明の矯正とによる軌条の変形特性を比較するために導入したモデル図である。図4(a)は従来方式のローラーレベラー矯正における軌条および矯正ロールの一部を示す図で、B’点、A点およびB点は、それぞれ矯正ロール72,71および73と軌条50との接触部であり、B点は、押し込み量Δだけ軌条50を押し込む位置に設定されている。そのため、軌条50は、下に凸な曲げ矯正を受けるので、B点には矯正の反力が発生する。
【0021】
図4(b)は、本発明の矯正による軌条およびロールを示す図で、B’とB点それぞれ入側ピンチロール57’,57および出側のピンチロール59’,59と軌条50との接触部に対応し、A,A’点は、ユニバーサル圧延機のロール55,55’と軌条50との接触部に対応する。この場合もB点は、押し込み量Δだけ軌条50を押し込む位置に設定されている。そのため、軌条50は、下に凸な曲げ矯正を受けるので、B点には矯正の反力が発生する。その際、ロール55,55’により軌条50を圧下量uだけ圧延するので、圧下量uの変化に伴ってB点の反力も変化する。また、ピンチロール57,57’または59,59’が回転駆動して軌条50を引っ張るので、矯正効果が生じるAおよびA’近傍の軌条の長手方向に張力が作用する(図4(b)の左右の矢印の方向)。
【0022】
このようにして、塑性変形中の軌条に所定の曲げモーメントおよび、さらには張力を負荷することができる。なお、矯正のために負荷する所要の曲げモーメントおよび、さらには、長手方向の張力は、被矯正材である軌条の変形状態、延伸率などを勘案して設定することができる。負荷する張力は、大きい程スプリングバック低減効果があるので好ましいが、過度に大きな張力負荷は、ピンチロールの設備コストの増加を招くので、その費用対効果を考慮して設定する必要がある。一般に、軌条の変形抵抗の10%程度の張力を負荷できれば、顕著な効果が認められる。
【0023】
図5は、図4のモデルに関して弾塑性有限要素解析により得られた結果で、ローラーレベラー矯正と本発明の矯正とにおける矯正反力を比較した図である。
【0024】
縦軸は、図4(a)および図4(b)で矯正によりピンチロールのB点に作用する反力、横軸は、図4(a)および図4(b)のAおよびA’点における矯正圧延の圧下率(%)である。横軸が0の場合は圧延を施さず曲げ矯正する場合なので図4(a)に対応しており、この場合に矯正反力が最大値となる。また、矯正圧延における圧下率が増加するに従って矯正反力が単調に減少する。これは、図4(b)で矯正圧延の圧下により既に降伏状態にあるロールバイト内の材料、即ち、A点およびA’点を含む軌条の断面(軌条の長手方向に対して直角な断面)近傍の材料に対して、ピンチロール59’の反力に起因する曲げ応力が重畳する状態となるため、圧延圧下率の増加により降伏域が拡大するほどB点の反力が減少するものと理解される。また、さらには、ピンチロールによる張力が重畳することにより更に降伏しやすくなるので、張力の作用によりB点の矯正反力は図5の矢印のように低下する。本発明の技術では、従来技術に比べて矯正によるバルク全体の残留応力が低減されるので、矯正後の除荷によるスプリングバック量が大幅に減少し、高精度の矯正が可能である。
【0025】
以上より、耐久性および真直性に優れる軌条が製造可能である。
【0026】
図2は、本発明の矯正方法に使用する矯正装置の一実施形態を示すが、ユニバーサル圧延機51と、その入側および出側に、軌条の送り方向に対して上下、左右の移動と、時計および反時計方向の軸の回転により、上下、左右および傾斜の各位置決めが可能な自在ピンチロール列52,53を配置するのが基本構成である。このピンチロールの位置決めにより、塑性変形中の軌条に所要の曲げモーメントを与えることができる。ピンチロールの移動、軸の回転などは、油圧式あるいは、電動式などのアクチュエータを適宜設けて行なうことができる。自在ピンチロール列に関しては入側、出側の何れか一方だけでもかまわないが、ピンチロール列の少なくとも1対以上のピンチロールは、回転駆動される。この回転駆動によって圧延機とピンチロールとの間にある塑性変形中の軌条に対して、さらに、長手方向の張力を付与することができる。この張力の調整は、ピンチロールの回転駆動を制御することによって可能である。なお、ピンチロールの圧下力を大きくしたり、回転速度制御するピンチロールの数を増やしたりしてピンチロールと軌条との間の摩擦力を確保することにより、負荷する張力を調整することも好ましい。
【0027】
【実施例】
図6は、素材を圧延、矯正して、軌条を製造する工程を示した図である。
【0028】
図2に示す構成の矯正装置を、図6に示す一般的な軌条圧延工程のローラーレベラー矯正機とリプレースし、表1に示す条件で両者の能力を比較した。その結果を表1に示す。
【0029】
先ず、ローラーレベラー矯正機では、ロールの押し込み量を入側で大きく、出側にいくに従って小さくする基本設定で、軌条の定常部の曲がりを矯正することが出来た。しかし、軌条の端部に関しては公差を外れる場合がかなりの頻度で見られた。これらの公差外れの軌条は、生産性の極めて低いプレス装置で矯正するか、歩留落ちを前提に端部を切断除去することで救済せざるを得なかった。
【0030】
一方、本発明の方法では、軌条の両端部を含めてほぼ目標公差に入れることが出来た。
【0031】
また、軌条の端部を含めて何れの場所で長手方向に直角に切断しても、断面形状の大きな変化は見られなかった。更に、ローラーレベラーで矯正しにくいねじれ不良に関しても、矯正出来ることが確認された。
【0032】
以上の結果から、本発明の方法は寸法精度の点で従来のローラーレベラーによる矯正方法に完全に代替出来ることが判明した。また、ローラーレベラーで矯正しにくいねじれ不良に関しても、矯正出来ることが確認された。
【0033】
また、軌条の頭部踏面の波状変形を測定したが、本発明の方法では従来法に比べて波状変形の振幅が数分の一に低減されていた。
【0034】
更に、本発明の軽圧下(延伸率3%)で矯正した軌条と、従来のローラーレベラーで矯正した軌条とを用いて、耐疲労損傷性試験を行ない、特性を比較した。
【0035】
また、本発明の方法により矯正した軌条には、図1(a)に示したように表面から1mm間の範囲に圧縮残留応力が付与され、また、横断面内の残留応力の絶対値は変形抵抗の8%であった。そして耐疲労損傷試験の結果、寿命は、従来のものに比べて数倍長いものであった。また、図3の圧延条件(ロールと材料の接触域、ロール径、圧下量、摩擦係数)を変化させることにより軌条のサイズや材質に応じて疲労寿命を最適に制御出来ることが判明した。
【0036】
以上は、図6の軌条圧延工程の場合であるが、本発明の技術は熱間矯正、温間矯正、冷間矯正など幅広い工程に適用可能である。
【0037】
【表1】

Figure 0004705283
【0038】
【発明の効果】
本発明は、均一変形に優れた圧延矯正方法と、不均一変形ではあるが形状制御性の良い曲げ矯正方法を適切に組み合わせて、両者の欠点を補うとともに、その長所を十分発揮させるようにしたことにより、従来の矯正方法では達成が極めて困難な耐久性および真直性に優れる残留応力分布を有する軌条を製造することが可能となった。本発明は、軌条の形状、材質に制限されることなく、各種の軌条に適用することが可能であり、いずれも耐久性、真直性に優れた軌条を得ることができる。
【図面の簡単な説明】
【図1】軌条の長手方向に直角な断面を示す図であり、図1(a)は本発明の、図1(b)は従来の軌条をそれぞれ示す。
【図2】本発明の矯正方法に使用する矯正装置の基本構成を示す図である。
【図3】本発明の技術に関する軌条と圧延機のロールとの位置関係を示す垂直断面図である。
【図4】従来技術と本発明の技術の矯正特性を比較するモデルを示す図であり、図4(a)は従来の技術、図4(b)は本発明の技術によるモデルをそれぞれ示す。
【図5】図4のモデルにより求めた矯正反力と矯正圧延圧下率との関係を示す図である。
【図6】軌条の圧延、および矯正工程を示す図である。
【図7】従来の矯正技術を示す図である。
【図8】従来の矯正技術を示す図である。
【図9】従来の矯正技術を示す図である。
【図10】従来の矯正技術を示す図である。
【符号の説明】
1…軌条
2…搬送テーブルローラー
3…小径ロール
4…曲率を有するロール
31…バックアップロール
50…軌条
51…ユニバーサル圧延機
52…入側ピンチロール列
53…出側ピンチロール列
54,54’…ユニバーサル圧延機の水平ロール
55,55’…ユニバーサル圧延機の竪ロール
56,56’…入側ピンチロール列の水平ピンチロール
57,57’…入側ピンチロール列の竪ピンチロール
58,58’…出側ピンチロール列の水平ピンチロール
59,59’…出側ピンチロール列の竪ピンチロール
71,72,73…ローラーレベラーの矯正ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rail, and more particularly, to a rail excellent in durability and straightness necessary for speeding up a railway vehicle, and a correction method thereof.
[0002]
[Prior art]
With the speeding up of railway vehicles, safety and comfort during travel are being ensured.
[0003]
As part of this, the safety of the rails that support the vehicle has become more and more important, and there is a strong demand for extending the service life and improving the fracture resistance. In particular, in overseas railways, a brittle crack developed in the trunk (also referred to as a column) of the rail 1 that was roller-corrected with the straightening machine shown in FIG. 7, leading to derailment and death and injury. The trajectory of brittle crack propagation characteristics of the rail trunk is regarded as important, and a rail with excellent brittle crack growth characteristics of the trunk is desired. In order to increase the fatigue damage resistance of rails, it is known that the use of residual stress is the most effective in combination with strengthening of rail materials. It has been studied whether to give effective compressive residual stress to the surface. For example, in Japanese Patent Laid-Open No. 4-17921, as a correction method for improving the fatigue resistance of a rail, as shown in FIG. 8, a roller straightening machine in which small diameter rolls 3 having a diameter of 50 to 300 mm are alternately arranged up and down is used. A technique for inducing compressive residual stress in the rail surface layer by processing the surface layer of the head and bottom of the rail 1 so that the vicinity of the rail surface in contact with the roll is plastically deformed more than the inside of the rail surface. It is disclosed. However, in this technique, when a large compressive residual stress is required, the straightening load of the roller straightening machine reaches about 150 t. Therefore, the backup roll 31 is not capable of withstanding the straightening load with a small diameter roll of 50 to 300 mm. There is a problem that the structure of the straightening machine is complicated and the equipment cost increases.
[0004]
In JP-A-6-31216, as shown in FIG. 9, a roll 4 having a diameter of 100 to 500 mm and a curvature of 200 to 1000 mm in the roll axial direction is shown in FIG. By providing a rolling device (b) opposed to each other and applying a compressive residual stress to the rail head and the bottom surface layer by loading so that the Hertz stress between the rolls is in the range of 90 to 300 MPa, A technique for improving the rolling fatigue life of rails by four times or more is disclosed. However, since this technique is a combination of the roller correction in the preceding stage and the asymmetric rolling in the subsequent stage, when a large compressive residual stress is required, in principle, rolling bending due to asymmetry occurs in the subsequent stage rolling. . Therefore, there is a problem that the setting of the optimal correction condition becomes complicated as compared with the case of the roller straightening machine alone.
[0005]
In addition to this, there is a need to ensure the flatness in the longitudinal direction of the rail head surface as the railway vehicle speeds up. If there are periodic wavy irregularities, that is, wavy deformations, in the longitudinal direction on the tread surface of the rail head, vertical vibrations are generated in the wheels of the vehicle during travel. Even in the case of a high-speed vehicle, even a wave-like deformation having a long wavelength, which is not usually a problem in a conventional line with a low speed, results in a vibration having a relatively high frequency. If this frequency matches the natural frequency of the vehicle's undercarriage, resonance occurs and the contact between the wheel and the rail becomes unstable. In the worst case, this may lead to an accident such as derailment of the vehicle. Further, even if an accident does not occur, vibration due to wave-like deformation has a problem of causing a decrease in ride comfort. As a factor of the occurrence of wavy deformation of the rail, it is considered that the backlash or eccentricity of the roll of the roller straightening machine is transferred to the rail during the correction process. In order to prevent this, it is necessary to manage the backlash and eccentricity of all the rolls of the roller straightening machine to the minimum. To that end, it is necessary to modify the apparatus and update the equipment. However, since a normal roller straightening machine has seven or more rolls, there is a problem that an initial cost is increased and an extra management cost is generated during operation. In the above-mentioned JP-A-6-31216, a roll pair is arranged and rolled down after the roller straightening machine, so that even if wavy deformation occurs in the roller straightening machine, it can be corrected by rolling. However, in order to increase the correction effect of the wavy deformation due to rolling, it is necessary to increase the rolling reduction. At that time, the occurrence of rolling bending due to the asymmetry becomes a problem.
[0006]
[Problems to be solved by the invention]
In order to drastically solve the above problems, a new straightening technique based on a simpler principle is used in place of a roller straightening machine that has many rolls and is complicated in terms of equipment. Need to be oriented. That is, if a technique for correcting a rail by rolling is developed, it becomes possible in principle to produce a highly durable rail free of a wave deformation by eliminating a wave deformation generating factor and controlling a compressive residual stress. However, since the conventional rail rolling as described above is asymmetric rolling, there is a problem that rolling bending occurs and the original correction aimed at securing straightness cannot be performed. Therefore, even if it is asymmetric rolling such as rail rolling, if the rolling mill itself has a function of exerting a correction effect, it has been found that the target rail can be corrected and the present invention has been made. It is.
[0007]
[Means for Solving the Problems]
The present invention has been made based on the above examination, and the gist thereof is as follows.
[0008]
(1) In a rail with excellent durability and straightness, compressive residual stress is applied to the surface layer of 1 mm or less from the surface of the trunk including the head tread and leg bottom and part of the head and leg after correction. A rail excellent in durability and straightness, characterized in that the absolute value of residual stress in a cross section perpendicular to the longitudinal direction of the rail is 10% or less of the deformation resistance of the rail.
[0009]
(2) The railway method straightening excellent durability and straightness, in straightening process after rolling, using a rolling mill capable of plastically deforming the whole section perpendicular to the longitudinal direction of the article said track, rail head tread and The bottom surface of the leg is brought into contact with the heel roll, the head and a part of the leg and the body are brought into contact with the horizontal roll, and the entire cross section is pressed down so as to be plastically deformed at a stretching ratio of 10% or less. A method for correcting a rail excellent in durability and straightness, wherein a bending moment is applied to the rail during plastic deformation by a pinch roll provided on either or both of the exit side and the entrance side of the machine.
[0010]
(3) The railway method straightening excellent durability and straightness, in straightening process after rolling, using a rolling mill capable of plastically deforming the whole section perpendicular to the longitudinal direction of the article said track, rail head tread and The bottom surface of the leg is brought into contact with the heel roll, the head and a part of the leg and the body are brought into contact with the horizontal roll, and the entire cross section is pressed down so as to be plastically deformed at a stretching ratio of 10% or less. Durability and straightness characterized by applying bending moment and longitudinal tension to the rail during plastic deformation by pinch rolls provided on either or both of the exit side and entry side of the machine Excellent way to correct rails.
[0011]
The present invention will be described below.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a view showing a residual stress distribution in a cross section perpendicular to the longitudinal direction of the rail. FIG. 1 (a) shows the rail according to the present invention, and FIG. 1 (b) shows JP-A-6-31216. This is the case of the rail after the roller leveler correction. In the present invention, the section refers to a section perpendicular to the longitudinal direction of the rail. As shown in FIG. 1B, tensile stress and compressive stress are adjacently distributed in the entire cross section of the rail after the roller leveler correction, and the absolute value of the residual stress is the deformation resistance of the rail. An area exceeding 10% of this area (shaded area in FIG. 1B) is recognized. If there are material defects such as inclusions and internal cracks in such an excessive residual stress field, fatigue cracks are likely to occur from that part due to repeated stress applied by contact with the wheel. It becomes a factor of cost increase for defect management and material improvement. From the viewpoint of linear fracture mechanics, in the case of a circular crack inside the material and a semicircular crack of the same radius on the surface, the latter stress intensity factor (an index of the ease of crack propagation) is about 1.1 of the former. Doubled and usually easily cracked from the surface. However, in general, the fatigue strength is 50% or less of the tensile strength and is smaller than the deformation resistance. Therefore, if the internal residual stress exceeds 10% of the deformation resistance as shown in FIG. Since the external stress is superimposed, a portion in which the stress intensity factor of the internal circular crack is larger than that of the semicircular crack on the surface is likely to occur, and is considered harmful. The inventors conducted fatigue property tests of materials with various residual stress distributions, and as shown in FIG. 1A, if the internal residual stress is 10% or less of the deformation resistance, this is 1 It was found that the destruction from the inside is remarkably reduced as compared with FIG. Therefore, the absolute value of the residual stress in the cross section perpendicular to the longitudinal direction of the rail of the present invention is 10% or less of the deformation resistance of the rail.
[0013]
In addition, in a material with few defects inside the material, cracks are likely to occur due to stress concentration due to dents on the surface of the rail. In that case, if the compressive residual stress is distributed about 1 mm from the surface, the effective stress intensity factor of the crack will decrease, so that it will not easily break, and the compressive residual stress exceeding 1 mm will be applied. However, it has been found that the effect is saturated and the cost for granting is high. For this reason, the range for applying the residual stress is set to 1 mm or less. Generally, since the rail tread is in direct contact with the wheels of the vehicle, excessive stress is likely to be generated. Therefore, it is effective to apply compressive residual stress to this portion. In addition, as described above, since the fracture starting from the trunk portion of the rail has occurred, as shown in FIG. This is preferable because the reliability of the rail is increased.
[0014]
In view of the above, the present invention is a straightened rail having a compressive stress on the surface layer of 1 mm or less from the surface of the rail, and the absolute value of the residual stress in the cross section perpendicular to the longitudinal direction of the rail is It is set to 10% or less of the deformation resistance of the rail, and the rail has excellent durability and straightness.
[0015]
In addition, the present invention provides an ideal residual stress distribution that can suppress fatigue failure as shown in FIG. 1A by a correction method characterized by light reduction, that is, a rail after correction, from the surface of the rail. A rail having a compressive stress on the surface layer of 1 mm or less and having an absolute value of residual stress in the cross section of the rail of 10% or less of the deformation resistance of the rail can be manufactured.
[0016]
That is, in a straightening process after rolling, using a rolling mill capable of plastically deforming the entire cross section perpendicular to the longitudinal direction of the rail, the rolling is reduced at a drawing rate of 10% or less, and the outlet side and the inlet side of the rolling mill are Bending moment and further tension in the longitudinal direction are applied to the rail during plastic deformation by a pinch roll provided on either one or both.
[0017]
FIG. 2 is a diagram showing a basic configuration of a straightening device used in the straightening method of the present invention. A rail 50 formed into a predetermined cross-sectional size and shape in a rolling process includes an entry side pinch roll row 52 and a universal rolling mill 51. And the condition which has passed the exit side pinch roll row | line | column 53 is shown.
[0018]
FIG. 3 is a vertical sectional view showing the positional relationship between the rail during straightening rolling and the roll of the rolling mill in FIG. The rail 50 is sandwiched between the upper and lower horizontal rolls 54, 54 'of the universal rolling mill 51 and the left and right vertical rolls 55, 55', and the entire cross section is simultaneously pressed down, so that the entire cross section is subjected to plastic deformation. The rail is straightened to a predetermined cross-sectional dimension. At that time, the head tread and leg bottom of the rail 50 are in contact with the heel rolls 55 and 55 ', and a part of the head and legs and the trunk are in contact with the horizontal rolls 54 and 54'. Since the surfaces of these rails that come into contact with the roll during straightening rolling generate relative slip with the roll surface, the vicinity of the surface of the rail causes local strain due to shear deformation. As a result, compressive residual stress is applied near the surface and work hardening occurs. Thus, since compressive residual stress can be applied to the damaged part, the rolling of FIG. 3 using the universal rolling mill as a rolling mill capable of plastically deforming the entire section of the rail is fatigue-resistant damage of the rail. It is useful as a material improvement technique that improves the property at low cost. In addition, by changing the roll shape of the rolling mill, such as machining the hole shape, the portion to which the residual stress is applied can be set relatively freely, and the residual stress can be reduced by changing the rolling reduction ratio and the friction coefficient. It is possible to change the generation depth and its strength, and it is an excellent material control technology.
[0019]
Further, the stretching ratio of straightening rolling is defined as 10% or less. By setting the stretching ratio to 10% or less, a compressive residual stress can be applied to the surface layer of 1 mm or less from the surface of the rail, and the longitudinal direction. This is because the absolute value of the residual stress in the cross section perpendicular to the angle can be reduced to 10% or less of the deformation resistance. This is because it is difficult to control, and the rolling reaction force becomes large, resulting in an increase in the size of the apparatus and an increase in equipment cost.
[0020]
FIG. 4 is a model diagram introduced in order to compare the deformation characteristics of the rails between the correction using the conventional roller leveler and the correction according to the present invention. FIG. 4A is a view showing a part of the rail and the correction roll in the conventional roller leveler correction, and points B ′, A and B are the contact between the correction rolls 72, 71 and 73 and the rail 50, respectively. The point B is set at a position where the rail 50 is pushed by the pushing amount Δ. For this reason, the rail 50 is subjected to a downward convex bending correction, and a correction reaction force is generated at the point B.
[0021]
FIG. 4 (b) is a view showing the rails and rolls according to the correction of the present invention. The points A and A ′ correspond to the contact portions between the rolls 55 and 55 ′ of the universal rolling mill and the rail 50. Also in this case, the point B is set to a position where the rail 50 is pushed by the pushing amount Δ. For this reason, the rail 50 is subjected to a downward convex bending correction, and a correction reaction force is generated at the point B. At that time, since the rail 50 is rolled by the rolling amount u by the rolls 55 and 55 ′, the reaction force at the point B also changes as the rolling amount u changes. Further, since the pinch rolls 57, 57 ′ or 59, 59 ′ are driven to rotate and pull the rail 50, a tension acts in the longitudinal direction of the rails in the vicinity of A and A ′ where the correction effect is generated (FIG. 4B). Left and right arrow direction).
[0022]
In this way, a predetermined bending moment and further tension can be applied to the rail during plastic deformation. The required bending moment and the longitudinal tension applied for correction can be set in consideration of the deformation state of the rail as the material to be corrected, the stretch rate, and the like. The larger the tension to be loaded, the better the effect of reducing the springback. However, an excessively large tension load increases the equipment cost of the pinch roll, so it is necessary to set it considering its cost effectiveness. Generally, if a tension of about 10% of the deformation resistance of the rail can be applied, a remarkable effect is recognized.
[0023]
FIG. 5 is a diagram comparing the correction reaction force between the roller leveler correction and the correction according to the present invention as a result obtained by the elasto-plastic finite element analysis with respect to the model of FIG.
[0024]
The vertical axis represents the reaction force acting on point B of the pinch roll by correction in FIGS. 4 (a) and 4 (b), and the horizontal axis represents points A and A 'in FIGS. 4 (a) and 4 (b). Is the rolling reduction (%) of straightening rolling. When the horizontal axis is 0, since bending correction is performed without rolling, this corresponds to FIG. 4A, and in this case, the correction reaction force becomes the maximum value. Further, the straightening reaction force monotonously decreases as the rolling reduction in straightening rolling increases. This is because the material in the roll bite that has already yielded due to the reduction of the straight rolling in FIG. 4B, that is, the cross section of the rail including the points A and A ′ (the cross section perpendicular to the longitudinal direction of the rail). It is understood that the bending force due to the reaction force of the pinch roll 59 'is superimposed on the nearby material, so that the reaction force at point B decreases as the yield zone increases due to an increase in rolling reduction ratio. Is done. Furthermore, since the yield due to the tension by the pinch rolls is further superimposed, the correction reaction force at the point B is lowered as shown by the arrow in FIG. In the technique of the present invention, the residual stress of the entire bulk due to straightening is reduced as compared with the prior art, so the amount of springback due to unloading after straightening is greatly reduced, and high-precision straightening is possible.
[0025]
As described above, a rail excellent in durability and straightness can be manufactured.
[0026]
FIG. 2 shows one embodiment of a straightening device used in the straightening method of the present invention. On the universal rolling mill 51 and its entry and exit sides, up and down, left and right movements with respect to the rail feed direction, The basic structure is to arrange the free pinch roll rows 52 and 53 that can be positioned up and down, left and right, and inclined by rotating the clock and the counterclockwise shaft. By positioning the pinch roll, a required bending moment can be applied to the rail during plastic deformation. The movement of the pinch roll, the rotation of the shaft, and the like can be performed by appropriately providing a hydraulic or electric actuator. With respect to the universal pinch roll row, either the entry side or the exit side may be used, but at least one pair of pinch rolls in the pinch roll row is driven to rotate. By this rotational driving, a longitudinal tension can be further applied to the rail during plastic deformation between the rolling mill and the pinch roll. The tension can be adjusted by controlling the rotational drive of the pinch roll. It is also preferable to adjust the applied tension by increasing the rolling force of the pinch roll or increasing the number of pinch rolls for rotational speed control to ensure the frictional force between the pinch roll and the rail. .
[0027]
【Example】
FIG. 6 is a diagram showing a process of manufacturing a rail by rolling and straightening a material.
[0028]
The straightening device having the configuration shown in FIG. 2 was replaced with a roller leveler straightening machine in a general rail rolling process shown in FIG. 6, and the capabilities of the two were compared under the conditions shown in Table 1. The results are shown in Table 1.
[0029]
First, with the roller leveler straightening machine, it was possible to correct the bending of the steady portion of the rail with the basic setting of increasing the push-in amount of the roll on the entry side and decreasing it toward the exit side. However, with regard to the end of the rail, it was frequently observed that the tolerance was not met. These out-of-tolerance rails had to be remedied by correcting them with a press device with extremely low productivity, or by cutting and removing the end portion on the premise of yield loss.
[0030]
On the other hand, in the method of the present invention, the target tolerance including the both end portions of the rail was able to be almost included.
[0031]
Moreover, even if it cut | disconnected at right angles to the longitudinal direction in any place including the edge part of a rail, the big change of the cross-sectional shape was not seen. Furthermore, it was confirmed that the torsional defect that is difficult to be corrected by the roller leveler can be corrected.
[0032]
From the above results, it has been found that the method of the present invention can be completely replaced by the conventional correction method using a roller leveler in terms of dimensional accuracy. In addition, it was confirmed that the torsional defects that are difficult to correct with the roller leveler can be corrected.
[0033]
Moreover, although the wave-like deformation of the head tread of the rail was measured, the amplitude of the wave-like deformation was reduced to a fraction of that of the conventional method in the method of the present invention.
[0034]
Furthermore, the fatigue damage resistance test was conducted using the rails corrected under light pressure (stretching rate 3%) of the present invention and the rails corrected with a conventional roller leveler, and the characteristics were compared.
[0035]
Further, the rail corrected by the method of the present invention is given a compressive residual stress in the range of 1 mm from the surface as shown in FIG. 1A, and the absolute value of the residual stress in the cross section is deformed. It was 8% of the resistance. As a result of the fatigue damage test, the life was several times longer than the conventional one. Further, it has been found that the fatigue life can be optimally controlled according to the size and material of the rail by changing the rolling conditions (the contact area between the roll and the material, the roll diameter, the reduction amount, and the friction coefficient) in FIG.
[0036]
The above is the case of the rail rolling process of FIG. 6, but the technique of the present invention can be applied to a wide range of processes such as hot straightening, warm straightening, and cold straightening.
[0037]
[Table 1]
Figure 0004705283
[0038]
【The invention's effect】
In the present invention, a rolling straightening method having excellent uniform deformation and a bending straightening method having non-uniform deformation but good shape controllability are appropriately combined to make up for the disadvantages of both and to fully demonstrate the advantages. As a result, it has become possible to produce a rail having a residual stress distribution with excellent durability and straightness that is extremely difficult to achieve with conventional straightening methods. The present invention can be applied to various types of rails without being limited by the shape and material of the rails, and any of them can obtain a rail excellent in durability and straightness.
[Brief description of the drawings]
FIG. 1 is a view showing a cross section perpendicular to the longitudinal direction of a rail, FIG. 1 (a) shows the present invention, and FIG. 1 (b) shows a conventional rail.
FIG. 2 is a diagram showing a basic configuration of a correction device used in the correction method of the present invention.
FIG. 3 is a vertical sectional view showing the positional relationship between a rail and a roll of a rolling mill related to the technique of the present invention.
FIGS. 4A and 4B are diagrams showing models for comparing the correction characteristics of the prior art and the technique of the present invention. FIG. 4A shows a conventional technique, and FIG. 4B shows a model according to the technique of the present invention.
5 is a diagram showing the relationship between the straightening reaction force and the straightening rolling reduction ratio obtained by the model of FIG.
FIG. 6 is a diagram showing a rail rolling and straightening process.
FIG. 7 is a diagram showing a conventional correction technique.
FIG. 8 is a diagram showing a conventional correction technique.
FIG. 9 is a diagram showing a conventional correction technique.
FIG. 10 is a diagram showing a conventional correction technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rail 2 ... Conveyance table roller 3 ... Small diameter roll 4 ... Roll 31 with curvature ... Backup roll 50 ... Rail 51 ... Universal rolling mill 52 ... Inlet side pinch roll row | line | column 53 ... Outlet side pinch roll row | line | column 54, 54 '... Universal Horizontal rolls 55, 55 'of rolling mills, horizontal rolls 56, 56' of universal rolling mills, horizontal pinch rolls 57, 57 'of the input side pinch roll array, vertical pinch rolls 58, 58' of the input side pinch roll array Horizontal pinch rolls 59, 59 'in the side pinch roll row ... 竪 pinch rolls 71, 72, 73 in the output side pinch roll row ... Roller leveler straightening roll

Claims (3)

耐久性および真直性に優れる軌条において、矯正後の軌条の頭部踏面および脚部底面並びに頭部および脚部の一部を含む胴部の表面から1mm以下の表層に圧縮の残留応力を有するとともに、該軌条の長手方向に直角な断面内の残留応力の絶対値が、該軌条の変形抵抗の1割以下であることを特徴とする耐久性および真直性に優れる軌条。In a rail with excellent durability and straightness, it has compressive residual stress on the surface layer of 1 mm or less from the surface of the trunk including the head tread and leg bottom of the rail after correction and part of the head and leg. A rail excellent in durability and straightness, characterized in that the absolute value of residual stress in a cross section perpendicular to the longitudinal direction of the rail is 10% or less of the deformation resistance of the rail. 耐久性および真直性に優れる軌条の矯正方法において、圧延後の矯正工程で、該軌条の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、軌条の頭部踏面および脚部底面を竪ロールと接触させ、頭部および脚部の一部と胴部を水平ロールと接触させて、10%以下の延伸率で全断面が塑性変形するように圧下するとともに、該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該軌条に、曲げモーメントを負荷することを特徴とする耐久性および真直性に優れる軌条の矯正方法。In the straightening method of the rail excellent in durability and straightness, in the straightening step after rolling, using the rolling mill capable of plastically deforming the entire cross section perpendicular to the longitudinal direction of the rail, the head tread and the bottom of the leg And a part of the head and legs and the body part in contact with the horizontal roll to reduce the entire cross section at a stretch ratio of 10% or less so that the entire cross section is plastically deformed. A method for correcting a rail excellent in durability and straightness, wherein a bending moment is applied to the rail during plastic deformation by a pinch roll provided on one or both of the side and the inlet side. 耐久性および真直性に優れる軌条の矯正方法において、圧延後の矯正工程で、該軌条の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、軌条の頭部踏面および脚部底面を竪ロールと接触させ、頭部および脚部の一部と胴部を水平ロールと接触させて、10%以下の延伸率で全断面が塑性変形するように圧下するとともに、該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該軌条に、曲げモーメントと長手方向の張力とを負荷することを特徴とする耐久性および真直性に優れる軌条の矯正方法。In the straightening method of the rail excellent in durability and straightness, in the straightening step after rolling, using the rolling mill capable of plastically deforming the entire cross section perpendicular to the longitudinal direction of the rail, the head tread and the bottom of the leg And a part of the head and legs and the body part in contact with the horizontal roll to reduce the entire cross section at a stretch ratio of 10% or less so that the entire cross section is plastically deformed. Of a rail excellent in durability and straightness characterized by applying a bending moment and a longitudinal tension to the rail during plastic deformation by a pinch roll provided on one or both of the side and the inlet side Correction method.
JP2001270853A 2001-09-06 2001-09-06 Rail with excellent durability and straightness and its correction method Expired - Fee Related JP4705283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270853A JP4705283B2 (en) 2001-09-06 2001-09-06 Rail with excellent durability and straightness and its correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270853A JP4705283B2 (en) 2001-09-06 2001-09-06 Rail with excellent durability and straightness and its correction method

Publications (2)

Publication Number Publication Date
JP2003080316A JP2003080316A (en) 2003-03-18
JP4705283B2 true JP4705283B2 (en) 2011-06-22

Family

ID=19096455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270853A Expired - Fee Related JP4705283B2 (en) 2001-09-06 2001-09-06 Rail with excellent durability and straightness and its correction method

Country Status (1)

Country Link
JP (1) JP4705283B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112718873B (en) * 2020-12-14 2022-07-12 攀钢集团攀枝花钢钒有限公司 Method for improving straightness of front end part of steel rail

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202916A (en) * 1982-02-19 1983-11-26 ユニメタル−ソシエテ フランセ−ズ デ アシエ ロン− Method of straightening rail and rail straightened
JPH10236794A (en) * 1997-02-24 1998-09-08 Toyota Autom Loom Works Ltd Shape steel rail and work hardening method thereof
JP2001129611A (en) * 1999-11-01 2001-05-15 Nippon Steel Corp Method of and equipment for straightening rail

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202916A (en) * 1982-02-19 1983-11-26 ユニメタル−ソシエテ フランセ−ズ デ アシエ ロン− Method of straightening rail and rail straightened
JPH10236794A (en) * 1997-02-24 1998-09-08 Toyota Autom Loom Works Ltd Shape steel rail and work hardening method thereof
JP2001129611A (en) * 1999-11-01 2001-05-15 Nippon Steel Corp Method of and equipment for straightening rail

Also Published As

Publication number Publication date
JP2003080316A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
EP4035817A1 (en) Double-sided friction stir welding method; cold-rolled steel strip and plated steel strip manufacturing method; double-sided friction stir welding device; and cold-rolled steel strip and plated steel strip manufacturing equipment
JP3531810B2 (en) Laura Leveler
JP4705283B2 (en) Rail with excellent durability and straightness and its correction method
JP3802727B2 (en) Shape steel straightening method and apparatus
JP2002257169A (en) High fatigue strength axial spring for railway vehicle
JP4854886B2 (en) H-section steel excellent in straightness and toughness and its straightening method
JP3279384B2 (en) Manufacturing method of fatigue resistant rail
JP3731974B2 (en) Method for manufacturing residual stress control rail with low warpage
JP2563601B2 (en) Flat wire manufacturing method
CZ298418B6 (en) Method of straightening rails and a disk straightening machine for straightening rails
JP2680164B2 (en) Straightening method for improving rail fatigue resistance
JP2991066B2 (en) Roller straightening method for H-section steel
KR20040092990A (en) A roll for roll forming and a method therefor
CN115055561B (en) Steel rail torsion method
EP3388160A1 (en) Method for producing steel h-beam, and rolling mill
JP3451185B2 (en) Method and apparatus for bending a belt-shaped member
JP3754191B2 (en) Rail straightening method and apparatus
JP3279385B2 (en) Manufacturing method of rail with excellent internal damage resistance
JP2735411B2 (en) Forming method and equipment for large diameter square steel pipe
JP2002059220A (en) Electric resistance welded steel tube excellent in hydroforming workability
JP2002282944A (en) Roller leveler for h-shaped steel
JP2003305515A (en) Correcting device for shape steel
JP6436181B2 (en) Bending correction method and bending correction apparatus for steel sheet pile
JPH10146634A (en) Manufacture of high-strength axle spring for rolling stock
JPH08197108A (en) Manufacture of rolled channel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R151 Written notification of patent or utility model registration

Ref document number: 4705283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees